WO2007077737A1 - Mold part and molded flat-plate product - Google Patents

Mold part and molded flat-plate product Download PDF

Info

Publication number
WO2007077737A1
WO2007077737A1 PCT/JP2006/325377 JP2006325377W WO2007077737A1 WO 2007077737 A1 WO2007077737 A1 WO 2007077737A1 JP 2006325377 W JP2006325377 W JP 2006325377W WO 2007077737 A1 WO2007077737 A1 WO 2007077737A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold part
linear
linear portion
mold
planes
Prior art date
Application number
PCT/JP2006/325377
Other languages
French (fr)
Japanese (ja)
Inventor
Keisuke Tsukada
Kazunori Ueki
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2007552903A priority Critical patent/JPWO2007077737A1/en
Priority to TW095149177A priority patent/TW200740595A/en
Publication of WO2007077737A1 publication Critical patent/WO2007077737A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape

Definitions

  • the present invention relates to a mold part, and more particularly to a mold part capable of efficiently molding a molded product having excellent optical performance.
  • the surface (cavity surface) of the mold is sometimes mirror-finished for the purpose of improving the surface and appearance of a molded product such as a lens and a reflector.
  • a molded product such as a lens and a reflector.
  • the mold and the molded product may be in close contact with each other, making it difficult to release the molded product. Therefore, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-287227), the mold surface is a rough surface having a 10-point average roughness Rz of 0.2 to 3.0 ⁇ m, so It is disclosed to improve releasability.
  • a direct type backlight device having a reflection plate, a plurality of light sources, and a light diffusion plate may be used.
  • the light diffusing plate used in such a direct type backlight device has a technology for making the luminance of the surface of the light diffusing plate uniform (increasing the luminance uniformity) because the portion directly above the light source tends to have high luminance. It is being considered.
  • the inventors of the present invention have provided luminance uniformity by providing, for example, a prism array in which a plurality of linear prisms having a polygonal cross section are arranged on the surface of the light diffusion plate, extending substantially in parallel with the longitudinal direction of the light source. It has already been found that the degree can be increased (Japanese Patent Application No. 2004-243479 (Japanese Patent Application Laid-Open No. 2006-666074)).
  • Such a light diffusing plate can be obtained by forming a concavo-convex structure corresponding to the prism row on the cavity surface of the mold and performing injection molding using the mold.
  • the light diffusing plate having such a concavo-convex structure is injection-molded, it may be difficult to release the light diffusing plate, which is a molded product, and the molding operation is not always efficient.
  • Such a problem is not limited to the case where the molded product is a light diffusing plate, but also occurs in a flat molded product used for other optical components such as a light guide plate and a reflective plate.
  • An object of the present invention is to provide a mold part capable of efficiently forming a flat molded article having excellent optical performance.
  • the present invention is a mold part for forming a resin-made flat plate molded product used for an optical component, and has a cavity surface for forming the surface of the flat plate molded product,
  • the cavity surface has a concavo-convex structure with a maximum center line average roughness Ra (maxl) measured in the direction in which the center line average roughness Ra is maximum on the cavity surface being 3.0 / ⁇ ⁇ to 1,000 m.
  • the concavo-convex structure includes a plurality of concave or convex structural units having two or more planes as repeating units, and at least one of the two or more planes of the structural units is a plurality of In the plane having these irregularities, the maximum centerline average roughness Ra (max2) force measured in the direction in which the centerline average roughness Ra on the plane is maximized Ra (ma xl ) And 0.5> Ra (max2) / Ra (maxl)> 0.002 satisfy the relationship 1 and the centerline average on the plane Between the minimum center line average roughness Ra (min 2) measured in the direction in which the roughness Ra is minimized, the relationship 2 of Ra (max2) ZRa (min2)> l.5 is satisfied.
  • the mold part includes a stamper provided on the mold in addition to the mold itself.
  • the structural unit may be a linear portion having a polygonal cross section extending in a linear shape, and the concavo-convex structure may be configured such that a plurality of the linear portions are arranged substantially parallel to each other.
  • the linear portion has a triangular cross-sectional shape with an apex angle of 60 ° to 170 °, and a distance between a linear portion and a linear portion adjacent to the linear portion is 20 m to 700 m. It can be configured.
  • the term “polygon” refers to the open path composed of line segments in the cross-sectional plain corresponding to each concave or convex portion of the linear portion. ). Then, according to the number of sides or points of the closed path obtained by connecting both ends of the open path, they are called corresponding to the polygon (which usually means).
  • the linear portion has four or more planes, and at least two of the four or more planes are on one side with respect to the thickness direction of the mold part.
  • the plane other than the at least two planes may be inclined to the opposite side of the at least two planes.
  • the linear portion has a triangular cross section, and an angle formed by one of two planes constituting the triangle and a plane perpendicular to the thickness direction of the mold part constitutes the triangle.
  • the angle equal to the angle formed between the other of the two planes formed and the plane perpendicular to the thickness direction of the mold part is defined as a specific X point and the linear portion from the X point.
  • a configuration may be adopted that increases continuously or stepwise from the point X and the point Y away from the point Y along a direction perpendicular to the longitudinal direction.
  • the angle formed between each of the two slopes and the surface perpendicular to the thickness direction of the mold part is “equal” when the difference between the angles is within 1 °.
  • the structural unit may be a convex structure or a concave structure having three or more planes.
  • the convex structure or the concave structure having three or more planes may be a pyramid or a truncated pyramid.
  • the structural unit is a convex structure having three or more planes, and the convex structure forms a linear portion having a polygonal cross-section extending linearly, It can be obtained by making a V-shaped cut in a direction different from the longitudinal direction of the linear part.
  • the structural unit is a concave structure having three or more planes, and the concave structure forms a linear section having a polygonal cross section extending linearly, and then the linear section It may be obtained by transferring the convex shape of a transfer member having a convex shape obtained by making a V-shaped cut in a direction different from the longitudinal direction of the linear portion.
  • the concavo-convex portion may be formed on a plane of a part of the plurality of structural units.
  • the uneven portion may be formed only on a part of the two or more planes constituting the structural unit.
  • the structural unit is a triangular section and is a linear portion
  • a configuration in which the concavo-convex portion is formed only on one of the two exposed flat surfaces can be exemplified.
  • the concavo-convex portion may be formed only on a part of the plane constituting the structural unit.
  • a case where an uneven portion is formed only at the central portion of each surface can be mentioned.
  • a related invention is, for example, a flat plate molded product for an optical component such as a light diffusion plate obtained by injection molding using the mold component.
  • Another related invention is a method for producing a flat resin molded product made of resin used for optical parts by injection molding using the mold parts.
  • an uneven structure having a maximum center line average roughness Ra (maxl) measured in a direction in which Ra is maximum on the cavity surface is 3. O / zm to: L, 000 m.
  • Ra (max x2) measured in the direction where Ra is maximum on the plane of the structural unit and Ra (maxl) 0.5> Ra (max2) / Ra (maxl)> 0.002 Relationship 1 is satisfied, and the minimum center line average roughness Ra (min2) measured in the direction in which Ra is minimized on the plane of the structural unit, Ra (max2) ZRa ( min2)> 1.5
  • FIG. 1 is a perspective view schematically showing a mold part according to an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view partially showing a cross section along the thickness direction of the mold part.
  • FIG. 3 is a partial cross-sectional view schematically showing a mold part according to a first modification of the present invention.
  • FIG. 4 is a partial cross-sectional view schematically showing a mold part according to a second modification of the present invention.
  • FIG. 5 is a partial cross-sectional view schematically showing a mold part according to a third modification of the present invention.
  • FIG. 6 is a perspective view schematically showing a direct type backlight device according to Embodiment 1 of the present invention.
  • FIG. 7 is a cross-sectional view showing a stamper according to a fourth modification of the present invention.
  • FIG. 8 is a cross-sectional view showing a stamper according to a fifth modification of the present invention.
  • FIG. 9 is an enlarged cross-sectional view of a range X in FIG.
  • FIG. 10 is a cross-sectional view showing a modification of the row portion in the mold part of the present invention.
  • FIG. 11 is a cross-sectional view showing a stamper according to a sixth modification of the present invention.
  • FIG. 12 is a cross-sectional view showing a stamper according to a seventh modification of the present invention.
  • FIG. 1 is a perspective view schematically showing a stamper 1 which is a mold part according to the present embodiment.
  • FIG. 2 is a diagram partially showing a cross section along the thickness direction of the stamper 1.
  • the stamper 1 is a member for forming a resin-made flat plate molded product used for optical components. Examples of the molded plate product include optical components such as a light diffusion plate, a light guide plate, and a reflection plate.
  • Transparent resin is a resin having a total light transmittance of 70% or more measured with a 2 mm thick plate smooth on both sides based on Japanese Industrial Standards JIS K7361-KIS01346 8- 1).
  • Propylene-ethylene copolymer, polypropylene, polystyrene, aromatic butyl monomer and (meth) acrylic having lower alkyl group examples thereof include copolymers with acid alkyl esters, polyethylene terephthalate, terephthalic acid-ethylene glycol-cyclohexane dimethanol copolymer, polycarbonate, acrylic resin, and resin having an alicyclic structure.
