WO2012102273A1 - Resin-sheet manufacturing method and shaped roll - Google Patents

Resin-sheet manufacturing method and shaped roll Download PDF

Info

Publication number
WO2012102273A1
WO2012102273A1 PCT/JP2012/051453 JP2012051453W WO2012102273A1 WO 2012102273 A1 WO2012102273 A1 WO 2012102273A1 JP 2012051453 W JP2012051453 W JP 2012051453W WO 2012102273 A1 WO2012102273 A1 WO 2012102273A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
shape
roll
resin
sheet
Prior art date
Application number
PCT/JP2012/051453
Other languages
French (fr)
Japanese (ja)
Inventor
豊博 濱松
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012102273A1 publication Critical patent/WO2012102273A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/222Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent

Definitions

  • the present invention relates to a method for producing a resin sheet having a shape on the surface, and a shape roll having a transfer mold for imparting a shape to the surface of the resin sheet.
  • a method for producing a resin sheet having a shape on the surface an extruder is used to extrude the resin from a die in a heated and melted state, and a continuous resin sheet (continuous resin sheet) is produced and transferred.
  • a method of transferring the shape of a transfer mold onto the surface of a continuous resin sheet using a mold is known (for example, see Patent Document 1: Japanese Patent Application Laid-Open No. 2009-220555).
  • the continuous resin sheet is sandwiched and pressed between the first pressing roll and the second pressing roll that are separated in the thickness direction of the sheet, and the shape of the transfer mold formed on the surface of the second pressing roll is It is transferred to a continuous resin sheet.
  • a resin sheet having a shape on the surface has been required to have a shape with a large aspect ratio, which is a ratio of the height to the width of the unit shape.
  • the height of the shape transferred to the resin sheet is not always sufficient with respect to the depth of the transfer mold. Therefore, an improvement in transfer rate (H / D), which is a ratio of the maximum height H of the surface shape transferred to the resin sheet to the maximum depth D of the transfer mold, is demanded.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a method for producing a resin sheet capable of improving the transfer rate.
  • the shape roll of the present invention is made to solve such problems, and aims to improve the transfer rate.
  • the present inventor has found that the resin sheet peeled from the transfer mold has an adjacent sheet-shaped portion at a valley portion (concave portion) formed between adjacent sheet-shaped portions. It was found that the shape transfer rate is reduced by the end portions of the two being close to each other and bonded together. Therefore, by performing transfer with an interval of 6 ⁇ m or more and 15 ⁇ m or less between the recesses of the transfer mold, it is possible to prevent the sheet-shaped portions from being combined in the resin sheet peeled from the transfer mold, and the transfer rate As a result, the present inventors have found that it is possible to improve the above.
  • the present invention uses a sheet manufacturing process for continuously extruding a heat-melted resin from a die to manufacture a continuous resin sheet, and a shape roll having a transfer mold formed on the peripheral surface. And a transfer step of transferring the shape of the transfer mold to the surface.
  • the transfer mold in the transfer mold, the concave portions adjacent to each other in the longitudinal direction of the shape roll are arranged with an interval of 6 ⁇ m or more and 15 m ⁇ or less.
  • a method for producing a resin sheet is provided.
  • a method for producing a resin sheet of the present invention in a transfer process using a transfer mold having a predetermined interval between adjacent shapes in the longitudinal direction of the shape roll, 6 ⁇ m or more between adjacent shapes. Since the interval of 15 ⁇ m or less is formed, the continuous resin sheet after being peeled off from the transfer mold is prevented from joining the ends of the convex portions even when the sheet shape expands. Thereby, in the sheet-shaped valley part, it is prevented that the edge part of adjacent convex part shape approaches too much, a desired convex part shape is ensured, and a shape transfer rate can be improved.
  • the surface temperature of the continuous resin sheet immediately after being peeled off from the shape roll is preferably in the range of (Tg + 5) ° C. to (Tg + 50) ° C. with respect to the glass transition temperature Tg of the resin.
  • the surface temperature of the continuous resin sheet immediately after being peeled from the shape roll is (Tg ⁇ 10) ° C. to (Tg + 5) ° C. with respect to the glass transition temperature Tg of the resin.
  • the temperature is in the range, it is difficult to improve the production efficiency in this temperature range.
  • the surface temperature of the continuous resin sheet is in the range of (Tg + 5) ° C. to (Tg + 50) ° C., it is possible to improve the production efficiency while improving the transfer rate.
  • the present invention is applied to a sheet manufacturing apparatus that continuously extrudes a heated and melted resin from a die to manufacture a continuous resin sheet, and is a shape roll for transferring the shape of a transfer mold onto the surface of the continuous resin sheet.
  • the circumferential surface of the shape roll is provided with a plurality of concave portions continuous in the circumferential direction of the shape roll, and the concave portions adjacent to each other in the longitudinal direction of the shape roll have an interval of 6 ⁇ m or more and 15 ⁇ m or less.
  • a shape roll is provided that is spaced apart.
  • the transfer mold formed on the peripheral surface has an interval of 6 ⁇ m or more and 15 ⁇ m or less between adjacent shapes in the longitudinal direction of the shape roll.
  • the transfer mold formed on the peripheral surface has an interval of 6 ⁇ m or more and 15 ⁇ m or less between adjacent shapes in the longitudinal direction of the shape roll.
  • the shape transfer rate can be improved.
  • FIG. 1 is a schematic configuration diagram illustrating a resin sheet manufacturing apparatus according to an embodiment of the present invention.
  • the resin sheet manufacturing apparatus 50 is an apparatus that can be used in the resin sheet manufacturing method of the present invention.
  • the resin sheet manufacturing apparatus 50 includes a die 51 that continuously extrudes a heated and melted resin to obtain a continuous resin sheet 60, and a first pressing roll that presses the continuous resin sheet 60 extruded from the die 51 from both sides in the thickness direction. 52A and a second pressing roll 52B.
  • the resin sheet manufacturing apparatus 50 includes a resin charging port 57 for charging a resin as a raw material, and an extruder 58 for pressing the resin charged from the resin charging port 57.
  • the first pressing roll 52A and the second pressing roll 52B are configured to be rotatable around rotation axes parallel to each other.
  • 52 A of 1st press rolls and the 2nd press roll 52B are spaced apart and arrange
  • FIG. 6 As shown in FIG. 6, a transfer mold 53 corresponding to the concavo-convex shape transferred to the resin sheet 60 is formed on the peripheral surface of the second pressing roll 53. Details will be described later.
  • the second pressing roll 52B corresponds to the shape roll of the present invention.
  • FIG. 2 is a schematic configuration diagram showing a resin sheet manufacturing apparatus according to the second embodiment of the present invention.
  • the resin sheet manufacturing apparatus 50B shown in FIG. 2 is different from the resin sheet manufacturing apparatus 50 shown in FIG. 1 in that a third pressing roll 52C is provided after the second pressing roll (shape roll) 52B. .
  • the third pressing roll 52C has the same configuration as the first pressing roll 52A.
  • the third pressing roll 52C sandwiches and presses the continuous resin sheet 60 between the second pressing roll 52B.
  • FIG. 3 is a schematic configuration diagram showing a resin sheet manufacturing apparatus according to the third embodiment of the present invention.
  • the difference between the resin sheet manufacturing apparatus 50C shown in FIG. 3 and the resin sheet manufacturing apparatus 50 shown in FIG. 1 is that a preloading roll 52D is provided upstream of the first pressing roll 52A.
  • the preload roll 52D has the same configuration as the first pressing roll 52A.
  • the preload roll 52D sandwiches and presses the continuous resin sheet 60 between the first press roll 52A.
  • FIG. 4 is a perspective view schematically showing the configuration of the resin sheet according to the embodiment of the present invention.
  • the resin sheet 30 formed by cutting the continuous resin sheet 60 into a predetermined size is shown.
  • the resin sheet 30 can be used as a light guide plate of a surface light source device (backlight) mounted on a transmissive image device.
  • the backlight can be used as an edge light type in which a light source such as an LED is disposed on the side surface 33 of the light guide plate and light incident from the side surface 33 of the light guide plate is emitted to the front side.
  • a light source may be arrange
  • the rear surface 32 of the resin sheet is usually subjected to a reflection process for irregularly reflecting light incident from the side surface.
  • a printing method performed as reflection processing ink jet printing may be performed in addition to silk printing.
  • the surface 31 of the resin sheet 30 extends in the first direction (x-axis direction) and has a plurality of convex shapes arranged side by side in a second direction (y-axis direction) orthogonal to the first direction. A portion 35 is formed.
  • the concavo-convex shape having the convex portions 35 formed on the surface 31 is formed by a transfer process described later.
  • the light guide plate made of a resin sheet is made of a translucent resin.
  • the translucent resin is a resin that transmits light.
  • the refractive index of the translucent resin is usually 1.49 to 1.59.
  • methacrylic resin is mainly used.
  • other resins may be used, or styrene resins may be used.
  • an acrylic resin, a styrene resin, a carbonate resin, a cyclic olefin resin, an MS resin (a copolymer of acrylic and styrene), or the like can be used.
  • thermoplastic resin that becomes a molten state when heated.
  • an acrylic resin, a styrene resin, a carbonate resin, a cyclic olefin resin, an MS resin (a copolymer of acrylic and styrene), and the like can be given.
  • cures by heating in the range applicable to the manufacturing method of this invention may be sufficient.
  • Additives such as a light diffusing agent, an ultraviolet absorber, a heat stabilizer, and an antistatic agent may be added to the resin.
  • FIG. 7 is a flowchart showing a procedure of a resin sheet manufacturing method according to the embodiment of the present invention.
  • the resin sheet manufacturing method of the present embodiment can be implemented using, for example, a resin sheet manufacturing apparatus 50 shown in FIGS.
  • the resin sheet manufacturing method of this embodiment includes a sheet manufacturing process (S1) in which a resin in a heated and melted state is continuously extruded from a die to form a continuous resin sheet, and a transfer mold on the peripheral surface.
  • the resin is continuously extruded from the die 51 in a heated and melted state to manufacture the continuous resin sheet 60.
  • the resin used in the production method of the present invention include thermoplastic resins that are in a molten state when heated.
  • a metal T-die similar to that used in a normal extrusion method is used.
  • an extruder 58 is used in the same manner as in a normal extrusion molding method.
  • the extruder 58 may be a single screw extruder or a twin screw extruder.
  • the resin is heated in the extruder 58, sent to the die 51 in a molten state, and extruded.
  • the resin extruded from the die 51 is continuously extruded into a sheet shape to form a continuous resin sheet 60.
  • a preferable range of the sheet thickness is 1.0 mm or more and 4.5 mm or less.
