WO2009084615A1 - Die member, method for manufacturing the die member and method for forming light controlling member by using the die member - Google Patents

Die member, method for manufacturing the die member and method for forming light controlling member by using the die member Download PDF

Info

Publication number
WO2009084615A1
WO2009084615A1 PCT/JP2008/073687 JP2008073687W WO2009084615A1 WO 2009084615 A1 WO2009084615 A1 WO 2009084615A1 JP 2008073687 W JP2008073687 W JP 2008073687W WO 2009084615 A1 WO2009084615 A1 WO 2009084615A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
thin plate
low thermal
thermal conductivity
heat
Prior art date
Application number
PCT/JP2008/073687
Other languages
French (fr)
Japanese (ja)
Inventor
Ichiro Matsuzaki
Yoshinori Osanai
Takumi Yagi
Masakatsu Sugasaki
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to CN200880123006.0A priority Critical patent/CN101909847B/en
Priority to KR1020127026037A priority patent/KR101473680B1/en
Priority to JP2009548078A priority patent/JP5610770B2/en
Publication of WO2009084615A1 publication Critical patent/WO2009084615A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3828Moulds made of at least two different materials having different thermal conductivities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms

Definitions

  • the present invention relates to a mold member used for manufacturing a light control member by an injection molding method, a manufacturing method thereof, and a molding method of a light control member using the same.
  • An injection molding method (including an injection compression molding method) in which a heat-fluidized resin material is injected into a cavity in a mold, cooled and solidified in the mold, and then the mold is opened to take out a molded product.
  • a processing method of a resin material containing a thermoplastic resin it is widely used as one of molding methods that can easily improve production speed and automate molding.
  • a cooling solidified layer may be formed on the surface of the molten resin injected and filled into the cavity in a general injection molding method.
  • Such a cooling and solidifying layer hinders transferability of fine unevenness of a molded product, and causes generation of a weld mark, a cold mark, a flow mark, and the like.
  • a thin plate member or a mold member is mounted on one surface of a mold cavity.
  • the thin plate member is composed of a metal thin plate main body having a mold surface that forms one surface of a cavity, and a low thermal conductivity member made of a polyimide film disposed on the back surface of the thin plate main body.
  • a thermoplastic resin having a temperature higher than the transfer start temperature is introduced into the cavity, the mold is cooled by the mold and lowered to a temperature lower than the transfer start temperature.
  • the heat capacity of the thin plate body is set so that the thermoplastic resin near the surface of the mold rises again to a temperature exceeding the transfer start temperature.
  • thermoplastic resin having a temperature equal to or higher than the transfer start temperature is introduced into the mold cavity held at a temperature equal to or lower than the transfer start temperature.
  • the thermoplastic resin introduced into the cavity portion is cooled on the cavity surface of the mold and temporarily falls to a temperature not higher than the transfer start temperature.
  • one surface of the cavity has a set heat capacity, the mold The thermoplastic resin in contact with the surface can rise again to a temperature exceeding the transfer start temperature.
  • the molding method of such a resin molded product is suitable for production of a light control member that controls light such as a light guide plate and a lens sheet.
  • a resin molded product having a different fine shape on the surface is replaced with the same metal by exchanging thin plate bodies with different concave and convex patterns or mirror surface patterns engraved on the mold surface. It has the advantage that it can be manufactured using a mold.
  • the polyimide film disposed or adhered to the back surface of the thin plate main body may be wrinkled or broken when the thin plate main body is replaced.
  • the temperature of the thermoplastic resin in contact with the mold surface put into the cavity once falls below the transfer start temperature, but again rises above the transfer start temperature.
  • the heat capacity must be set to be a predetermined capacity. Therefore, the thickness of the thin plate main body is limited to a predetermined heat capacity, and is generally as thin as 1 mm or less (for example, within a range of about 0.3 mm to 0.6 mm).
  • an object of the present invention is a mold member having a replaceable thin plate body used for manufacturing a thin plate-like light control member by injection molding, and can be stably produced even when used for a long period of time.
  • the object is to provide a mold member.
  • a mold member according to an embodiment of the present invention is a mold member that is used for manufacturing a light control member by an injection molding method using a mold, and that can be attached to and detached from the mold, and includes a mold surface.
  • a metal thin plate body having a thickness of 0.2 mm or more and 0.6 mm or less, and a thickness of 0.1 mm or more and 0.5 mm or less disposed on a surface facing the mold surface,
  • FIG.1 (a) is a side view seen from the side surface
  • FIG.1 (b) is the plane seen from the cavity surface side.
  • FIG. It is a figure explaining the structure of the thin-plate member in one Example of this invention by a cross section. It is a figure explaining the structure of the thin-plate member in one Example of this invention by a cross section. It is a figure which shows the result of having measured the relationship between the temperature of a polymethylmethacrylate resin, and a longitudinal elastic modulus. It is a figure which shows the conditions of the simulation about a light-guide plate.
  • FIG. 1 illustrates a state where the mold member 10 is mounted on the mold.
  • FIG. 2 or FIG. 3 the details of the mold member mounted thereon are described.
  • a mold member or thin plate member 10 according to an embodiment of the present invention is a mold member 10 that is used in the manufacture of a light control member by an injection molding method using a mold and is detachable from the mold.
  • a metal thin plate body 20 having a mold surface or cavity surface 20a and having a thickness of 0.2 mm or more and 0.6 mm or less, and a surface opposed to the mold surface 20a integrated with the thin plate body.
  • the mold member or the thin plate member 10 is a mold member that is used for manufacturing a light control member by an injection molding method using a mold and can be attached to and detached from the mold.
  • a metal thin plate body having a mold surface or cavity surface 20a and having a thickness in the range of 0.3 mm or more and 0.6 mm or less, and the thin plate body integrated with the thin plate body on the surface facing the mold surface.
  • a low thermal conductivity member having a thickness in the range of 0.1 mm or more and 0.3 mm or less.
  • the present inventor integrates the thin plate main body and the low thermal conductivity member disposed on the back surface thereof from the recognition that a structure that does not cause even a part of the peeling of the bonded portion is necessary.
  • a low thermal conductivity member is integrated on the back of the thin plate main body using a thermosetting heat-resistant adhesive, or a low heat is applied to the back of the thin plate main body. It has been recognized that the above-described problems can be solved by disposing a reinforcing material via a conductivity member to form a sandwich structure with a low thermal conductivity member that is expected to break.
  • the adhesive to be used is heat resistance, pressure resistance, shear resistance, heat deterioration resistance (no thermal decomposition, no foaming) It has been found by the present inventors that it is important to maintain various characteristics such as
  • the heat resistance needs to withstand the resin temperature filled at a high temperature as an injection molding condition, and to prevent thermal decomposition or foaming. Further, the pressure resistance is necessary to withstand a high holding pressure for maintaining high transferability of fine unevenness. In addition, the shear resistance needs to withstand repeated thermal histories at high and normal temperatures in accordance with the injection molding cycle. If any of these conditions is satisfied and the low thermal conductivity member is disposed on the back surface of the thin plate body, the low thermal conductivity member may be thermally decomposed, foamed, or partially peeled, etc. It is possible to prevent distortion from occurring.
  • a heat-fluidized resin material is injected into a cavity in a mold, solidified or cured while maintaining a high pressure in the mold, and then the mold is opened to form a thin plate.
  • the mold member is used as an injection surface to be injected, and the mold member has a mold surface that forms one surface of the cavity and has a thickness of 0.2 mm or more and 0.6 mm or less.
  • the thin plate body and the low thermal conductivity member are integrated with a thermosetting heat-resistant adhesive, the occurrence of peeling of the low thermal conductivity member can be further suppressed.
  • the heat resistant adhesive does not generate a cured byproduct.
  • a reinforcing material is integrated on the back surface of the low thermal conductivity member, even if peeling occurs in a part of the low thermal conductivity member, the thin plate main body is not distorted. Further, such a reinforcing material can improve the operability of the thin plate member, and facilitates the mounting and demounting operations of the thin plate body on the cavity surface of the mold.
  • the low thermal conductivity member includes a first heat-resistant adhesive layer having a low thermal conductivity within a range of 10 ⁇ m to 200 ⁇ m and a low heat within a range of 10 ⁇ m to 200 ⁇ m.
  • a conductive layer and a second heat-resistant adhesive layer having a low thermal conductivity in a range of 10 ⁇ m or more and 200 ⁇ m or less are provided.
  • the thin plate body and the reinforcing material will not be warped if they are the same material, but even when different materials are selected, the difference in mutual linear expansion coefficient is reduced.
  • the thickness of the reinforcing material it is possible to reduce warpage due to a temperature difference generated in the molding cycle process.
  • Such a mold can be manufactured by, for example, using a heat-resistant adhesive layer (first heat-resistant adhesive layer, the second heat-resistant adhesive layer) and a low heat conductive layer as a film. .
  • the integration process is performed as the thin plate main body and the low thermal conductive layer.
  • a step including a step of integrating the thin plate body and the low thermal conductive film through at least two steps of a first step of laminating the heat resistant film and a second step of thermosetting at a temperature higher than the first step is performed.
  • a mold member preferable for use in the present invention can be manufactured.
  • the mold member is composed of a mold in which a thermoplastic resin having a temperature equal to or higher than the transfer start temperature is held at a temperature equal to or lower than the transfer start temperature. After the thermoplastic resin in the vicinity of the mold surface, which has been introduced into the cavity and cooled by the mold to a temperature lower than the transfer start temperature, is filled with the thermoplastic resin, the transfer start temperature is again measured. The heat capacity of the surface portion on the cavity portion side is set so as to increase to a temperature exceeding. As a result, if a light control member that uses at least one of the two opposing large plate-like surfaces as an emission surface to emit light is molded using such a mold, it is stable even during long-term use. A light control member can be manufactured. Further, since this mold member can be exchanged, if a plurality of mold members having different concavo-convex patterns on the mold surface are prepared, it can be used for manufacturing a small amount of brand-name light control members.
  • Examples of the light control member molded in this way include a light guide plate, a lens sheet, a light diffusion plate, and the like.
  • a fine uneven pattern is formed on one surface of these light control members, and the fine unevenness reproduces the uneven surface stamped on the surface of the mold member.
  • the metal thin plate body 20 having a mold surface 20a that forms one surface of the cavity and the back surface 20b of the thin plate body 20 that is a surface facing the mold surface 20a are disposed.
  • a low thermal conductivity member 30 is composed of a first heat resistant adhesive layer 32 composed of a heat-resistant thermosetting adhesive and a low thermal conductivity member layer 31, and the low thermal conductivity member layer 31 is the first.
  • the thin plate main body 20 is integrated with the heat resistant adhesive layer 32.
  • the thicknesses of the thin plate body 20 and the low thermal conductivity member 30 are set to be a predetermined value from the relationship of the heat capacity and the like.
  • the thickness of the thin plate main body 20 has a characteristic that it is extremely thin within a range of 0.2 mm to 0.6 mm, preferably within a range of 0.3 mm to 0.6 mm.
  • the thickness of the low thermal conductivity member 30 is not particularly limited as long as it can be insulated. However, if it is too thin, the heat insulating property is not sufficient, and it is necessary to take a long molding cycle. In some cases, it is difficult to manufacture light control parts stably in the course of a severe molding cycle. In general, it is desirable to make the thickness thin within a range that can ensure sufficient heat insulation, and is usually set within a range of 0.1 mm to 0.5 mm, preferably within a range of 0.1 mm to 0.3 mm. As with the thin plate body, it is extremely thin.
  • each thickness is, for example, 10 ⁇ m or more and 200 ⁇ m or less.
  • the total thickness in which the first heat-resistant adhesive layer and the low thermal conductivity member layer 31 are integrated has a feature that it is extremely thin within a range of 0.1 mm to 0.3 mm.
  • thermosetting adhesive used in one embodiment of the present invention belongs to a resin material and has a significantly lower thermal conductivity than a metal material. Therefore, the thin layer (thermosetting adhesive layer 32) formed of the thermosetting adhesive corresponds to the low thermal conductivity member defined in one embodiment of the present invention. Thereby, the low heat conductivity member 30 is comprised by the heat resistant adhesive bond layer 32 and the low heat conductivity member layer 31 which are shown in FIG.
  • the low thermal conductivity member used in one embodiment of the present invention a general plastic material can be widely applied, but it is necessary to have excellent heat resistance and pressure resistance.
  • a general plastic material examples include polyimide and polyamideimide.
  • the low thermal conductivity member can be constituted only by the thermosetting adhesive itself.
  • the structure of FIG. 2 integrated through a thermosetting adhesive is preferable.
  • such a thin plate member 10 is formed by forming a recess in the back plate 50 of the mold 100 by a depth corresponding to the thickness of the thin plate member 10, and forming the mold surface of the thin plate member 10 in the recess. It is attached so that 20a is on the surface side (cavity surface side).
  • the mounting of the thin plate member 10 in the recess is not particularly limited as long as it can be removed (detached). In simple terms, it can be mounted if the surface of the recess is kept sticky or adsorbable. Moreover, you may comprise so that attachment and detachment
  • thermosetting adhesive is particularly excellent in the integration of the low thermal conductivity member 30 and the thin plate body 20.
  • a polyimide-based member is preferred and adopted.
  • a plastic material such as polyimide has a significantly larger linear expansion coefficient than the metal material constituting the thin plate body. Therefore, if the polyimide film is bonded to the thin plate main body with a normal pressure-sensitive adhesive or the like, it is difficult to withstand repeated molding cycles because the polyimide film is displaced due to the difference in thermal (linear) expansion coefficient.
  • the molding conditions employed in the present invention can be secured. It is difficult to ensure sufficient heat insulation. That is, it is difficult to secure a necessary thickness by the coating method.
  • thermosetting adhesive having heat resistance as an adhesive
  • thermosetting time as curing conditions, without generating a very small amount of gas. It can be presumed that this contributes greatly as a factor in eliminating the occurrence of distortion in the molded product.
  • thermosetting adhesives for the present invention include, for example, heat-resistant rubber (for example, nitrile rubber) and thermosetting adhesive that has strong adhesive strength as a structural adhesive and the like and has heat resistance. And a mixture with an agent (for example, a phenol resin).
  • heat-resistant rubber for example, nitrile rubber
  • thermosetting adhesive that has strong adhesive strength as a structural adhesive and the like and has heat resistance.
  • a mixture with an agent for example, a phenol resin.
  • the adhesive is, for example, a phenol-based dehydration-condensation adhesive, a mixture of an imide-based, phenol-based, or acrylic rubber-based resin, and these self-crosslinking adhesives or addition-reactive adhesives are used. May be.
  • An example of such a preferred adhesive is a thermally active film (trade name Tessa HAF) provided by TESA.
  • Tessa HAF thermally active film
  • thermoactive film is softened at a low temperature of about 80 ° C. to 100 ° C., for example, and exhibits thermoreversible adhesiveness. Further, it can be dehydrated and cross-linked by an irreversible chemical reaction at a high temperature exceeding 120 ° C., for example, within a range of about 120 ° C. to 220 ° C., and can exert a strong bonding force.
  • high toughness and high strength are expressed by dehydration crosslinking between the rubber component and the strong adhesive component.
  • this crosslinking reaction is irreversible, and it exhibits a heat resistance of 150 ° C. or higher and a high adhesive strength of 12 N / mm 2 or higher by crosslinking under high pressure with sufficient curing temperature and curing time. And exhibit very good waving characteristics. Due to the excellent waving characteristics, volatile components are not substantially generated under the conditions of the molding cycle according to the present invention.
  • the preferable conditions for producing the mold member according to the present invention are the first step of laminating the thin plate body 20 and the heat-resistant film as the low thermal conductive layer 31 at a low temperature, and the heat at a temperature higher than the first step.
  • the thin plate body 20 and the low thermal conductive film are bonded to each other through two steps including the second step of curing.
  • the first step (lamination step) and the second step (curing step) are performed under pressure for a sufficient time (for example, 0.1 MPa, 6 hours) to compress the thermally active film under high pressure. In this state, it is thermally crosslinked.
  • a sufficient time for example, 0.1 MPa, 6 hours
  • deformation of the thermally active film as an adhesive layer is suppressed, As a result, an extremely strong and durable bonding force can be exhibited at the interface between the thin plate body 20 and the low thermal conductivity member layer 31.
  • the curing time and curing temperature recommended by the film provider are, for example, 130 ° C. to 220 ° C. for about 10 minutes to 30 minutes.
  • a cured film having physical properties in the range of about 490 N / cm 2 to 2530 N / cm 2 (rate: 300 mm / min, temperature: 23 ° C.) is obtained. It is explained that it can.
  • the curing conditions proposed in the present invention are at least 130 ° C. or higher for 1 hour or longer, preferably 2 hours or longer, usually about 3 hours.
  • a fully crosslinked cured film is obtained, and as a result, there is no variation in thickness under high temperature and high pressure injection molding cycle conditions according to an embodiment of the present invention. Shear resistance against shearing can be ensured.
  • (Modification of mold member 10) Next, in the mold member 10 of FIG. 3, the metal thin plate body 20 having the mold surface 20a that forms one surface of the cavity and the back surface 20b of the thin plate body 20 that is the surface facing the mold surface 20a are arranged.
  • the low thermal conductivity member 30 is provided, and a reinforcing member 40 disposed on the back surface of the low thermal conductivity member 30.
  • the low thermal conductivity member 30 includes a first heat resistant adhesive layer 32 composed of a heat resistant thermosetting adhesive, a low thermal conductivity member layer 31, and a heat resistant thermosetting adhesive. 2, the low thermal conductivity member layer 31 is integrated with the thin plate main body 20 via the first heat resistant adhesive layer 32, and the low thermal conductivity member layer 31 is the second thermal conductivity member layer 31.
  • the heat-resistant adhesive layer 33 is integrated with a reinforcing member 40 disposed on the back surface.
  • thermosetting adhesive since the thermosetting adhesive has a remarkably small thermal conductivity compared to metal, the thin layers (thermosetting adhesive layers 32 and 33) formed by this thermosetting adhesive and the low thermal conductivity member are used.
  • the layer 31 constitutes the low thermal conductivity member 30.
  • the low thermal conductivity member is bonded by the thermosetting adhesive, whereby the thin plate main body 20 and the low thermal conductivity member 30 and the interface between the thin plate main body 20 and the reinforcing material 40. Are integrated.
  • the thickness of the thin plate body 20 is set to be a predetermined value from the relationship of the heat capacity and the like, and is usually 0.3 mm or more and 0.6 mm or less. It is characterized by being extremely thin within the range.
  • the low thermal conductivity member 30 includes, for example, a low heat conductive first heat-resistant adhesive layer having a thickness of 10 ⁇ m or more and 200 ⁇ m or less, a low heat conductive layer having a thickness of 10 ⁇ m or more and 200 ⁇ m or less, and a thickness of 10 ⁇ m.
  • the combination with the low heat conductive second heat-resistant adhesive layer within the range of 200 ⁇ m or less, and the total thickness of these layers integrated is within the range of 0.1 mm or more and 0.3 mm or less. It is very thin.
  • such a thin plate member 10 is carved into the back plate 50 of the mold 100 by a depth corresponding to the thickness of the thin plate member 10, so that the mold of the thin plate member 10 is formed in the recess.
  • the surface 20a can be mounted with the surface side (cavity surface side).
  • the reinforcing member 40 is further provided on the back surface as compared with the mold member 10 of FIG. 2, whereby the handling operation of the mold member 10 is further facilitated, and repeated mounting and demounting are facilitated. .