  • (meth) acrylic acid is acrylic acid and methacrylic acid.
  • a resin obtained by adding a light diffusing agent to the transparent resin may be used.
  • a light diffusing agent is a particle having a property of diffusing light, and can be roughly classified into an inorganic filler and an organic filler.
  • inorganic fillers include silica, aluminum hydroxide, aluminum oxide, titanium oxide, zinc oxide, barium sulfate, magnesium silicate, and mixtures thereof.
  • organic filler include acrylic resin, polyurethane, polyvinyl chloride, polystyrene resin, polyacrylonitrile, polyamide, polysiloxane resin, melamine resin, and benzoguanamine resin.
  • the stamper 1 is disposed at a position corresponding to the cavity surface of the injection mold.
  • the mold part of the present invention is used as a stamper.
  • it may be a movable or fixed mold (core block, cavity block) or the like.
  • the stamper 1 has a concavo-convex structure 2 formed on its cavity surface.
  • the concavo-convex structure 2 is a sawtooth cross-sectional structure in which a plurality of convex structural units linear portions 3 are arranged substantially parallel to each other and the bottom angles of the linear portions 3 are continuous.
  • the linear portion 3 has a triangular shape having two slopes (planes) 4 and a convex section.
  • the apex angle 0 of the linear portion 3 is 60 ° to 170 °, preferably 70 ° to 160 °.
  • the width dimension of the bottom edge of the wire rod is 20 ⁇ m to 700 ⁇ m, preferably 30 ⁇ m to 600 ⁇ m.
  • the height H of the linear portion 3 is 0.9 m to 606 ⁇ m, preferably 2.6 ⁇ m to 428 ⁇ m.
  • the cross-sectional shape of the linear part 3 is preferably an isosceles triangle in that the optical performance of the molded flat product is improved.
  • the interval (pitch) P between adjacent linear portions 3 is 20 ⁇ m to 700 ⁇ m, preferably 30 ⁇ m to 600 ⁇ m.
  • the interval between the linear ridges is the distance between the vertices of the adjacent linear portions.
  • the maximum center line average roughness Ra (maxl) measured in the A direction is 3 O ⁇ m to 1,000 [mu] m, preferably 4.0 [mu] m to 900 [mu] m.
  • the A direction force R The direction in which a is the maximum.
  • the centerline average roughness Ra can be obtained based on JIS B0601.
  • each inclined surface 4 of the linear portion 3 On the surface of each inclined surface 4 of the linear portion 3, a plurality of linear concave portions 4A that are uneven portions are formed.
  • the linear recess 4A extends substantially parallel to the longitudinal direction of the linear portion 3 (the direction perpendicular to the paper surface of FIG. 2). These linear recesses 4A are substantially parallel to each other.
  • Slope 4 between the maximum centerline average roughness Ra (max 2) measured along the B direction and C direction, which are the directions along Slope 4A in the figure, and Ra (maxl) is 0.
  • the relation 1 of 5> Ra (max2) / Ra (maxl)> 0.002 is satisfied.
  • the B direction and the C direction are directions in which Ra is maximum.
  • the average interval Sm between adjacent linear recesses 4A measured in the B direction and the C direction is between Ra (maxl) and Ra (maxl) X 10> Sm> Ra ( maxl) It is preferable to satisfy the relationship of X O. 001 Ra (maxl) X 9> Sm> Ra (maxl) It is preferable to satisfy the relationship of X O. 002! / ,.
  • the stamper 1 as described above is manufactured, for example, as follows.
  • a nickel-phosphorus electroless plating layer having a thickness of, for example, about 100 / zm is applied to the entire surface of a metal rectangular plate.
  • a machine tool for fine processing for example, Nano Gruber AMG71P, manufactured by Fujikoshi Co., Ltd.
  • the concavo-convex structure 2 having a plurality of linear portions 3 having a triangular cross section is formed by cutting along a predetermined pitch along.
  • the sintered diamond bite has a shape in which slight irregularities are formed on the surface thereof as compared with the single crystal diamond bite. For this reason, a plurality of linear recesses 4A are formed on the inclined surface 4 of the linear part 3 along the longitudinal direction of the linear part 3 due to the uneven part of the sintered diamond bite.
  • the stamper 1 is manufactured as described above.
  • the linear recess 4A is provided on the slope 4 of the linear portion 3 of the stamper 1 so that the center line average roughness Ra satisfies the relations 1 and 2 described above. Since the molding resin does not easily enter the fine linear recess 4A, the flat molded product can be easily released from the stamper 1 due to the possibility of a gap between the stamper 1 and the flat molded product. . For this reason, a flat plate molded product can be molded efficiently.
  • the flat plate molded product is formed with a prism array composed of linear prisms having a triangular cross section corresponding to the concavo-convex structure 2 composed of a plurality of linear portions 3.
  • the flat plate molded product obtained by the stamper 1 is transferred to at least one main surface of the uneven structure 2 of the stamper 1, so that the prism row is formed on the flat plate molded product.
  • An uneven structure corresponding to the linear portion 3 can be formed on each plane of each linear prism constituting the prism row, but if the releasability between the flat plate molded product and the mold part is taken into consideration, the linear shape It is preferable that the uneven structure corresponding to the portion 3 is not transferred so much and at least the transferred portion is in a partial range.
  • the flat plate molded product of this embodiment is a light diffusing plate.
  • the linear prism is a linear prism having a convex cross section and an isosceles triangle shape.
  • the apex angle of the triangle is usually 60 ° to 170 °, preferably 70 ° to 160 °.
  • the width of the base portion of the triangle is generally 20 ⁇ m to 700 ⁇ m, preferably 30 ⁇ m to 600 ⁇ m.
  • the height of the triangle is usually 0.9 ⁇ m to 606 ⁇ m, preferably 2.6 ⁇ m to 428 ⁇ m.
  • the interval (pitch) between adjacent triangles is usually 20 ⁇ ! ⁇ 700 m, preferably 30 ⁇ m to 600 ⁇ m.
  • the maximum center line average roughness Ra (measured in the direction perpendicular to the plane including the thickness direction of the flat plate molded product and the longitudinal direction of the linear prisms Ra ( Dmaxl) force ⁇ 3.0 / ⁇ ⁇ ⁇ 1,000 m, preferably 4.0 / ⁇ ⁇ ⁇ 900 ⁇ m. This direction is the direction where Ra is maximum.
  • each inclined surface of the linear prism is an uneven surface to which the linear recess 4A of the stamper 1 is transferred.
  • This uneven surface between the maximum center line average roughness Ra (Dmax2) measured in a direction parallel to the inclined surface and including a direction perpendicular to the longitudinal direction of the linear prism, and Ra (Dmaxl), The relationship 0.5> Ra (Dmax2) / Ra (Dmaxl)> 0.002 is satisfied.
  • the direction including the direction parallel to the slope and perpendicular to the longitudinal direction of the linear prism is the direction in which Ra is maximum.
  • the average distance Sm (D) of the portion corresponding to the linear recess 4A measured in the direction along the concavo-convex surface is between Ra (Dmaxl) and Ra (Dmaxl) X 10 It is preferable to satisfy the relationship> Sm (D)> Ra (Dmaxl) X O. 001 Ra (Dmaxl) X 9> Sm (D)> Ra (Dmaxl) X O. 002 More preferably.
  • the concavo-convex part of the slope 4 of the linear part 3 may be a linear convex part (linear convex part) with the linear concave part 4A, or the linear concave part and the linear convex part It is good also as a structure which has both.
  • the slope 4 has a force that forms a plurality of linear recesses 4A so as to be substantially parallel to the longitudinal direction of the linear portion 3.
  • the plurality of linear recesses 4A are substantially parallel to the longitudinal direction of the linear portion 3. It does not have to be. However, it is preferable that the plurality of linear recesses 4A are substantially parallel to each other.
  • the linear portion 3 has a triangular cross section, but may have a polygonal shape other than the triangular shape.
  • the concavo-convex structure 2 includes at least four surfaces 11 to 14, and two of the at least four surfaces 11 to 14 are present.
  • Surfaces 11, 12 and other two surfaces 13, 14 and force Stampers 1 are perpendicular to each other in a direction perpendicular to the thickness direction (including the horizontal direction in the figure and perpendicular to the paper) It is good also as an inclined structure.
  • the light diffusing plate By configuring a direct type backlight device using a light diffusing plate formed using a stamper having such a configuration and a plurality of light sources, the luminance and luminance uniformity of the light emitting surface can be increased. Therefore, the light diffusing plate has sufficient optical performance.
  • the apex angles ⁇ of the linear portions 3 are all the same, but the apex angles ⁇ may be different.
  • the angle formed between one of the two planes constituting the cross-sectional triangle of the linear portion and the plane orthogonal to the thickness direction of the mold part is the other of the two planes constituting the triangle and the plane
  • the angle equal to the angle formed with the surface orthogonal to the thickness direction of the mold part is a predetermined X point and a predetermined distance away from this X point along the direction orthogonal to the longitudinal direction of the linear portion.