  • the transfer step (S2) is a pressing step in which the continuous resin sheet 60 manufactured in the sheet manufacturing step (S1) is pressed by being sandwiched between the first pressing roll (pressing roll) 52A and the second pressing roll (shape roll) 52B.
  • S3 a transport step (S4) for transporting the continuous resin sheet 60 pressed in the pressing step (S3) while being in close contact with the peripheral surface of the shape roll 52B, and a continuous resin transported in the transport step (S4)
  • a peeling step (S5) for peeling the sheet 60 from the peripheral surface (transfer mold 53) of the shape roll 52B.
  • the continuous resin sheet 60 obtained in the sheet manufacturing step (S1) includes a first pressing roll 52A and a second pressing roll 52B in the thickness direction of the sheet, as shown in FIG. It is sandwiched and pressed from both sides at the same time.
  • the surface temperature of the continuous resin sheet 60 immediately before coming into contact with the second pressing roll 52B is in a range of 180 ° C. to 250 ° C.
  • the surface temperature can be adjusted by changing the set temperature of the extruder 58 and changing the set temperature of the die 51.
  • the surface temperature of the continuous resin sheet 60 can be measured using an infrared thermometer.
  • the shape of the transfer mold 53 formed on the surface of the second pressing roll (shape roll) 52B is transferred to the continuous resin sheet 60.
  • the second pressing roll 52B provided with the transfer mold 53 is also referred to as a transfer roll.
  • the transfer mold 53 provided on the surface of the transfer roll is pressed against the surface of the continuous resin sheet 60, and the surface shape is transferred to the continuous resin sheet 60 as a reverse mold.
  • the adjacent recess shapes 54 are arranged with a predetermined interval (S: 6 ⁇ m to 15 ⁇ m).
  • a transfer mold 53 is formed on the circumferential surface of the shape roll 52B.
  • a plurality of concave shapes 54 that are continuous in the circumferential direction are arranged side by side in the longitudinal direction (Y direction) of the shape roll 52B.
  • a flat portion 55 having a width S of 6 ⁇ m or more and 15 ⁇ m or less is formed between the recessed shapes 54 and 54 adjacent to each other in the longitudinal direction Y of the shape roll 52B.
  • the flat part 55 is continuously formed in the circumferential direction of the shape roll 52B.
  • the convex shape is transferred to the surface of the continuous resin sheet 60 using the transfer mold 53 in which the flat portion 55 is formed between the adjacent concave shapes 54 and 54.
  • first and second pressing rolls 52A and 52B metal rolls made of a metal such as stainless steel or steel are usually used, and the diameter is usually 100 mm to 500 mm.
  • the surface thereof may be subjected to a plating treatment such as chrome plating, copper plating, nickel plating, nickel-phosphorous plating.
  • the surface (circumferential surface) of the first pressing roll 52A may be a mirror surface or may be a transfer surface provided with unevenness such as embossing.
  • the transporting step (S4) is a step of transporting the continuous resin sheet 60 according to the rotation of the second pressing roll 52B in a state where the continuous resin sheet 60 is in close contact with the peripheral surface of the second pressing roll 52B.
  • a peeling process (S5) is a process of peeling the continuous resin sheet 60 from the surrounding surface of the 2nd press roll 52B.
  • the surface temperature of the resin of the continuous resin sheet 60 immediately after being peeled from the second pressing roll 52B is in the range of (Tg + 5) ° C. to (Tg + 50) ° C. with respect to the glass transition temperature Tg of the resin. Is preferred. Thereby, it is possible to improve the production efficiency while improving the transfer rate.
  • the surface temperature of the resin is lower than the above temperature range, for example, when the temperature range is (Tg ⁇ 10) ° C. to (Tg + 5) ° C., the transfer rate can be improved. It becomes difficult to improve efficiency.
  • the surface temperature of the resin is higher than the above range of (Tg + 5) ° C. to (Tg + 50) ° C., the shape transferred to the continuous resin sheet 60 is restored to its original shape by heat, and the transfer rate deteriorates. become.
  • FIG. 5 is a cross-sectional view schematically showing the concave portion formed in the transfer mold and the convex portion formed in the resin sheet.
  • the shape roll according to the present embodiment can be applied to a sheet manufacturing apparatus 50 that continuously extrudes a heated and melted resin from a die to manufacture a continuous resin sheet, and gives an uneven shape to the sheet surface of the continuous resin sheet 60. Is to do.
  • the shape roll 52B is formed of a columnar body or a cylindrical body, and a transfer mold 53 is formed on the peripheral surface thereof.
  • a plurality of concave shapes continuous in the circumferential direction of the shape roll 52B are provided side by side in the longitudinal direction (direction Y) of the shape roll 52B.
  • the transfer mold 53 has a flat portion 55 between the concave shapes 54 adjacent to each other in the longitudinal direction Y.
  • the pitch P of the concave shape 54 is usually 30 ⁇ m or more, preferably 50 ⁇ m or more. However, in the manufacturing method and manufacturing apparatus of the present invention, it is suitable when the pitch interval P of the concave shape 54 is 30 ⁇ m to 800 ⁇ m. And the groove depth D of the concave shape 54 is 30 ⁇ m to 500 ⁇ m.
  • the pitch interval (P) of the concave shape 54 refers to the distance between the groove portions (bottom portions) of the adjacent concave portions 54, and the groove depth (D) of the concave shape 54 refers to the surface circumference of the shape roll 52B. The distance to the groove part (bottom part) of the recessed part 54 is said.
  • the width S of the roll flat portion 55 can be 8 ⁇ m
  • the depth D of the concave shape 54 can be 145 ⁇ m.
  • examples of the cross-sectional shape of the concave portion 54 of the transfer mold 53 include a semicircular shape and a semielliptical shape. Further, it may be a V shape having an acute angle portion corresponding to the prism shape.
  • the transfer mold 53 is manufactured by applying a plating treatment such as chromium plating, copper plating, nickel plating, nickel-phosphorous plating to the surface of a transfer roll made of stainless steel, steel, etc.
  • a plating treatment such as chromium plating, copper plating, nickel plating, nickel-phosphorous plating
  • the removal may be performed using a diamond tool, a metal grindstone, or the like, laser processing, or chemical etching may be performed to form the shape, but the method is not particularly limited.
  • the surface of the transfer roll may be subjected to plating treatment such as chromium plating, copper plating, nickel plating, nickel-phosphorous plating, etc. at a level that does not impair the accuracy of the surface shape after the transfer mold 53 is formed.
  • plating treatment such as chromium plating, copper plating, nickel plating, nickel-phosphorous plating, etc. at a level that does not impair the accuracy of the surface shape after the transfer mold 53 is formed.
  • the second pressing step may be performed after the transporting step (S4).
  • the second pressing step can be performed using a resin sheet manufacturing apparatus 50B shown in FIG.
  • the continuous resin sheet 60 conveyed in the conveying step (S4) is pressed by being sandwiched between the second pressing roll (shape roll) 52B and the third pressing roll 52C.
  • the continuous resin sheet 60 pressed in the second pressing step is peeled from the second pressing roll (peeling step) and conveyed while being in close contact with the peripheral surface of the third pressing roll 52C, and then the circumference of the third pressing roll 52C. Peel from the surface.
  • a preloading step of pressing in advance may be performed before the pressing step (S3).
  • the preloading step can be performed using a resin sheet manufacturing apparatus 50C shown in FIG.
  • the continuous resin sheet 60 manufactured in the sheet manufacturing process (S1) is pressed in advance by being sandwiched between the preloading roll 52D and the first pressing roll 52A.
  • the pressed continuous resin sheet 60 is conveyed in close contact with the peripheral surface of the first pressing roll 52A, and the pressing step (S3) is performed by the first and second pressing rolls 52A and 52B.
  • the adjacent recess shapes 54 are arranged with an interval S of 6 ⁇ m or more and 15 ⁇ m or less and the transfer process is executed.
  • the end portions in the Y direction of the convex shape 35 are prevented from being bonded to each other even if the sheet shape expands.
  • the end part of the adjacent convex part shape 35 does not approach too much, The desired convex part shape 35 is ensured and a shape transfer rate improves.
  • FIG. 6 is an enlarged view showing a trough formed between adjacent convex portions of the resin sheet. As shown in FIG. 6, in the trough part 35b formed between the convex part shapes 35 and 35 which adjoin the resin sheet 60, the coupling
  • Example 1 Comparative Example 1
  • seat which concerns on Example 1 and Comparative Example 1 was created using the resin sheet manufacturing apparatus 50C shown in FIG.
  • the conditions of the manufacturing apparatus 50C used are shown below.
  • the screw diameter of the extruder 58 was 120 mm, and the amount of extrusion by the extruder 58 was 700 kg / hr.
  • the line speed was 2.75 m / min, and in Comparative Example 1, the line speed was 2.83 m / min.
  • the sheet width was 135 cm in both Example 1 and Comparative Example 1.
  • the roll temperature preload roll 52D / first pressing roll 52A / second pressing roll 52B
  • Example 1 and Comparative Example 1 a PMMA plate having a sheet thickness of 3 mm was formed by extrusion molding (sheet manufacturing process). In Example 1 and Comparative Example 1, a single-layered resin sheet (see FIG. 4) was prepared.
  • a copolymer of methyl methacrylate and methyl acrylate was used as the resin constituting the resin sheet according to Example 1 and Comparative Example 1.
  • the resin specifications are shown below.
  • Weight ratio: methyl methacrylate / methyl acrylate 94/6 MFR: 1.5g / 10min
  • the pitch P is 400 ⁇ m
  • the depth D is 222 ⁇ m
  • the width S of the flat portion 55 is 8 ⁇ m
  • the pitch P is 400 ⁇ m and the depth
  • the thickness D was 222 ⁇ m
  • the width S of the flat portion 55 was 4 ⁇ m.
  • Table 1 below shows the test conditions and test results of Example 1 and Comparative Example 1.
  • the shape transfer rate of the resin sheet can be improved.
  • the light guide plate is described as the resin sheet, but other resin sheets may be created.
  • the resin sheet manufacturing method of the present invention is effective for manufacturing a shape light guide plate and a shape diffusion plate mounted on a backlight of a liquid crystal TV, for example.
  • the present invention is particularly effective for manufacturing a shape light guide plate and a shape diffusion plate having a high aspect ratio.
  • the continuous resin sheet is manufactured using the resin sheet manufacturing apparatuses 50, 50B, and 50C shown in FIGS. 1 to 3, but the resin sheet manufacturing apparatus capable of performing other manufacturing processes. May be used.
  • the surface temperature of the continuous resin sheet immediately after being peeled from the shape roll is preferably in the range of (Tg + 5) ° C. or more and (Tg + 50) ° C. or less with respect to the glass transition temperature Tg of the resin. It may be in the temperature range.
  • the resin sheet manufacturing method of the present invention it is possible to prevent adjacent shapes from being joined to each other in the resin sheet to which the shape is transferred, and to improve the shape transfer rate.
  • the shape roll of the present invention in the resin sheet to which the shape is transferred, adjacent shapes are prevented from being combined with each other, and the shape transfer rate can be improved.
  • 50, 50B, 50C ... resin sheet manufacturing apparatus, 51 ... die, 52A ... first press roll, 52B ... second press roll (shape roll), 52C ... third press roll, 52D ... preload roll, 53 ... transfer mold, 54 ... concave shape, 55 ... flat part, 57 ... resin inlet, 58 ... extruder, 60 ... continuous resin sheet.