  • the part of the back plate 50 which supports the back surface of the mold member 10 may be omitted.
  • the typical example of such an example is the same as or equivalent to the case where the thin plate member 10 is bonded to the cavity surface of the nested mold.
  • a low thermal conductivity member is softer than a metal material due to plastic or the like. Therefore, it may be assumed that distortion occurs in the mold surface 20a of the thin plate body due to the selection of the adhesive.
  • the reinforcing material 40 is not particularly limited as long as it has a reinforcing action, but a stainless steel material can be used in consideration of economy.
  • the same material as that of the thin plate body 20 may be used.
  • the thin plate body 20 generally constituting the cavity surface is nickel or chrome formed by a technique such as electroplating or cutting.
  • Relatively expensive materials such as chrome plating are applied to materials such as copper and brass that can withstand processing. Therefore, it is not economical to use these expensive thin plate materials as the reinforcing material.
  • the crosslinking reaction of the thermally active film starts from around 106 ° C., but when terminated at a high temperature around 150 ° C., the linear expansion coefficient between nickel and stainless steel is allowed to cool after leaving the crosslinking reaction. Due to the difference, the convex warpage of the mold surface 20a could be confirmed.
  • the warpage when a die member is manufactured with a material having a different linear expansion coefficient using nickel as a thin plate material is as shown in Table 1 even when the thin plate body has a small material of about 280 mm ⁇ 200 mm.
  • warping does not occur.
  • the thickness of the reinforcing material is sufficiently thin, warping is performed under the pressure holding condition in the present invention. Is within this range, it is possible to produce a molded product that fully meets the specifications.
  • the thickness of such a reinforcing material is not particularly limited, but normally, the reinforcing effect is exhibited at 0.5 mm or more.
  • the reinforcing effect is exhibited at 0.5 mm or more.
  • 2.5 mm SUS stainless steel is selected and demonstrated in the examples described later. Therefore, it is considered to be up to about 3 mm. That is, since the back surface is lined (supported) by the back plate, a small warp of the mold member 10 is substantially reduced by holding pressure in the molding cycle, and a molded product having a good appearance can be formed.
  • the difference in linear expansion coefficient from the material of the thin plate body is within a range of ⁇ 6 ( ⁇ 10 ⁇ 6 / ° C.), more preferably ⁇ 3 ( ⁇ 10 ⁇ 6 / ° C.). Within range.
  • a material having a small difference in linear expansion coefficient from nickel include NSSC stainless steel (particularly ferrite), but are not limited thereto.
  • the joining method and joining conditions of the thin plate body and the low thermal conductivity member or the joining method and joining conditions of the low thermal conductivity member and the reinforcing material are equal to or the same as the manufacturing conditions of the mold member shown in FIG. Detailed description is omitted.
  • the mold 100 described above is used by being attached to an injection molding machine.
  • a light control member molded into a thin plate shape can be manufactured by this injection molding method.
  • Such a light control member is a thin plate-like resin molded product including a sheet-like form, a film-like form, etc., and has two large opposing surfaces constituting the thin plate-like resin molded product (hereinafter, this surface is the main surface). At least one surface is used as an exit surface for emitting light.
  • incident light is incident from at least one surface such as a main surface or a side surface of the control member.
  • the incident light is propagated through the inside of the light control member with refraction or reflection in a plane direction and / or a direction (including a vertical direction) intersecting the plane.
  • the traveling direction of the incident light is controlled and emitted from at least one main surface.
  • at least one of the two main surfaces is provided with a fine uneven surface for controlling the direction of the emitted light.
  • the other main surface may be an uneven surface having the same or different form, or may be a smooth surface.
  • the mold surface 20a of the mold member according to the embodiment of the present invention is provided with an uneven surface or a mirror surface corresponding to the fine uneven surface of the light control member.
  • An example of the light control member whose incident surface is a side surface is a light guide plate, and this light guide plate is a component of a side edge type backlight used in a display device such as a liquid crystal.
  • the side-edge type backlight light is incident with one end face (one side face) having a small thickness of the light guide plate as an incident end face.
  • the light incident on the light guide plate travels while being reflected and / or refracted between the two main surfaces toward the side surface (the other end surface) facing the incident end surface.
  • Light incident in this propagation process is emitted with one main surface as an emission surface, and is used as a backlight of a liquid crystal display device.
  • An example of the light control member whose incident surface is the main surface is a diffusion plate as a component of a liquid crystal display device.
  • a diffusion plate as a component of a liquid crystal display device.
  • incident light enters from one main surface which is a large opposing surface of a thin plate shape.
  • the incident light travels toward the main surface (the other main surface) opposite to the incident surface (the one main surface), and is emitted from the other main surface.
  • incident light is diffused by the effect of the diffusion plate. That is, in the diffusion plate, the direction of light is diffused in the process of light passing through the diffusion plate.
  • a light control member are not limited to the light guide plate and the diffusion plate used for other purposes in addition to the light guide plate and the diffusion plate used in the above-described liquid crystal display device, and light is transmitted in a specific direction. It may be a lens sheet such as a prism sheet, a Fresnel lens, or a lenticular lens.
  • the emission surface from which light is emitted is the main surface, and in the light control member (injection molded product) according to one embodiment of the present invention, at least one main surface is provided with fine irregularities.
  • the mold member according to an embodiment of the present invention has a feature that it can be applied to a large-sized molded product that can cope with such a complicated brand exchange because the handleability is extremely good.
  • the mold member according to the present invention may be used when manufacturing a small molded article.
  • the light control member can be molded by the injection molding method described in Patent Document 1.
  • thermoplastic resin having a temperature equal to or higher than the transfer start temperature is introduced into a cavity portion constituted by a mold held at a temperature equal to or lower than the transfer start temperature, and is cooled by the mold.
  • Cavity side of the mold so that the thermoplastic resin near the mold surface that has fallen below the transfer start temperature rises again to a temperature exceeding the transfer start temperature after the cavity is filled with the thermoplastic resin.
  • the light guide plate when forming the light guide plate, if the light guide plate has an uneven pattern on the surface, it should be formed on the surface of the light guide plate on the mold surface 20a constituting the cavity portion of the thin plate member. Concavities and convexities opposite to the concavity and convexity pattern are provided. Further, if the light guide plate to be molded has a texture on the surface, the mold surface 20a constituting the cavity portion of the thin plate member is textured. Further, if the light guide plate to be molded is printed with a dot-like pattern, the mold surface 20a of the thin plate member remains a mirror surface (plane).
  • a thin plate member may be provided on both sides of the mold cavity. If the concavo-convex pattern or texture is only on one side of the light guide plate, a thin plate member may be provided on one side of the cavity (surface with the concavo-convex pattern or texture), and the other surface may remain a mirror surface. You may provide (in this case, the surface of one thin-plate member is a mirror surface).
  • a mold member having a mold surface 20a suitable for the lens sheet may be attached.
  • thermoplastic resin used in the method of the present invention is not particularly limited, and examples thereof include polymethyl methacrylate, polycarbonate, polystyrene, polypropylene, polyethylene terephthalate, polyvinyl chloride, thermoplastic elastomer, and copolymers thereof. .
  • Patent Document 1 the reason why the transferability is improved and the occurrence of weld marks, cold resin marks, flow marks and the like is reduced by the molding method of the resin molded product of the present invention will be described in a part of Patent Document 1.
  • MARC made by MARC
  • polymethyl methacrylate resin made by Kuraray Co., Ltd., trade name: Parapet HR-1000LC
  • the temperature dependence of the storage modulus is obtained from the measurement result (FIG. 4) of the relationship (bending mode) between the temperature and the longitudinal elastic modulus of the polymethyl methacrylate resin used.
  • the temperature at which the slope of the graph changes greatly is the transfer start temperature in this specification. This transfer start temperature is determined by the intersection of the tangent line of the graph of the phase transition region and the tangent line of the graph of the rubber-like flat region, and the transfer start temperature determined by this FIG.
  • Thickness of molded product 60 3 mm Mold 100 (carbon steel) thickness: 25mm Thin plate body 20 (nickel) thickness: 0.3 mm Filling time: 1.4 seconds Molding cycle: 60 seconds Temperature of mold 100: 85 ° C Heat transfer coefficient on the cooling water side: 1.0 ⁇ 10 ⁇ 3 cal / mm 2 ⁇ sec ⁇ ° C. Temperature of polymethyl methacrylate resin injected and filled into the cavity: 280 ° C In this simulation, as shown in FIG. 5, a mold 100 provided with a cooling facility 70 for passing cooling water through a surface (back surface) 100b facing the cavity is used. A thin plate member 10 is mounted on one surface of the mold 100 on the cavity side.
  • the thin plate member 10 includes a thin plate main body 20 disposed on the cavity surface (mold surface) 20a and a low thermal conductivity member 30 disposed on the back surface 20b.
  • the uneven structure formed on the mold surface 20a of the thin plate main body 20 has a height h of 13 ⁇ m and a pitch p of 30 ⁇ m.
  • This concavo-convex structure is a pattern of the exit surface of the light guide plate used for the side edge type backlight of the liquid crystal display device.
  • FIGS. 6 and 7 The results of the simulation are shown in FIGS. 6 and 7.
  • FIG. 7 the time axis of FIG. 6 is extended.
  • reference numerals (a), (b), and (c) indicate simulation results of the time (seconds) after injection and the temperature of the surface in contact with the mold of the polymethyl methacrylate resin.
  • (D) shows the simulation result of the relationship between the time (second) after injection and the temperature of the central part of the resin in the cavity of the polymethylmethacrylate resin.
  • symbol (a) is a simulation result which concerns on a control example, and in this control example, the same metal mold
  • the symbol (b) is an example in which a film made of polyethylene terephthalate having a thickness of 0.1 mm is used as the low thermal conductivity member 30, and the symbol (c) is a thickness as the low thermal conductivity member 30.
  • This is an example in which a film made of polyethylene terephthalate having a thickness of 0.15 mm was used.
  • the thermal conductivity of the polyethylene terephthalate film is 0.126 kcal / m ⁇ hr ⁇ ° C.
  • the thermal conductivity of the thin plate body 20 is 79.2 kcal / m ⁇ hr ⁇ ° C.
  • the transfer start temperature (128 ° C.) is exceeded instantaneously (within 1 second in these examples).
  • the resin filled in the cavity forms a cooling solidified layer instantaneously in the vicinity of the mold surface (mold surface 20a), but this cooling is caused by the resin temperature again exceeding the transfer start temperature.
  • the solidified layer disappears.
  • pressure is applied to the resin in the cavity in the pressure holding process, and the resin having a temperature equal to or higher than the transfer start temperature is pushed into the concavo-convex pattern.
  • the molding cycle of 60 seconds is a time sufficient for the temperature of the center of the resin filled in the cavity to be sufficiently lower than the transfer start temperature.
  • the uneven pattern is transferred to obtain a molded product (light guide plate). Further, in such a molded article, since the cooling solidified layer that causes orientation strain, cooling strain, and the like disappears instantaneously, generation of weld marks, cold resin marks, flow marks, and the like can be suppressed.
  • the low thermal conductivity member 30 is disposed on the back surface 20b of the thin plate body 20, and the low thermal conductivity member 30 is a film.
  • a polyethylene terephthalate film is used as the low thermal conductivity member 30, but when the resin temperature to be filled is as high as 280 ° C., the polyimide film is industrially considered in consideration of heat resistance. It is practical.
  • Patent Document 1 describes a specific experimental example in which a polyimide film is bonded to the back surface of the thin plate body 20 as a heat resistant member 30.
  • Example 1 As the thin plate main body, a nickel thin plate having a thermal conductivity of 79.2 kcal / m ⁇ hr ⁇ ° C., a thickness of 0.3 mm, and a size of 250 mm ⁇ 220 mm was used. On the cavity side surface of the thin plate main body, an isosceles prism-shaped uneven pattern having a pitch p of 50 ⁇ m and a height h of 25 ⁇ m is arranged.
  • a thermal activation film (trade name) manufactured by Tesa with a thermal conductivity of 0.3 kcal / m ⁇ hr ⁇ ° C. and a thickness of 0.125 mm
  • a polyimide film (low thermal conductivity member) having a thermal conductivity of 0.3 kcal / m ⁇ hr ⁇ ° C. and a thickness of 0.125 mm was integrated by adhesion via tesaHAF8402).
  • Bonding integration was performed in two stages, a first process (laminating process) and a second process (curing process).
  • the laminating process was carried out using a laminating roll, heated to 110 ° C., at a pressure of 0.5 MPa, and a feed rate of 0.4 m / min. Under these conditions, the thermally active film is in a molten state and can sufficiently penetrate into the irregularities on the surface of the adherend.
  • the curing step is to maintain the heat-active film at 130 ° C. for 3 hours under a pressure of 0.2 MPa to form an adhesive layer that integrates the polyimide film and the thin plate main body with sufficient durability. did it.
  • the cylinder temperature at this time was 270 ° C., and the molding cycle was 70 seconds.
  • the internal pressure (holding pressure) at which the prism shape is transferred is around 38 MPa, and the height of the obtained prism is 25 ⁇ m, which is the same as the depth of the engraved irregularities, and each has a good irregular pattern. It was confirmed that
  • Example 2 A nested mold was used in which the back surface penetrated to the back plate of the mold. A recess was formed in the cavity surface of the insert mold, and the thermally active film obtained in Example 1 was disposed in the recess.
  • Example 1 the back surface of the thin plate member obtained in Example 1 was thermocompression bonded to the surface of this thermally activated film under the same conditions as in Example 1. As a result, the thin plate member was embedded in the cavity surface of the nest so that the parting surface was flush with the mold surface 20a.
  • Example 1 When injection molding was performed under the same conditions as in Example 1, a good injection molded product could be obtained as in Example 1.
  • Example 3 A stainless steel material (SUS304) having a thickness of 2.0 mm as a reinforcing material was adhered to the back surface of the thin plate member obtained in Example 1 through the same thermally active film as used in Example 1. The bonding conditions are the same as in Example 1.
  • Such a thin plate member has a reinforcing material on the back surface and is thin, even when the thin plate member itself becomes large, it can be mounted on a mold and has good operability. there were.
  • Example 4 As the thin plate main body, a nickel thin plate having a thermal conductivity of 79.2 kcal / m ⁇ hr ⁇ ° C., a thickness of 0.3 mm, and a size of 335 mm ⁇ 230 mm was used. On the cavity side surface of the thin plate main body, an isosceles prism-shaped uneven pattern having a pitch p of 24 ⁇ m and a height h of 8.5 ⁇ m is arranged.
  • a thermally active film manufactured by Yodogawa Paper Mill Co., Ltd. having a thermal conductivity of 0.3 kcal / m ⁇ hr ⁇ ° C. and a thickness of 0.015 mm.
  • a polyimide film low thermal conductivity member having a thermal conductivity of 0.3 kcal / m ⁇ hr ⁇ ° C. and a thickness of 0.125 mm was integrated by bonding via a trade name SJ41).
  • Bonding integration was performed in two stages, a first process (laminating process) and a second process (curing process).
  • the laminating process was carried out using a laminating roll, heated to 110 ° C., at a pressure of 0.5 MPa, and a feed rate of 0.4 m / min. Under these conditions, the thermally active film is in a molten state and can sufficiently penetrate into the irregularities on the surface of the adherend.
  • thermoactive film was maintained at 150 ° C. for 3 hours, whereby the thermoactive film could be made into an adhesive layer that integrated the polyimide film and the thin plate main body with sufficient durability.
  • the cylinder temperature at this time was 295 ° C., and the molding cycle was 40 seconds.
  • the internal pressure (holding pressure) at which the prism shape is transferred is around 200 MPa, and the height of the obtained prism is 8.5 ⁇ m, which is the same as the depth of the engraved irregularities. It has been confirmed that.
  • Example 5 A nested mold was used in which the back surface penetrated to the back plate of the mold. A recess was formed in the cavity surface of the insert mold, and the thermally active film obtained in Example 4 was disposed in the recess.
  • Example 4 the back surface of the thin plate member obtained in Example 4 was thermocompression bonded to the surface of this thermally activated film under the same conditions as in Example 4. As a result, the thin plate member was embedded in the cavity surface of the nest so that the parting surface was flush with the mold surface 20a.
  • Example 6 A stainless steel material (SUS304) having a thickness of 0.8 mm as a reinforcing material was adhered to the back surface of the thin plate member obtained in Example 4 through the same thermally active film as used in Example 4. The bonding conditions are the same as those in Example 4.
  • Such a thin plate member has a reinforcing material on the back surface and is thin, even when the thin plate member itself becomes large, it can be mounted on a mold and has good operability. there were.
  • Example 7 When injection molding was performed under the same conditions as in Example 4, a good injection molded product could be obtained as in Example 4. (Example 7) After bonding a 0.8 mm thick stainless steel material (SUS304) as a reinforcing material to the back surface of the thin plate member obtained in Example 4 through the same thermally active film as used in Example 4, A mirror-like nickel thin plate having the same thickness and size as those used in Example 4 was bonded via the same thermally active film as used in Example 4. The bonding conditions are the same as those in Example 4.
  • SUS304 stainless steel material
  • Such a thin plate member has the same nickel plate as the front and back thin plates, so that the warpage of the plate after bonding is reduced and the mounting property to the mold is good.
  • Example 8 Adhering the same low thermal conductivity member as used in Example 4 to the same nickel thin plate as used in Example 4 via the same thermally active film as used in Example 4, and then The nickel thin plate was integrated by electroforming the back surface.
  • a manufacturing method is known, for example, from Japanese Patent Laid-Open No. 2001-071354.
  • nickel and low thermal conductivity are used in the method of directly plating nickel on the back surface of the low thermal conductivity member by the manufacturing method of Japanese Patent Laid-Open No. 2001-071354. It was found that the adhesion with the rate member was poor and the nickel layer could not be formed.
  • the adhesiveness is improved by using the same thermally active film as used in Example 4 between the low thermal conductivity layer and the nickel layer formed by plating. Different from 2001-071354.
  • Such a thin plate member has the same front and back configurations with a low thermal conductivity member as the center, it is possible to reduce the warpage of the plate caused by the difference in thermal expansion coefficient, and the mounting property to the mold is good. It was.
  • the heat activated film (trade name SJ41) manufactured by Yodogawa Mill used in Examples 4 to 6 generates less gas at high temperatures, and is compared with, for example, TESA (tesa HAF8402) which is a similar heat active film. Furthermore, there was little deterioration during repeated use during injection molding, and good results were obtained.
  • TESA tesa HAF8402
  • Nitto Denko's adhesive film (trade name: MC2030) and (trade name: 5919P) were used to bond the nickel thin plate and the polyimide film.
  • a lens sheet such as a light guide plate, a diffusion plate, a Fresnel lens sheet, and a lenticular lens sheet having a large area
  • a large lens sheet such as a Fresnel lens sheet or a lenticular sheet contacts a heated plate lens mold with a resin plate and pressurizes it to transfer the uneven lens surface of the lens mold surface to the resin mold.
  • the transfer method has a problem that the molding cycle is long and the productivity is not high.
  • a resin molded product capable of controlling light in a size larger than that of the optical disk substrate can be manufactured with high productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Provided is a die member, which is to be used for manufacturing a light controlling member by an injection molding method wherein a die is used, and can be attached and detached to and from the die. The die member is provided with a metal thin board main body having a die surface and a thickness of 0.2mm or more but not more than 0.6mm; a low heat conductivity member, which is arranged on a surface facing the die surface and a thickness of 0.1mm or more but not more than 0.5mm, and is integrated with the thin board main body; and a reinforcing member integrally arranged on the rear surface of the low heat conductivity member.