  • the distance between the point Y and the point Y can be increased continuously or stepwise as the point moves away from the point X and the point Y.
  • the angle formed between the two inclined surfaces 4 of each linear portion 3 and the surface in the direction perpendicular to the thickness direction of the stamper 1 is formed to be equal.
  • the angle ⁇ continuously increases as the distance from the point X and the point Y increases from X to the point Y that is a predetermined distance along the direction perpendicular to the longitudinal direction of the linear portion 3 (the horizontal direction in the figure). Or you can make it smaller in steps! / ⁇ .
  • the concavo-convex structure 2 may be a convex structure or a concave structure having three or more surfaces.
  • the concave structure or convex structure having three or more surfaces for example, a polygonal pyramid such as a quadrangular pyramid as shown in FIG.
  • the convex structure having three or more surfaces after forming a linear portion having a polygonal shape having a concave or convex cross section, a direction different from the longitudinal direction of the linear portion is formed on the linear portion. It can be formed with V-shaped cuts.
  • the concave structure having three or more surfaces for example, as shown in the embodiment, after forming a linear part having a polygonal force having a concave or convex cross section, the linear part is formed on the linear part. And forming a transfer member such as a stamper having a convex shape by making a V-shaped cut in a direction different from the longitudinal direction of the linear portion, and transferring the convex shape of the transfer member. Can do.
  • the linear recesses 4A are formed on the entire slopes 4 of all the linear parts 3 over substantially the entire surface of the slopes 4.
  • the present invention is not limited to this.
  • the present invention also includes a configuration in which a flat surface (mirror-like shape) without the linear concave portion 4A is provided on a part of the entire slope 4 of the plurality of linear portions 3. Providing a part of the flat surface in this way has an advantage that it is possible to obtain a molded product with a higher luminance uniformity (with less luminance unevenness) while ensuring sufficient molding efficiency.
  • a specific configuration of a stamper having a part of a flat surface is shown below.
  • FIG. 7 is a cross-sectional view showing a stamper 201 according to a fourth modification.
  • the stamper 201 has a configuration in which a linear recess 4A is formed only on the inclined surface 4 of a part of the linear portions 3 among the plurality of linear portions 3.
  • Such a stamper 201 can be easily produced by using both the sintered diamond bite and the single crystal diamond bite.
  • FIG. 8 is a cross-sectional view showing a stamper 202 according to a fifth modification.
  • the stamper 202 has a configuration in which each of the slopes 4 of the plurality of linear parts 3 has a linear convex part (uneven part) 4B formed only on a part of the inclined surface 4.
  • the linear convex portion 4B is formed only on the central portion of the slope 4 excluding the root side and the top side of the linear portion 3. ing.
  • the range of the central portion is defined as a length in the direction along each slope 4 being D, and this length D is applied from the root side to the top side of the linear portion 3 3
  • the length of each region is D1, D2, and D3 in the above order, for example, the length D2 is 1% to 98% of the length D, and the length D1 is 1% to 1% of the length D. 98%, length D3 can be 1% to 98% of length D.
  • length D2 is 5% to 90% of length D
  • length D1 is 5% to 90% of length D
  • length D3 is length D 5% to 90% is preferable.
  • the length D2 is 10% to 80% of the length D
  • the length D1 is 10% to 80% of the length D
  • the length D3 is 10% to 80% of the length D.
  • the lengths D1 and D3 can be 4.6 m and the length D2 can be 36.5 ⁇ m, respectively. It should be noted that the length D2 and the length D3 may be the same size but different forces.
  • Such a stamper 202 performs fine processing on the surface of the single crystal diamond tip using, for example, a focused ion beam (FIB) apparatus (manufactured by Hitachi High-Technologies Corporation) V. Then, after a chip having a linear convex portion formed in part is manufactured, the same processing as described above is performed using a bite to which this chip is attached.
  • FIB focused ion beam
  • FIG. 9 is an enlarged cross-sectional view of the range X in FIG.
  • the central portion of the slope 4 has a plurality of row portions 4X each having a series of two linear line-shaped convex portions 4B (concave portions) having a cross section of 90 ° in apex. Is formed.
  • a concave portion Z is formed between the two linear convex portions 4B.
  • the release property of the molded product from the stamper 202 is improved. For this reason, it is possible to improve the moldability of the molded product by providing the slope 4 of the linear portion with a portion such as the recess Z that is difficult for the resin to enter.
  • the shape of the recess Z must be such that when the molded product is released from the stamper 202, the undercut portion does not occur so as not to hinder the release.
  • the central portion of the slope 4 has a configuration in which a plurality of row portions 4X are formed at intervals, but there is no interval between the row portions 4X, that is, a linear shape.
  • Convex portions 4B can be continuously connected. Even in such a configuration, since the base portion and the top portion of the linear portion are flat surfaces, it is possible to obtain a molded product with higher brightness uniformity while ensuring sufficient molding efficiency. There are advantages.
  • a structure as shown in FIG. 9 may be formed over the entire surface of the force slope 4 in which the row portion 4X is formed only in the central portion.
  • the flat portion as described above between the row portions 4X Since such a portion is provided, it is possible to obtain an advantage that a molded product with higher luminance uniformity can be obtained while ensuring sufficient molding efficiency.
  • the configuration of the row portion 4X is a configuration in which two linear convex portions 4B are connected, but it may have a shape in which three or more linear concave portions are connected. Further, a configuration in which a plurality of types of row sections are combined may be employed. For example, as shown in FIG. 10, a configuration in which a row portion 4X including two linear convex portions 4B and a row portion 4Y including three linear convex portions 4B are mixed together. It is out.
  • FIG. 11 is a cross-sectional view showing a stamper 203 according to a sixth modification.
  • the stamper 203 has a configuration in which a linear convex portion 4B is formed only on one of the slopes 4 of each linear portion 3.
  • the stamper 203 can be manufactured by using a bite provided with the single crystal diamond tip and a bite finely processed by the focused ion beam apparatus or the like.
  • FIG. 12 is a cross-sectional view showing a stamper 204 according to a seventh modification.
  • the stamper 204 has a configuration in which the linear convex portion 4B is formed only on one of the slopes 4 of each linear portion 3.
  • the stamper 204 is made of the single crystal diamond tool! It can be manufactured by performing the same processing as described above using a tool attached with a chip that has been finely processed by the focused ion beam device or the like on only one surface.
  • the light diffusion plate obtained by using the mold parts according to these modification examples may also be the same modification examples. it can. That is, at least one main surface of the light diffusion plate according to the modification of the present invention has a shape in which the uneven structure of the mold part is sufficiently transferred.
  • the sufficiently transferred shape is a shape having substantially the same dimensions as the concavo-convex structure of the mold part, and so on.
  • a stainless steel SUS430 rectangular plate with dimensions 800mm X 500mm and thickness 2mm was coated with nickel-phosphorous electroless plating with a thickness of 100m.
  • sintering with an apex angle of 100 degrees Using a tool with a diamond chip (Sumidia DA-2200, manufactured by Sumitomo Electric Hardmetal Co., Ltd.) on a micromachining machine tool (for example, Nano Gruber AMG71P, manufactured by Fujikoshi Co., Ltd.)
  • a line with an isosceles triangle shape with a width of 70 / ⁇ ⁇ , height of 24.5 / ⁇ ⁇ , a pitch of 70 m, and an apex angle of 100 degrees along the short side of the plate against the electroless plating surface of phosphorus A plurality of parts were cut to form an uneven structure, and a stamper was obtained.
  • Ra (maxl) of the linear portion was ⁇ 1 ⁇ m. Since Ra (max2) was 0.15 ⁇ m, Ra (max2) / Ra (ma xl) was 0.021. Furthermore, Ra (max2) ZRa (min2) was 7.5 and Sm was.
  • Polysiloxane having an alicyclic structure which is a transparent resin (Nippon ZEON Co., Ltd., ZEONOR 1060R, water absorption 0.01%) 99.7 parts by mass and a polysiloxane having an average particle size of 2 m as a light diffusing agent 0.3 parts by mass of fine particles of a polymer cross-linked product were mixed, kneaded with a twin-screw extruder, extruded into a strand, and cut with a pelletizer to produce a light diffusion plate pellet.
  • a transparent resin Nippon ZEON Co., Ltd., ZEONOR 1060R, water absorption 0.01%
  • this light diffusion plate pellet as a raw material, an injection molding machine (clamping force lOOOOkN) was used to mold a 100 mm ⁇ 50 mm test plate with a smooth thickness of 2 mm on both sides.
  • the total light transmittance and haze of this test plate were measured using an integrating sphere color difference turbidimeter based on JIS K7361-liJIS K7136.
  • the test plate had a total light transmittance of 85% and a haze of 99%.
  • a mold was prepared, the stamper was attached to one mold constituting the mold, and the cavity surface of the other mold was polished. At this time, Ra of the polished surface was 0.003 m.
  • the light diffusion plate is produced under the conditions of a cylinder temperature of 280 ° C. and a mold temperature of 85 ° C. using the light diffusion plate pellets as a raw material. Was molded. The light diffusing plate thus obtained was strong enough to stick to the stamper even after 100 shots of injection molding.