Abstract

This resin-sheet manufacturing method has: a sheet-manufacturing step in which a continuous resin sheet is manufactured by continuously extruding a molten resin from a die; and a transfer step in which a shaped roll having transfer molds formed in the outer surface thereof is used to transfer the shapes of said transfer molds to the surface of the continuous resin sheet. The transfer molds are arranged such that recesses adjacent in the long direction of the shaped roll are separated by intervals of 6 to 15 µm.

Description

樹脂シートの製造方法、及び形状ロールResin sheet manufacturing method and shape roll
 本発明は、表面に形状を有する樹脂シートの製造方法、及び樹脂シートの表面に形状を付与するための転写型を有する形状ロールに関する。 The present invention relates to a method for producing a resin sheet having a shape on the surface, and a shape roll having a transfer mold for imparting a shape to the surface of the resin sheet.
 表面に形状を有する樹脂シート(表面形状転写樹脂シート)を製造する方法として、押出機を用いて、樹脂を加熱溶融状態でダイから押し出し、連続した樹脂シート(連続樹脂シート)を製造し、転写型を用いて、連続樹脂シートの表面に転写型の形状を転写する方法が知られている(例えば、特許文献1:特開2009-220555号公報参照)。この方法では、シートの厚み方向に離間する第1押圧ロールと第2押圧ロールとの間に、連続樹脂シートを挟み込んで押圧し、第2押圧ロールの表面に形成された転写型の形状を、連続樹脂シートに転写している。 As a method for producing a resin sheet having a shape on the surface (surface shape transfer resin sheet), an extruder is used to extrude the resin from a die in a heated and melted state, and a continuous resin sheet (continuous resin sheet) is produced and transferred. A method of transferring the shape of a transfer mold onto the surface of a continuous resin sheet using a mold is known (for example, see Patent Document 1: Japanese Patent Application Laid-Open No. 2009-220555). In this method, the continuous resin sheet is sandwiched and pressed between the first pressing roll and the second pressing roll that are separated in the thickness direction of the sheet, and the shape of the transfer mold formed on the surface of the second pressing roll is It is transferred to a continuous resin sheet.
特開2009-220555号公報JP 2009-220555 A
 近年、表面に形状が施された樹脂シートにおいて、単位形状の幅に対する高さの比率であるアスペクト比の大きい形状が要求されている。しかし、従来の樹脂シートの製造方法では、転写型の深さに対して、樹脂シートに転写された形状の高さが必ずしも十分ではなかった。そのため、転写型の最大深さDに対する、樹脂シートに転写された表面形状の最大高さHの比率である転写率(H/D)の向上が求められている。 In recent years, a resin sheet having a shape on the surface has been required to have a shape with a large aspect ratio, which is a ratio of the height to the width of the unit shape. However, in the conventional method for producing a resin sheet, the height of the shape transferred to the resin sheet is not always sufficient with respect to the depth of the transfer mold. Therefore, an improvement in transfer rate (H / D), which is a ratio of the maximum height H of the surface shape transferred to the resin sheet to the maximum depth D of the transfer mold, is demanded.
 本発明は、このような課題を解決するために成されたものであり、転写率の向上を図ることが可能な樹脂シートの製造方法を提供することを目的とする。また、本発明の形状ロールは、このような課題を解決するために成されたものであり、転写率の向上を図ることを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a method for producing a resin sheet capable of improving the transfer rate. The shape roll of the present invention is made to solve such problems, and aims to improve the transfer rate.
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、転写型から剥離された樹脂シートにおいて、隣り合うシート形状部分間に形成された谷部(凹部)で、隣り合うシート形状部分の端部同士が接近して結合してしまうことで、形状転写率が低下するという知見を得た。そこで、転写型の凹部同士の間に幅6μm以上15μm以下の間隔を設けて転写を実行することで、転写型から剥離された樹脂シートにおいて、シート形状部分が結合することを防止し、転写率の向上を図ることが可能であることを見出し、本発明に至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that the resin sheet peeled from the transfer mold has an adjacent sheet-shaped portion at a valley portion (concave portion) formed between adjacent sheet-shaped portions. It was found that the shape transfer rate is reduced by the end portions of the two being close to each other and bonded together. Therefore, by performing transfer with an interval of 6 μm or more and 15 μm or less between the recesses of the transfer mold, it is possible to prevent the sheet-shaped portions from being combined in the resin sheet peeled from the transfer mold, and the transfer rate As a result, the present inventors have found that it is possible to improve the above.
 すなわち、本発明は、加熱溶融状態の樹脂をダイから連続的に押し出して連続樹脂シートを製造するシート製造工程と、周面に転写型が形成された形状ロールを用いて、連続樹脂シートのシート表面に転写型の形状を転写する転写工程と、を備えた樹脂シート製造方法において、転写型では、形状ロールの長手方向に隣り合う凹部が、6μm以上15mμ以下の間隔を空けて配置されている樹脂シートの製造方法を提供する。 That is, the present invention uses a sheet manufacturing process for continuously extruding a heat-melted resin from a die to manufacture a continuous resin sheet, and a shape roll having a transfer mold formed on the peripheral surface. And a transfer step of transferring the shape of the transfer mold to the surface. In the transfer mold, in the transfer mold, the concave portions adjacent to each other in the longitudinal direction of the shape roll are arranged with an interval of 6 μm or more and 15 mμ or less. A method for producing a resin sheet is provided.
 このような本発明の樹脂シートの製造方法によれば、形状ロールの長手方向の隣り合う形状同士の間に所定の間隔を有する転写型を用いた転写工程において、隣り合う形状間に、6μm以上15μm以下の間隔が形成されているため、転写型から剥離されたあとの連続樹脂シートにおいて、シート形状が膨張しても凸部の端部同士が結合することが防止される。これにより、シート形状の谷部において、隣り合う凸部形状の端部同士が接近し過ぎることが防止され、所望の凸部形状が確保され、形状転写率を向上させることができる。 According to such a method for producing a resin sheet of the present invention, in a transfer process using a transfer mold having a predetermined interval between adjacent shapes in the longitudinal direction of the shape roll, 6 μm or more between adjacent shapes. Since the interval of 15 μm or less is formed, the continuous resin sheet after being peeled off from the transfer mold is prevented from joining the ends of the convex portions even when the sheet shape expands. Thereby, in the sheet-shaped valley part, it is prevented that the edge part of adjacent convex part shape approaches too much, a desired convex part shape is ensured, and a shape transfer rate can be improved.
 ここで、形状ロールから剥離された直後の連続樹脂シートの表面温度は、樹脂のガラス転移温度Tgに対して、(Tg+5)℃~(Tg+50)℃の範囲であることが好適である。これにより、転写率の向上を図りつつ、生産効率の向上を図ることができる。転写率の向上のみを考慮した場合には、形状ロールから剥離された直後の連続樹脂シートの表面温度は、樹脂のガラス転移温度Tgに対して、(Tg-10)℃~(Tg+5)℃の範囲であることが好適であるが、この温度範囲では生産効率の向上を図ることは困難である。しかし、連続樹脂シートの表面温度を、(Tg+5)℃~(Tg+50)℃の範囲とすると、転写率の向上を図りつつ、生産効率の向上を図ることができる。 Here, the surface temperature of the continuous resin sheet immediately after being peeled off from the shape roll is preferably in the range of (Tg + 5) ° C. to (Tg + 50) ° C. with respect to the glass transition temperature Tg of the resin. Thereby, it is possible to improve the production efficiency while improving the transfer rate. When considering only the improvement of the transfer rate, the surface temperature of the continuous resin sheet immediately after being peeled from the shape roll is (Tg−10) ° C. to (Tg + 5) ° C. with respect to the glass transition temperature Tg of the resin. Although it is preferable that the temperature is in the range, it is difficult to improve the production efficiency in this temperature range. However, when the surface temperature of the continuous resin sheet is in the range of (Tg + 5) ° C. to (Tg + 50) ° C., it is possible to improve the production efficiency while improving the transfer rate.
 また、本発明は加熱溶融状態の樹脂をダイから連続的に押し出して連続樹脂シートを製造するシート製造装置に適用され、連続樹脂シートのシート表面に転写型の形状を転写するための形状ロールであって、形状ロールの周面には、当該形状ロールの周方向に連続する凹部が形状ロールの長手方向に複数並べて設けられ、形状ロールの長手方向に隣り合う凹部が、6μm以上15μm以下の間隔を空けて配置されている形状ロールを提供する。 In addition, the present invention is applied to a sheet manufacturing apparatus that continuously extrudes a heated and melted resin from a die to manufacture a continuous resin sheet, and is a shape roll for transferring the shape of a transfer mold onto the surface of the continuous resin sheet. The circumferential surface of the shape roll is provided with a plurality of concave portions continuous in the circumferential direction of the shape roll, and the concave portions adjacent to each other in the longitudinal direction of the shape roll have an interval of 6 μm or more and 15 μm or less. A shape roll is provided that is spaced apart.
 このような本発明の形状ロールによれば、周面に形成された転写型には、形状ロールの長手方向の隣り合う形状同士の間に、6μm以上15μm以下の間隔が空けられているため、転写型から剥離されたあとの連続シートにおいて、シート形状が膨張しても凸部形状の端部同士の結合が防止され、所望の凸部形状が確保される。その結果、形状転写率を向上させることができる。 According to such a shape roll of the present invention, the transfer mold formed on the peripheral surface has an interval of 6 μm or more and 15 μm or less between adjacent shapes in the longitudinal direction of the shape roll. In the continuous sheet after being peeled off from the transfer mold, even if the sheet shape expands, bonding between the ends of the protruding portions is prevented, and a desired protruding portion shape is ensured. As a result, the shape transfer rate can be improved.
 本発明によれば、形状が転写された樹脂シートにおいて、隣り合う形状同士が結合することが防止されるため、形状転写率の向上を図ることが可能な樹脂シートの製造方法を提供することができる。また、本発明の形状ロールによれば、形状が転写された樹脂シートにおいて、隣り合う形状同士が結合することが防止されるため、形状転写率の向上を図ることができる。 According to the present invention, in the resin sheet to which the shape is transferred, since adjacent shapes are prevented from being bonded to each other, it is possible to provide a method for manufacturing a resin sheet capable of improving the shape transfer rate. it can. Moreover, according to the shape roll of this invention, since the adjacent shape is prevented from couple | bonding together in the resin sheet to which the shape was transferred, the shape transfer rate can be improved.
本発明の実施形態に係る樹脂シート製造装置を示す概略構成図である。It is a schematic block diagram which shows the resin sheet manufacturing apparatus which concerns on embodiment of this invention. 本発明の第2実施形態に係る樹脂シート製造装置を示す概略構成図である。It is a schematic block diagram which shows the resin sheet manufacturing apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る樹脂シート製造装置を示す概略構成図である。It is a schematic block diagram which shows the resin sheet manufacturing apparatus which concerns on 3rd Embodiment of this invention. 本発明の実施形態に係る樹脂シートの構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the resin sheet which concerns on embodiment of this invention. 転写型に形成された凹部及び樹脂シートに形成された凸状部を模式的に示す断面図である。It is sectional drawing which shows typically the recessed part formed in the transcription | transfer mold, and the convex-shaped part formed in the resin sheet. 樹脂シートの隣り合う凸状部間に形成された谷部を拡大して示す図である。It is a figure which expands and shows the trough part formed between the convex-shaped parts which a resin sheet adjoins. 本発明の実施形態に係る樹脂シートの製造方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the manufacturing method of the resin sheet which concerns on embodiment of this invention.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、同一または相当要素には同一符号を付し、重複する説明は省略する。図面の寸法比率は、説明のものと必ずしも一致していない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent element, and the overlapping description is abbreviate | omitted. The dimensional ratios in the drawings do not necessarily match those described.