Description

金型部材、その製造方法及びそれを用いた光制御部材の成形方法Mold member, method for manufacturing the same, and method for forming light control member using the same
 本発明は、射出成形法による光制御部材の製造に用いられる金型部材、その製造方法及びそれを用いた光制御部材の成形方法に関する。 The present invention relates to a mold member used for manufacturing a light control member by an injection molding method, a manufacturing method thereof, and a molding method of a light control member using the same.
 加熱流動化させた樹脂材料を金型内のキャビティーに射出し、その金型内で冷却固化させ、次いで金型を開いて成形品を取り出す射出成形法(射出圧縮成形法を含む)は、熱可塑性樹脂を含む樹脂材料の加工方法として、生産速度の向上や成形の自動化が容易に行える成形加工方法の一つとして広く普及している。 An injection molding method (including an injection compression molding method) in which a heat-fluidized resin material is injected into a cavity in a mold, cooled and solidified in the mold, and then the mold is opened to take out a molded product. As a processing method of a resin material containing a thermoplastic resin, it is widely used as one of molding methods that can easily improve production speed and automate molding.
 しかしながら、一般的な射出成形法においてキャビティ内に射出充填された溶融樹脂の表面に冷却固化層が形成されることがあった。このような冷却固化層は、成形品の微細な凹凸の転写性を阻害したり、また、ウエルドマーク、コールドマーク、フローマークなどの発生の原因となっていた。 However, a cooling solidified layer may be formed on the surface of the molten resin injected and filled into the cavity in a general injection molding method. Such a cooling and solidifying layer hinders transferability of fine unevenness of a molded product, and causes generation of a weld mark, a cold mark, a flow mark, and the like.
 このような射出成形法の課題を解決する一例を本出願人は既に提案している(例えば、特許文献1)。この特許文献1に記載の樹脂成形品の成形方法では、金型のキャビティの一面に薄板部材または金型部材が装着されている。この薄板部材は、キャビティの一面を形成する型面を備えた金属製の薄板本体と、その薄板本体の背面に配設されたポリイミドフィルムよりなる低熱伝導率部材とから構成されている。ここで、この薄板本体を装着した金型では、転写開始温度以上の温度を有する熱可塑性樹脂がキャビティ部に導入されたときに、金型で冷却されて転写開始温度以下の温度に下がった金型の表面近傍の熱可塑性樹脂が、再度、転写開始温度を超える温度に上昇するように薄板本体の熱容量が設定される。 The present applicant has already proposed an example of solving the problem of such an injection molding method (for example, Patent Document 1). In the method of molding a resin molded product described in Patent Document 1, a thin plate member or a mold member is mounted on one surface of a mold cavity. The thin plate member is composed of a metal thin plate main body having a mold surface that forms one surface of a cavity, and a low thermal conductivity member made of a polyimide film disposed on the back surface of the thin plate main body. Here, in a mold equipped with this thin plate body, when a thermoplastic resin having a temperature higher than the transfer start temperature is introduced into the cavity, the mold is cooled by the mold and lowered to a temperature lower than the transfer start temperature. The heat capacity of the thin plate body is set so that the thermoplastic resin near the surface of the mold rises again to a temperature exceeding the transfer start temperature.
 このような金型を用い、転写開始温度以上の温度を有する熱可塑性樹脂が転写開始温度以下の温度に保持された金型のキャビティ部に導入される。キャビティ部に導入された熱可塑性樹脂は、金型のキャビティ面で冷却されて転写開始温度以下の温度に一旦下がるが、キャビティの一面(型面)が設定された熱容量を有することにより、その型面に接している熱可塑性樹脂は、再度、転写開始温度を超える温度に上昇できる。 Using such a mold, a thermoplastic resin having a temperature equal to or higher than the transfer start temperature is introduced into the mold cavity held at a temperature equal to or lower than the transfer start temperature. The thermoplastic resin introduced into the cavity portion is cooled on the cavity surface of the mold and temporarily falls to a temperature not higher than the transfer start temperature. However, since one surface of the cavity (mold surface) has a set heat capacity, the mold The thermoplastic resin in contact with the surface can rise again to a temperature exceeding the transfer start temperature.
 このような樹脂成形品の成形方法によれば、キャビティ内に射出充填された溶融樹脂表面の冷却固化層の形成を少なくすることができ、転写性が向上される。また、ウエルドマーク、コールドマーク、フローマークなどの発生が低減される。これにより、このような樹脂成形品の成形方法は、導光板、レンズシートなどの光を制御する光制御部材の生産に適している。 According to such a molding method of a resin molded product, the formation of a cooled solidified layer on the surface of the molten resin injected and filled in the cavity can be reduced, and the transferability is improved. In addition, the occurrence of weld marks, cold marks, flow marks, etc. is reduced. Thereby, the molding method of such a resin molded product is suitable for production of a light control member that controls light such as a light guide plate and a lens sheet.
 特許文献1に記載の樹脂成形品の成形方法によれば、型面に刻印された凹凸模様又は鏡面模様の異なる薄板本体を交換することにより、表面に異なる微細形状を有する樹脂成形品を同一金型を用いて製造できるという利点を有している。 According to the molding method of a resin molded product described in Patent Document 1, a resin molded product having a different fine shape on the surface is replaced with the same metal by exchanging thin plate bodies with different concave and convex patterns or mirror surface patterns engraved on the mold surface. It has the advantage that it can be manufactured using a mold.
 しかしながら長期にわたって樹脂成形品を製造したり、また、繰り返し薄板本体を交換していると、樹脂成形品の表面に歪みを認めることがあった。この原因について検討したところ、薄板本体の背面に配設又は接着されるポリイミドフィルムに発生する皺や折れが原因しているのではないかと推定された。 However, when a resin molded product is manufactured over a long period of time or the thin plate body is repeatedly replaced, distortion may be observed on the surface of the resin molded product. When this cause was examined, it was estimated that it might be caused by wrinkles and creases generated in the polyimide film disposed or adhered to the back surface of the thin plate main body.
 すなわち、薄板本体の背面に配設又は接着されるポリイミドフィルムが、薄板本体の交換に際して、皺が発生したり、折れが発生することがある。ここで、特許文献1で提案されている薄板本体は、キャビティ内に投入された型面に接する熱可塑性樹脂の温度が、一旦、転写開始温度以下に低下するが、再度転写開始温度以上に上昇されるように熱容量が所定容量となるように設定されなければならない。それ故、薄板本体の厚みは所定容量の熱容量に制限され、一般に1mm以下(例えば、0.3mm~0.6mm程度の範囲内)と薄い。これにより、ポリイミドフィルムに皺や折れが発生すると、薄板本体の成形面としての型面への歪み発生を避けることができなくなるという、新たな課題が見いだされた。
特許第3686251号明細書(図6,8及び段落0038)
That is, the polyimide film disposed or adhered to the back surface of the thin plate main body may be wrinkled or broken when the thin plate main body is replaced. Here, in the thin plate main body proposed in Patent Document 1, the temperature of the thermoplastic resin in contact with the mold surface put into the cavity once falls below the transfer start temperature, but again rises above the transfer start temperature. The heat capacity must be set to be a predetermined capacity. Therefore, the thickness of the thin plate main body is limited to a predetermined heat capacity, and is generally as thin as 1 mm or less (for example, within a range of about 0.3 mm to 0.6 mm). As a result, a new problem has been found that when wrinkles or creases occur in the polyimide film, it becomes impossible to avoid the occurrence of distortion on the mold surface as the molding surface of the thin plate body.
Japanese Patent No. 3686251 (FIGS. 6, 8 and paragraph 0038)
 そこで、本発明の目的は、射出成形により薄板状の光制御部材を製造するために用いる交換可能な薄板本体を備えた金型部材であって、長期間の使用に際しても、安定に生産可能な金型部材を提供することにある。 Accordingly, an object of the present invention is a mold member having a replaceable thin plate body used for manufacturing a thin plate-like light control member by injection molding, and can be stably produced even when used for a long period of time. The object is to provide a mold member.
 本発明の一実施例に係る金型部材は、金型を用いた射出成形法による光制御部材の製造に用いられ、該金型に装脱着可能な金型部材であって、型面を備え、0.2mm以上、0.6mm以下の厚みを有する金属製の薄板本体と、該型面に対向する面に配設された0.1mm以上、0.5mm以下の厚みを有し、前記薄板本体と一体化された低熱伝導率部材と、前記低熱伝導率部材の背面に、一体化されて設けられた補強材と、を備える。 A mold member according to an embodiment of the present invention is a mold member that is used for manufacturing a light control member by an injection molding method using a mold, and that can be attached to and detached from the mold, and includes a mold surface. A metal thin plate body having a thickness of 0.2 mm or more and 0.6 mm or less, and a thickness of 0.1 mm or more and 0.5 mm or less disposed on a surface facing the mold surface, A low thermal conductivity member integrated with the main body; and a reinforcing material provided integrally on the back surface of the low thermal conductivity member.
本発明の一実施例における薄板部材の金型への装着状態を示す図であり、図1(a)は側面より見た側面図であり、図1(b)はキャビティ面側から見た平面図である。It is a figure which shows the mounting state to the metal mold | die of the thin-plate member in one Example of this invention, Fig.1 (a) is a side view seen from the side surface, FIG.1 (b) is the plane seen from the cavity surface side. FIG. 本発明の一実施例における薄板部材の構造を断面により説明する図である。It is a figure explaining the structure of the thin-plate member in one Example of this invention by a cross section. 本発明の一実施例における薄板部材の構造を断面により説明する図である。It is a figure explaining the structure of the thin-plate member in one Example of this invention by a cross section. ポリメチルメタクリレート樹脂の温度と縦弾性係数との関係を測定した結果を示す図である。It is a figure which shows the result of having measured the relationship between the temperature of a polymethylmethacrylate resin, and a longitudinal elastic modulus. 導光板についてのシミュレーションの条件を示す図である。It is a figure which shows the conditions of the simulation about a light-guide plate. 射出後の時間(秒)とポリメチルメタクリレート樹脂の金型に接する面の温度との関係を、MARCを用いた非定常熱伝導解析によるシミュレーションにより求めた結果を示す図である。It is a figure which shows the result of having calculated | required the relationship between the time (second) after injection | emission, and the temperature of the surface which touches the metal mold | die of a polymethylmethacrylate resin by the simulation by unsteady heat conduction analysis using MARC. 射出後の時間(秒)とポリメチルメタクリレート樹脂の金型に接する面の温度との関係を、MARCを用いた非定常熱伝導解析によるシミュレーションにより求めた結果を示す図である。It is a figure which shows the result of having calculated | required the relationship between the time (second) after injection | emission, and the temperature of the surface which touches the metal mold | die of a polymethylmethacrylate resin by the simulation by unsteady heat conduction analysis using MARC.
 以下、本発明の一実施例を実施するための最良の形態について説明する。なお、以下の図面では、説明の都合上、各部の縦横の縮尺が無作為に変更された模式図により説明されている。 Hereinafter, the best mode for carrying out an embodiment of the present invention will be described. In the following drawings, for convenience of explanation, the vertical and horizontal scales of each part are illustrated by schematic diagrams that are randomly changed.
 本発明に係る金型部材の概略図の一例は、図1乃至図3に示されている。ここで、図1には、金型部材10の金型への装着の状態が説明されている。図2または図3では、そこに装着される金型部材の詳細が説明されている。
 本発明の一実施例に係る金型部材または薄板部材10は、金型を用いた射出成形法による光制御部材の製造に用いられ、該金型に装脱着可能な金型部材10であって、型面またはキャビティ面20aを備え、0.2mm以上、0.6mm以下の厚みを有する金属製の薄板本体20と、前記型面20aに対向する面に前記薄板本体と一体化されて配設され、0.1mm以上、0.5mm以下の厚みを有する低熱伝導率部材30と、前記低熱伝導率部材30の背面に、一体化されて設けられた補強材40と、を備えている。
 また、本発明の一実施例に係る金型部材または薄板部材10は、金型を用いた射出成形法による光制御部材の製造に用いられ、該金型に装脱着可能である金型部材であって、型面またはキャビティ面20aを備え、0.3mm以上、0.6mm以下の範囲内の厚みを有する金属製の薄板本体と、前記型面に対向する面に前記薄板本体と一体化して配設された0.1mm以上、0.3mm以下の範囲内の厚みを有する低熱伝導率部材と、を備えているものであってもよい。
An example of a schematic view of a mold member according to the present invention is shown in FIGS. Here, FIG. 1 illustrates a state where the mold member 10 is mounted on the mold. In FIG. 2 or FIG. 3, the details of the mold member mounted thereon are described.
A mold member or thin plate member 10 according to an embodiment of the present invention is a mold member 10 that is used in the manufacture of a light control member by an injection molding method using a mold and is detachable from the mold. And a metal thin plate body 20 having a mold surface or cavity surface 20a and having a thickness of 0.2 mm or more and 0.6 mm or less, and a surface opposed to the mold surface 20a integrated with the thin plate body. And a low thermal conductivity member 30 having a thickness of 0.1 mm or more and 0.5 mm or less, and a reinforcing member 40 provided integrally on the back surface of the low thermal conductivity member 30.
In addition, the mold member or the thin plate member 10 according to an embodiment of the present invention is a mold member that is used for manufacturing a light control member by an injection molding method using a mold and can be attached to and detached from the mold. And a metal thin plate body having a mold surface or cavity surface 20a and having a thickness in the range of 0.3 mm or more and 0.6 mm or less, and the thin plate body integrated with the thin plate body on the surface facing the mold surface. And a low thermal conductivity member having a thickness in the range of 0.1 mm or more and 0.3 mm or less.
 ここで、本発明の概要を説明する。本発明者は、従来の課題を解決すべく、薄板本体の成形面に発生する歪みの原因について詳細な考察を試みた。従来問題とされた課題は、薄板本体の背面にフィルムを配設する場合には、細心の注意深さを配慮して薄板本体の交換を行えば樹脂成形品の大きさが小さい場合には回避可能である。しかしながら、近年の液晶表示装置の大画面化に伴い、そこに用いられる各種の光制御用の樹脂成形品も大きいものが必要とされるようになった。例えば、液晶表示装置の表示面全面にわたって配設される導光板、拡散板などの光制御部材では、長辺の1辺が1mを超えるように大きくなる場合が生じた。 Here, the outline of the present invention will be described. In order to solve the conventional problems, the present inventor tried to consider in detail the cause of distortion generated on the molding surface of the thin plate body. The problem that has been regarded as a problem in the past is to avoid the case where the size of the resin molded product is small if the thin plate body is replaced with great care when placing a film on the back of the thin plate body. Is possible. However, with the recent increase in screen size of liquid crystal display devices, various types of resin molded products for light control used therein have been required. For example, in a light control member such as a light guide plate or a diffusion plate disposed over the entire display surface of a liquid crystal display device, one long side may be larger than 1 m.
 このような大型の光制御用の樹脂成形品を製造するための金型にあっては、背面に配設されるポリイミドフィルムに皺や折れを発生させずに作業するには、ハンドリングが難しく、益々の熟練を要するようになり、新たな重要な課題となった。またこのような課題は、直径が高々20cm~30cm程度の樹脂成形品である光ディスク基板のような樹脂成形品では全く重要視されない、新たな課題として認識された。 In a mold for manufacturing such a large resin molded product for light control, handling is difficult to work without causing wrinkles or creases in the polyimide film disposed on the back surface, More and more skill is required, which is a new important issue. Further, such a problem has been recognized as a new problem that is not regarded as important at all in a resin molded product such as an optical disk substrate which is a resin molded product having a diameter of about 20 cm to 30 cm at most.
 本発明者の解析によれば、薄板本体の背面に低熱伝導率部材としてのフィルムを接着する場合であっても、成形サイクルの熱履歴、保圧履歴等に起因してか、接着部の一部に剥離が発生していると考えられた。すなわち、通常であれば、金属との接着が充分である接着剤を用いても、60秒程度の成形サイクルで発生する高温下での高い保圧による熱履歴、保圧履歴が、接着剤の伸びや、薄板本体と接着剤の線膨張率の違い、又は接着剤と低熱伝導率部材の線膨張率の違いを予想以上に大きく反映させて、結果として、予想しない一部の剥離が生じているのではないかと考えられた。 According to the analysis of the present inventor, even when a film as a low thermal conductivity member is adhered to the back surface of the thin plate main body, it may be caused by the heat history, pressure holding history, etc. of the molding cycle. It was thought that peeling occurred in the part. That is, even if an adhesive that is sufficiently bonded to a metal is used normally, the heat history and pressure holding history due to high holding pressure at a high temperature generated in a molding cycle of about 60 seconds are Reflecting the difference in expansion, linear expansion coefficient between the thin plate body and the adhesive, or the linear expansion coefficient between the adhesive and the low thermal conductivity member more than expected, as a result, some unexpected peeling occurred. It was thought that there was.
 そこで、本発明者は、これらの接着部の剥離が一部でも生起しない構成が必要であるとの認識から、薄板本体と、その背面に配設される低熱伝導率部材とを一体化することが、上述の課題を解決するのに最も重要であるのではないかと考えた。 Therefore, the present inventor integrates the thin plate main body and the low thermal conductivity member disposed on the back surface thereof from the recognition that a structure that does not cause even a part of the peeling of the bonded portion is necessary. However, I thought that it might be the most important to solve the above-mentioned problems.
 このような薄板本体と低熱伝導率部材とを一体化させる手法として、薄板本体の背面に熱硬化型の耐熱性接着剤を用いて低熱伝導率部材を一体化させるか、薄板本体の背面に低熱伝導率部材を介して補強材を配設して、破損が予想される低熱伝導率部材をサンドイッチ構造とすることが、上述の課題が解決できることを認めた。 As a method for integrating such a thin plate main body and a low thermal conductivity member, a low thermal conductivity member is integrated on the back of the thin plate main body using a thermosetting heat-resistant adhesive, or a low heat is applied to the back of the thin plate main body. It has been recognized that the above-described problems can be solved by disposing a reinforcing material via a conductivity member to form a sandwich structure with a low thermal conductivity member that is expected to break.
 ここで、接着剤を用いて薄板本体と低熱伝導率部材とを一体化するには、用いる接着剤として、耐熱性、耐圧力性、耐せん断力性、耐熱劣化性(熱分解、発泡なきこと)等の諸特性を維持させることが重要であることが本発明者により見いだされた。 Here, in order to integrate the thin plate body and the low thermal conductivity member using an adhesive, the adhesive to be used is heat resistance, pressure resistance, shear resistance, heat deterioration resistance (no thermal decomposition, no foaming) It has been found by the present inventors that it is important to maintain various characteristics such as