  • the obtained light diffusing plate has a rectangular shape with a thickness of 2mm, 727.5mm x 415mm, to which the concave-convex structure of the stamper is sufficiently transferred, and has a linear pre-shaped cross section on one surface.
  • a prism row consisting of a plurality of prisms arranged substantially in parallel was formed. This linear prism is The apex angle was 100 ° and the pitch was 70 ⁇ m. Note that the plurality of uneven portions formed on the flat surface of the uneven structure in the stamper were partially transferred, but were not transferred as much as a whole.
  • a reflective sheet (RF 188, manufactured by Gidden Co., Ltd.) is attached to the inner surface of a milky white plastic case with an inner width of 700mm, a depth of 400mm, and a depth of 20mm.
  • 12 mm cold cathode fluorescent lamps with a diameter of 3 mm and a length of 750 mm are arranged so that the distance between the centers of the cold cathode fluorescent lamps is 33 mm, and the vicinity of the electrodes is fixed with a silicone sealant, and an inverter is installed. It was.
  • the obtained light diffusion plate was arranged so that the prism row was on the opposite side of the cold-cathode tube (counter-light source position), and was placed on a plastic case with the cold-cathode tube attached.
  • the cold cathode tubes were arranged so that the longitudinal direction of the cold cathode tubes and the longitudinal direction of the triangular prisms constituting the prism row were substantially parallel.
  • three diffusion sheets (“188GM3”, manufactured by Kimoto Co., Ltd.) were installed on this light diffusion plate. In this manner, as shown in FIG. 6, a direct type backlight device 100 having a plurality of light sources 101, a reflecting plate 102, and the light diffusing plate 1 was produced.
  • a cold cathode tube was turned on by applying a tube current of 5 mA to the obtained direct type backlight, and 100-second equidistant on the center line in the short direction using a two-dimensional color distribution measuring device.
  • the brightness in the front direction of the points was measured, and the brightness average value La and brightness unevenness Lu were obtained according to the following formulas 1 and 2.
  • the luminance average value was 6,879 cd / m 2 and the luminance unevenness was 0.4%.
  • Luminance average value La (Ll + L2) Z2 (Formula 1)
  • luminance unevenness is an index indicating the uniformity of luminance, and the value increases when the luminance unevenness is bad.
  • a light diffusing plate and a direct type backlight device were obtained in the same manner as in Example 1 except that the cavity surface of the other mold was roughened by grinding along the longitudinal direction. As a result, Ra of the roughened surface was 0.6 m.
  • the resulting light diffusion plate The surface on which the structure is sufficiently transferred and the prism rows are formed has the same shape as in Example 1 (however, the light diffusing plate has a shape in which the concave and convex portions of the linear recesses are reversed). The surface on which no row was formed was roughened as compared with Example 1. The plurality of uneven portions formed on the flat surface of the uneven structure in the stamper was partially transferred but was not transferred as a whole. The obtained light diffusion plate was strong enough to stick to the stamper even after 100 shots of injection molding. Further, in the obtained direct type backlight device, the average luminance was 6,810 cdZm 2 and the luminance unevenness was 0.5%.
  • a stainless steel SUS430 rectangular plate with dimensions 800mm X 500mm and thickness 2mm was coated with nickel-phosphorous electroless plating with a thickness of 100m.
  • a bit on which a sintered diamond tip (Sumidia DA-2200, manufactured by Sumitomo Electric Hardmetal Co., Ltd.) with an apex angle of 100 degrees was mounted, and a single crystal diamond tip with an apex angle of 100 degrees (Contool Fine Touring).
  • a stamper is formed by cutting a plurality of isosceles triangular lines with a width of 70 ⁇ m, a height of 24.5 m, a pitch of 70 ⁇ m, and an apex angle of 100 degrees to form a concavo-convex structure.
  • a plurality of linear portions are formed by a first linear portion formed by a cutting tool to which a sintered diamond tip is attached and a cutting tool to which a single crystal diamond tip is attached.
  • the second linear portion and the second linear portion are configured to repeat in this order.
  • Ra (maxl) of the linear portion, Ra (max2), Ra (min2), and Sm of the slope of the first linear portion were obtained using an ultradeep microscope. .
  • Ra (maxl) was 7.1 ⁇ m. Since Ra (max2) was 0.15 ⁇ m, Ra (max2) / Ra (maxl) was 0.021.
  • Ra (max2) ZRa (min2) is 7.5, and Sm is 70 ⁇ m.
  • the molded surface of the other mold was roughened in the same manner as in Example 2, and the molded product was formed in the same manner as in Example 1 above.
  • a certain light diffusion plate and direct type backlight device were obtained.
  • the uneven structure of the stamper was sufficiently transferred, and the surface on which the prism array was formed had a shape similar to the shape of the mold part shown in FIG.
  • FIG. 7 shows a configuration in which the first linear portion and the second linear portion are repeatedly formed, which is different from that of the present embodiment. Further, since the linear convex portion of the stamper is transferred, the concave and convex portions are reversed in the light diffusion plate).
  • Example 2 the surface on which the prism rows were not formed was roughened, and Ra of the roughened surface was 0.6 ⁇ m.
  • the plurality of uneven portions formed on the flat surface of the uneven structure in the stamper was partially transferred but was not transferred as a whole.
  • the average luminance was 6,878 cd / m 2 and the luminance unevenness was 0.3%.
  • fine processing is performed on the surface of a single-crystal diamond tip (manufactured by Contool Fine Tooling) with an apex angle of 100 degrees using a focused ion beam (FIB) device (manufactured by Hitachi High-Technologies Corporation).
  • FIB focused ion beam
  • the plate material is applied to the nickel-phosphorous electroless mesh surface.
  • a plurality of isosceles triangular sections with a width of 70 ⁇ m, a height of 24.5 m, a pitch of 70 ⁇ m, and an apex angle of 100 degrees are cut to form a concavo-convex structure.
  • a stamper Using a bit with such a micromachined chip attached to a machine tool for micromachining (for example, Nano Gruber AMG71P, manufactured by Fujikoshi Co., Ltd.), the plate material is applied to the nickel-phosphorous electroless mesh surface.
  • a plurality of isosceles triangular sections with a width of 70 ⁇ m, a height of 24.5 m, a pitch of 70 ⁇ m, and an apex angle of 100 degrees are cut to form a concavo-convex structure.
  • Ra (maxl) of the linear portion, Ra (max2), Ra (min2), and Sm of the slope of the linear portion were determined using an ultradeep microscope.
  • Ra (maxl) was 7.1 ⁇ m.
  • Ra (max2) was 0.1 ⁇ m
  • Ra (max2) / Ra (maxl) was 0.014.
  • Ra (max2) ZRa (min2) was 5.0 and Sm was.
  • the length Dl and the D3 force ⁇ 4.6 m
  • the length D2 force ⁇ 36.5 m.
  • the length of the bottom of the linear convex portion 4B was 0.5 m, and the interval between the row portions 4X was 1. O / zm.
  • Such a stamper is attached to one mold, and the molded surface of the other mold is roughened in the same manner as in the second embodiment. A certain light diffusion plate and direct type backlight device were obtained.
  • the uneven structure of the stamper was sufficiently transferred, and the surface on which the prism array was formed had a shape similar to the shape shown in FIG. Since the convex portion is transferred, the concave and convex portions are reversed in the light diffusion plate). Further, as in Example 2, the surface on which the prism row was not formed was roughened, and Ra of the roughened surface was 0.6 ⁇ m. Note that the plurality of uneven portions formed on the flat surface of the uneven structure in the stamper were partially transferred but were not transferred as a whole. The obtained light diffusion plate was strong enough to stick to the stamper after 100 shots of injection molding. In the obtained direct type backlight device, the average luminance was 6,946 cd / m 2 and the luminance unevenness was 0.3%.
  • a machine tool for microfabrication is performed by appropriately exchanging the noite to which the micromachined chip manufactured in Example 4 is attached and the bite to which the single crystal diamond chip having the apex angle of 100 degrees is attached ( For example, the width of 70 / ⁇ ⁇ , height 24.5 / ⁇ ⁇ , and pitch along the short side of the plate against the nickel-phosphorous electroless plating surface
  • a stamper was obtained by forming a concavo-convex structure by cutting a plurality of linear parts having an isosceles cross section of 70 / ⁇ ⁇ and an apex angle of 100 degrees.
  • Example 3 a plurality of linear portions are divided into a third linear portion formed by a knot to which a micromachined chip is attached, and a bite to which a single crystal diamond tip is attached.
  • the fourth linear portion formed by the above and the fourth linear portion are configured to repeat in this order.
  • Ra (maxl) of the linear portion, Ra (max2), Ra (min2), and Sm of the slope of the third linear portion were obtained using an ultra-deep microscope. .
  • Ra (maxl) was 7.1 ⁇ m. Since Ra (max2) was 0.1 ⁇ m, Ra max2) / Ra (maxl) was 0.014.
  • Ra (max2) ZRa (min2) is 5.0 and Sm force is 0 m.
  • the uneven structure of the stamper was sufficiently transferred, and the surface on which the prism array was formed had a shape similar to the shape of the stamper shown in FIG. 11 is a configuration in which the third linear portion and the fourth linear portion are repeatedly formed, which is different from that of the present example, and because the linear convex portion of the stamper is transferred.