 (樹脂シートの製造装置)
 図1は、本発明の実施形態に係る樹脂シート製造装置を示す概略構成図である。樹脂シート製造装置50は、本発明の樹脂シートの製造方法に使用可能な装置である。樹脂シート製造装置50は、加熱溶融状態の樹脂を連続的に押し出して連続樹脂シート60を得るダイ51と、ダイ51から押し出された連続樹脂シート60を厚み方向の両側から押圧する第1押圧ロール52A及び第2押圧ロール52Bと、を備えている。
(Resin sheet manufacturing equipment)
FIG. 1 is a schematic configuration diagram illustrating a resin sheet manufacturing apparatus according to an embodiment of the present invention. The resin sheet manufacturing apparatus 50 is an apparatus that can be used in the resin sheet manufacturing method of the present invention. The resin sheet manufacturing apparatus 50 includes a die 51 that continuously extrudes a heated and melted resin to obtain a continuous resin sheet 60, and a first pressing roll that presses the continuous resin sheet 60 extruded from the die 51 from both sides in the thickness direction. 52A and a second pressing roll 52B.
 また、樹脂シート製造装置50は、原料となる樹脂を投入するための樹脂投入口57と、樹脂投入口57から投入された樹脂を押し出すための押し出し機58とを備えている。 Also, the resin sheet manufacturing apparatus 50 includes a resin charging port 57 for charging a resin as a raw material, and an extruder 58 for pressing the resin charged from the resin charging port 57.
 第1押圧ロール52A及び第2押圧ロール52Bは、互いに平行な回転軸回りに回転可能な構成とされている。第1押圧ロール52A及び第2押圧ロール52Bは、樹脂シート60の厚み方向に離間して配置され、互いの周面同士の間隔は、樹脂シート60の厚みに応じて設定されている。第2押圧ロール53の周面には、図6に示すように、樹脂シート60に転写される凹凸形状に対応する転写型53が形成されている。詳しくは、後述する。第2押圧ロール52Bは、本発明の形状ロールに相当する。 The first pressing roll 52A and the second pressing roll 52B are configured to be rotatable around rotation axes parallel to each other. 52 A of 1st press rolls and the 2nd press roll 52B are spaced apart and arrange | positioned in the thickness direction of the resin sheet 60, and the space | interval of mutual peripheral surfaces is set according to the thickness of the resin sheet 60. FIG. As shown in FIG. 6, a transfer mold 53 corresponding to the concavo-convex shape transferred to the resin sheet 60 is formed on the peripheral surface of the second pressing roll 53. Details will be described later. The second pressing roll 52B corresponds to the shape roll of the present invention.
 (樹脂シートの製造装置の変形例)
 図2は、本発明の第2実施形態に係る樹脂シート製造装置を示す概略構成図である。図2に示す樹脂シート製造装置50Bが、図1に示す樹脂シート製造装置50と異なる点は、第2押圧ロール(形状ロール)52Bの後段に、第3押圧ロール52Cを備えている点である。第3押圧ロール52Cは、第1押圧ロール52Aと同様な構成である。第3押圧ロール52Cは、第2押圧ロール52Bとの間に、連続樹脂シート60を挟み込んで押圧する。
(Modification of resin sheet manufacturing equipment)
FIG. 2 is a schematic configuration diagram showing a resin sheet manufacturing apparatus according to the second embodiment of the present invention. The resin sheet manufacturing apparatus 50B shown in FIG. 2 is different from the resin sheet manufacturing apparatus 50 shown in FIG. 1 in that a third pressing roll 52C is provided after the second pressing roll (shape roll) 52B. . The third pressing roll 52C has the same configuration as the first pressing roll 52A. The third pressing roll 52C sandwiches and presses the continuous resin sheet 60 between the second pressing roll 52B.
 図3は、本発明の第3実施形態に係る樹脂シート製造装置を示す概略構成図である。図3に示す樹脂シート製造装置50Cが、図1に示す樹脂シート製造装置50と異なる点は、第1押圧ロール52Aの前段に、予圧ロール52Dを備えている点である。予圧ロール52Dは、第1押圧ロール52Aと同様な構成である。予圧ロール52Dは、第1押圧ロール52Aとの間に、連続樹脂シート60を挟み込んで押圧する。 FIG. 3 is a schematic configuration diagram showing a resin sheet manufacturing apparatus according to the third embodiment of the present invention. The difference between the resin sheet manufacturing apparatus 50C shown in FIG. 3 and the resin sheet manufacturing apparatus 50 shown in FIG. 1 is that a preloading roll 52D is provided upstream of the first pressing roll 52A. The preload roll 52D has the same configuration as the first pressing roll 52A. The preload roll 52D sandwiches and presses the continuous resin sheet 60 between the first press roll 52A.
 (連続樹脂シート)
 本発明の実施形態に係る製造方法により製造される連続樹脂シートについて説明する。図4は、本発明の実施形態に係る樹脂シートの構成を模式的に示す斜視図である。図4では、連続樹脂シート60が所定のサイズに切断されて形成された樹脂シート30を示している。樹脂シート30は、透過型画像装置に搭載される面光源装置(バックライト)の導光板として使用可能なものである。バックライトとしては、導光板の側面33にLEDなどの光源を配置し、導光板の側面33から入射した光を正面側に出射するエッジライト型として、使用可能である。なお、樹脂シートの側面33に対して光源を配置して導光板として使用してもよく、樹脂シートの背面32に対して光源を配置して拡散板として使用してもよい。
(Continuous resin sheet)
The continuous resin sheet manufactured by the manufacturing method according to the embodiment of the present invention will be described. FIG. 4 is a perspective view schematically showing the configuration of the resin sheet according to the embodiment of the present invention. In FIG. 4, the resin sheet 30 formed by cutting the continuous resin sheet 60 into a predetermined size is shown. The resin sheet 30 can be used as a light guide plate of a surface light source device (backlight) mounted on a transmissive image device. The backlight can be used as an edge light type in which a light source such as an LED is disposed on the side surface 33 of the light guide plate and light incident from the side surface 33 of the light guide plate is emitted to the front side. In addition, a light source may be arrange | positioned with respect to the side surface 33 of a resin sheet, and it may be used as a light-guide plate, and a light source may be arrange | positioned with respect to the back surface 32 of a resin sheet, and may be used as a diffusion plate.
 樹脂シートを導光板として使用する場合には、通常、樹脂シートの背面32には、側面から入射した光を乱反射させる反射加工が施される。反射加工として行う印刷の方法としては、シルク印刷のほかに、インクジェット印刷を行ってもよい。あるいは反射加工の方法としては、印刷ではなく、レーザ照射によりドット形状の凹凸を付与してもよい。 When using a resin sheet as a light guide plate, the rear surface 32 of the resin sheet is usually subjected to a reflection process for irregularly reflecting light incident from the side surface. As a printing method performed as reflection processing, ink jet printing may be performed in addition to silk printing. Or as a method of reflection processing, you may give a dot-shaped unevenness | corrugation by laser irradiation instead of printing.
 樹脂シート30の表面31には、第1の方向(x軸方向)に延在すると共に、この第1の方向に直交する第2の方向(y軸方向)に並べて配置された複数の凸状部35が形成されている。表面31に形成された凸状部35を有する凹凸形状は、後述する転写工程によって形成される。 The surface 31 of the resin sheet 30 extends in the first direction (x-axis direction) and has a plurality of convex shapes arranged side by side in a second direction (y-axis direction) orthogonal to the first direction. A portion 35 is formed. The concavo-convex shape having the convex portions 35 formed on the surface 31 is formed by a transfer process described later.
 (樹脂シートの構成材料)
 樹脂シートからなる導光板は、透光性樹脂から形成されている。透光性樹脂は、光を透過させる樹脂である。透光性樹脂の屈折率は通常、1.49~1.59である。導光板(30)に使用される透光性樹脂としては、メタクリル樹脂が主として用いられる。導光板(30)に使用される透光性樹脂として、その他の樹脂を用いてもよく、スチレン系の樹脂を用いても良い。透光性樹脂としては、アクリル樹脂、スチレン樹脂、カーボネート樹脂、環状オレフィン樹脂、MS樹脂(アクリルとスチレンとの共重合体)などが使用可能である。
(Constituent material of resin sheet)
The light guide plate made of a resin sheet is made of a translucent resin. The translucent resin is a resin that transmits light. The refractive index of the translucent resin is usually 1.49 to 1.59. As the translucent resin used for the light guide plate (30), methacrylic resin is mainly used. As the translucent resin used for the light guide plate (30), other resins may be used, or styrene resins may be used. As the translucent resin, an acrylic resin, a styrene resin, a carbonate resin, a cyclic olefin resin, an MS resin (a copolymer of acrylic and styrene), or the like can be used.
 樹脂シート30(60)構成する樹脂としては、通常は、加熱されることにより溶融状態となる熱可塑性樹脂が挙げられる。具体的には、アクリル系樹脂、スチレン系樹脂、カーボネート樹脂、環状オレフィン樹脂、MS樹脂(アクリルとスチレンとの共重合体)などが挙げられる。なお、本発明の製造方法に適用できる範囲で、加熱されることにより硬化する熱硬化性樹脂であってもよい。上記樹脂は、光拡散剤、紫外線吸収剤、熱安定剤、帯電防止剤などの添加剤が添加されていてもよい。 As the resin constituting the resin sheet 30 (60), there is usually a thermoplastic resin that becomes a molten state when heated. Specifically, an acrylic resin, a styrene resin, a carbonate resin, a cyclic olefin resin, an MS resin (a copolymer of acrylic and styrene), and the like can be given. In addition, the thermosetting resin which hardens | cures by heating in the range applicable to the manufacturing method of this invention may be sufficient. Additives such as a light diffusing agent, an ultraviolet absorber, a heat stabilizer, and an antistatic agent may be added to the resin.
 (樹脂シートの製造方法)
 本発明の実施形態に係る樹脂シートの製造方法について説明する。図7は、本発明の実施形態に係る樹脂シートの製造方法の手順を示すフローチャートである。本実施形態の樹脂シートの製造方法は、例えば、図1~図3に示す樹脂シート製造装置50を用いて実施可能である。図7に示すように、本実施形態の樹脂シートの製造方法は、加熱溶融状態の樹脂をダイから連続的に押し出して連続樹脂シートを成形するシート製造工程(S1)と、周面に転写型53が形成された(形状ロール)を用いて、連続樹脂シートに転写型の形状を転写する転写工程(S2)と、を備える。
(Production method of resin sheet)
The manufacturing method of the resin sheet which concerns on embodiment of this invention is demonstrated. FIG. 7 is a flowchart showing a procedure of a resin sheet manufacturing method according to the embodiment of the present invention. The resin sheet manufacturing method of the present embodiment can be implemented using, for example, a resin sheet manufacturing apparatus 50 shown in FIGS. As shown in FIG. 7, the resin sheet manufacturing method of this embodiment includes a sheet manufacturing process (S1) in which a resin in a heated and melted state is continuously extruded from a die to form a continuous resin sheet, and a transfer mold on the peripheral surface. A transfer step (S2) for transferring the shape of the transfer mold to the continuous resin sheet using the (form roll) 53 formed thereon.
 (シート製造工程)
 シート製造工程では、樹脂を加熱溶融状態でダイ51から連続的に押し出して連続樹脂シート60を製造する。本発明の製造方法に用いられる樹脂としては、加熱されることにより溶融状態となる熱可塑性樹脂が挙げられる。
(Sheet manufacturing process)
In the sheet manufacturing process, the resin is continuously extruded from the die 51 in a heated and melted state to manufacture the continuous resin sheet 60. Examples of the resin used in the production method of the present invention include thermoplastic resins that are in a molten state when heated.
 上記樹脂を加熱溶融状態で連続的に押し出すダイ51としては、通常の押出成形法に用いられると同様の金属製のTダイなどが用いられる。ダイ51から樹脂を加熱溶融状態で押し出すには、通常の押出成形法と同様に、押出機58が用いられる。押出機58は一軸押出機であってもよいし、二軸押出機であってもよい。樹脂は押出機58内で加熱され、溶融された状態でダイ51に送られ、押し出される。ダイ51から押し出された樹脂は、連続的にシート状となって押し出され、連続樹脂シート60となる。 As the die 51 for continuously extruding the resin in a heated and melted state, a metal T-die similar to that used in a normal extrusion method is used. In order to extrude the resin from the die 51 in a heated and melted state, an extruder 58 is used in the same manner as in a normal extrusion molding method. The extruder 58 may be a single screw extruder or a twin screw extruder. The resin is heated in the extruder 58, sent to the die 51 in a molten state, and extruded. The resin extruded from the die 51 is continuously extruded into a sheet shape to form a continuous resin sheet 60.