 すなわち、耐熱性は射出成形条件としての高温で充填される樹脂温度に耐えて、熱分解したり、発泡などを生起させないということが必要がある。また、耐圧力性は、微細な凹凸の高い転写性を維持するための高い保圧に耐えるために必要である。また、耐せん断力性は、射出成形の成形サイクルに合わせた高温と常温との繰り返しのサーマル履歴に耐える必要がある。これらのいずれの条件をも満たして低熱伝導率部材を薄板本体の背面に配設させれば、低熱伝導率部材が熱分解したり、発泡したり、また、一部剥離するなどして薄板本体に歪みを発生させることを防止できる。 That is, the heat resistance needs to withstand the resin temperature filled at a high temperature as an injection molding condition, and to prevent thermal decomposition or foaming. Further, the pressure resistance is necessary to withstand a high holding pressure for maintaining high transferability of fine unevenness. In addition, the shear resistance needs to withstand repeated thermal histories at high and normal temperatures in accordance with the injection molding cycle. If any of these conditions is satisfied and the low thermal conductivity member is disposed on the back surface of the thin plate body, the low thermal conductivity member may be thermally decomposed, foamed, or partially peeled, etc. It is possible to prevent distortion from occurring.
 すなわち本発明の一実施例は、加熱流動化させた樹脂材料を金型内のキャビティーに射出し、その金型内で高圧を維持しつつ冷却固化又は硬化させ、次いで金型を開いて薄板状に成形された樹脂成形品を取り出す射出成形法による光制御部材の製造に用いられる金型部材であって、前記光制御部材は、薄板状の相対向する大きな2面の少なくとも一面が光を射出する射出面として利用されるものであって、かつ、前記金型部材は、キャビティの一面を形成する型面を備えた厚み0.2mm以上、0.6mm以下の範囲内、好ましくは0.3mm以上0.6mm以下の範囲内の金属製の薄板本体と、前記型面に対向する面である前記薄板本体の背面に配設された厚み0.1mm以上、0.5mm以下の範囲内、好ましくは0.1mm以上0.3mm以下の範囲内の低熱伝導率部材とを少なくとも備え、前記薄板本体と前記低熱伝導率部材との界面とは一体化され、金型のキャビティ面として装脱着可能なことを特徴とする金型部材であってもよい。 That is, in one embodiment of the present invention, a heat-fluidized resin material is injected into a cavity in a mold, solidified or cured while maintaining a high pressure in the mold, and then the mold is opened to form a thin plate. A mold member used in the manufacture of a light control member by an injection molding method for taking out a resin molded product formed into a shape, wherein at least one of the two large opposing surfaces of the thin plate-like shape transmits light. The mold member is used as an injection surface to be injected, and the mold member has a mold surface that forms one surface of the cavity and has a thickness of 0.2 mm or more and 0.6 mm or less. A thickness of 0.1 mm or more and 0.5 mm or less disposed on the back surface of the thin plate main body, which is a surface facing the mold surface, and a metal thin plate main body within a range of 3 mm to 0.6 mm, Preferably 0.1 mm or more. a die having at least a low thermal conductivity member within a range of mm or less, the interface between the thin plate main body and the low thermal conductivity member being integrated, and detachable as a cavity surface of the die It may be a member.
 この薄板本体と低熱伝導率部材とが熱硬化型の耐熱性接着剤により一体化されていれば、低熱伝導率部材の剥離発生を一層抑制できる。ここで、該耐熱性接着剤は、硬化副生成物を生成しないものであることが好ましい。 If the thin plate body and the low thermal conductivity member are integrated with a thermosetting heat-resistant adhesive, the occurrence of peeling of the low thermal conductivity member can be further suppressed. Here, it is preferable that the heat resistant adhesive does not generate a cured byproduct.
 また、この低熱伝導率部材の背面には、補強材が一体化されていれば、低熱伝導率部材の一部に剥離が生じても、薄板本体に歪みを発生させることがない。また、このような補強材は、薄板部材の操作性を向上させることができ、薄板本体の金型のキャビティ面への装着、脱着操作を容易とする。 In addition, if a reinforcing material is integrated on the back surface of the low thermal conductivity member, even if peeling occurs in a part of the low thermal conductivity member, the thin plate main body is not distorted. Further, such a reinforcing material can improve the operability of the thin plate member, and facilitates the mounting and demounting operations of the thin plate body on the cavity surface of the mold.
 本発明の好ましい金型部材では、低熱伝導率部材は、厚み10μm以上、200μm以下の範囲内の低熱伝導性の第1の耐熱性接着剤層と、厚み10μm以上、200μm以下の範囲内の低熱伝導層と、厚み10μm以上、200μm以下の範囲内の低熱伝導性の第2の耐熱性接着剤層を備えている。 In a preferable mold member of the present invention, the low thermal conductivity member includes a first heat-resistant adhesive layer having a low thermal conductivity within a range of 10 μm to 200 μm and a low heat within a range of 10 μm to 200 μm. A conductive layer and a second heat-resistant adhesive layer having a low thermal conductivity in a range of 10 μm or more and 200 μm or less are provided.
 また、上記の補強材を裏打ちした金型部材では、薄板本体と補強材とは同一素材であれば反りなどの発生がないが、異なる材料を選択する場合でも互いの線膨張率の差を小さくするか、また、補強材の厚みを必要最小限の厚さとすることにより、成形サイクル過程で発生する温度差に基づく反りを低減させることができる。 Further, in the mold member lined with the above reinforcing material, the thin plate body and the reinforcing material will not be warped if they are the same material, but even when different materials are selected, the difference in mutual linear expansion coefficient is reduced. In addition, by setting the thickness of the reinforcing material to the minimum necessary thickness, it is possible to reduce warpage due to a temperature difference generated in the molding cycle process.
 このような金型は、例えば、耐熱性接着剤層(第1の耐熱性接着剤層、前記第2の耐熱性接着剤層)及び低熱伝導層をフィルム由来とすることにより製造することができる。 Such a mold can be manufactured by, for example, using a heat-resistant adhesive layer (first heat-resistant adhesive layer, the second heat-resistant adhesive layer) and a low heat conductive layer as a film. .
 例えば、薄板本体と低熱伝導率部材との界面とを熱硬化型の耐熱性接着剤としてフィルム状の接着剤を用いて一体化する際に、その一体化工程を薄板本体と低熱伝導層としての耐熱性フィルムをラミネートさせる第1工程と、第1工程よりも高い温度で熱硬化させる第2工程との少なくとも2工程を経て薄板本体と低熱伝導性フィルムとを一体化させる工程を含む工程を行うことにより、本発明で使用するに好ましい金型部材を製造することができる。 For example, when integrating the interface between the thin plate main body and the low thermal conductivity member using a film-like adhesive as a thermosetting heat-resistant adhesive, the integration process is performed as the thin plate main body and the low thermal conductive layer. A step including a step of integrating the thin plate body and the low thermal conductive film through at least two steps of a first step of laminating the heat resistant film and a second step of thermosetting at a temperature higher than the first step is performed. Thus, a mold member preferable for use in the present invention can be manufactured.
 このような条件を採用することにより、十分な架橋度を有し、厚み変動が起きない硬度および耐圧力性と樹脂のせん断に対する耐せん断力性を備えた金型部材を提供することができる。これにより、成形サイクルの過酷な条件(射出成形に用いられる高温の流動溶融樹脂からの受熱)下での繰り返しての使用を行っても、接着部分に分解が生じないという、十分な耐熱劣化性を確保することができる。ここで、ラミネート条件や硬化条件は、用いる樹脂素材、製造設備等を考慮して適宜決定することができる。 By adopting such conditions, it is possible to provide a mold member having a sufficient degree of cross-linking, hardness and pressure resistance that does not cause variation in thickness, and resistance to shearing of the resin. Due to this, sufficient heat deterioration resistance is ensured that the bonded part will not be decomposed even if it is repeatedly used under severe conditions of the molding cycle (heat reception from high-temperature fluid molten resin used for injection molding). Can be secured. Here, the laminating conditions and the curing conditions can be appropriately determined in consideration of the resin material to be used, manufacturing equipment, and the like.
 以上のような金型部材を装着した金型を用いれば、金型部材は、転写開始温度以上の温度を有する熱可塑性樹脂を、転写開始温度以下の温度に保持された金型で構成されたキャビティ部に導入し、該金型で冷却されて転写開始温度以下の温度に下がった金型の表面近傍の熱可塑性樹脂が、キャビティ部に熱可塑性樹脂が充填された後に、再度、転写開始温度を超える温度に上昇するように、キャビティ部側の表面部分の熱容量が設定される。これにより、このような金型を用いて薄板状の相対向する大きな2面の少なくとも一面が光を射出する射出面として利用される光制御部材を成形すれば、長期間の使用に際しても、安定に光制御部材を製造することができる。また、この金型部材は、交換可能であるので、型面の凹凸模様が異なる複数の金型部材を用意すれば、少量多銘柄の光制御部材の製造に用いることができる。 If a mold equipped with the above-described mold member is used, the mold member is composed of a mold in which a thermoplastic resin having a temperature equal to or higher than the transfer start temperature is held at a temperature equal to or lower than the transfer start temperature. After the thermoplastic resin in the vicinity of the mold surface, which has been introduced into the cavity and cooled by the mold to a temperature lower than the transfer start temperature, is filled with the thermoplastic resin, the transfer start temperature is again measured. The heat capacity of the surface portion on the cavity portion side is set so as to increase to a temperature exceeding. As a result, if a light control member that uses at least one of the two opposing large plate-like surfaces as an emission surface to emit light is molded using such a mold, it is stable even during long-term use. A light control member can be manufactured. Further, since this mold member can be exchanged, if a plurality of mold members having different concavo-convex patterns on the mold surface are prepared, it can be used for manufacturing a small amount of brand-name light control members.
 このようにして成形される光制御部材としては、導光板、レンズシート、光拡散板等を例示することができる。これらの光制御部材の一面には微細な凹凸パターンが形成され、この微細な凹凸は、金型部材の表面に刻印された凹凸面を再現している。 Examples of the light control member molded in this way include a light guide plate, a lens sheet, a light diffusion plate, and the like. A fine uneven pattern is formed on one surface of these light control members, and the fine unevenness reproduces the uneven surface stamped on the surface of the mold member.
 図2に示す金型部材10では、キャビティの一面を形成する型面20aを備えた金属製の薄板本体20と、型面20aに対向する面である薄板本体20の背面20bに配設された低熱伝導率部材30とを備えている。この低熱伝導率部材30は、耐熱性の熱硬化型接着剤から構成された第1の耐熱性接着剤層32と低熱伝導率部材層31とから構成され、低熱伝導率部材層31が第1の耐熱性接着剤層32を介して薄板本体20と一体化されている。 In the mold member 10 shown in FIG. 2, the metal thin plate body 20 having a mold surface 20a that forms one surface of the cavity and the back surface 20b of the thin plate body 20 that is a surface facing the mold surface 20a are disposed. And a low thermal conductivity member 30. The low thermal conductivity member 30 is composed of a first heat resistant adhesive layer 32 composed of a heat-resistant thermosetting adhesive and a low thermal conductivity member layer 31, and the low thermal conductivity member layer 31 is the first. The thin plate main body 20 is integrated with the heat resistant adhesive layer 32.
 本発明の一実施例の金型部材10では、薄板本体20と低熱伝導率部材30の各厚みは、熱容量等の関係から所定値となるように設定される。薄板本体20の厚みは0.2mm以上、0.6mm以下の範囲内、好ましくは0.3mm以上0.6mm以下の範囲内と極めて薄いという特徴を有する。 In the mold member 10 of one embodiment of the present invention, the thicknesses of the thin plate body 20 and the low thermal conductivity member 30 are set to be a predetermined value from the relationship of the heat capacity and the like. The thickness of the thin plate main body 20 has a characteristic that it is extremely thin within a range of 0.2 mm to 0.6 mm, preferably within a range of 0.3 mm to 0.6 mm.
 一方、低熱伝導率部材30の厚みは断熱できる範囲で特には制限はないが、薄すぎると断熱性が充分ではなく、また、成形サイクルを長く取る必要が生じる一方で、不要に厚すぎると製造が困難であったり、また、過酷な成形サイクルの過程で、安定に光制御部品を製造することが困難となる場合がある。一般にその厚みは十分な断熱性を確保できる範囲内で薄く構成することが望ましく、通常0.1mm以上、0.5mm以下の範囲内、好ましくは0.1mm以上0.3mm以下の範囲内で設定され、薄板本体と同様に極めて薄いという特徴を有する。 On the other hand, the thickness of the low thermal conductivity member 30 is not particularly limited as long as it can be insulated. However, if it is too thin, the heat insulating property is not sufficient, and it is necessary to take a long molding cycle. In some cases, it is difficult to manufacture light control parts stably in the course of a severe molding cycle. In general, it is desirable to make the thickness thin within a range that can ensure sufficient heat insulation, and is usually set within a range of 0.1 mm to 0.5 mm, preferably within a range of 0.1 mm to 0.3 mm. As with the thin plate body, it is extremely thin.
 この低熱伝導率部材30が、図2に示すように、第1の耐熱性接着剤層32と低熱伝導率部材層31とから構成される場合の各厚みは、例えば、厚み10μm以上200μm以下の範囲内の低熱伝導性の第1の耐熱性接着剤層と、厚み10μm以上200μm以下の範囲内の低熱伝導層との組合せである。この場合も、第1の耐熱性接着剤層と低熱伝導率部材層31とが一体化された合計厚みは、0.1mm以上0.3mm以下の範囲内と極めて薄いという特徴を有する。 As shown in FIG. 2, when the low thermal conductivity member 30 is composed of the first heat-resistant adhesive layer 32 and the low thermal conductivity member layer 31, each thickness is, for example, 10 μm or more and 200 μm or less. A combination of a first heat-resistant adhesive layer having a low thermal conductivity within a range and a low thermal conductive layer having a thickness of 10 μm or more and 200 μm or less. Also in this case, the total thickness in which the first heat-resistant adhesive layer and the low thermal conductivity member layer 31 are integrated has a feature that it is extremely thin within a range of 0.1 mm to 0.3 mm.
 本発明の一実施例に用いる熱硬化型の接着剤は樹脂系の材料に属し、金属材料に比べて熱伝導率が著しく小さい。それ故、熱硬化型接着剤により形成された薄層(熱硬化型接着剤層32)は本発明の一実施例において定義される低熱伝導率部材に該当する。これにより、図2に示す耐熱性接着剤層32と低熱伝導率部材層31とで、低熱伝導率部材30が構成される。 The thermosetting adhesive used in one embodiment of the present invention belongs to a resin material and has a significantly lower thermal conductivity than a metal material. Therefore, the thin layer (thermosetting adhesive layer 32) formed of the thermosetting adhesive corresponds to the low thermal conductivity member defined in one embodiment of the present invention. Thereby, the low heat conductivity member 30 is comprised by the heat resistant adhesive bond layer 32 and the low heat conductivity member layer 31 which are shown in FIG.
 ここで、本発明の一実施例において用いられる低熱伝導率部材としては、一般的なプラスチック素材が広く適用できるが、耐熱性、耐圧力性が優れていることが必要である。そのような素材は、例えば、ポリイミド、ポリアミドイミドが例示できるが、充分な厚みと、耐久性を有すれば、熱硬化型接着剤自体だけで低熱伝導率部材を構成させることもできる。しかしながら、一体化できる程度の接着性と耐熱性とを備えた素材であって、断熱性を確保できる程度の厚みを単一素材により入手することは困難なため、耐熱性フィルムを薄板本体とを熱硬化型接着剤を介して一体化させる図2の構成が好ましい。 Here, as the low thermal conductivity member used in one embodiment of the present invention, a general plastic material can be widely applied, but it is necessary to have excellent heat resistance and pressure resistance. Examples of such a material include polyimide and polyamideimide. However, if the material has sufficient thickness and durability, the low thermal conductivity member can be constituted only by the thermosetting adhesive itself. However, since it is difficult to obtain a single material with a thickness sufficient to ensure heat insulation, it is difficult to obtain a heat resistant film with a thin plate body. The structure of FIG. 2 integrated through a thermosetting adhesive is preferable.
 このような薄板部材10は、図1に示すように、金型100のバックプレート50に薄板部材10の厚さに相当する深さだけ彫り込み凹部を形成させ、その凹部に薄板部材10の型面20aが表面側(キャビティ面側)になるようにして装着させる。 As shown in FIG. 1, such a thin plate member 10 is formed by forming a recess in the back plate 50 of the mold 100 by a depth corresponding to the thickness of the thin plate member 10, and forming the mold surface of the thin plate member 10 in the recess. It is attached so that 20a is on the surface side (cavity surface side).
 凹部への薄板部材10の装着は、取り外し(脱着)が行える構成であれば、特には限定されない。簡易には、凹部の表面に粘着性や吸着性を維持させれば、装着させることができる。また、嵌合構造により装着、脱着が行えるように構成してもよい。 The mounting of the thin plate member 10 in the recess is not particularly limited as long as it can be removed (detached). In simple terms, it can be mounted if the surface of the recess is kept sticky or adsorbable. Moreover, you may comprise so that attachment and detachment | desorption can be performed with a fitting structure.
 このような薄板部材10では、低熱伝導率部材30と薄板本体20とが一体化されているので、金型部材10をバックプレート50に装着する場合のハンドリング操作も容易となり、かつ、長時間の成形サイクルを経た後にも、成形品表面の歪み発生が無い。 In such a thin plate member 10, since the low thermal conductivity member 30 and the thin plate main body 20 are integrated, the handling operation when the mold member 10 is mounted on the back plate 50 is facilitated, and a long time is required. Even after the molding cycle, there is no distortion on the surface of the molded product.
 つぎに、熱硬化型接着剤を介在させた低熱伝導率部材30と薄板本体20との一体化により、成形品の歪み発生を解消できる理由について説明する。 Next, the reason why distortion of the molded product can be eliminated by integrating the low thermal conductivity member 30 with the thermosetting adhesive interposed therebetween and the thin plate body 20 will be described.
 熱硬化型接着剤が低熱伝導率部材30と薄板本体20との一体化に特に優れている理由の詳細については不明であるが、本発明者はこの理由について、次のとおり推定している。 Although the details of the reason why the thermosetting adhesive is particularly excellent in the integration of the low thermal conductivity member 30 and the thin plate body 20 are unknown, the present inventor presumes the reason as follows.