  • the unevenness is reversed).
  • the surface on which the prism row was not formed was roughened, and Ra of the roughened surface was 0.6 m.
  • the plurality of uneven portions formed on the flat surface of the uneven structure in the stamper was partially transferred but was not transferred as a whole.
  • the resulting light diffusing plate had a force that caused sticking to the stamper only once after 100 shots of injection molding, which was not a major hindrance to moldability.
  • the average luminance was 7,016 cdZm 2 and the luminance unevenness was 0.2%.
  • a focused ion beam (FIB) device (Hitachi High-Technology) is applied only to one of the surfaces of the single crystal diamond tip (manufactured by Contour Nole Fine Tooling) with an apex angle of 100 degrees.
  • the same microfabrication as that of one surface of the micromachined chip of Example 4 was performed using a single company) to produce micromachined chip 2. This chip was attached to a cutting tool to produce a cutting tool with a micro-processed chip 2 attached.
  • a tool with a micro-processed chip 2 attached thereto is used as a machine tool for micro-processing.
  • a stamper was obtained by forming a concavo-convex structure by cutting a plurality of linear parts having an isosceles triangular section with an apex angle of 100 degrees.
  • Ra (maxl) of the linear portion, Ra (max2), Ra (min2), and Sm of the slope on which the linear convex portion was formed were obtained using an ultra-deep microscope. .
  • R a (maxl) was 7.1 ⁇ m. Since Ra (max2) was 0.1 ⁇ m, Ra max2) / Ra (maxl) was 0.014.
  • Ra (max2) ZRa (min2) is 5.0 and Sm is 70 ⁇ m.
  • the obtained light diffusion plate had the uneven structure of the stamper sufficiently transferred, and the surface on which the prism array was formed had a shape similar to the shape shown in FIG. Since the convex portion is transferred, the concave and convex portions are reversed in the light diffusion plate). Further, as in Example 2, the surface on which the prism row was not formed was roughened, and Ra of the roughened surface was 0.6 ⁇ m. Note that the plurality of uneven portions formed on the flat surface of the uneven structure in the stamper were partially transferred but were not transferred as a whole. The obtained light diffusion plate was strong enough to stick to the stamper after 100 shots of injection molding. In the obtained direct type backlight device, the average luminance was 6,981 cd / m 2 and the luminance unevenness was 0.2%.
  • a light diffusing plate and a direct type knock light device were obtained in the same manner as in Example 1 except that the diamond chip of the sintered body was replaced with a single crystal diamond chip (manufactured by Contool Fine Tooling).
  • Ra (maxl) was 7.1 ⁇ m. Since Ra (max2) is 0.003 ⁇ m, Ra (max2) / Ra (maxl) is 0.00042. Furthermore, Ra (max2) ZRa (min2) was 6.0 and Sm was 70 m.
  • the obtained light diffusion plate had a shape in which the concavo-convex structure of the mold part was sufficiently transferred.
  • the light diffusing plate obtained using such a mold part was attached to the stamper after 100 shots of injection molding, and was attached to the stamper.
  • the average luminance was 6,948 cdZm 2 and the luminance unevenness was 1.6%.
  • a light diffusing plate and a direct backlight device were obtained in the same manner as in 1.
  • Ra (maxl) was 7.1 ⁇ m for the mold parts. Since Ra (max2) was 5.0 ⁇ m, Ra (max2) ZRa (maxl) was 0.7. Furthermore, Ra (max2) ZRa (min2) was 7.5 and Sm was 70 m.
  • the obtained light diffusion plate had a shape in which the uneven structure of the mold part was sufficiently transferred. The light diffusing plate obtained using such mold parts was strong enough to stick to the stamper even after 100 shots of injection molding.
  • the average luminance was 6,470 cd / m 2 and the luminance unevenness was 4.8%.
  • a mold part was produced in the same manner as in Comparative Example 2, except that the concavo-convex structure of the mold part obtained in Comparative Example 2 was subjected to blasting to roughen the surface.
  • a light diffusion plate and a direct type backlight device were obtained.
  • Ra (maxl) was 7.1 ⁇ m. Since Ra (max2) was 3.0 ⁇ m, Ra (max2) ZRa (maxl) was 0.42. Furthermore, Ra (max2) ZRa (min2) was 1.2, and Sm was 7 O / zm.
  • the obtained light diffusion plate had a shape in which the uneven structure of the mold part was sufficiently transferred.
  • the light diffusing plate obtained using such mold parts was strong enough to stick to the stamper even after 100 shots of injection molding.
  • the average luminance was 6,600 cd / m 2 and the luminance unevenness was 3.6%.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 aCmaxl ⁇ ⁇ 7.1 7.1 7.1 7.1 7.1 7.1
  • Comparative Example 1 As shown in Comparative Example 1, in the case where the concavo-convex portions were not formed on the surface of each surface of the concavo-convex structure, the moldability was insufficient and the luminance unevenness was generated. In addition, as shown in Comparative Example 2, when uneven portions having dimensions of a predetermined size or more were formed on the surface of each surface of the uneven structure, it was found that the luminance unevenness was increased. Further, as shown in Comparative Example 3, when random (non-anisotropic) uneven portions were formed on the surface of each surface of the uneven structure, it was found that the luminance unevenness was increased.

Abstract

A mold part capable of efficiently molding a molded flat-plate product with excellent optical performance. In the mold part, irregular surface structures with a maximum centerline average roughness Ra (max1) of 3.0 to 1000 μm are formed on a cavity surface for forming the surface of the molded flat-plate product. Each irregular surface structure has a groove or ridge structure unit with two or more flat surfaces. Grooves and ridges are formed on each flat surface of the structure unit. On each flat surface with the grooves and ridges, the maximum centerline average roughness Ra (max2) has the relation of 0.5 > Ra (max2)/Ra (max1) > 0.002 relative to Ra (max1) and has the relation of Ra (max2)/Ra (min2) > 1.5 relative to the minimum centerline average roughness Ra (min2).

Description

金型部品および平板成形品  Mold parts and flat plate molded products
技術分野  Technical field
[0001] 本発明は、金型部品に関し、特に、光学性能に優れた成形品を効率よく成形できる 金型部品に関する。  TECHNICAL FIELD [0001] The present invention relates to a mold part, and more particularly to a mold part capable of efficiently molding a molded product having excellent optical performance.
背景技術  Background art
[0002] 従来、射出成形用の金型では、レンズや反射板等の成形品の表面や外観を向上さ せる目的で、金型の表面 (キヤビティ面)を鏡面仕上げとする場合があった。しかしな がら、この場合には、成形品を構成する榭脂の種類等によっては、金型と成形品とが 密着して成形品の離型が困難になる場合があった。そこで、特許文献 1 (特開平 200 1-287227号公報)には、金型表面を、十点平均粗さ Rzが 0. 2〜3. 0 μ mの粗面と することにより、成形品の離型性を向上させることが開示されている。  Conventionally, in the mold for injection molding, the surface (cavity surface) of the mold is sometimes mirror-finished for the purpose of improving the surface and appearance of a molded product such as a lens and a reflector. However, in this case, depending on the type of resin constituting the molded product, the mold and the molded product may be in close contact with each other, making it difficult to release the molded product. Therefore, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-287227), the mold surface is a rough surface having a 10-point average roughness Rz of 0.2 to 3.0 μm, so It is disclosed to improve releasability.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ところで、液晶表示装置には、反射板と、複数の光源と、光拡散板とを有する直下 型バックライト装置が用いられる場合がある。このような直下型バックライト装置に用い られる光拡散板は、光源の直上部分が高輝度になり易いことから、光拡散板表面の 輝度を均一にする (輝度均斉度を高める)ための技術が検討されて 、る。  By the way, in a liquid crystal display device, a direct type backlight device having a reflection plate, a plurality of light sources, and a light diffusion plate may be used. The light diffusing plate used in such a direct type backlight device has a technology for making the luminance of the surface of the light diffusing plate uniform (increasing the luminance uniformity) because the portion directly above the light source tends to have high luminance. It is being considered.
[0004] 本発明者らは、光拡散板の表面に、例えば、光源の長手方向と略平行に延びる、 断面多角形状の線状プリズムが複数並んだプリズム条列を設けることにより、輝度均 斉度を高めることができることを既に見出している(特願 2004-243479号 (特開 200 6— 66074号)等)。このような光拡散板は、金型のキヤビティ面に前記プリズム条列 に対応する凹凸構造を形成し、この金型を用いて射出成形することにより得ることが できる。しかしながら、このような凹凸構造を有する光拡散板を射出成形すると、成形 品である光拡散板の離型が困難になる場合があり、成形作業が必ずしも効率的では なかった。  [0004] The inventors of the present invention have provided luminance uniformity by providing, for example, a prism array in which a plurality of linear prisms having a polygonal cross section are arranged on the surface of the light diffusion plate, extending substantially in parallel with the longitudinal direction of the light source. It has already been found that the degree can be increased (Japanese Patent Application No. 2004-243479 (Japanese Patent Application Laid-Open No. 2006-666074)). Such a light diffusing plate can be obtained by forming a concavo-convex structure corresponding to the prism row on the cavity surface of the mold and performing injection molding using the mold. However, when the light diffusing plate having such a concavo-convex structure is injection-molded, it may be difficult to release the light diffusing plate, which is a molded product, and the molding operation is not always efficient.