 なお、連続樹脂シート60の厚みは、得られたシートの用途に応じて適宜調整すればよい。例えば、連続樹脂シート60を導光板(30)として用いる場合のシート厚みの好ましい範囲は、1.0mm以上4.5mm以下である。 In addition, what is necessary is just to adjust the thickness of the continuous resin sheet 60 suitably according to the use of the obtained sheet | seat. For example, when the continuous resin sheet 60 is used as the light guide plate (30), a preferable range of the sheet thickness is 1.0 mm or more and 4.5 mm or less.
 (転写工程)
 転写工程(S2)は、シート製造工程(S1)によって製造された連続樹脂シート60を第1押圧ロール(押圧ロール)52Aと第2押圧ロール(形状ロール)52Bとで挟み込むことで押圧する押圧工程(S3)と、押圧工程(S3)で押圧された連続樹脂シート60を形状ロール52Bの周面に密着させたまま搬送する搬送工程(S4)と、搬送工程(S4)で搬送された連続樹脂シート60を形状ロール52Bの周面(転写型53)から剥離する剥離工程(S5)と、を含む。
(Transfer process)
The transfer step (S2) is a pressing step in which the continuous resin sheet 60 manufactured in the sheet manufacturing step (S1) is pressed by being sandwiched between the first pressing roll (pressing roll) 52A and the second pressing roll (shape roll) 52B. (S3), a transport step (S4) for transporting the continuous resin sheet 60 pressed in the pressing step (S3) while being in close contact with the peripheral surface of the shape roll 52B, and a continuous resin transported in the transport step (S4) And a peeling step (S5) for peeling the sheet 60 from the peripheral surface (transfer mold 53) of the shape roll 52B.
 (押圧工程)
 上記シート製造工程(S1)で得られた連続樹脂シート60は、押圧工程(S2)により、図1に示すように、第1押圧ロール52Aと第2押圧ロール52Bとで、シートの厚み方向の両側から同時に挟み込まれて、押圧される。
(Pressing process)
As shown in FIG. 1, the continuous resin sheet 60 obtained in the sheet manufacturing step (S1) includes a first pressing roll 52A and a second pressing roll 52B in the thickness direction of the sheet, as shown in FIG. It is sandwiched and pressed from both sides at the same time.
 このとき、第2押圧ロール52Bに接する直前の連続樹脂シート60の表面温度は、180℃~250℃の範囲である。表面温度の調整は、押出機58の設定温度の変更、ダイ51の設定温度の変更により、調整することができる。なお、連続樹脂シート60の表面温度は、赤外線温度計を用いて計測することができる。 At this time, the surface temperature of the continuous resin sheet 60 immediately before coming into contact with the second pressing roll 52B is in a range of 180 ° C. to 250 ° C. The surface temperature can be adjusted by changing the set temperature of the extruder 58 and changing the set temperature of the die 51. In addition, the surface temperature of the continuous resin sheet 60 can be measured using an infrared thermometer.
 この押圧工程(S3)において、連続樹脂シート60には、第2押圧ロール(形状ロール)52Bの表面に形成された転写型53による形状が転写される。なお、本発明においては、転写型53を備えた第2押圧ロール52Bを転写ロールともいう。上記転写ロール表面に備えられた転写型53は、連続樹脂シート60の表面に押し当てられ、その表面形状を逆型として連続樹脂シート60に転写するものである。 In this pressing step (S3), the shape of the transfer mold 53 formed on the surface of the second pressing roll (shape roll) 52B is transferred to the continuous resin sheet 60. In the present invention, the second pressing roll 52B provided with the transfer mold 53 is also referred to as a transfer roll. The transfer mold 53 provided on the surface of the transfer roll is pressed against the surface of the continuous resin sheet 60, and the surface shape is transferred to the continuous resin sheet 60 as a reverse mold.
 ここで、本実施形態の転写工程の押圧工程では、形状ロール52Bの転写型53において、隣り合う凹部形状54は、所定の間隔(S:6μm~15μm)を空けて配置されている。形状ロール52Bの周面には転写型53が形成され、当該転写型53においては、周方向に連続する凹部形状54が、形状ロール52Bの長手方向(Y方向)に複数並べて配置されている。転写型53では、形状ロール52Bの長手方向Yに隣り合う凹部形状54,54間に、幅Sが6μm以上15μm以下である平坦部55が形成されている。平坦部55は、形状ロール52Bの周方向において連続して形成されている。本実施形態の押圧工程では、隣り合う凹部形状54,54間に、平坦部55が形成された転写型53を用いて、連続樹脂シート60の表面に凸部形状を転写する。 Here, in the pressing step of the transfer step of the present embodiment, in the transfer mold 53 of the shape roll 52B, the adjacent recess shapes 54 are arranged with a predetermined interval (S: 6 μm to 15 μm). A transfer mold 53 is formed on the circumferential surface of the shape roll 52B. In the transfer mold 53, a plurality of concave shapes 54 that are continuous in the circumferential direction are arranged side by side in the longitudinal direction (Y direction) of the shape roll 52B. In the transfer mold 53, a flat portion 55 having a width S of 6 μm or more and 15 μm or less is formed between the recessed shapes 54 and 54 adjacent to each other in the longitudinal direction Y of the shape roll 52B. The flat part 55 is continuously formed in the circumferential direction of the shape roll 52B. In the pressing step of the present embodiment, the convex shape is transferred to the surface of the continuous resin sheet 60 using the transfer mold 53 in which the flat portion 55 is formed between the adjacent concave shapes 54 and 54.
 第1および第2押圧ロール52A,52Bとして通常はステンレス鋼、鉄鋼などの金属で構成された金属製ロールが用いられ、その直径は通常100mm~500mmである。これらの第1および第2押圧ロール52A,52Bとして金属製ロールを用いる場合、その表面は、たとえばクロムメッキ、銅メッキ、ニッケルメッキ、ニッケル-リンメッキなどのメッキ処理が施されていてもよい。また、第1押圧ロール52Aの表面(周面)は、鏡面であってもよいし、エンボスなどの凹凸が施された転写面となっていてもよい。 As the first and second pressing rolls 52A and 52B, metal rolls made of a metal such as stainless steel or steel are usually used, and the diameter is usually 100 mm to 500 mm. When metal rolls are used as the first and second pressing rolls 52A and 52B, the surface thereof may be subjected to a plating treatment such as chrome plating, copper plating, nickel plating, nickel-phosphorous plating. Further, the surface (circumferential surface) of the first pressing roll 52A may be a mirror surface or may be a transfer surface provided with unevenness such as embossing.
 (搬送工程)
 搬送工程(S4)は、連続樹脂シート60を第2押圧ロール52Bの周面に密着させた状態で、第2押圧ロール52Bの回転に従って搬送する工程である。
(Conveying process)
The transporting step (S4) is a step of transporting the continuous resin sheet 60 according to the rotation of the second pressing roll 52B in a state where the continuous resin sheet 60 is in close contact with the peripheral surface of the second pressing roll 52B.
 (剥離工程)
 剥離工程(S5)は、連続樹脂シート60を第2押圧ロール52Bの周面から剥離する工程である。
(Peeling process)
A peeling process (S5) is a process of peeling the continuous resin sheet 60 from the surrounding surface of the 2nd press roll 52B.
 このとき、第2押圧ロール52Bから剥離された直後の連続樹脂シート60の樹脂の表面温度は、樹脂のガラス転移温度Tgに対して、(Tg+5)℃~(Tg+50)℃の範囲であることが好適である。これにより、転写率の向上を図りつつ、生産効率の向上を図ることができる。上記の温度範囲よりも樹脂の表面温度が低い場合には、例えば、(Tg-10)℃~(Tg+5)℃の温度範囲であると、転写率の向上は図ることが可能であるが、生産効率の向上を図ることが困難となる。上記の(Tg+5)℃~(Tg+50)℃の範囲よりも樹脂の表面温度が高い場合には、連続樹脂シート60に転写された形状が熱により元に戻ってしまうため、転写率が悪化することになる。 At this time, the surface temperature of the resin of the continuous resin sheet 60 immediately after being peeled from the second pressing roll 52B is in the range of (Tg + 5) ° C. to (Tg + 50) ° C. with respect to the glass transition temperature Tg of the resin. Is preferred. Thereby, it is possible to improve the production efficiency while improving the transfer rate. When the surface temperature of the resin is lower than the above temperature range, for example, when the temperature range is (Tg−10) ° C. to (Tg + 5) ° C., the transfer rate can be improved. It becomes difficult to improve efficiency. When the surface temperature of the resin is higher than the above range of (Tg + 5) ° C. to (Tg + 50) ° C., the shape transferred to the continuous resin sheet 60 is restored to its original shape by heat, and the transfer rate deteriorates. become.
 (形状ロール、転写型)
 図5は、転写型に形成された凹部及び樹脂シートに形成された凸状部を模式的に示す断面図である。本実施形態に係る形状ロールは、加熱溶融状態の樹脂をダイから連続的に押し出して連続樹脂シートを製造するシート製造装置50に適用可能とされ、連続樹脂シート60のシート表面に凹凸形状を付与するためのものである。形状ロール52Bは、円柱体または円筒体から成り、その周面に転写型53が形成されている。
(Shape roll, transfer mold)
FIG. 5 is a cross-sectional view schematically showing the concave portion formed in the transfer mold and the convex portion formed in the resin sheet. The shape roll according to the present embodiment can be applied to a sheet manufacturing apparatus 50 that continuously extrudes a heated and melted resin from a die to manufacture a continuous resin sheet, and gives an uneven shape to the sheet surface of the continuous resin sheet 60. Is to do. The shape roll 52B is formed of a columnar body or a cylindrical body, and a transfer mold 53 is formed on the peripheral surface thereof.
 本実施形態に係る転写型53では、上述したように形状ロール52Bの周方向に連続する凹部形状が、形状ロール52Bの長手方向(方向Y)に複数並べて設けられている。また、転写型53は、長手方向Yに隣り合う凹部形状54間に、平坦部55を有する構成とされている。 In the transfer mold 53 according to the present embodiment, as described above, a plurality of concave shapes continuous in the circumferential direction of the shape roll 52B are provided side by side in the longitudinal direction (direction Y) of the shape roll 52B. The transfer mold 53 has a flat portion 55 between the concave shapes 54 adjacent to each other in the longitudinal direction Y.
 また、凹部形状54のピッチPは、通常30μm以上、好ましくは50μm以上であるが、本発明の製造方法および製造装置においては、凹部形状54のピッチ間隔Pが30μm~800μmである場合に好適であり、凹部形状54の溝深さDが30μm~500μmである。凹部形状54のピッチ間隔(P)とは、隣接する凹部54の溝部間(底部同士)の距離をいい、凹部形状54の溝深さ(D)とは、形状ロール52Bの表面円周上から凹部54の溝部(底部)までの距離をいう。 The pitch P of the concave shape 54 is usually 30 μm or more, preferably 50 μm or more. However, in the manufacturing method and manufacturing apparatus of the present invention, it is suitable when the pitch interval P of the concave shape 54 is 30 μm to 800 μm. And the groove depth D of the concave shape 54 is 30 μm to 500 μm. The pitch interval (P) of the concave shape 54 refers to the distance between the groove portions (bottom portions) of the adjacent concave portions 54, and the groove depth (D) of the concave shape 54 refers to the surface circumference of the shape roll 52B. The distance to the groove part (bottom part) of the recessed part 54 is said.
 また、転写型53のサイズとして、例えば、ロール平坦部55の幅Sを8μm、凹部形状54の深さDを145μmとすることができる。 Further, as the size of the transfer mold 53, for example, the width S of the roll flat portion 55 can be 8 μm, and the depth D of the concave shape 54 can be 145 μm.
 また、転写型53の凹部形状54の断面形状としては、半円形状、半楕円形状などが挙げられる。また、プリズム形状に対応した鋭角部を有するV字型形状でもよい。 Also, examples of the cross-sectional shape of the concave portion 54 of the transfer mold 53 include a semicircular shape and a semielliptical shape. Further, it may be a V shape having an acute angle portion corresponding to the prism shape.