 すなわち、低熱伝導率部材としては、一般に、耐熱性が求められることからポリイミド系の部材が好まれて採用されている。しかしながら、ポリイミドのようなプラスチック材料は、薄板本体を構成する金属材料よりも著しく大きな線膨張率を有する。それ故、通常の粘着剤等によりポリイミドフィルムを薄板本体に接着させたのでは、熱(線)膨張率の差異によりポリイミドフィルムがズレたりして繰り返しの成形サイクルに耐えることが困難である。また、薄板本体の裏面にポリイミド又はポリアミドイミド等の耐熱性フィルム素材の前駆体の薄層を未硬化形態でコート法等により付与させる構成では、本発明で採用される成形条件を確保できる程度の十分な断熱性を確保することが困難である。すなわち、コート法では必要な厚みを確保することが難しい。 That is, as a low thermal conductivity member, since a heat resistance is generally required, a polyimide-based member is preferred and adopted. However, a plastic material such as polyimide has a significantly larger linear expansion coefficient than the metal material constituting the thin plate body. Therefore, if the polyimide film is bonded to the thin plate main body with a normal pressure-sensitive adhesive or the like, it is difficult to withstand repeated molding cycles because the polyimide film is displaced due to the difference in thermal (linear) expansion coefficient. In addition, in the configuration in which a thin layer of a precursor of a heat-resistant film material such as polyimide or polyamideimide is applied to the back surface of the thin plate main body by a coating method or the like in an uncured form, the molding conditions employed in the present invention can be secured. It is difficult to ensure sufficient heat insulation. That is, it is difficult to secure a necessary thickness by the coating method.
 また、ポリイミドフィルム又はポリアミドイミドフィルムを耐熱性を有する通常の接着剤により接着させたのでは、接着剤と金属製の薄板材料との熱膨張率の相違から、長期間の使用に際して一部の剥離が避けられない。剥離が生じる原因は不明であるが、本発明者の注意深い観察によれば、接着剤から発生する極少量の気体(分解物)の発生が原因している可能性も指摘できる。 In addition, when a polyimide film or polyamide-imide film is bonded with a normal heat-resistant adhesive, due to the difference in thermal expansion coefficient between the adhesive and the metal thin plate material, some peeling occurs during long-term use. Is inevitable. The cause of the peeling is unknown, but according to the careful observation of the present inventor, it can be pointed out that it may be caused by the generation of a very small amount of gas (decomposed product) generated from the adhesive.
 これに対して、接着剤として耐熱性を有する熱硬化性接着剤を用いる場合には、硬化条件として十分な加熱温度と加熱時間を設定させることにより、極微小量の気体をも発生させずに、接着させることができ、これが、成形品の歪み発生解消の一因として大きく寄与していると推定される。 On the other hand, when using a thermosetting adhesive having heat resistance as an adhesive, by setting a sufficient heating temperature and heating time as curing conditions, without generating a very small amount of gas. It can be presumed that this contributes greatly as a factor in eliminating the occurrence of distortion in the molded product.
 本発明に好ましい耐熱性の熱硬化型接着剤としては、例えば、耐熱性のゴム(例えば、ニトリルゴム)と、構造用接着剤などとして接着強力が強く、かつ、耐熱性のある熱硬化型接着剤(例えば、フェノール樹脂系)との混合物が挙げられる。このような、耐熱性のゴム素材を接着強力が優れている耐熱性の熱硬化型接着剤と配合させることにより、その接着特性を大きく変えることができる。特にニトリルゴム系は分子中に極性の高いCN基をもつために、高い剥離強さと、強靱性を与える。これにより、熱硬化性の接着剤に対して、耐せん断力性を与える。 Preferred heat-resistant thermosetting adhesives for the present invention include, for example, heat-resistant rubber (for example, nitrile rubber) and thermosetting adhesive that has strong adhesive strength as a structural adhesive and the like and has heat resistance. And a mixture with an agent (for example, a phenol resin). By blending such a heat-resistant rubber material with a heat-resistant thermosetting adhesive having excellent adhesive strength, the adhesive properties can be greatly changed. Nitrile rubber systems in particular have a high polarity CN group in the molecule, and therefore give high peel strength and toughness. This gives shear resistance to the thermosetting adhesive.
 上記接着剤は、例えば、フェノール系の脱水縮合系接着剤や、イミド系、フェノール系、アクリルゴム系樹脂の混合物であって、これらの自己架橋性の接着剤、あるいは付加反応性接着剤を用いても良い。
 このような好ましい接着剤の一例は、TESA社によって提供されている熱活性フィルム(商品名テサHAF)である。このテサHAF(熱活性フィルム)は、ニトリルゴムとフェノール樹脂を主原料とし、両面に離型紙で保護されたフィルム状で提供される。両面離型紙を剥がすことにより、軽い粘着性を有するので、他の薄板素材と仮接着が可能である。また、この熱活性フィルムは、例えば、80℃~100℃程度の低温度において軟化されて熱可逆的な粘着性が発現する。また、120℃を超える高温度、例えば、120℃~220℃程度の範囲内で非可逆的な化学反応により脱水架橋されて強い接合力を発揮させることが可能である。
The adhesive is, for example, a phenol-based dehydration-condensation adhesive, a mixture of an imide-based, phenol-based, or acrylic rubber-based resin, and these self-crosslinking adhesives or addition-reactive adhesives are used. May be.
An example of such a preferred adhesive is a thermally active film (trade name Tessa HAF) provided by TESA. This tessa HAF (thermally active film) is provided in the form of a film made mainly of nitrile rubber and phenol resin and protected on both sides by release paper. By peeling the double-sided release paper, it has light tackiness, so it can be temporarily bonded to other thin plate materials. In addition, this thermoactive film is softened at a low temperature of about 80 ° C. to 100 ° C., for example, and exhibits thermoreversible adhesiveness. Further, it can be dehydrated and cross-linked by an irreversible chemical reaction at a high temperature exceeding 120 ° C., for example, within a range of about 120 ° C. to 220 ° C., and can exert a strong bonding force.
 すなわち、ゴム成分と強力接着剤成分との脱水架橋により高い強靱性と、高強力を発現させる。また、この架橋反応は、不可逆的であり、充分な硬化温度と硬化時間を費やした高圧力下で架橋させることにより、150℃以上の耐熱性と、12N/mm2以上の高い接着強力を発揮させ、かつ、極めて優れたウージング特性を発揮させる。この優れたウージング特性により、本発明に係る成形サイクルの条件では、揮発成分を実質的に発生させることがない。 That is, high toughness and high strength are expressed by dehydration crosslinking between the rubber component and the strong adhesive component. In addition, this crosslinking reaction is irreversible, and it exhibits a heat resistance of 150 ° C. or higher and a high adhesive strength of 12 N / mm 2 or higher by crosslinking under high pressure with sufficient curing temperature and curing time. And exhibit very good waving characteristics. Due to the excellent waving characteristics, volatile components are not substantially generated under the conditions of the molding cycle according to the present invention.
 ここで、本発明に係る金型部材を製造する好ましい条件は、低温度で薄板本体20と低熱伝導層31としての耐熱性フィルムをラミネートさせる第1工程と、第1工程よりも高い温度で熱硬化させる第2工程との2工程を経て薄板本体20と低熱伝導性フィルムとを貼り合わせることである。ここで、これらの第1工程及び第2工程を加圧下で行うことがさらに好ましい。 Here, the preferable conditions for producing the mold member according to the present invention are the first step of laminating the thin plate body 20 and the heat-resistant film as the low thermal conductive layer 31 at a low temperature, and the heat at a temperature higher than the first step. The thin plate body 20 and the low thermal conductive film are bonded to each other through two steps including the second step of curing. Here, it is more preferable to perform the first step and the second step under pressure.
 これらの第1工程(ラミネート工程)及び第2工程(硬化工程)とを加圧下で充分な時間(例えば、0.1MPa、6時間)を掛けて行うことにより、熱活性フィルムは高圧下で圧縮された状態で熱架橋される。高温と高圧下で接着させて一体化させることにより、高温と高圧(保圧)とが繰り返される本発明が適用される成形サイクルにおいても、接着剤層としての熱活性フィルムの変形が抑制され、結果として、薄板本体20と低熱伝導率部材層31との界面では極めて強く、かつ耐久性のある接合力を発揮させることができる。 The first step (lamination step) and the second step (curing step) are performed under pressure for a sufficient time (for example, 0.1 MPa, 6 hours) to compress the thermally active film under high pressure. In this state, it is thermally crosslinked. By bonding and integrating under high temperature and high pressure, even in the molding cycle in which the present invention is repeated with high temperature and high pressure (holding pressure), deformation of the thermally active film as an adhesive layer is suppressed, As a result, an extremely strong and durable bonding force can be exhibited at the interface between the thin plate body 20 and the low thermal conductivity member layer 31.
 ここで、例えば、本発明において好ましい材料として熱活性フィルム(テサHAFフィルム)を用いる場合、フィルム提供会社が推奨する硬化時間と硬化温度は、例えば、130℃~220℃で10分~30分程度での範囲内であり、これらの条件の範囲内では引張破断強度が490N/cm2~2530N/cm2(速度:300mm/分、温度:23℃)程度の範囲内の物性の硬化膜を得ることができると説明されている。 Here, for example, when a thermoactive film (Tesa HAF film) is used as a preferable material in the present invention, the curing time and curing temperature recommended by the film provider are, for example, 130 ° C. to 220 ° C. for about 10 minutes to 30 minutes. Within these ranges, a cured film having physical properties in the range of about 490 N / cm 2 to 2530 N / cm 2 (rate: 300 mm / min, temperature: 23 ° C.) is obtained. It is explained that it can.
 これに対して本発明で提案する硬化条件は、少なくとも130℃以上で1時間以上、好ましくは2時間以上、通常3時間程度である。これにより、十分に架橋された硬化膜が得られ、結果として、本発明の一実施例に係る高温、高圧の射出成形サイクル条件下での厚み変動が生じることが無く、耐圧力性と樹脂のせん断に対する耐せん断力性を確保させることができる。
(金型部材10の変形例)
 つぎに、図3の金型部材10では、キャビティの一面を形成する型面20aを備えた金属製の薄板本体20と、型面20aに対向する面である薄板本体20の背面20bに配設された低熱伝導率部材30と、その低熱伝導率部材30の裏面に配設された補強材40とを備えている。
On the other hand, the curing conditions proposed in the present invention are at least 130 ° C. or higher for 1 hour or longer, preferably 2 hours or longer, usually about 3 hours. As a result, a fully crosslinked cured film is obtained, and as a result, there is no variation in thickness under high temperature and high pressure injection molding cycle conditions according to an embodiment of the present invention. Shear resistance against shearing can be ensured.
(Modification of mold member 10)
Next, in the mold member 10 of FIG. 3, the metal thin plate body 20 having the mold surface 20a that forms one surface of the cavity and the back surface 20b of the thin plate body 20 that is the surface facing the mold surface 20a are arranged. The low thermal conductivity member 30 is provided, and a reinforcing member 40 disposed on the back surface of the low thermal conductivity member 30.
 この低熱伝導率部材30は、耐熱性の熱硬化型接着剤から構成された第1の耐熱性接着剤層32と低熱伝導率部材層31と耐熱性の熱硬化型接着剤から構成された第2の耐熱性接着剤層33から構成され、低熱伝導率部材層31が第1の耐熱性接着剤層32を介して薄板本体20と一体化され、また、低熱伝導率部材層31が第2の耐熱性接着剤層33を介して裏面に配設された補強材40と一体化されている。 The low thermal conductivity member 30 includes a first heat resistant adhesive layer 32 composed of a heat resistant thermosetting adhesive, a low thermal conductivity member layer 31, and a heat resistant thermosetting adhesive. 2, the low thermal conductivity member layer 31 is integrated with the thin plate main body 20 via the first heat resistant adhesive layer 32, and the low thermal conductivity member layer 31 is the second thermal conductivity member layer 31. The heat-resistant adhesive layer 33 is integrated with a reinforcing member 40 disposed on the back surface.
 ここで、熱硬化型接着剤は、金属に比べて熱伝導率が著しく小さいので、この熱硬化型接着剤により形成された薄層(熱硬化型接着剤層32、33)と低熱伝導率部材層31とで、低熱伝導率部材30が構成される。 Here, since the thermosetting adhesive has a remarkably small thermal conductivity compared to metal, the thin layers (thermosetting adhesive layers 32 and 33) formed by this thermosetting adhesive and the low thermal conductivity member are used. The layer 31 constitutes the low thermal conductivity member 30.
 これにより、この図3の金型部材10では、熱硬化型接着剤により低熱伝導率部材が接着されることにより、薄板本体20と低熱伝導率部材30及び薄板本体20と補強材40との界面が一体化される。 Accordingly, in the mold member 10 of FIG. 3, the low thermal conductivity member is bonded by the thermosetting adhesive, whereby the thin plate main body 20 and the low thermal conductivity member 30 and the interface between the thin plate main body 20 and the reinforcing material 40. Are integrated.
 金型部材10では、図2に示す金型部材と同様に、薄板本体20の厚みは、熱容量等の関係から所定値となるように設定され、通常は0.3mm以上、0.6mm以下の範囲内と極めて薄いという特徴を有する。 In the mold member 10, like the mold member shown in FIG. 2, the thickness of the thin plate body 20 is set to be a predetermined value from the relationship of the heat capacity and the like, and is usually 0.3 mm or more and 0.6 mm or less. It is characterized by being extremely thin within the range.
 また、低熱伝導率部材30は、例えば、厚み10μm以上200μm以下の範囲内の低熱伝導性の第1の耐熱性接着剤層と、厚み10μm以上200μm以下の範囲内の低熱伝導層と、厚み10μm以上、200μm以下の範囲内の低熱伝導性の第2の耐熱性接着剤層との組合せであって、これらの各層が一体化された合計厚みは、0.1mm以上0.3mm以下の範囲内と極めて薄いという特徴を有する。 The low thermal conductivity member 30 includes, for example, a low heat conductive first heat-resistant adhesive layer having a thickness of 10 μm or more and 200 μm or less, a low heat conductive layer having a thickness of 10 μm or more and 200 μm or less, and a thickness of 10 μm. The combination with the low heat conductive second heat-resistant adhesive layer within the range of 200 μm or less, and the total thickness of these layers integrated is within the range of 0.1 mm or more and 0.3 mm or less. It is very thin.
 このような薄板部材10は、同様に図1に示すように、金型100のバックプレート50に薄板部材10の厚さに相当する深さだけ彫り込むことにより、その凹部に薄板部材10の型面20aを表面側(キャビティ面側)にして装着させることができる。このような薄板部材10では、図2の金型部材10に比べ、さらに背面に補強材40を備えることにより、金型部材10のハンドリング操作が一層容易となり、繰り返しの装着、脱着が容易となる。 Similarly, as shown in FIG. 1, such a thin plate member 10 is carved into the back plate 50 of the mold 100 by a depth corresponding to the thickness of the thin plate member 10, so that the mold of the thin plate member 10 is formed in the recess. The surface 20a can be mounted with the surface side (cavity surface side). In such a thin plate member 10, the reinforcing member 40 is further provided on the back surface as compared with the mold member 10 of FIG. 2, whereby the handling operation of the mold member 10 is further facilitated, and repeated mounting and demounting are facilitated. .
 なお、補強材40として充分な厚みを有していれば、金型部材10の背面を支持するバックプレート50の部分は省略されていてもよい。このような例の典型は、例えば、薄板部材10を入れ子金型のキャビティ面に接着させた場合と同一乃至は均等である。後述する実施例2から確認されるように、この場合も接着剤としては耐熱性を有する熱硬化性接着剤を用いることが望まれる。一般に低熱伝導率部材は、プラスチックなどにより金属素材に比べれば柔らかい。それ故、接着剤の選択によって、薄板本体の型面20aに歪みの発生が生起する場合も想定される。 In addition, as long as it has sufficient thickness as the reinforcing material 40, the part of the back plate 50 which supports the back surface of the mold member 10 may be omitted. The typical example of such an example is the same as or equivalent to the case where the thin plate member 10 is bonded to the cavity surface of the nested mold. As confirmed from Example 2 described later, in this case as well, it is desirable to use a thermosetting adhesive having heat resistance as the adhesive. Generally, a low thermal conductivity member is softer than a metal material due to plastic or the like. Therefore, it may be assumed that distortion occurs in the mold surface 20a of the thin plate body due to the selection of the adhesive.
 ここで、補強材40としては、補強作用があれば特には限定されないが、経済性を考慮するとステンレス鋼材を用いることができる。 Here, the reinforcing material 40 is not particularly limited as long as it has a reinforcing action, but a stainless steel material can be used in consideration of economy.
 ここで、補強材40としては、薄板本体20と同一素材を用いてもよいが、一般にキャビティ面を構成する薄板本体20は、電気メッキなどの手法により形成されるニッケルやクロムであったり、切削加工に耐える銅、真鍮などの素材にクロムメッキなどのメッキを施した比較的高価な素材が用いられる。それ故、補強材として、これらの高価な薄板素材を用いることは経済的ではない。特に本発明で所望されるような大型の金型部材を用いる場合には、経済性を考慮する必要がある。 Here, as the reinforcing member 40, the same material as that of the thin plate body 20 may be used. However, the thin plate body 20 generally constituting the cavity surface is nickel or chrome formed by a technique such as electroplating or cutting. Relatively expensive materials such as chrome plating are applied to materials such as copper and brass that can withstand processing. Therefore, it is not economical to use these expensive thin plate materials as the reinforcing material. In particular, when using a large mold member as desired in the present invention, it is necessary to consider the economy.
 しかしながら補強材の選択に際して、無作為に補強材を選択すると、大型の金型部材では、高温、高圧下での接着製造過程で発生する反りが課題となることが本発明者のその後の研究により判明している。すなわち、耐熱性の熱硬化型接着剤を用いる場合、高温、高圧下での架橋が行われるが、硬化終了後の放冷時に、補強材と薄型本体との間に熱膨張率の差が大きい場合には、得られた薄板部材(金型部材10)に反りが発生する場合があった。 However, when selecting a reinforcing material at random, if the reinforcing material is selected at random, warpage that occurs during the adhesive manufacturing process under high temperature and high pressure becomes a problem for large mold members. It turns out. That is, when a heat-resistant thermosetting adhesive is used, crosslinking is performed under high temperature and high pressure, but there is a large difference in thermal expansion coefficient between the reinforcing material and the thin main body when allowed to cool after completion of curing. In some cases, the obtained thin plate member (mold member 10) may be warped.
 例えば、線膨張率が13×10-6/℃のニッケル製の薄板本体(厚み0.3mm)の背面に低伝導率部材としてのテサ社製の熱活性フィルムを介して線膨張率が17.2×10-6/℃のSUS304の薄板(厚み0.3mm)を補強材として用いた場合の実験から実際に反りを観測できた。ここで、熱活性フィルムの架橋反応は106℃近辺から開始するが最終的には150℃近傍の高温で終結させた場合、架橋反応後に放置して冷却することによりニッケルとステンレスとの線膨張率との差に起因して型面20aの凸の反りを確認できた。 For example, a linear expansion coefficient of 17.times.10.sup.-6 / .degree. C. via a thermally active film manufactured by Tessa as a low conductivity member on the back of a nickel thin plate body (thickness 0.3 mm). Warping could actually be observed from an experiment in which a thin plate (thickness 0.3 mm) of SUS304 at 2 × 10 −6 / ° C. was used as a reinforcing material. Here, the crosslinking reaction of the thermally active film starts from around 106 ° C., but when terminated at a high temperature around 150 ° C., the linear expansion coefficient between nickel and stainless steel is allowed to cool after leaving the crosslinking reaction. Due to the difference, the convex warpage of the mold surface 20a could be confirmed.
 すなわち、ニッケルを薄板素材として、線膨張率の異なる素材で金型部材を製造した場合の反りは、例えば、薄板本体が280mm×200mm程度の小さな素材でも表1のとおりである。 That is, the warpage when a die member is manufactured with a material having a different linear expansion coefficient using nickel as a thin plate material is as shown in Table 1 even when the thin plate body has a small material of about 280 mm × 200 mm.
Figure JPOXMLDOC01-appb-T000001