[0005] そこで、前述した特許文献 1に示す技術を利用して、プリズム条列を有する光拡散 板を形成する金型のキヤビティ面を粗面化することが考えられるが、この技術を単に 適用しただけでは、成形品の離型性を向上できるものの、輝度均斉度等の光学性能 を十分に発揮できな 、場合があった。 [0005] Therefore, by using the technique shown in Patent Document 1 described above, light diffusion having a prism array. Although it is conceivable to roughen the cavity surface of the mold that forms the plate, simply applying this technology can improve the releasability of the molded product, but it will provide sufficient optical performance such as brightness uniformity. There was a case that could not be demonstrated.
なお、このような問題は、成形品が光拡散板である場合に限らず、導光板や反射板 等のその他の光学部品に用いられる平板成形品においても同様に生じていた。  Such a problem is not limited to the case where the molded product is a light diffusing plate, but also occurs in a flat molded product used for other optical components such as a light guide plate and a reflective plate.
[0006] 本発明の目的は、光学性能に優れた平板成形品を効率よく成形できる金型部品を 提供することにある。  [0006] An object of the present invention is to provide a mold part capable of efficiently forming a flat molded article having excellent optical performance.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者らは、前記課題を解決すべく鋭意検討した結果、平板成形品にパターン 部分を形成するための凹又は凸の構造単位の各表面に所定の凹凸部を設けること により、十分な光学性能を有する成形品を簡便に成形できる金型部品が得られること を見出し、この知見に基づいて本発明を完成するに至った。  [0007] As a result of intensive studies to solve the above problems, the present inventors have provided a predetermined concavo-convex portion on each surface of a concave or convex structural unit for forming a pattern portion in a flat plate molded product, It was found that a mold part capable of easily molding a molded article having sufficient optical performance was obtained, and the present invention was completed based on this knowledge.
[0008] 本発明は、光学部品に用いられる榭脂製の平板成形品を形成するための金型部 品であって、前記平板成形品の表面を形成するためのキヤビティ面を有し、前記キヤ ビティ面は、該キヤビティ面上において中心線平均粗さ Raが最大となる方向に測定 した最大中心線平均粗さ Ra (maxl)が 3. 0 /ζ πι〜1, 000 mである凹凸構造を備え 、前記凹凸構造は、 2個以上の平面を有する凹又は凸の構造単位を繰り返し単位と して複数備え、前記構造単位の前記 2個以上の平面のうちの少なくとも 1つの平面は 、複数の凹凸部を備え、これらの凹凸部を備えた平面では、該平面上の中心線平均 粗さ Raが最大となる方向に測定した最大中心線平均粗さ Ra (max2)力 前記 Ra (ma xl)との間に、 0. 5 >Ra (max2) /Ra (maxl) >0. 002の関係 1を満たし、かつ、該平 面上の中心線平均粗さ Raが最小となる方向に測定した最小中心線平均粗さ Ra (min 2)との間に、 Ra (max2) ZRa (min2) > l . 5の関係 2を満たすことを特徴とする。なお 、前記金型部品には、金型そのものにカ卩えて、金型に設けられるスタンパーも含まれ る。  [0008] The present invention is a mold part for forming a resin-made flat plate molded product used for an optical component, and has a cavity surface for forming the surface of the flat plate molded product, The cavity surface has a concavo-convex structure with a maximum center line average roughness Ra (maxl) measured in the direction in which the center line average roughness Ra is maximum on the cavity surface being 3.0 / ζ πι to 1,000 m. The concavo-convex structure includes a plurality of concave or convex structural units having two or more planes as repeating units, and at least one of the two or more planes of the structural units is a plurality of In the plane having these irregularities, the maximum centerline average roughness Ra (max2) force measured in the direction in which the centerline average roughness Ra on the plane is maximized Ra (ma xl ) And 0.5> Ra (max2) / Ra (maxl)> 0.002 satisfy the relationship 1 and the centerline average on the plane Between the minimum center line average roughness Ra (min 2) measured in the direction in which the roughness Ra is minimized, the relationship 2 of Ra (max2) ZRa (min2)> l.5 is satisfied. The mold part includes a stamper provided on the mold in addition to the mold itself.
[0009] ここで、前記金型部品において、前記 Ra (max2)を測定した方向と同方向に測定し た際に、隣り合う前記凹凸部同士の平均間隔 Smが、前記 Ra (maxl)との間に、 Ra ( maxl) X 10 > Sm>Ra (maxl) X O. 001の関係 3を満たしていてもよい。 [0010] また、前記構造単位は、線状に延びる断面多角形状の線状部であり、前記凹凸構 造は、前記線状部が互いに略平行に複数並んでなる構成とすることができる。この際[0009] Here, in the mold part, when the Ra (max2) is measured in the same direction as the measurement direction, the average interval Sm between the adjacent concavo-convex parts is the Ra (maxl) In the meantime, the relationship 3 of Ra (maxl) X 10>Sm> Ra (maxl) X O.001 may be satisfied. [0010] The structural unit may be a linear portion having a polygonal cross section extending in a linear shape, and the concavo-convex structure may be configured such that a plurality of the linear portions are arranged substantially parallel to each other. On this occasion
、前記線状部は、その頂角が 60° 〜170° の三角形の断面形状を有し、ある線状 部とその線状部の隣りの線状部との間隔が 20 m〜700 mの構成とすることがで きる。なお「多角形」の文言は、説明の便宜上、線状部の個々の凹部又は凸部に対 応する、断面平面 (cross-sectional plain)における線分の開いた経路 (open path composed of line segments)を意味する。そして、開いた経路の両端を結んで得 られる閉じた経路 (closed path)の辺又は点の数に応じ、これらを (通常意味するところ の)多角形に対応させて呼ぶ。 The linear portion has a triangular cross-sectional shape with an apex angle of 60 ° to 170 °, and a distance between a linear portion and a linear portion adjacent to the linear portion is 20 m to 700 m. It can be configured. For convenience of explanation, the term “polygon” refers to the open path composed of line segments in the cross-sectional plain corresponding to each concave or convex portion of the linear portion. ). Then, according to the number of sides or points of the closed path obtained by connecting both ends of the open path, they are called corresponding to the polygon (which usually means).
[0011] また、前記線状部は、 4つ以上の平面を有し、前記 4つ以上の平面のうちの少なくと も 2つの平面は、当該金型部品の厚み方向を基準として一方の側に傾斜し、前記少 なくとも 2つの平面以外の平面は、前記少なくとも 2つの平面とは反対側に傾斜する 構成としてもよい。 [0011] The linear portion has four or more planes, and at least two of the four or more planes are on one side with respect to the thickness direction of the mold part. The plane other than the at least two planes may be inclined to the opposite side of the at least two planes.
[0012] また、前記線状部は、断面三角形状であり、当該三角形を構成する 2つの平面の 一方と、当該金型部品の厚み方向に直交する面とのなす角度は、当該三角形を構 成する 2つの平面のうちの他方と、当該金型部品の厚み方向に直交する面とのなす 角度に等しぐ前記角度は、ある特定の X点と、この X点から前記線状部の長手方向 に直交する方向に沿って所定距離離れた Y点との間で、前記 X点および前記 Y点か ら離れるにつれて連続的または段階的に大きくなる構成としてもよい。ここで、当該 2 つの斜面のそれぞれと金型部品の厚み方向に直行する方向の面とのなす角度が「 等しい」とは、なす角度の差が 1° 以内の場合である。  [0012] The linear portion has a triangular cross section, and an angle formed by one of two planes constituting the triangle and a plane perpendicular to the thickness direction of the mold part constitutes the triangle. The angle equal to the angle formed between the other of the two planes formed and the plane perpendicular to the thickness direction of the mold part is defined as a specific X point and the linear portion from the X point. A configuration may be adopted that increases continuously or stepwise from the point X and the point Y away from the point Y along a direction perpendicular to the longitudinal direction. Here, the angle formed between each of the two slopes and the surface perpendicular to the thickness direction of the mold part is “equal” when the difference between the angles is within 1 °.
[0013] また、前記金型部品において、前記の構造単位は、 3個以上の平面を有する凸構 造または凹構造としてもよい。この際、前記 3個以上の平面を有する凸構造または凹 構造は、角錐または角錐台状であってもよい。  [0013] In the mold part, the structural unit may be a convex structure or a concave structure having three or more planes. At this time, the convex structure or the concave structure having three or more planes may be a pyramid or a truncated pyramid.