 上記転写型53の作製方法としては、上記ステンレス鋼、鉄鋼などからなる転写ロールの表面に、たとえばクロムメッキ、銅メッキ、ニッケルメッキ、ニッケル-リンメッキなどのメッキ処理を施した後に、そのメッキ面に対してダイヤモンドバイトや金属砥石等を用いた除去加工や、レーザー加工や、またはケミカルエッチングを行ない、形状を加工することがあるが、これらの手法に特に限定されるものではない。 The transfer mold 53 is manufactured by applying a plating treatment such as chromium plating, copper plating, nickel plating, nickel-phosphorous plating to the surface of a transfer roll made of stainless steel, steel, etc. On the other hand, the removal may be performed using a diamond tool, a metal grindstone, or the like, laser processing, or chemical etching may be performed to form the shape, but the method is not particularly limited.
 また、転写ロールの表面は、上記転写型53を形成した後に、たとえば表面形状の精度を損なわないレベルで、クロムメッキ、銅メッキ、ニッケルメッキ、ニッケル-リンメッキなどのメッキ処理を施してもよい。 Further, the surface of the transfer roll may be subjected to plating treatment such as chromium plating, copper plating, nickel plating, nickel-phosphorous plating, etc. at a level that does not impair the accuracy of the surface shape after the transfer mold 53 is formed.
 (樹脂シートの製造方法の変形例)
 製造方法の変形例として、例えば、搬送工程(S4)の後に、第2の押圧工程を実施してもよい。第2の押圧工程は、図2に示す樹脂シート製造装置50Bを用いて実施可能である。第2の押圧工程では、搬送工程(S4)によって搬送された連続樹脂シート60を第2押圧ロール(形状ロール)52Bと第3押圧ロール52Cとで挟みこむことで押圧する。第2押圧工程で押圧された連続樹脂シート60は、第2押圧ロールから剥離され(剥離工程)、第3押圧ロール52Cの周面に密着したまま搬送された後、第3押圧ロール52Cの周面から剥離される。
(Modified example of resin sheet manufacturing method)
As a modification of the manufacturing method, for example, the second pressing step may be performed after the transporting step (S4). The second pressing step can be performed using a resin sheet manufacturing apparatus 50B shown in FIG. In the second pressing step, the continuous resin sheet 60 conveyed in the conveying step (S4) is pressed by being sandwiched between the second pressing roll (shape roll) 52B and the third pressing roll 52C. The continuous resin sheet 60 pressed in the second pressing step is peeled from the second pressing roll (peeling step) and conveyed while being in close contact with the peripheral surface of the third pressing roll 52C, and then the circumference of the third pressing roll 52C. Peel from the surface.
 また、製造方法の他の変形例として、例えば、押圧工程(S3)の前に、予め押圧する予圧工程を実施しても良い。予圧工程は、図3に示す樹脂シート製造装置50Cを用いて実施可能である。予圧工程では、シート製造工程(S1)によって製造された連続樹脂シート60を予圧ロール52Dと第1押圧ロール52Aとで挟み込むことで、予め押圧する。押圧された連続樹脂シート60は、第1押圧ロール52Aの周面に密着したまま搬送され、第1および第2押圧ロール52A,52Bによって押圧工程(S3)が実行される。 Further, as another modified example of the manufacturing method, for example, a preloading step of pressing in advance may be performed before the pressing step (S3). The preloading step can be performed using a resin sheet manufacturing apparatus 50C shown in FIG. In the preloading process, the continuous resin sheet 60 manufactured in the sheet manufacturing process (S1) is pressed in advance by being sandwiched between the preloading roll 52D and the first pressing roll 52A. The pressed continuous resin sheet 60 is conveyed in close contact with the peripheral surface of the first pressing roll 52A, and the pressing step (S3) is performed by the first and second pressing rolls 52A and 52B.
 (作用)
 本発明の樹脂シートの製造方法、及び形状ロールでは、転写型53において、隣り合う凹部形状54が6μm以上15μm以下の間隔Sを空けて配置されて、転写工程が実行されるため、転写型53から剥離されたあとの連続樹脂シート60において、シート形状が膨張しても凸部形状35のY方向の端部同士が結合することが防止される。これにより、シート形状の谷部35bにおいて、隣り合う凸部形状35の端部同士が接近し過ぎることなく、所望の凸部形状35が確保され、形状転写率が向上される。
(Function)
In the manufacturing method and shape roll of the resin sheet of the present invention, in the transfer mold 53, the adjacent recess shapes 54 are arranged with an interval S of 6 μm or more and 15 μm or less and the transfer process is executed. In the continuous resin sheet 60 after being peeled off, the end portions in the Y direction of the convex shape 35 are prevented from being bonded to each other even if the sheet shape expands. Thereby, in the sheet-shaped valley part 35b, the end part of the adjacent convex part shape 35 does not approach too much, The desired convex part shape 35 is ensured and a shape transfer rate improves.
 図6は、樹脂シートの隣り合う凸状部間に形成された谷部を拡大して示す図である。図6に示すように、樹脂シート60の隣り合う凸部形状35,35間に形成された谷部35bにおいて、凸部形状35の端部同士の結合が防止されて、形状ロールの平坦部55に対応する隙間が形成されている。 FIG. 6 is an enlarged view showing a trough formed between adjacent convex portions of the resin sheet. As shown in FIG. 6, in the trough part 35b formed between the convex part shapes 35 and 35 which adjoin the resin sheet 60, the coupling | bonding of the edge parts of the convex part shape 35 is prevented, and the flat part 55 of a shape roll A gap corresponding to is formed.
 (実施例)
 以下、実施例1を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
(Example)
EXAMPLES Hereinafter, although Example 1 is given and this invention is demonstrated in detail, this invention is not limited to these.
 (実施例1,比較例1)
 図3に示す樹脂シート製造装置50Cを用いて実施例1及び比較例1に係るシートを作成した。使用した製造装置50Cの条件を以下に示す。押出機58のスクリュー径を120mmとし、押出機58による押出量を、700kg/hrとした。実施例1では、ライン速度を2.75m/minとし、比較例1では、ライン速度を2.83m/minとした。シート幅は、実施例1、比較例1ともに135cmとした。実施例1、比較例1ともに、ロール温度(予圧ロール52D/第1押圧ロール52A/第2押圧ロール52B)を、80℃/85℃/95℃とした。
(Example 1, Comparative Example 1)
The sheet | seat which concerns on Example 1 and Comparative Example 1 was created using the resin sheet manufacturing apparatus 50C shown in FIG. The conditions of the manufacturing apparatus 50C used are shown below. The screw diameter of the extruder 58 was 120 mm, and the amount of extrusion by the extruder 58 was 700 kg / hr. In Example 1, the line speed was 2.75 m / min, and in Comparative Example 1, the line speed was 2.83 m / min. The sheet width was 135 cm in both Example 1 and Comparative Example 1. In both Example 1 and Comparative Example 1, the roll temperature (preload roll 52D / first pressing roll 52A / second pressing roll 52B) was set to 80 ° C./85° C./95° C.
 実施例1及び比較例1では、シート厚み3mmのPMMA板を押出成形(シート製造工程)によって作成した。実施例1及び比較例1では、単層構造の樹脂シート(図4参照)を作成とした。 In Example 1 and Comparative Example 1, a PMMA plate having a sheet thickness of 3 mm was formed by extrusion molding (sheet manufacturing process). In Example 1 and Comparative Example 1, a single-layered resin sheet (see FIG. 4) was prepared.
 実施例1及び比較例1に係る樹脂シートを構成する樹脂に、メタクリル酸メチルとアクリル酸メチルとの共重合体を用いた。樹脂の仕様を以下に示す。
 重量比:メタクリル酸メチル/アクリル酸メチル=94/6
 MFR:1.5g/10min
 ガラス転移温度Tg:102℃
 厚み:3.0mm
A copolymer of methyl methacrylate and methyl acrylate was used as the resin constituting the resin sheet according to Example 1 and Comparative Example 1. The resin specifications are shown below.
Weight ratio: methyl methacrylate / methyl acrylate = 94/6
MFR: 1.5g / 10min
Glass transition temperature Tg: 102 ° C
Thickness: 3.0mm
 第2押圧ロール52Bの転写型53の形状として、実施例1では、ピッチPを400μm、深さDを222μm、平坦部55の幅Sを8μmとし、比較例1では、ピッチPを400μm、深さDを222μm、平坦部55の幅Sを4μmとした。 As the shape of the transfer mold 53 of the second pressing roll 52B, in Example 1, the pitch P is 400 μm, the depth D is 222 μm, the width S of the flat portion 55 is 8 μm, and in Comparative Example 1, the pitch P is 400 μm and the depth The thickness D was 222 μm, and the width S of the flat portion 55 was 4 μm.
 実施例1では、第2押圧ロール52Bから剥離された直後の樹脂シートの表面温度は、122℃であり、このときの形状高さHは、145μmであり、形状転写率(=H/D)は、65%であった。比較例1では、第2押圧ロール52Bから剥離された直後の樹脂シートの表面温度は、123℃であり、このときの形状高さHは、127μmであり、形状転写率(=H/D)は、57%であった。 In Example 1, the surface temperature of the resin sheet immediately after being peeled from the second pressing roll 52B is 122 ° C., and the shape height H at this time is 145 μm, and the shape transfer rate (= H / D). Was 65%. In Comparative Example 1, the surface temperature of the resin sheet immediately after being peeled from the second pressing roll 52B is 123 ° C., and the shape height H at this time is 127 μm, and the shape transfer rate (= H / D) Was 57%.
 下記の表1に実施例1及び比較例1の試験条件及び試験結果を示している。
Figure JPOXMLDOC01-appb-T000001
Table 1 below shows the test conditions and test results of Example 1 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
 このように本発明の実施形態に係る樹脂シートの製造方法によれば、樹脂シートの形状転写率を向上させることができる。 Thus, according to the method for producing a resin sheet according to the embodiment of the present invention, the shape transfer rate of the resin sheet can be improved.
 以上、本発明をその実施形態に基づき具体的に説明したが、本発明は、上記実施形態に限定されるものではない。 As mentioned above, although this invention was concretely demonstrated based on the embodiment, this invention is not limited to the said embodiment.
 また、上記実施形態では、樹脂シートとして、導光板について説明しているが、その他の樹脂シートを作成してもよい。本発明の樹脂シート製造方法は、例えば液晶TVのバックライトに搭載される形状導光板および形状拡散板の製造に有効である。本発明は、アスペクト比の高い形状導光板および形状拡散板の製造に特に有効である。 In the above embodiment, the light guide plate is described as the resin sheet, but other resin sheets may be created. The resin sheet manufacturing method of the present invention is effective for manufacturing a shape light guide plate and a shape diffusion plate mounted on a backlight of a liquid crystal TV, for example. The present invention is particularly effective for manufacturing a shape light guide plate and a shape diffusion plate having a high aspect ratio.
 また、上記実施形態では、図1~図3に示す樹脂シート製造装置50、50B、50Cを用いて、連続樹脂シートの製造を行っているが、その他の製造工程を実行可能な樹脂シート製造装置を用いてもよい。 In the above embodiment, the continuous resin sheet is manufactured using the resin sheet manufacturing apparatuses 50, 50B, and 50C shown in FIGS. 1 to 3, but the resin sheet manufacturing apparatus capable of performing other manufacturing processes. May be used.
 また、形状ロールから剥離された直後の連続樹脂シートの表面温度は、樹脂のガラス転移温度Tgに対して、(Tg+5)℃以上(Tg+50)℃以下の範囲であることが好適であるが、その他の温度範囲でもよい。 The surface temperature of the continuous resin sheet immediately after being peeled from the shape roll is preferably in the range of (Tg + 5) ° C. or more and (Tg + 50) ° C. or less with respect to the glass transition temperature Tg of the resin. It may be in the temperature range.
 本発明の樹脂シート製造方法によれば、形状が転写された樹脂シートにおいて、隣り合う形状同士が結合することが防止され、形状転写率の向上を図ることができる。本発明の形状ロールによれば、形状が転写された樹脂シートにおいて、隣り合う形状同士が結合することが防止され、形状転写率の向上を図ることができる。 According to the resin sheet manufacturing method of the present invention, it is possible to prevent adjacent shapes from being joined to each other in the resin sheet to which the shape is transferred, and to improve the shape transfer rate. According to the shape roll of the present invention, in the resin sheet to which the shape is transferred, adjacent shapes are prevented from being combined with each other, and the shape transfer rate can be improved.
 50,50B,50C…樹脂シート製造装置、51…ダイ、52A…第1押圧ロール、52B…第2押圧ロール(形状ロール)、52C…第3押圧ロール、52D…予圧ロール、53…転写型、54…凹部形状、55…平坦部、57…樹脂投入口、58…押出機、60…連続樹脂シート。 50, 50B, 50C ... resin sheet manufacturing apparatus, 51 ... die, 52A ... first press roll, 52B ... second press roll (shape roll), 52C ... third press roll, 52D ... preload roll, 53 ... transfer mold, 54 ... concave shape, 55 ... flat part, 57 ... resin inlet, 58 ... extruder, 60 ... continuous resin sheet.