 ここで、このような反りが発生しないことが好ましいが、例えば、後述する実施例により実証されるように、補強材の厚みが充分に薄ければ、本発明における保圧の条件下では、反りがこの程度の範囲内であれば、充分に規格にあう成形品を製造できる。
Figure JPOXMLDOC01-appb-T000001

Here, it is preferable that such warping does not occur. For example, as demonstrated by the examples described later, if the thickness of the reinforcing material is sufficiently thin, warping is performed under the pressure holding condition in the present invention. Is within this range, it is possible to produce a molded product that fully meets the specifications.
 このような補強材の厚みは特には限定されないが、通常であれば、0.5mm以上で補強効果が発揮され、例えば、後述する実施例で2.5mmのSUSステンレス鋼が選択されて実証されていることから、3mm程度までであると考えられる。すなわち、バックプレートにより背面が裏打ち(支持)されるので、金型部材10の少ない反りは成形サイクルの保圧により実質的に軽減され、外観良好な成形品を形成させることができる。 The thickness of such a reinforcing material is not particularly limited, but normally, the reinforcing effect is exhibited at 0.5 mm or more. For example, 2.5 mm SUS stainless steel is selected and demonstrated in the examples described later. Therefore, it is considered to be up to about 3 mm. That is, since the back surface is lined (supported) by the back plate, a small warp of the mold member 10 is substantially reduced by holding pressure in the molding cycle, and a molded product having a good appearance can be formed.
 望ましい補強材としては、薄板本体の素材との線膨張率の差が、±6(×10-6/℃)の範囲内であり、さらに好ましくは、±3(×10-6/℃)の範囲内である。このようなニッケルとの線膨張率の差が小さい素材としては、例えば、NSSC系のステンレス鋼(特にはフェライト系)が例示できるが、これに限定されるものではない。 As a desirable reinforcing material, the difference in linear expansion coefficient from the material of the thin plate body is within a range of ± 6 (× 10 −6 / ° C.), more preferably ± 3 (× 10 −6 / ° C.). Within range. Examples of such a material having a small difference in linear expansion coefficient from nickel include NSSC stainless steel (particularly ferrite), but are not limited thereto.
 薄板本体と低熱伝導率部材との接合方法及び接合条件又は低熱伝導率部材と補強材との接合方法及び接合条件は、図2に示す金型部材の製造条件と均等乃至は同一であるので、詳細な説明は省略する。 Since the joining method and joining conditions of the thin plate body and the low thermal conductivity member or the joining method and joining conditions of the low thermal conductivity member and the reinforcing material are equal to or the same as the manufacturing conditions of the mold member shown in FIG. Detailed description is omitted.
 つぎに、以上説明した金型100は射出成形機に取り付けられて利用される。この射出成形法により薄板状に成形された光制御部材が製造できる。 Next, the mold 100 described above is used by being attached to an injection molding machine. A light control member molded into a thin plate shape can be manufactured by this injection molding method.
 このような光制御部材は、シート状形態、フィルム状形態などを含む薄板状の樹脂成形品であり、薄板状の樹脂成形品を構成する相対向する大きな2面(以下、この面を主面という。)の少なくとも1面が光を射出する射出面として利用されるものである。 Such a light control member is a thin plate-like resin molded product including a sheet-like form, a film-like form, etc., and has two large opposing surfaces constituting the thin plate-like resin molded product (hereinafter, this surface is the main surface). At least one surface is used as an exit surface for emitting light.
 このような光制御部材では、制御部材の主面又は側面などの少なくとも一面から入射光が入射される。入射された光は、光制御部材の内部を平面方向及び/又は平面に交差する方向(垂直方向を含む)に屈折または反射を伴って伝播される。この屈折または反射の過程で入射した光の進行方向が制御されて少なくとも一方の主面から射出される。このような光制御部材において、2つの主面の少なくとも一方には、射出される光の方向を制御するための微細な凹凸面が付与されている。他の主面は同様な又は異なる形態の凹凸面であってもよく、また平滑面であってもよい。また、これにより、本発明の一実施例の金型部材の型面20aには、この光制御部材の微細な凹凸面に対応する凹凸面又は鏡面を備えている。 In such a light control member, incident light is incident from at least one surface such as a main surface or a side surface of the control member. The incident light is propagated through the inside of the light control member with refraction or reflection in a plane direction and / or a direction (including a vertical direction) intersecting the plane. In this refraction or reflection process, the traveling direction of the incident light is controlled and emitted from at least one main surface. In such a light control member, at least one of the two main surfaces is provided with a fine uneven surface for controlling the direction of the emitted light. The other main surface may be an uneven surface having the same or different form, or may be a smooth surface. Accordingly, the mold surface 20a of the mold member according to the embodiment of the present invention is provided with an uneven surface or a mirror surface corresponding to the fine uneven surface of the light control member.
 入射面が側面である光制御部材の一例は導光板であり、この導光板は、液晶等の表示装置に用いるサイドエッジ型のバックライトの部品である。サイドエッジ型のバックライトでは、導光板の厚みの薄い一端面(一側面)を入射端面として光が入射される。導光板に入射した光は、入射端面に対向する側面(他端面)に向けて2つの主面間を反射及び/又は屈折しつつ進行する。この伝播過程で入射した光は、一方の主面を射出面として射出され、液晶表示装置のバックライトとして利用される。 An example of the light control member whose incident surface is a side surface is a light guide plate, and this light guide plate is a component of a side edge type backlight used in a display device such as a liquid crystal. In the side-edge type backlight, light is incident with one end face (one side face) having a small thickness of the light guide plate as an incident end face. The light incident on the light guide plate travels while being reflected and / or refracted between the two main surfaces toward the side surface (the other end surface) facing the incident end surface. Light incident in this propagation process is emitted with one main surface as an emission surface, and is used as a backlight of a liquid crystal display device.
 また、入射面が主面である光制御部材の一例は、液晶表示装置の部品としての拡散板である。この拡散板では、薄板形状の相対向する大きな面である一方の主面から光が入射される。入射された光は、入射面(一方の主面)に対向する主面(他方の主面)に向けて進行し、他方の主面から射出される。この入射及び射出の過程で、入射して光は拡散板の作用効果により光が拡散される。すなわち、拡散板では光が拡散板を透過する過程で光の方向が拡散される。 An example of the light control member whose incident surface is the main surface is a diffusion plate as a component of a liquid crystal display device. In this diffusing plate, light enters from one main surface which is a large opposing surface of a thin plate shape. The incident light travels toward the main surface (the other main surface) opposite to the incident surface (the one main surface), and is emitted from the other main surface. In this incident and exit process, incident light is diffused by the effect of the diffusion plate. That is, in the diffusion plate, the direction of light is diffused in the process of light passing through the diffusion plate.
 このような光制御部材の具体例としては、上述の液晶表示装置に用いられる導光板や拡散板に加えて、その他の目的で用いられる導光板、拡散板に限らず、光を特定の方向に向けて射出するプリズムシート、フレネルレンズ、レンチキュラーレンズ等のレンズシートであってもよい。いずれの場合にも光が射出する射出面は主面であり、本発明の一実施例に係る光制御部材(射出成形品)では、少なくとも一方の主面に微細な凹凸が付与されている。 Specific examples of such a light control member are not limited to the light guide plate and the diffusion plate used for other purposes in addition to the light guide plate and the diffusion plate used in the above-described liquid crystal display device, and light is transmitted in a specific direction. It may be a lens sheet such as a prism sheet, a Fresnel lens, or a lenticular lens. In any case, the emission surface from which light is emitted is the main surface, and in the light control member (injection molded product) according to one embodiment of the present invention, at least one main surface is provided with fine irregularities.
 近年、液晶表示装置やプラズマテレビ等の大型化に対応して、そこで用いる導光板、拡散板、プリズムシート等の各種光制御部材では、継ぎ目の無い大型の一体成形品が求められている。このような大型一体成形品は、光ディスク等の直径よりもはるかに大型の、例えば、一辺の長さが50cmよりも大きい、特には長辺が80cmを超える表示画面に対応させる大型成形品が望まれている。このような光制御部材は、光ディスク等に比べて一銘柄当たりの生産量が少ないという特徴を有する。それ故、金型の交換も煩雑に行う必要が生じている。 In recent years, in response to the increase in size of liquid crystal display devices, plasma televisions, and the like, various light control members such as light guide plates, diffusion plates, and prism sheets that are used there have been demanded seamless large-sized integrally molded products. Such a large integrally molded product is much larger than the diameter of an optical disk or the like, for example, a large molded product corresponding to a display screen having a side length of more than 50 cm, particularly a long side exceeding 80 cm. It is rare. Such a light control member has a feature that the production amount per brand is smaller than that of an optical disk or the like. Therefore, it is necessary to exchange the mold in a complicated manner.
 ここで、本発明の一実施例の金型部材は、取り扱い性が極めて良好となるので、このような煩雑な銘柄交換にも対応できる大型の成形品に適用することができるという、特徴を有する。もっとも、小型の成形品を製造する際に本発明に係る金型部材を用いてもよいということは言うまでもない。 Here, the mold member according to an embodiment of the present invention has a feature that it can be applied to a large-sized molded product that can cope with such a complicated brand exchange because the handleability is extremely good. . However, it goes without saying that the mold member according to the present invention may be used when manufacturing a small molded article.
 このような金型を用いることにより特許文献1に記載の射出成形方法により光制御部材を成形することができる。 By using such a mold, the light control member can be molded by the injection molding method described in Patent Document 1.
 すなわち、このような金型は、転写開始温度以上の温度を有する熱可塑性樹脂を、転写開始温度以下の温度に保持された金型で構成されたキャビティ部に導入し、該金型で冷却されて転写開始温度以下の温度に下がった金型の表面近傍の熱可塑性樹脂が、キャビティ部に熱可塑性樹脂が充填された後に、再度、転写開始温度を超える温度に上昇するように、キャビティ部側の表面部分の熱容量が設定されることになる。 That is, in such a mold, a thermoplastic resin having a temperature equal to or higher than the transfer start temperature is introduced into a cavity portion constituted by a mold held at a temperature equal to or lower than the transfer start temperature, and is cooled by the mold. Cavity side of the mold so that the thermoplastic resin near the mold surface that has fallen below the transfer start temperature rises again to a temperature exceeding the transfer start temperature after the cavity is filled with the thermoplastic resin. Thus, the heat capacity of the surface portion is set.
 これにより、型面20aの凹凸模様の異なる多数の金型部材10を用意することにより、煩雑な銘柄交代に際しても、迅速、かつ、適切に対応することができる。 Thus, by preparing a large number of mold members 10 having different concavo-convex patterns on the mold surface 20a, it is possible to quickly and appropriately cope with complicated brand changes.
 すなわち、導光板を成形しようとする場合、その導光板が、表面に凹凸パターンを有するものであれば、薄板部材のキャビティ部を構成する型面20aには、導光板の表面に形成されるべき凹凸パターンとは逆の凹凸が設けられている。また、成形しようとする導光板が表面にシボ加工を有するものであれば、薄板部材のキャビティ部を構成する型面20aにはシボ加工が施されている。さらに、成形しようとする導光板がドット状等のパターンが印刷されているものであれば、薄板部材の型面20aは鏡面(平面)のままである。 That is, when forming the light guide plate, if the light guide plate has an uneven pattern on the surface, it should be formed on the surface of the light guide plate on the mold surface 20a constituting the cavity portion of the thin plate member. Concavities and convexities opposite to the concavity and convexity pattern are provided. Further, if the light guide plate to be molded has a texture on the surface, the mold surface 20a constituting the cavity portion of the thin plate member is textured. Further, if the light guide plate to be molded is printed with a dot-like pattern, the mold surface 20a of the thin plate member remains a mirror surface (plane).
 成形すべき導光板が表裏の両面に凹凸パターンまたはシボ加工を有するものであれば、薄板部材を金型のキャビティの両面に設けて成形すればよい。凹凸パターンまたはシボ加工が導光板の片面のみであれば、キャビティの片面(凹凸パターンまたはシボ加工のある面)に薄板部材を設け、他の面は鏡面のままで良いが、両面に薄板部材を設けてもよい(この場合、一方の薄板部材の表面は鏡面である。)。 If the light guide plate to be molded has a concavo-convex pattern or texture on both the front and back sides, a thin plate member may be provided on both sides of the mold cavity. If the concavo-convex pattern or texture is only on one side of the light guide plate, a thin plate member may be provided on one side of the cavity (surface with the concavo-convex pattern or texture), and the other surface may remain a mirror surface. You may provide (in this case, the surface of one thin-plate member is a mirror surface).
 また、本発明の一実施例により、レンズシートを成形する場合にも、レンズシートに適した型面20aを備えた金型部材を装着させればよい。 Further, according to an embodiment of the present invention, when a lens sheet is molded, a mold member having a mold surface 20a suitable for the lens sheet may be attached.
 いずれの場合にも、転写性が向上し、ウエルドマーク、コールド樹脂マーク、フローマークなどの発生が低減される。 In either case, transferability is improved and the occurrence of weld marks, cold resin marks, flow marks, etc. is reduced.
 なお、本発明の方法で用いられる熱可塑性樹脂は特に制限がなく、例えばポリメチルメタクリレート、ポリカーボネート、ポリスチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリ塩化ビニル、熱可塑性エラストマー、またはこれらの共重合体等が挙げられる。 The thermoplastic resin used in the method of the present invention is not particularly limited, and examples thereof include polymethyl methacrylate, polycarbonate, polystyrene, polypropylene, polyethylene terephthalate, polyvinyl chloride, thermoplastic elastomer, and copolymers thereof. .
 つぎに、本発明の樹脂成形品の成形方法により、転写性が向上し、ウエルドマーク、コールド樹脂マーク、フローマークなどの発生が低減される理由について、特許文献1の一部を要約して説明するが、詳細には特許文献1を参照されたい。ここでは、樹脂としてポリメチルメタクリレート樹脂(株式会社クラレ製、商品名:パラペットHR-1000LC)を使用した場合のMARC(MARC社製)を用いた非定常熱伝導解析によるシミュレーション結果が一例として説明されている。 Next, the reason why the transferability is improved and the occurrence of weld marks, cold resin marks, flow marks and the like is reduced by the molding method of the resin molded product of the present invention will be described in a part of Patent Document 1. However, refer to Patent Document 1 for details. Here, as an example, simulation results by unsteady heat conduction analysis using MARC (made by MARC) when polymethyl methacrylate resin (made by Kuraray Co., Ltd., trade name: Parapet HR-1000LC) is used as the resin are described. ing.
 用いられたポリメチルメタクリレート樹脂の温度と縦弾性係数との関係(曲げモード)の測定結果(図4)から貯蔵弾性率の温度依存性を求める。グラフの傾きが大きく変わる温度が本明細書でいう転写開始温度である。この転写開始温度は相遷移領域のグラフの接線とゴム状平坦領域のグラフの接線との交点により求められ、この図4により求められる転写開始温度は128℃である。 The temperature dependence of the storage modulus is obtained from the measurement result (FIG. 4) of the relationship (bending mode) between the temperature and the longitudinal elastic modulus of the polymethyl methacrylate resin used. The temperature at which the slope of the graph changes greatly is the transfer start temperature in this specification. This transfer start temperature is determined by the intersection of the tangent line of the graph of the phase transition region and the tangent line of the graph of the rubber-like flat region, and the transfer start temperature determined by this FIG.
 つぎに、シミュレーションに採用される射出成形装置(金型100)、光制御部材である成形物60及び成形条件の主な仕様はつぎのとおりである(図5参照。)。 Next, main specifications of the injection molding apparatus (mold 100) employed in the simulation, the molded product 60 that is a light control member, and molding conditions are as follows (see FIG. 5).
 成形物60の厚さ:3mm
 金型100(炭素鋼製)の厚さ:25mm
 薄板本体20(ニッケル製)の厚さ:0.3mm
 充填時間:1.4秒
 成形サイクル:60秒
 金型100の温度:85℃
 冷却水側の熱伝導係数:1.0×10-3cal/mm2・sec・℃
 キャビティ内に射出充填されるポリメチルメタクリレート樹脂の温度:280℃
 このシミュレーションでは、図5に示すように、キャビティに対向する面(背面)100bに冷却水を通す冷却設備70を備えた金型100が用いられる。この金型100のキャビティ側の一面には、薄板部材10が装着されている。この薄板部材10は、キャビティ面(型面)20aに配設される薄板本体20と、その背面20bに配設される低熱伝導率部材30とを備えている。薄板本体20の型面20aに形成された凹凸構造は、高さhが13μmであり、ピッチpが30μmである。この凹凸構造は、液晶表示装置のサイドエッジ型バックライトに用いる導光板の射出面のパターンである。
Thickness of molded product 60: 3 mm
Mold 100 (carbon steel) thickness: 25mm
Thin plate body 20 (nickel) thickness: 0.3 mm
Filling time: 1.4 seconds Molding cycle: 60 seconds Temperature of mold 100: 85 ° C
Heat transfer coefficient on the cooling water side: 1.0 × 10 −3 cal / mm 2 · sec · ° C.
Temperature of polymethyl methacrylate resin injected and filled into the cavity: 280 ° C
In this simulation, as shown in FIG. 5, a mold 100 provided with a cooling facility 70 for passing cooling water through a surface (back surface) 100b facing the cavity is used. A thin plate member 10 is mounted on one surface of the mold 100 on the cavity side. The thin plate member 10 includes a thin plate main body 20 disposed on the cavity surface (mold surface) 20a and a low thermal conductivity member 30 disposed on the back surface 20b. The uneven structure formed on the mold surface 20a of the thin plate main body 20 has a height h of 13 μm and a pitch p of 30 μm. This concavo-convex structure is a pattern of the exit surface of the light guide plate used for the side edge type backlight of the liquid crystal display device.
 シミュレーションの結果は、図6及び図7に示されるが、図7では、図6の時間軸が延ばして表現されている。これらの図6、図7において、符号(a)、(b)、(c)は射出後の時間(秒)とポリメチルメタクリレート樹脂の金型に接する面の温度とのシミュレーション結果を示し、符号(d)は、射出後の時間(秒)とポリメチルメタクリレート樹脂のキャビティ内の樹脂の中心部の温度との関係のシミュレーション結果を示す。 The results of the simulation are shown in FIGS. 6 and 7. In FIG. 7, the time axis of FIG. 6 is extended. 6 and 7, reference numerals (a), (b), and (c) indicate simulation results of the time (seconds) after injection and the temperature of the surface in contact with the mold of the polymethyl methacrylate resin. (D) shows the simulation result of the relationship between the time (second) after injection and the temperature of the central part of the resin in the cavity of the polymethylmethacrylate resin.
 ここで、符号(a)は、対照例に係るシミュレーション結果であり、この対照例では、低熱伝導率部材30が装着されていない以外は図2に示すと同一の金型(炭素鋼製)が用いられている。 Here, the code | symbol (a) is a simulation result which concerns on a control example, and in this control example, the same metal mold | die (product made from carbon steel) is shown in FIG. 2, except the low heat conductivity member 30 is not mounted | worn. It is used.
 また、符号(b)は、低熱伝導率部材30として厚さが0.1mmであるポリエチレンテレフタレート製のフィルムが用いられた例であり、符号(c)は、低熱伝導率部材30として厚さが0.15mmであるポリエチレンテレフタレート製のフィルムが用いられた例である。ここで、ポリエチレンテレフタレートフィルムの熱伝導率は0.126kcal/m・hr・℃であり、薄板本体20の熱伝導率は、79.2kcal/m・hr・℃である。 The symbol (b) is an example in which a film made of polyethylene terephthalate having a thickness of 0.1 mm is used as the low thermal conductivity member 30, and the symbol (c) is a thickness as the low thermal conductivity member 30. This is an example in which a film made of polyethylene terephthalate having a thickness of 0.15 mm was used. Here, the thermal conductivity of the polyethylene terephthalate film is 0.126 kcal / m · hr · ° C., and the thermal conductivity of the thin plate body 20 is 79.2 kcal / m · hr · ° C.
 図6の符号(b)、(c)の曲線に示されるとおり、薄板本体20の背面に低熱伝導率部材が取り付けられた金型100を用いる場合には、280℃に設定されたポリメチルメタクリレート樹脂がキャビティ部に導入されたときに、金型100のキャビティ面20aに接したポリメチルメタクリレート樹脂は金型100の温度と略同一温度とされる薄板本体20の型面(キャビティ面)20aで素早く冷却されて転写開始温度以下にいったん下がる。しかしながら、図7の符号(d)に示されるとおり、充填された樹脂の中心部の温度が充分に高いことと、薄板本体20の熱容量が適切に設定され、かつ、薄板本体20の背面に低熱伝導率部材30が配設されることにより、瞬時(これらの例では1秒以内)で転写開始温度(128℃)を超える。これにより、キャビティ内に充填された樹脂は、金型表面(型面20a)近傍で冷却固化層が瞬間的には形成されるが、その後、樹脂温度が再び転写開始温度を超えることによりこの冷却固化層は消滅する。この状態で、保圧工程でキャビティ内の樹脂に圧力が付加され、凹凸パターンに転写開始温度以上の温度を有する樹脂が押し込められる。成形サイクル60秒は、図7に示されるように、キャビティ内に充填された樹脂の中心部の温度が転写開始温度よりも充分に低下するに充分な時間であるため、ポリメチルメタクリレート樹脂に微細な凹凸パターンが転写されて成形品(導光板)が得られる。また、このような成形品は、配向歪み、冷却歪みなどの原因となる冷却固化層が瞬時に消滅しているので、ウエルドマーク、コールド樹脂マーク、フローマークなどの発生が抑えられる。 As shown by the curves (b) and (c) in FIG. 6, when using the mold 100 in which the low thermal conductivity member is attached to the back surface of the thin plate main body 20, polymethyl methacrylate set at 280 ° C. When the resin is introduced into the cavity portion, the polymethylmethacrylate resin in contact with the cavity surface 20a of the mold 100 is the mold surface (cavity surface) 20a of the thin plate body 20 that is set to substantially the same temperature as the mold 100. It cools quickly and falls once below the transfer start temperature. However, as indicated by reference numeral (d) in FIG. 7, the temperature of the center portion of the filled resin is sufficiently high, the heat capacity of the thin plate body 20 is appropriately set, and low heat is applied to the back surface of the thin plate body 20. By disposing the conductivity member 30, the transfer start temperature (128 ° C.) is exceeded instantaneously (within 1 second in these examples). As a result, the resin filled in the cavity forms a cooling solidified layer instantaneously in the vicinity of the mold surface (mold surface 20a), but this cooling is caused by the resin temperature again exceeding the transfer start temperature. The solidified layer disappears. In this state, pressure is applied to the resin in the cavity in the pressure holding process, and the resin having a temperature equal to or higher than the transfer start temperature is pushed into the concavo-convex pattern. As shown in FIG. 7, the molding cycle of 60 seconds is a time sufficient for the temperature of the center of the resin filled in the cavity to be sufficiently lower than the transfer start temperature. The uneven pattern is transferred to obtain a molded product (light guide plate). Further, in such a molded article, since the cooling solidified layer that causes orientation strain, cooling strain, and the like disappears instantaneously, generation of weld marks, cold resin marks, flow marks, and the like can be suppressed.