[0014] さらに、前記構造単位は、 3個以上の平面を有する凸構造であり、前記凸構造は、 線状に延びる断面多角形状の線状部を形成した後、この線状部に、当該線状部の 長手方向とは異なる向きに V字状の切り込みを入れて得られるものとすることができる [0015] また、前記構造単位は、 3個以上の平面を有する凹構造であり、前記凹構造は、線 状に延びる断面多角形状の線状部を形成した後、この線状部に、当該線状部の長 手方向とは異なる向きに V字状の切り込みを入れて得られる凸形状を有する転写部 材の当該凸形状を転写して得られるものとしてもよい。 [0014] Further, the structural unit is a convex structure having three or more planes, and the convex structure forms a linear portion having a polygonal cross-section extending linearly, It can be obtained by making a V-shaped cut in a direction different from the longitudinal direction of the linear part. [0015] Further, the structural unit is a concave structure having three or more planes, and the concave structure forms a linear section having a polygonal cross section extending linearly, and then the linear section It may be obtained by transferring the convex shape of a transfer member having a convex shape obtained by making a V-shaped cut in a direction different from the longitudinal direction of the linear portion.
[0016] また、前記凹凸部は、複数の前記構造単位のうちの一部の構造単位の平面に形成 されていてもよい。  [0016] Further, the concavo-convex portion may be formed on a plane of a part of the plurality of structural units.
[0017] また、前記凹凸部は、前記構造単位を構成する前記 2個以上の平面のうちの一部 の平面にのみ形成されていてもよい。このような構成としては、例えば、構造単位が 断面三角形状で線状部である場合に、露出する 2つの平面のうちの一方の面にのみ 凹凸部が形成された構成を挙げることができる。  [0017] Further, the uneven portion may be formed only on a part of the two or more planes constituting the structural unit. As such a configuration, for example, when the structural unit is a triangular section and is a linear portion, a configuration in which the concavo-convex portion is formed only on one of the two exposed flat surfaces can be exemplified.
[0018] また、前記凹凸部は、前記構造単位を構成する前記平面の一部分にのみ形成され ていてもよい。このような構成としては、例えば、各面の中央部分にのみ凹凸部が形 成されるような場合を挙げることができる。  [0018] Further, the concavo-convex portion may be formed only on a part of the plane constituting the structural unit. As such a configuration, for example, a case where an uneven portion is formed only at the central portion of each surface can be mentioned.
[0019] また、本発明に関連して下記発明が提供される。関連する発明としては、例えば、 前記金型部品を用いて射出成形により得られる光拡散板等の光学部品用の平板成 形品である。また、関連する他の発明は、前記金型部品を用いた射出成形により、光 学部品に用いられる榭脂製の平板成形品を製造する方法である。  [0019] Further, the following inventions are provided in relation to the present invention. A related invention is, for example, a flat plate molded product for an optical component such as a light diffusion plate obtained by injection molding using the mold component. Another related invention is a method for producing a flat resin molded product made of resin used for optical parts by injection molding using the mold parts.
発明の効果  The invention's effect
[0020] 本発明によれば、キヤビティ面上において Raが最大となる方向に測定した最大中 心線平均粗さ Ra (maxl)が 3. O /z m〜: L, 000 mである凹凸構造の表面に、構造 単位の平面上において Raが最大となる方向に測定した最大中心線平均粗さ Ra (ma x2)と前記 Ra (maxl)との間に、 0. 5 >Ra (max2) /Ra (maxl) >0. 002の関係 1を 満たし、かつ構造単位の平面上において Raが最小となる方向に測定した最小中心 線平均粗さ Ra (min2)との間に、 Ra (max2) ZRa (min2) > 1. 5の関係 2を満たす凹 凸部を設けることにより、光学性能に優れた平板成形品を効率よく成形できるという 効果がある。  [0020] According to the present invention, an uneven structure having a maximum center line average roughness Ra (maxl) measured in a direction in which Ra is maximum on the cavity surface is 3. O / zm to: L, 000 m. On the surface, between the maximum center line average roughness Ra (max x2) measured in the direction where Ra is maximum on the plane of the structural unit and Ra (maxl), 0.5> Ra (max2) / Ra (maxl)> 0.002 Relationship 1 is satisfied, and the minimum center line average roughness Ra (min2) measured in the direction in which Ra is minimized on the plane of the structural unit, Ra (max2) ZRa ( min2)> 1.5 By providing the concave and convex portions that satisfy 2 above, there is an effect that a flat molded product having excellent optical performance can be efficiently molded.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]図 1は、本発明の一実施形態に係る金型部品を模式的に示す斜視図である。 [図 2]図 2は、前記金型部品の厚み方向に沿った断面を部分的に示す部分断面図で ある。 FIG. 1 is a perspective view schematically showing a mold part according to an embodiment of the present invention. FIG. 2 is a partial cross-sectional view partially showing a cross section along the thickness direction of the mold part.
[図 3]図 3は、本発明の第 1の変形例に係る金型部品を模式的に示す部分断面図で ある。  FIG. 3 is a partial cross-sectional view schematically showing a mold part according to a first modification of the present invention.
[図 4]図 4は、本発明の第 2の変形例に係る金型部品を模式的に示す部分断面図で ある。  FIG. 4 is a partial cross-sectional view schematically showing a mold part according to a second modification of the present invention.
[図 5]図 5は、本発明の第 3の変形例に係る金型部品を模式的に示す部分断面図で ある。  FIG. 5 is a partial cross-sectional view schematically showing a mold part according to a third modification of the present invention.
[図 6]図 6は、本発明の実施例 1に係る直下型バックライト装置を模式的に示す斜視 図である。  FIG. 6 is a perspective view schematically showing a direct type backlight device according to Embodiment 1 of the present invention.
[図 7]図 7は、本発明の第 4の変形例に係るスタンパーを示す断面図である。  FIG. 7 is a cross-sectional view showing a stamper according to a fourth modification of the present invention.
[図 8]図 8は、本発明の第 5の変形例に係るスタンパーを示す断面図である。  FIG. 8 is a cross-sectional view showing a stamper according to a fifth modification of the present invention.
[図 9]図 9は、図 8における範囲 Xを拡大して示す断面図である。  FIG. 9 is an enlarged cross-sectional view of a range X in FIG.
[図 10]図 10は、本発明の金型部品における条列部の変形例を示す断面図である。  FIG. 10 is a cross-sectional view showing a modification of the row portion in the mold part of the present invention.
[図 11]図 11は、本発明の第 6の変形例に係るスタンパーを示す断面図である。  FIG. 11 is a cross-sectional view showing a stamper according to a sixth modification of the present invention.
[図 12]図 12は、本発明の第 7の変形例に係るスタンパーを示す断面図である。  FIG. 12 is a cross-sectional view showing a stamper according to a seventh modification of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 本発明の一実施形態に係る金型部品について、図面を参照して説明する。 A mold part according to an embodiment of the present invention will be described with reference to the drawings.
図 1は、本実施形態に係る金型部品であるスタンパー 1を模式的に示す斜視図で ある。図 2は、スタンパー 1の厚み方向に沿った断面を部分的に示す図である。スタン パー 1は、光学部品に用いられる榭脂製の平板成形品を形成するための部材である 。成形される平板成形品としては、光拡散板、導光板、および反射板等の光学部品 を挙げることができる。  FIG. 1 is a perspective view schematically showing a stamper 1 which is a mold part according to the present embodiment. FIG. 2 is a diagram partially showing a cross section along the thickness direction of the stamper 1. The stamper 1 is a member for forming a resin-made flat plate molded product used for optical components. Examples of the molded plate product include optical components such as a light diffusion plate, a light guide plate, and a reflection plate.
[0023] ここで、平板成形品を構成する榭脂としては、輝度を低下させな ヽ観点から、透明 榭脂を用いることができる。透明樹脂とは、日本工業規格 JIS K7361-KIS01346 8- 1)に基づいて、両面平滑な 2mm厚の板で測定した全光線透過率が 70%以上 の榭脂のことであり、例えば、ポリエチレン、プロピレン-エチレン共重合体、ポリプロ ピレン、ポリスチレン、芳香族ビュル単量体と低級アルキル基を有する (メタ)アクリル 酸アルキルエステルとの共重合体、ポリエチレンテレフタレート、テレフタル酸-ェチレ ングリコール-シクロへキサンジメタノール共重合体、ポリカーボネート、アクリル榭脂、 および脂環式構造を有する榭脂などを挙げることができる。なお、(メタ)アクリル酸と は、アクリル酸およびメタクリル酸のことである。 [0023] Here, as the resin constituting the flat plate molded article, a transparent resin can be used from the viewpoint of reducing the luminance. Transparent resin is a resin having a total light transmittance of 70% or more measured with a 2 mm thick plate smooth on both sides based on Japanese Industrial Standards JIS K7361-KIS01346 8- 1). Propylene-ethylene copolymer, polypropylene, polystyrene, aromatic butyl monomer and (meth) acrylic having lower alkyl group Examples thereof include copolymers with acid alkyl esters, polyethylene terephthalate, terephthalic acid-ethylene glycol-cyclohexane dimethanol copolymer, polycarbonate, acrylic resin, and resin having an alicyclic structure. In addition, (meth) acrylic acid is acrylic acid and methacrylic acid.