Claims (3)

  1.  加熱溶融状態の樹脂をダイから連続的に押し出して連続樹脂シートを製造するシート製造工程と、
     周面に転写型が形成された形状ロールを用いて、前記連続樹脂シートのシート表面に前記転写型の形状を転写する転写工程と、を備えた樹脂シート製造方法において、
     前記転写型では、前記形状ロールの長手方向に隣り合う凹部が、6μm以上15μm以下の間隔を空けて配置されている樹脂シート製造方法。
    A sheet manufacturing process for continuously extruding a heat-melted resin from a die to manufacture a continuous resin sheet;
    In a resin sheet manufacturing method comprising a transfer step of transferring the shape of the transfer mold to the sheet surface of the continuous resin sheet using a shape roll having a transfer mold formed on the peripheral surface,
    The said transfer type | mold WHEREIN: The resin sheet manufacturing method by which the recessed part adjacent to the longitudinal direction of the said shape roll is arrange | positioned at intervals of 6 micrometers or more and 15 micrometers or less.
  2.  前記形状ロールから剥離された直後の前記連続樹脂シートの表面温度は、前記樹脂のガラス転移温度Tgに対して、(Tg+5)℃~(Tg+50)℃の範囲である請求項1記載の樹脂シート製造方法。 The resin sheet production according to claim 1, wherein the surface temperature of the continuous resin sheet immediately after being peeled from the shape roll is in the range of (Tg + 5) ° C to (Tg + 50) ° C with respect to the glass transition temperature Tg of the resin. Method.
  3.  加熱溶融状態の樹脂をダイから連続的に押し出して連続樹脂シートを製造するシート製造装置に適用され、前記連続樹脂シートのシート表面に転写型の形状を転写するための形状ロールであって、
     前記形状ロールの周面には、当該形状ロールの周方向に連続する凹部が前記形状ロールの長手方向に複数並べて設けられ、前記形状ロールの長手方向に隣り合う凹部が、6μm以上15μm以下の間隔を空けて配置されている形状ロール。
    It is applied to a sheet manufacturing apparatus that continuously extrudes a heated and melted resin from a die to manufacture a continuous resin sheet, and is a shape roll for transferring the shape of a transfer mold to the sheet surface of the continuous resin sheet,
    On the peripheral surface of the shape roll, a plurality of recesses that are continuous in the circumferential direction of the shape roll are provided side by side in the longitudinal direction of the shape roll, and the recesses that are adjacent to each other in the longitudinal direction of the shape roll A shape roll arranged with a gap.
PCT/JP2012/051453 2011-01-28 2012-01-24 Resin-sheet manufacturing method and shaped roll WO2012102273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-016895 2011-01-28
JP2011016895A JP2012153125A (en) 2011-01-28 2011-01-28 Method for manufacturing resin sheet, and shape roll