 これに対して、図6の符号(a)の曲線に示されるとおり、薄板本体20の背面に低熱伝導率部材30を配することのない対照例では、金型100の表面近傍のポリメチルメタクリレート樹脂は、樹脂の充填直後に転写開始温度以下になり、その後も転写開始温度を超えることがない。これにより、型面20aの近傍のポリメチルメタクリレート樹脂に形成された冷却固化層が、内部からの圧力(保圧)で凹凸パターンに押し込められるため、配向歪み、冷却歪みなどが生じ、ウエルドマーク、コールド樹脂マーク、フローマークなどが発生する。 On the other hand, as shown by the curve (a) in FIG. 6, in the control example in which the low thermal conductivity member 30 is not disposed on the back surface of the thin plate main body 20, polymethyl methacrylate in the vicinity of the surface of the mold 100. The resin becomes equal to or lower than the transfer start temperature immediately after filling with the resin, and does not exceed the transfer start temperature thereafter. Thereby, since the cooling solidified layer formed in the polymethyl methacrylate resin in the vicinity of the mold surface 20a is pushed into the concavo-convex pattern with pressure (holding pressure) from the inside, orientation distortion, cooling distortion, etc. occur, and the weld mark, Cold resin marks, flow marks, etc. are generated.
 以上説明の金型100では、薄板本体20の背面20bに低熱伝導率部材30が配設されているが、この低熱伝導率部材30はフィルムが用いられている。ここで、このシミュレーションでは、低熱伝導率部材30としてポリエチレンテレフタレートフィルムが用いられているが、充填される樹脂温度が280℃という高温である場合、工業的には耐熱性を考慮してポリイミドフィルムが実用的である。特許文献1では、ポリイミドフィルムを耐熱性部材30として薄板本体20の背面に接着した場合の具体的な実験例が説明されている。 In the mold 100 described above, the low thermal conductivity member 30 is disposed on the back surface 20b of the thin plate body 20, and the low thermal conductivity member 30 is a film. Here, in this simulation, a polyethylene terephthalate film is used as the low thermal conductivity member 30, but when the resin temperature to be filled is as high as 280 ° C., the polyimide film is industrially considered in consideration of heat resistance. It is practical. Patent Document 1 describes a specific experimental example in which a polyimide film is bonded to the back surface of the thin plate body 20 as a heat resistant member 30.
 以下、実施例によって本発明を詳細に説明する。
(実施例1)
 薄板本体として、熱伝導率が79.2kcal/m・hr・℃であり、厚さが0.3mmであり、大きさが250mm×220mmであるニッケル製の薄板を使用した。薄板本体のキャビティ側表面には、ピッチpが50μmであり、高さhが25μmである二等辺プリズム状の凹凸パターンが配列されている。
Hereinafter, the present invention will be described in detail by way of examples.
Example 1
As the thin plate main body, a nickel thin plate having a thermal conductivity of 79.2 kcal / m · hr · ° C., a thickness of 0.3 mm, and a size of 250 mm × 220 mm was used. On the cavity side surface of the thin plate main body, an isosceles prism-shaped uneven pattern having a pitch p of 50 μm and a height h of 25 μm is arranged.
 薄板本体の背面(キャビティとは反対の面)側には、熱伝導率が0.3kcal/m・hr・℃であり、厚さが0.125mmであるテサ社製の熱活性フィルム(商品名tesaHAF8402)を介して熱伝導率が0.3kcal/m・hr・℃であり、厚さが0.125mmであるポリイミドフィルム(低熱伝導率部材)を接着により一体化させた。 On the back surface (the surface opposite to the cavity) of the thin plate main body, a thermal activation film (trade name) manufactured by Tesa with a thermal conductivity of 0.3 kcal / m · hr · ° C. and a thickness of 0.125 mm A polyimide film (low thermal conductivity member) having a thermal conductivity of 0.3 kcal / m · hr · ° C. and a thickness of 0.125 mm was integrated by adhesion via tesaHAF8402).
 接着一体化は、第1工程(ラミネート工程)と、第2工程(硬化工程)との2段階で行った。ラミネート工程はラミネートロールを用い、110℃に加熱し、圧力0.5MPa、送り速度0.4m/分で行った。この条件では、熱活性フィルムは溶融状態にされ被接着物の表面の凹凸に十分に浸透できる条件である。 Bonding integration was performed in two stages, a first process (laminating process) and a second process (curing process). The laminating process was carried out using a laminating roll, heated to 110 ° C., at a pressure of 0.5 MPa, and a feed rate of 0.4 m / min. Under these conditions, the thermally active film is in a molten state and can sufficiently penetrate into the irregularities on the surface of the adherend.
 ついで、硬化工程は、圧力0.2MPaの圧力下で、130℃、3時間保持することにより熱活性フィルムを十分な耐久性とポリイミドフィルムと薄板本体とを一体化させる接着剤層とすることができた。 Next, the curing step is to maintain the heat-active film at 130 ° C. for 3 hours under a pressure of 0.2 MPa to form an adhesive layer that integrates the polyimide film and the thin plate main body with sufficient durability. did it.
 一方、この薄板部材の厚みに相当する深さで金型のパーティング面より彫り込みを行い、この凹部に得られた薄板部材を装着して、ポリメチルメタクリレート樹脂を使用して射出成形法で導光板を成形した。 On the other hand, engraving from the parting surface of the mold at a depth corresponding to the thickness of the thin plate member, mounting the thin plate member obtained in this recess, and using polymethylmethacrylate resin to guide by the injection molding method. A light plate was molded.
 このときのシリンダ温度は270℃であり、成形サイクルは、70秒であった。プリズム形状が転写される内圧(保圧)は、38MPa付近で、得られたプリズムの高さは、刻印された凹凸の深さと同一である25μmであり、いずれも良好な凹凸模様を成形されていることが確認できた。 The cylinder temperature at this time was 270 ° C., and the molding cycle was 70 seconds. The internal pressure (holding pressure) at which the prism shape is transferred is around 38 MPa, and the height of the obtained prism is 25 μm, which is the same as the depth of the engraved irregularities, and each has a good irregular pattern. It was confirmed that
 繰り返しの射出成形においても、樹脂からの受熱の多い射出部位での熱劣化による剥がれや、硬度不足等に起因するスタンパのズレや厚み変化は全く認められなかった。これにより、5000ショット~20000ショットの繰り返しの使用が可能であった。
(実施例2)
 背面が金型の背板まで貫通した入れ子金型を用いた。この入れ子金型のキャビティ面に凹所を形成し、この凹所に実施例1で得られた熱活性フィルムを配設した。
Even in repeated injection molding, there was no separation of the stamper due to thermal deterioration at the injection site where much heat was received from the resin, or no stamper displacement or thickness change due to insufficient hardness. Thereby, it was possible to repeatedly use 5000 to 20000 shots.
(Example 2)
A nested mold was used in which the back surface penetrated to the back plate of the mold. A recess was formed in the cavity surface of the insert mold, and the thermally active film obtained in Example 1 was disposed in the recess.
 ついで、この熱活性フィルムの表面に実施例1で得られた薄板部材の背面を実施例1と同一条件で熱圧着した。これにより、パーティング面が型面20aと同一平面となるように入れ子のキャビティ面に薄板部材を埋設させて接着させた。 Next, the back surface of the thin plate member obtained in Example 1 was thermocompression bonded to the surface of this thermally activated film under the same conditions as in Example 1. As a result, the thin plate member was embedded in the cavity surface of the nest so that the parting surface was flush with the mold surface 20a.
 実施例1と同一条件により射出成形を行ったところ、実施例1と同様に良好な射出成形品を得ることができた。 When injection molding was performed under the same conditions as in Example 1, a good injection molded product could be obtained as in Example 1.
 これにより、入れ子金型のキャビティ面を本発明の一実施例に係る金型部材とすることにより、同様な良好な成形品を得ることができることが確認された。
(実施例3)
 実施例1で得られた薄板部材の背面に、実施例1で用いたと同一の熱活性フィルムを介して補強材としての厚み2.0mmのステンレス鋼材(SUS304)を接着させた。接着条件は、実施例1と同一条件である。
Thereby, it was confirmed that the same favorable molded article can be obtained by making the cavity surface of a nested mold into the mold member which concerns on one Example of this invention.
(Example 3)
A stainless steel material (SUS304) having a thickness of 2.0 mm as a reinforcing material was adhered to the back surface of the thin plate member obtained in Example 1 through the same thermally active film as used in Example 1. The bonding conditions are the same as in Example 1.
 このような薄板部材は、裏面に補強材を備えており、かつ、厚みも薄いので、薄板部材そのものが大型となった場合にも、金型への装着が行え、操作性の良好なものであった。 Since such a thin plate member has a reinforcing material on the back surface and is thin, even when the thin plate member itself becomes large, it can be mounted on a mold and has good operability. there were.
 実施例1と同一条件により射出成形を行ったところ、実施例1と同様に良好な射出成形品を得ることができた。
(実施例4)
 薄板本体として、熱伝導率が79.2kcal/m・hr・℃であり、厚さが0.3mmであり、大きさが335mm×230mmであるニッケル製の薄板を使用した。薄板本体のキャビティ側表面には、ピッチpが24μmであり、高さhが8.5μmである二等辺プリズム状の凹凸パターンが配列されている。
When injection molding was performed under the same conditions as in Example 1, a good injection molded product could be obtained as in Example 1.
Example 4
As the thin plate main body, a nickel thin plate having a thermal conductivity of 79.2 kcal / m · hr · ° C., a thickness of 0.3 mm, and a size of 335 mm × 230 mm was used. On the cavity side surface of the thin plate main body, an isosceles prism-shaped uneven pattern having a pitch p of 24 μm and a height h of 8.5 μm is arranged.
 薄板本体の背面(キャビティとは反対の面)側には、熱伝導率が0.3kcal/m・hr・℃であり、厚さが0.015mmである巴川製紙所社製の熱活性フィルム(商品名SJ41)を介して熱伝導率が0.3kcal/m・hr・℃であり、厚さが0.125mmであるポリイミドフィルム(低熱伝導率部材)を接着により一体化させた。 On the back surface (the surface opposite to the cavity) of the thin plate main body is a thermally active film (manufactured by Yodogawa Paper Mill Co., Ltd.) having a thermal conductivity of 0.3 kcal / m · hr · ° C. and a thickness of 0.015 mm. A polyimide film (low thermal conductivity member) having a thermal conductivity of 0.3 kcal / m · hr · ° C. and a thickness of 0.125 mm was integrated by bonding via a trade name SJ41).
 接着一体化は、第1工程(ラミネート工程)と、第2工程(硬化工程)との2段階で行った。ラミネート工程はラミネートロールを用い、110℃に加熱し、圧力0.5MPa、送り速度0.4m/分で行った。この条件では、熱活性フィルムは溶融状態にされ被接着物の表面の凹凸に十分に浸透できる条件である。 Bonding integration was performed in two stages, a first process (laminating process) and a second process (curing process). The laminating process was carried out using a laminating roll, heated to 110 ° C., at a pressure of 0.5 MPa, and a feed rate of 0.4 m / min. Under these conditions, the thermally active film is in a molten state and can sufficiently penetrate into the irregularities on the surface of the adherend.
 ついで、硬化工程は、150℃、3時間保持することにより熱活性フィルムを十分な耐久性とポリイミドフィルムと薄板本体とを一体化させる接着剤層とすることができた。 Next, in the curing step, the heat-activated film was maintained at 150 ° C. for 3 hours, whereby the thermoactive film could be made into an adhesive layer that integrated the polyimide film and the thin plate main body with sufficient durability.
 一方、この薄板部材の厚みに相当する深さで金型のパーティング面より彫り込みを行い、この凹部に得られた薄板部材を装着して、ポリメチルメタクリレート樹脂を使用して射出成形法で導光板を成形した。 On the other hand, engraving from the parting surface of the mold at a depth corresponding to the thickness of the thin plate member, mounting the thin plate member obtained in this recess, and using polymethylmethacrylate resin to guide by the injection molding method. A light plate was molded.
 このときのシリンダ温度は295℃であり、成形サイクルは、40秒であった。プリズム形状が転写される内圧(保圧)は、200MPa付近で、得られたプリズムの高さは、刻印された凹凸の深さと同一である8.5μmであり、いずれも良好な凹凸模様を成形されていることが確認できた。 The cylinder temperature at this time was 295 ° C., and the molding cycle was 40 seconds. The internal pressure (holding pressure) at which the prism shape is transferred is around 200 MPa, and the height of the obtained prism is 8.5 μm, which is the same as the depth of the engraved irregularities. It has been confirmed that.
 繰り返しの射出成形においても、樹脂からの受熱の多い射出部位での熱劣化による剥がれや、硬度不足等に起因するスタンパのズレや厚み変化は全く認められなかった。これにより、10000ショット~50000ショットの繰り返しの使用が可能であった。
(実施例5)
 背面が金型の背板まで貫通した入れ子金型を用いた。この入れ子金型のキャビティ面に凹所を形成し、この凹所に実施例4で得られた熱活性フィルムを配設した。
Even in repeated injection molding, there was no separation of the stamper due to thermal deterioration at the injection site where much heat was received from the resin, or no stamper displacement or thickness change due to insufficient hardness. As a result, repeated use of 10,000 to 50,000 shots was possible.
(Example 5)
A nested mold was used in which the back surface penetrated to the back plate of the mold. A recess was formed in the cavity surface of the insert mold, and the thermally active film obtained in Example 4 was disposed in the recess.
 ついで、この熱活性フィルムの表面に実施例4で得られた薄板部材の背面を実施例4と同一条件で熱圧着した。これにより、パーティング面が型面20aと同一平面となるように入れ子のキャビティ面に薄板部材を埋設させて接着させた。 Next, the back surface of the thin plate member obtained in Example 4 was thermocompression bonded to the surface of this thermally activated film under the same conditions as in Example 4. As a result, the thin plate member was embedded in the cavity surface of the nest so that the parting surface was flush with the mold surface 20a.
 実施例4と同一条件により射出成形を行ったところ、実施例4と同様に良好な射出成形品を得ることができた。 When injection molding was performed under the same conditions as in Example 4, a good injection molded product could be obtained as in Example 4.
 これにより、入れ子金型のキャビティ面を本発明の一実施例に係る金型部材とすることにより、同様な良好な成形品を得ることができることが確認された。
(実施例6)
 実施例4で得られた薄板部材の背面に、実施例4で用いたと同一の熱活性フィルムを介して補強材としての厚み0.8mmのステンレス鋼材(SUS304)を接着させた。接着条件は、実施例4と同一条件である。
Thereby, it was confirmed that the same favorable molded article can be obtained by making the cavity surface of a nested mold into the mold member which concerns on one Example of this invention.
(Example 6)
A stainless steel material (SUS304) having a thickness of 0.8 mm as a reinforcing material was adhered to the back surface of the thin plate member obtained in Example 4 through the same thermally active film as used in Example 4. The bonding conditions are the same as those in Example 4.
 このような薄板部材は、裏面に補強材を備えており、かつ、厚みも薄いので、薄板部材そのものが大型となった場合にも、金型への装着が行え、操作性の良好なものであった。 Since such a thin plate member has a reinforcing material on the back surface and is thin, even when the thin plate member itself becomes large, it can be mounted on a mold and has good operability. there were.
 実施例4と同一条件により射出成形を行ったところ、実施例4と同様に良好な射出成形品を得ることができた。
(実施例7)
 実施例4で得られた薄板部材の背面に、実施例4で用いたものと同一の熱活性フィルムを介して補強材としての厚み0.8mmのステンレス鋼材(SUS304)を接着させたのち、さらに実施例4で用いたものと同一の熱活性フィルムを介して実施例4で用いたものと同一の厚み、サイズのミラー状のニッケル薄板を接着させた。接着条件は、実施例4と同一条件である。
When injection molding was performed under the same conditions as in Example 4, a good injection molded product could be obtained as in Example 4.
(Example 7)
After bonding a 0.8 mm thick stainless steel material (SUS304) as a reinforcing material to the back surface of the thin plate member obtained in Example 4 through the same thermally active film as used in Example 4, A mirror-like nickel thin plate having the same thickness and size as those used in Example 4 was bonded via the same thermally active film as used in Example 4. The bonding conditions are the same as those in Example 4.
 このような薄板部材は、表裏の薄板に同一のニッケル板を用いることにより、接着させた後の板の反りが低減され、金型への装着性が良好なものであった。 Such a thin plate member has the same nickel plate as the front and back thin plates, so that the warpage of the plate after bonding is reduced and the mounting property to the mold is good.
 実施例4と同一条件により射出成形を行ったところ、実施例4と同様に良好な射出成形品を得ることができた。
(実施例8)
 実施例4で用いたものと同一のニッケル薄板に、実施例4で用いたものと同一の熱活性フィルムを介して、実施例4で使用したものと同一の低熱伝導率部材を接着し、その後、裏面を電鋳することにより、ニッケル薄板を一体化した。
 このような作製方法は、例えば特開2001-071354などにより知られているが、特開2001-071354の作製方法による、低熱伝導率部材の裏面に直接ニッケルをメッキする手法では、ニッケルと低熱伝導率部材との密着性が悪く、ニッケル層を形成できないことが分かった。実施例9においては、低熱伝導率層とメッキによって形成されるニッケル層との間に実施例4で用いたものと同一の熱活性フィルムを介することにより、密着性を上げている点が特開2001-071354と異なる。
When injection molding was performed under the same conditions as in Example 4, a good injection molded product could be obtained as in Example 4.
(Example 8)
Adhering the same low thermal conductivity member as used in Example 4 to the same nickel thin plate as used in Example 4 via the same thermally active film as used in Example 4, and then The nickel thin plate was integrated by electroforming the back surface.
Such a manufacturing method is known, for example, from Japanese Patent Laid-Open No. 2001-071354. However, in the method of directly plating nickel on the back surface of the low thermal conductivity member by the manufacturing method of Japanese Patent Laid-Open No. 2001-071354, nickel and low thermal conductivity are used. It was found that the adhesion with the rate member was poor and the nickel layer could not be formed. In Example 9, the adhesiveness is improved by using the same thermally active film as used in Example 4 between the low thermal conductivity layer and the nickel layer formed by plating. Different from 2001-071354.
 このような薄板部材は、低熱伝導率部材を中心として、表裏の構成が同一となるため、熱膨張率差から生じる板の反りを低減することができ、金型への装着性は良好であった。 Since such a thin plate member has the same front and back configurations with a low thermal conductivity member as the center, it is possible to reduce the warpage of the plate caused by the difference in thermal expansion coefficient, and the mounting property to the mold is good. It was.
 実施例4と同一条件により射出成形を行ったところ、実施例4と同様に良好な射出成形品を得ることができた。 When injection molding was performed under the same conditions as in Example 4, a good injection molded product could be obtained as in Example 4.
 実施例4から実施例6で使用した巴川製紙所製の熱活性フィルム(商品名SJ41)は高温下においてガスの発生が少なく、例えば同様の熱活性フィルムであるTESA社製(tesa HAF8402)と比較して、さらに射出成形時の繰り返し使用時の劣化が少なく、良好な結果が得られた。
(対照例1)
 実施例1で用いたテサ社製の熱活性フィルムに代えて日東電工の粘着フィルム(商品名:MC2030)及び(商品名:5919P)を使用してニッケル製の薄板とポリイミドフィルムを接着させた。
The heat activated film (trade name SJ41) manufactured by Yodogawa Mill used in Examples 4 to 6 generates less gas at high temperatures, and is compared with, for example, TESA (tesa HAF8402) which is a similar heat active film. Furthermore, there was little deterioration during repeated use during injection molding, and good results were obtained.
(Control 1)
Instead of the thermally active film made by Tessa used in Example 1, Nitto Denko's adhesive film (trade name: MC2030) and (trade name: 5919P) were used to bond the nickel thin plate and the polyimide film.
 実施例1と同一条件で成形を行ったところ、高温射出成形される部位では、熱劣化による粘着剤フィルムの剥がれが発生した。また、成形工程では、スタンパがズレたり汚れの発生が確認された。また、得られた成形品の厚み方向の変動が大きかった。 When molding was performed under the same conditions as in Example 1, peeling of the pressure-sensitive adhesive film due to thermal deterioration occurred at the site subjected to high-temperature injection molding. Further, in the molding process, it was confirmed that the stamper was misaligned or soiled. Moreover, the variation in the thickness direction of the obtained molded product was large.
 これらの原因は、粘着剤フィルムの硬度が不足やせん断力不足と推定され、これにより、粘着フィルムによる接着では、薄板本体と断熱フィルムとを接着しても、連続成形を続行することは不適切であると思われた。
(対照例2)
 薄板本体の背面にポリアミド酸溶液をスピン塗布する例を試みたが、この手法によれば、本発明に必要な低熱伝導率部材としての必要な厚みを確保することが困難であった。
These causes are presumed that the pressure-sensitive adhesive film is insufficient in hardness and shear force, so that it is inappropriate to continue continuous molding even if the thin plate body and the heat insulating film are bonded with the adhesive film. It seemed to be.
(Control 2)
Although an example in which the polyamic acid solution is spin-coated on the back surface of the thin plate main body was tried, according to this method, it was difficult to secure a necessary thickness as a low thermal conductivity member necessary for the present invention.
産業上の利用分野Industrial application fields
 本発明に従えば、大きな面積を有する導光板、拡散板、フレネルレンズシート、レンチキュラーレンズシートなどのレンズシート等を製造することもできる。すなわち、従来、フレネルレンズシートやレンチキュラーシートなどの大型のレンズシートは、樹脂板に加熱された平板状のレンズ型を当接し、加圧することによってレンズ型表面の凹凸のレンズ面を樹脂型に転写させる方法や、レンズ型に紫外線硬化樹脂を塗布し、この上に樹脂板を載置して紫外線を照射し、紫外線硬化樹脂によりレンズを形成する技術が提案されている。 According to the present invention, a lens sheet such as a light guide plate, a diffusion plate, a Fresnel lens sheet, and a lenticular lens sheet having a large area can be manufactured. That is, conventionally, a large lens sheet such as a Fresnel lens sheet or a lenticular sheet contacts a heated plate lens mold with a resin plate and pressurizes it to transfer the uneven lens surface of the lens mold surface to the resin mold. And a technique of applying a UV curable resin to a lens mold, placing a resin plate on the lens mold and irradiating with UV light, and forming a lens with the UV curable resin.
 しかしながら、転写方法には成形のサイクルが長く、生産性が高くないという課題が存在した。 However, the transfer method has a problem that the molding cycle is long and the productivity is not high.
 本発明にしたがえば、比較的サイズが大きい光学制御部品でも射出成形により形成できるので、生産性が飛躍的に向上できると想定される。 According to the present invention, it is assumed that even optical control parts having a relatively large size can be formed by injection molding, so that productivity can be dramatically improved.
 本発明にしたがえば、交換可能な金型部材であって、長期間の使用に際しても、安定に生産可能な金型部材を提供することができる。 According to the present invention, it is possible to provide a mold member that can be exchanged and can be stably produced even when used for a long time.
 また、本発明にしたがえば、光ディスク基板よりも大きなサイズで光を制御できる樹脂成形品を生産性よく製造することができる。 Further, according to the present invention, a resin molded product capable of controlling light in a size larger than that of the optical disk substrate can be manufactured with high productivity.
(優先権の主張)
 本願は、2007年12月27日に日本国特許庁に出願された特願2007-336514号に基づく優先権を主張し、その内容をここに援用する。
                  
(Claiming priority)
This application claims priority based on Japanese Patent Application No. 2007-336514 filed with the Japan Patent Office on December 27, 2007, the contents of which are incorporated herein by reference.

Claims (22)

  1.  金型を用いた射出成形法による光制御部材の製造に用いられ、該金型に装脱着可能な金型部材であって、
     型面を備え、0.2mm以上、0.6mm以下の厚みを有する金属製の薄板本体と、
     前記型面に対向する面に前記薄板本体と一体化されて配設された0.1mm以上、0.5mm以下の厚みを有する低熱伝導率部材と、
     前記低熱伝導率部材の背面に、一体化されて設けられた補強剤と、
     を備える金型部材。
    A mold member that is used in the manufacture of a light control member by an injection molding method using a mold, and can be attached to and detached from the mold,
    A metal thin plate body having a mold surface and having a thickness of 0.2 mm or more and 0.6 mm or less;
    A low thermal conductivity member having a thickness of 0.1 mm or more and 0.5 mm or less, which is disposed integrally with the thin plate body on a surface facing the mold surface;
    A reinforcing agent provided integrally on the back surface of the low thermal conductivity member;
    A mold member comprising:
  2.  前記光制御部材は、加熱流動化させた樹脂材料を金型内のキャビティーに射出し、その金型内で高圧を維持しつつ冷却固化又は硬化させ、次いで金型を開いて薄板状に成形された樹脂成形品を取り出す射出成形法により製造され、
     前記光制御部材は、薄板状の相対向する大きな2面の少なくとも一面が光を射出する射出面として利用されるものであって、かつ、
     前記金型部材の型面は、キャビティの一面を形成することを特徴とする、請求項1に記載の金型部材。 
    The light control member injects the heat-fluidized resin material into a cavity in the mold, and solidifies by cooling or hardening while maintaining a high pressure in the mold, and then opens the mold to form a thin plate. Manufactured by the injection molding method to take out the resin molded product,
    The light control member is used as an emission surface on which at least one of two opposing large plate-like surfaces emits light, and
    The mold member according to claim 1, wherein the mold surface of the mold member forms one surface of a cavity.
  3.  前記薄板本体と前記低熱伝導率部材とは熱硬化型の耐熱性接着剤により一体化されていることを特徴とする請求項1記載の金型部材。 2. The mold member according to claim 1, wherein the thin plate main body and the low thermal conductivity member are integrated by a thermosetting heat-resistant adhesive.
  4.  前記熱硬化型の耐熱性接着剤が、硬化副生成物を生成しないものであることを特徴とする請求項2に記載の金型部材。 3. The mold member according to claim 2, wherein the thermosetting heat-resistant adhesive does not generate a curing by-product.
  5.  前記低熱伝導率部材は、厚み10μm以上、200μm以下の範囲内の低熱伝導性の第1の耐熱性接着剤層と、厚み10μm以上、200μm以下の範囲内の低熱伝導層と、厚み10μm以上、200μm以下の範囲内の低熱伝導性の第2の耐熱性接着剤層を備えることを特徴とする請求項1記載の金型部材。 The low thermal conductivity member includes a first heat-resistant adhesive layer having a low thermal conductivity within a range of 10 μm or more and 200 μm or less, a low thermal conductive layer within a range of 10 μm or more and 200 μm or less, and a thickness of 10 μm or more. The mold member according to claim 1, further comprising a second heat-resistant adhesive layer having a low thermal conductivity within a range of 200 µm or less.
  6.  前記第1および/または第2の耐熱性接着剤が、硬化副生成物を生成しないものであることを特徴とする請求項5に記載の金型部材。 The mold member according to claim 5, wherein the first and / or second heat-resistant adhesive does not generate a cured by-product.
  7.  前記薄板本体と、前記補強材とは互いの線膨張率の差が±6(×10-6/℃)以下である異なる材料により構成されていることを特徴とする請求項1記載の金型部材。 2. The mold according to claim 1, wherein the thin plate main body and the reinforcing material are made of different materials having a difference in linear expansion coefficient of ± 6 (× 10 −6 / ° C.) or less. Element.
  8.  前記薄板本体を形成する材料は、ニッケル又はクロムを主体とし、前記補強材を形成する材料は、ステンレス鋼であることを特徴とする請求項1記載の金型部材。 2. The mold member according to claim 1, wherein the material forming the thin plate main body is mainly nickel or chromium, and the material forming the reinforcing material is stainless steel.
  9.  前記薄板本体を形成する材料は、ニッケル又はクロムを主体とし、前記補強材を形成する材料は、ステンレス鋼と前記薄板本体を形成する材料との積層体であることを特徴とする請求項5に記載の金型部材。 6. The material for forming the thin plate main body is mainly nickel or chromium, and the material for forming the reinforcing material is a laminate of stainless steel and a material for forming the thin plate main body. The mold member as described.
  10.  前記薄板本体を形成する材料は、ニッケルを主体とし、前記補強材を形成する材料は、電鋳で作られたニッケルであることを特徴とする請求項5に記載の金型部材。 6. The mold member according to claim 5, wherein the material forming the thin plate main body is mainly nickel, and the material forming the reinforcing material is nickel made by electroforming.
  11.  前記第1の耐熱性接着剤層、前記低熱伝導層及び前記第2の耐熱性接着剤層には、ともにフィルム状に形成された層が用いられることを特徴とする請求項5記載の金型部材。 6. The mold according to claim 5, wherein each of the first heat-resistant adhesive layer, the low thermal conductive layer, and the second heat-resistant adhesive layer is a film-shaped layer. Element.
  12.  前記補強材の厚みは0.5mm以上であることを特徴とする請求項1記載の金型部材。 The mold member according to claim 1, wherein the thickness of the reinforcing material is 0.5 mm or more.
  13.  前記補強材の厚みは0.5mm以上、5mm以下の範囲内であることを特徴とする請求項1記載の金型部材。 The mold member according to claim 1, wherein the thickness of the reinforcing material is in a range of 0.5 mm or more and 5 mm or less.
  14.  射出成形法による光制御部材の製造に用いられ、金型のキャビティ面として装脱着が可能な金型部材の製造方法であって、
     型面を備えた厚み0.2mm以上、0.6mm以下の範囲内の金属製の薄板本体を用意し、
     前記型面に対向する面である前記薄板本体の背面に厚み0.1mm以上、0.5mm以下の範囲内の低熱伝導率部材配設し、
     前記薄板本体と前記低熱伝導率部材との界面とは熱硬化型の耐熱性接着剤としてフィルム状の接着剤を用いて一体化し、
     補強材を前記低熱伝導率部材の背面に、前記低熱伝導部率部材に一体化して配設し、
     前記低熱伝導率部材は、厚み10μm以上、200μm以下の範囲内の低熱伝導性の第1の耐熱性接着剤層と、厚み10μm以上、200μm以下の範囲内の低熱伝導層と、厚み10μm以上、200μm以下の範囲内の低熱伝導性の第2の耐熱性接着剤層を備え、
     前記薄板本体を形成する材料は、ニッケルを主体とし、前記補強材を形成する材料は、電鋳で作られたニッケルであることを特徴とする金型部材の製造方法。
    A method of manufacturing a mold member that is used for manufacturing a light control member by an injection molding method and that can be attached and detached as a cavity surface of a mold,
    Prepare a sheet metal body with a thickness of 0.2 mm or more and 0.6 mm or less with a mold surface,
    A low thermal conductivity member having a thickness in the range of 0.1 mm or more and 0.5 mm or less is disposed on the back surface of the thin plate main body, which is a surface facing the mold surface,
    The interface between the thin plate main body and the low thermal conductivity member is integrated using a film-like adhesive as a thermosetting heat-resistant adhesive,
    Reinforcing material is disposed on the back surface of the low thermal conductivity member, integrated with the low thermal conductivity member,
    The low thermal conductivity member includes a first heat-resistant adhesive layer having a low thermal conductivity within a range of 10 μm or more and 200 μm or less, a low thermal conductive layer within a range of 10 μm or more and 200 μm or less, and a thickness of 10 μm or more. A second heat-resistant adhesive layer having a low thermal conductivity within a range of 200 μm or less,
    The material for forming the thin plate main body is mainly made of nickel, and the material for forming the reinforcing material is nickel produced by electroforming.
  15.  射出成形法による光制御部材の製造に用いられ、金型のキャビティ面として装脱着が可能な金型部材の製造方法であって、
     型面を備えた厚み0.3mm以上、0.6mm以下の範囲内の金属製の薄板本体を用意し、
     前記型面に対向する面である前記薄板本体の背面に厚み0.1mm以上、0.3mm以下の範囲内の低熱伝導率部材配設し、
     前記薄板本体と前記低熱伝導率部材との界面とは熱硬化型の耐熱性接着剤としてフィルム状の接着剤を用いて一体化し、
     該一体化工程は、前記薄板本体と、前記低熱伝導層としての耐熱性フィルムをラミネートさせる第1工程と、第1工程よりも高い温度で熱硬化させる第2工程との少なくとも2工程を経て薄板本体と低熱伝導性フィルムとを一体化させる工程を含むことを特徴とする金型部材の製造方法。
    A method of manufacturing a mold member that is used for manufacturing a light control member by an injection molding method and that can be attached and detached as a cavity surface of a mold,
    Prepare a sheet metal body with a thickness of 0.3 mm or more and 0.6 mm or less with a mold surface,
    A low thermal conductivity member having a thickness in the range of 0.1 mm or more and 0.3 mm or less is disposed on the back surface of the thin plate main body, which is a surface facing the mold surface,
    The interface between the thin plate main body and the low thermal conductivity member is integrated using a film-like adhesive as a thermosetting heat-resistant adhesive,
    The integration process includes at least two steps of laminating the thin plate body, a first step of laminating the heat-resistant film as the low thermal conductive layer, and a second step of thermosetting at a temperature higher than the first step. The manufacturing method of the metal mold | die member characterized by including the process of integrating a main body and a low heat conductive film.
  16.  前記金型部材は、加熱流動化させた樹脂材料を金型内のキャビティーに射出し、その金型内で高圧を維持しつつ冷却固化又は硬化させ、次いで金型を開いて薄板状に成形された樹脂成形品を取り出す射出成形法による光制御部材の製造に用いられ、金型のキャビティ面として装脱着が可能であり、
     前記光制御部材は、薄板状の相対向する大きな2面の少なくとも一面が光を射出する射出面として利用されるものであることを特徴とする、請求項15に記載される金型部材の製造方法。
    The mold member injects the heat-fluidized resin material into a cavity in the mold, and solidifies by cooling or hardening while maintaining the high pressure in the mold, and then opens the mold and forms into a thin plate shape. Used for the production of light control members by injection molding method to take out the resin molded product, can be attached and detached as the cavity surface of the mold,
    16. The mold member manufacturing method according to claim 15, wherein the light control member is used as an emission surface from which at least one of two opposing large plate-like surfaces emits light. Method.
  17.  転写開始温度以上の温度を有する熱可塑性樹脂を、転写開始温度以下の温度に保持された金型で構成されたキャビティ部に導入し、
     該金型で冷却されて転写開始温度以下の温度に下がった金型の表面近傍の熱可塑性樹脂が、キャビティ部に熱可塑性樹脂が充填された後に、再度、転写開始温度を超える温度に上昇するように、キャビティ部側の表面部分の熱容量を設定して光制御部材を成形する方法であって、
     前記光制御部材は、薄板状の相対向する大きな2面の少なくとも一面が光を射出する射出面として利用されるものであって、かつ、
     前記キャビティの一面を形成する型面を備えた厚み0.3mm以上、0.6mm以下の範囲内の金属製の薄板本体と、前記型面に対向する面である前記薄板本体の背面に配設された厚み0.1mm以上、0.3mm以下の範囲内の低熱伝導率部材とが一体化された金型部材の複数個を装着、脱着を行うことにより交換しつつ、射出成形を行うことを特徴とする光制御部材の成形方法。
    A thermoplastic resin having a temperature equal to or higher than the transfer start temperature is introduced into a cavity formed of a mold held at a temperature equal to or lower than the transfer start temperature.
    The thermoplastic resin in the vicinity of the mold surface that has been cooled by the mold and lowered to a temperature lower than the transfer start temperature rises again to a temperature that exceeds the transfer start temperature after the cavity portion is filled with the thermoplastic resin. As described above, a method of molding the light control member by setting the heat capacity of the surface portion on the cavity side,
    The light control member is used as an emission surface on which at least one of two opposing large plate-like surfaces emits light, and
    A metal thin plate body having a mold surface forming one surface of the cavity and having a thickness of 0.3 mm or more and 0.6 mm or less, and a back surface of the thin plate body that is a surface facing the mold surface The injection molding is performed while the plurality of mold members integrated with the low thermal conductivity member within the range of 0.1 mm or more and 0.3 mm or less are mounted and replaced by desorption. A method for forming a light control member.
  18.  前記光制御部材が導光板である請求項17記載の光制御部材の成形方法。 The method for forming a light control member according to claim 17, wherein the light control member is a light guide plate.
  19.  前記光制御部材がレンズシートである請求項17記載の光制御部材の成形方法。 The method for molding a light control member according to claim 17, wherein the light control member is a lens sheet.
  20.  前記光制御部材が光拡散板である請求項17記載の光制御部材の成形方法。 The method for forming a light control member according to claim 17, wherein the light control member is a light diffusion plate.
  21.  前記光制御部材は、射出面に凹凸パターンが形成され、前記型面には、前記光制御部材の射出面とは逆の凹凸パターンが形成されていることを特徴とする請求項17記載の光制御部材の成形方法。 18. The light according to claim 17, wherein the light control member has a concavo-convex pattern formed on an emission surface, and a concavo-convex pattern opposite to the emission surface of the light control member is formed on the mold surface. A method for forming the control member.
  22.  金型を用いた射出成形法による光制御部材の製造に用いられ、該金型に装脱着可能である金型部材であって、
     型面を備え、0.3mm以上、0.6mm以下の範囲内の厚みを有する金属製の薄板本体と、
     前記型面に対向する面に前記薄板本体と一体化して配設された0.1mm以上、0.3mm以下の範囲内の厚みを有する低熱伝導率部材と、を備える金型部材。
    A mold member that is used in the manufacture of a light control member by an injection molding method using a mold and is detachable from the mold,
    A metal thin plate body having a mold surface and having a thickness in the range of 0.3 mm or more and 0.6 mm or less;
    A mold member comprising: a low thermal conductivity member having a thickness within a range of 0.1 mm or more and 0.3 mm or less and disposed integrally with the thin plate main body on a surface facing the mold surface.
PCT/JP2008/073687 2007-12-27 2008-12-26 Die member, method for manufacturing the die member and method for forming light controlling member by using the die member WO2009084615A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200880123006.0A CN101909847B (en) 2007-12-27 2008-12-26 Die member, method for manufacturing the die member and method for forming light controlling member by using the die member
KR1020127026037A KR101473680B1 (en) 2007-12-27 2008-12-26 Die member, method for manufacturing the die member and method for forming light controlling member by using the die member
JP2009548078A JP5610770B2 (en) 2007-12-27 2008-12-26 Mold member and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007336514 2007-12-27
JP2007-336514 2007-12-27

Publications (1)

Publication Number Publication Date
WO2009084615A1 true WO2009084615A1 (en) 2009-07-09

Family

ID=40824328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073687 WO2009084615A1 (en) 2007-12-27 2008-12-26 Die member, method for manufacturing the die member and method for forming light controlling member by using the die member

Country Status (5)

Country Link
JP (1) JP5610770B2 (en)
KR (2) KR101261258B1 (en)
CN (1) CN101909847B (en)
TW (1) TWI457219B (en)
WO (1) WO2009084615A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102729684A (en) * 2011-04-11 2012-10-17 三星电子株式会社 Stamp and method of manufacturing the same
WO2013146985A1 (en) * 2012-03-30 2013-10-03 コニカミノルタアドバンストレイヤー株式会社 Molding die and manufacturing method for same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3470202B1 (en) 2017-10-12 2021-08-18 Essilor International Injection molding with heat/cool cycle for making optical articles with a fresnel surface
CN114603884B (en) * 2022-02-25 2023-08-25 株洲时代新材料科技股份有限公司 Method for ensuring smooth die surface of lower die during manufacturing carriage composite roof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025647A (en) * 2002-06-26 2004-01-29 Seiko Epson Corp Insert, mold, and manufacturing method for them
JP3686251B2 (en) * 1997-03-31 2005-08-24 株式会社クラレ Molding method of resin molded product and mold used for the method
JP2007237445A (en) * 2006-03-06 2007-09-20 Mitsubishi Engineering Plastics Corp Injection molding method of optical part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3011904B2 (en) * 1997-06-10 2000-02-21 明久 井上 Method and apparatus for producing metallic glass
JP2005288874A (en) * 2004-03-31 2005-10-20 Mitsubishi Materials Corp Mold assembly of injection-molded product and molding method of injection-molded product
JPWO2006046638A1 (en) * 2004-10-28 2008-05-22 旭化成ケミカルズ株式会社 Light guide plate and manufacturing method thereof
WO2007077737A1 (en) * 2005-12-28 2007-07-12 Zeon Corporation Mold part and molded flat-plate product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3686251B2 (en) * 1997-03-31 2005-08-24 株式会社クラレ Molding method of resin molded product and mold used for the method
JP2004025647A (en) * 2002-06-26 2004-01-29 Seiko Epson Corp Insert, mold, and manufacturing method for them
JP2007237445A (en) * 2006-03-06 2007-09-20 Mitsubishi Engineering Plastics Corp Injection molding method of optical part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102729684A (en) * 2011-04-11 2012-10-17 三星电子株式会社 Stamp and method of manufacturing the same
JP2012218435A (en) * 2011-04-11 2012-11-12 Samsung Electronics Co Ltd Stamper and method of manufacturing the same
WO2013146985A1 (en) * 2012-03-30 2013-10-03 コニカミノルタアドバンストレイヤー株式会社 Molding die and manufacturing method for same

Also Published As

Publication number Publication date
KR101473680B1 (en) 2014-12-18
KR20100096190A (en) 2010-09-01
CN101909847B (en) 2014-08-13
TWI457219B (en) 2014-10-21
JPWO2009084615A1 (en) 2011-05-19
KR20120127539A (en) 2012-11-21
CN101909847A (en) 2010-12-08
KR101261258B1 (en) 2013-05-09
TW200936347A (en) 2009-09-01
JP5610770B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP6380102B2 (en) Method for producing thermoplastic film
JP5610770B2 (en) Mold member and manufacturing method thereof
JP5117901B2 (en) Imprint jig and imprint apparatus
KR20030090635A (en) Method of manufacturing micro emboss sheet and micro emboss sheet
US20110242851A1 (en) Double-sided light guide plate manufactured with patterned rollers
US20120051705A1 (en) Optical sheet with laminated double-sided light guide plate
KR20120135110A (en) Manufacturing method of light guide plate with protective film
TW200820853A (en) Manufacturing method of flexible substrate
US20120050875A1 (en) Optical sheet manufactured with micro-patterned carrier
US20110242849A1 (en) Thin double-sided light guide plate
US8616875B2 (en) Light guide plate stamp and method of manufacturing the same
US20110242850A1 (en) Double-sided light guide plate manufactured with micro-patterned carrier
US20120050874A1 (en) Optical sheet having printed double-sided light guide plate
JP5328040B2 (en) Laminated body having fine structure and method for producing the same
JP2009172794A (en) Method for producing resin sheet
KR100823142B1 (en) Apparatus for fabricationg optical sheet, method for fabricating optical sheet, and optical sheet fabricated using the same
WO2012165479A1 (en) Light guide plate equipped with protective film
JP2007181961A (en) Method and apparatus for producing molding
TW201038385A (en) Method and apparatus for manufacturing optical member having surface shape
JP4595000B2 (en) Manufacturing method of molded body
US20150362656A1 (en) Light Guiding Decorative Composite Sheet and Components Made Thereof
JP2010046882A (en) Method of manufacturing fine-shape transfer sheet
JP2001219435A (en) Method for manufacturing metal laminate foam
WO2012102273A1 (en) Resin-sheet manufacturing method and shaped roll
JP2017165092A (en) Laminate having projection and method for manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880123006.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08867929

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009548078

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107013659

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08867929

Country of ref document: EP

Kind code of ref document: A1