Publications (1)

Publication Number Publication Date
WO2012102273A1 true WO2012102273A1 (en) 2012-08-02

Family

ID=46580839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051453 WO2012102273A1 (en) 2011-01-28 2012-01-24 Resin-sheet manufacturing method and shaped roll

Country Status (2)

Country Link
JP (1) JP2012153125A (en)
WO (1) WO2012102273A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169015A (en) * 1991-12-25 1993-07-09 Dainippon Printing Co Ltd Production of light diffusion sheet
JPH106396A (en) * 1996-06-25 1998-01-13 Sumitomo Chem Co Ltd Methyl methacrylate resin embossed sheet
JP2974453B2 (en) * 1991-06-19 1999-11-10 キヤノン株式会社 Roll stamper for molding substrates for optical information recording media
JP2009202479A (en) * 2008-02-28 2009-09-10 Sumitomo Chemical Co Ltd Method of manufacturing transfer resin sheet
JP2009220555A (en) * 2008-02-21 2009-10-01 Sumitomo Chemical Co Ltd Manufacturing method of surface pattern transfer resin sheet and its manufacturing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2974453B2 (en) * 1991-06-19 1999-11-10 キヤノン株式会社 Roll stamper for molding substrates for optical information recording media
JPH05169015A (en) * 1991-12-25 1993-07-09 Dainippon Printing Co Ltd Production of light diffusion sheet
JPH106396A (en) * 1996-06-25 1998-01-13 Sumitomo Chem Co Ltd Methyl methacrylate resin embossed sheet
JP2009220555A (en) * 2008-02-21 2009-10-01 Sumitomo Chemical Co Ltd Manufacturing method of surface pattern transfer resin sheet and its manufacturing apparatus
JP2009202479A (en) * 2008-02-28 2009-09-10 Sumitomo Chemical Co Ltd Method of manufacturing transfer resin sheet

Also Published As

Publication number Publication date
JP2012153125A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5584654B2 (en) Method for manufacturing light guide plate with protective film
KR101708926B1 (en) Optical sheet manufacture method and optical sheet
US8721933B2 (en) Optical sheet manufacture method and optical sheet
CN102029712B (en) Optical sheet manufacturing apparatus and optical sheet manufacturing method
TWI461762B (en) Thin double-sided light guide plate
WO2012165479A1 (en) Light guide plate equipped with protective film
JP5648075B2 (en) Method for manufacturing shape transfer resin sheet and resin sheet
KR20110044148A (en) Method for producing resin sheet transferring surface shape
WO2012102273A1 (en) Resin-sheet manufacturing method and shaped roll
WO2012102274A1 (en) Resin-sheet manufacturing method
JP2009166488A (en) Method for producing resin sheet, optical film, and apparatus for producing resin sheet
JP2012171296A (en) Method for manufacturing pattern sheet and manufacturing device thereof
JP2013022813A (en) Method for producing resin sheet
JP2013158961A (en) Method of manufacturing resin sheet
JP2012144033A (en) Method of manufacturing resin sheet
JP2009196206A (en) Method for manufacturing surface shape transferring resin sheet
JP2012250467A (en) Method for producing light guide plate
JP2012030584A (en) Method of manufacturing surface shape-transferred resin sheet
JP2012250466A (en) Method for producing light guide plate
JP2013001035A (en) Method for manufacturing light guide plate
JP2012030590A (en) Method of manufacturing surface shape-transferred resin sheet
KR20120002933A (en) Method for manufacturing resin sheet
JP2012030591A (en) Method of manufacturing surface shape-transferred resin sheet
JP2009229845A (en) Manufacturing method for light diffusion sheet
JP2014058145A (en) Method for manufacturing optical pattern sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12738884

Country of ref document: EP

Kind code of ref document: A1