[0024] また、前記榭脂としては、前記透明樹脂に光拡散剤が添加されたものを用いてもよ い。光拡散剤は、光線を拡散させる性質を有する粒子であり、無機フィラーと有機フィ ラーとに大別できる。無機フイラ一としては、シリカ、水酸ィ匕アルミニウム、酸化アルミ ユウム、酸化チタン、酸化亜鉛、硫酸バリウム、マグネシウムシリケート、およびこれら の混合物を挙げることができる。有機フイラ一としては、アクリル榭脂、ポリウレタン、ポ リ塩化ビニル、ポリスチレン榭脂、ポリアクリロニトリル、ポリアミド、ポリシロキサン榭脂 、メラミン榭脂、およびべンゾグアナミン榭脂等を挙げることができる。  [0024] Further, as the resin, a resin obtained by adding a light diffusing agent to the transparent resin may be used. A light diffusing agent is a particle having a property of diffusing light, and can be roughly classified into an inorganic filler and an organic filler. Examples of inorganic fillers include silica, aluminum hydroxide, aluminum oxide, titanium oxide, zinc oxide, barium sulfate, magnesium silicate, and mixtures thereof. Examples of the organic filler include acrylic resin, polyurethane, polyvinyl chloride, polystyrene resin, polyacrylonitrile, polyamide, polysiloxane resin, melamine resin, and benzoguanamine resin.
[0025] スタンパー 1は、射出成形用金型のキヤビティ面に相当する位置に配置される。な お、本実施形態では、本発明の金型部品をスタンパーとしたが、可動側もしくは固定 側の型板 (コアブロック、キヤビティブロック)等としてもよ 、。  [0025] The stamper 1 is disposed at a position corresponding to the cavity surface of the injection mold. In this embodiment, the mold part of the present invention is used as a stamper. However, it may be a movable or fixed mold (core block, cavity block) or the like.
[0026] 図 1,図 2に示すように、スタンパー 1には、そのキヤビティ面となる面に凹凸構造 2 が形成されている。凹凸構造 2は、複数の凸の構造単位である線状部 3が互いに略 平行に並び、線状部 3の底角同士が連なったような断面鋸歯状の構造である。  As shown in FIGS. 1 and 2, the stamper 1 has a concavo-convex structure 2 formed on its cavity surface. The concavo-convex structure 2 is a sawtooth cross-sectional structure in which a plurality of convex structural units linear portions 3 are arranged substantially parallel to each other and the bottom angles of the linear portions 3 are continuous.
[0027] 図 2に示すように、線状部 3は、 2個の斜面(平面) 4を有する、断面が凸型の三角形 状である。線状部 3の頂角 0は、 60° 〜170° であり、好ましくは 70° 〜160° であ る。線状咅 の底辺咅分の幅寸法 Wiま、 20 μ m〜700 μ mであり、好ましく ίま 30 μ m 〜600 μ mである。線状部 3の高さ Hは、 0. 9 m〜606 μ mであり、好ましくは 2. 6 μ m〜428 μ mである。線状部 3の断面形状は、成形される平板成形品の光学性能 が向上する点で二等辺三角形が好ましい。また、隣り合う線状部 3同士の間隔 (ピッ チ) Pは、 20 μ m〜700 μ mであり、好ましくは 30 μ m〜600 μ mである。線状咅 同 士の間隔とは、隣接する線状部の各頂点同士の距離のことである。  As shown in FIG. 2, the linear portion 3 has a triangular shape having two slopes (planes) 4 and a convex section. The apex angle 0 of the linear portion 3 is 60 ° to 170 °, preferably 70 ° to 160 °. The width dimension of the bottom edge of the wire rod is 20 μm to 700 μm, preferably 30 μm to 600 μm. The height H of the linear portion 3 is 0.9 m to 606 μm, preferably 2.6 μm to 428 μm. The cross-sectional shape of the linear part 3 is preferably an isosceles triangle in that the optical performance of the molded flat product is improved. Further, the interval (pitch) P between adjacent linear portions 3 is 20 μm to 700 μm, preferably 30 μm to 600 μm. The interval between the linear ridges is the distance between the vertices of the adjacent linear portions.
[0028] このような複数の線状部 3により構成された凹凸構造 2では、スタンパー 1の厚み方 向に垂直な方向である A方向に測定した最大中心線平均粗さ Ra (maxl)が 3. O ^ m 〜1, 000 μ mであり、好ましくは 4. 0 μ m〜900 μ mである。なお、前記 A方向力 R aが最大となる方向である。また、前記中心線平均粗さ Raは、 JIS B0601に基づい て求めることができる。 [0028] In such a concavo-convex structure 2 composed of a plurality of linear portions 3, the maximum center line average roughness Ra (maxl) measured in the A direction, which is a direction perpendicular to the thickness direction of the stamper 1, is 3 O ^ m to 1,000 [mu] m, preferably 4.0 [mu] m to 900 [mu] m. The A direction force R The direction in which a is the maximum. The centerline average roughness Ra can be obtained based on JIS B0601.
[0029] 線状部 3の各斜面 4の表面には、凹凸部である線状凹部 4Aが複数形成されている 。線状凹部 4Aは、線状部 3の長手方向(図 2の紙面に垂直な方向)と略平行に延び ている。これらの線状凹部 4Aは互いに略平行である。斜面 4では、図中の斜面 4Aに 沿った方向である B方向および C方向に沿って測定した最大中心線平均粗さ Ra (ma x2)と、前記 Ra (maxl)との間に、 0. 5 >Ra (max2) /Ra (maxl) >0. 002の関係 1を 満たしている。なお、前記 B方向および C方向が、 Raが最大となる方向である。  [0029] On the surface of each inclined surface 4 of the linear portion 3, a plurality of linear concave portions 4A that are uneven portions are formed. The linear recess 4A extends substantially parallel to the longitudinal direction of the linear portion 3 (the direction perpendicular to the paper surface of FIG. 2). These linear recesses 4A are substantially parallel to each other. In Slope 4, between the maximum centerline average roughness Ra (max 2) measured along the B direction and C direction, which are the directions along Slope 4A in the figure, and Ra (maxl) is 0. The relation 1 of 5> Ra (max2) / Ra (maxl)> 0.002 is satisfied. The B direction and the C direction are directions in which Ra is maximum.
[0030] また、線状凹部 4Aが形成された斜面 4の表面では、線状凹部 4Aの長手方向に測 定した最小中心線平均粗さ Ra (min2)と、前記 Ra (max2)との間に、 Ra (max2) ZRa ( min2) > 2の関係 2を満たしている。なお、線状凹部 4Aの長手方向力 Raが最小とな る方向である。  [0030] In addition, on the surface of the slope 4 where the linear recess 4A is formed, the distance between the minimum center line average roughness Ra (min2) measured in the longitudinal direction of the linear recess 4A and Ra (max2). In addition, the relation 2 of Ra (max2) ZRa (min2)> 2 is satisfied. Note that this is the direction in which the longitudinal force Ra of the linear recess 4A is minimized.
[0031] また、前記 B方向および C方向に測定した、隣接する線状凹部 4A間の平均間隔 S mは、前記 Ra (maxl)との間に、 Ra (maxl) X 10 >Sm>Ra (maxl) X O. 001の関係 を満たしていることが好ましぐ Ra (maxl) X 9 >Sm>Ra (maxl) X O. 002の関係を 満たして!/、ることがより好まし!/、。  [0031] In addition, the average interval Sm between adjacent linear recesses 4A measured in the B direction and the C direction is between Ra (maxl) and Ra (maxl) X 10> Sm> Ra ( maxl) It is preferable to satisfy the relationship of X O. 001 Ra (maxl) X 9> Sm> Ra (maxl) It is preferable to satisfy the relationship of X O. 002! / ,.
[0032] 以上のようなスタンパー 1は、例えば、以下のようにして作製される。  [0032] The stamper 1 as described above is manufactured, for example, as follows.
まず、金属製の矩形板材の全面に、例えば約 100 /z m厚のニッケル-リン無電解メ ツキ層を施す。次いで、このメツキ層の表面に、頂角が所定角度の焼結体ダイヤモン バイトを備えた微細加工用の工作機械(例えば、ナノグルーバ AMG71P、不二越 社製)を用いて、板材の長手方向の辺に沿って所定ピッチで切削加工することにより 、断面三角形状の線状部 3を複数有する凹凸構造 2を形成する。ここで、焼結体ダイ ャモンドバイトは、単結晶ダイヤモンドバイトに比べて、その表面に僅かな凹凸が形 成された形状である。このため、焼結体ダイヤモンドバイトの凹凸部分により、線状部 3の斜面 4には、線状部 3の長手方向に沿って線状凹部 4Aが複数形成される。以上 のようにして、スタンパー 1が作製される。  First, a nickel-phosphorus electroless plating layer having a thickness of, for example, about 100 / zm is applied to the entire surface of a metal rectangular plate. Next, using a machine tool for fine processing (for example, Nano Gruber AMG71P, manufactured by Fujikoshi Co., Ltd.) equipped with a sintered diamond bit having a predetermined apex angle on the surface of this plating layer, it is placed on the longitudinal side of the plate material. The concavo-convex structure 2 having a plurality of linear portions 3 having a triangular cross section is formed by cutting along a predetermined pitch along. Here, the sintered diamond bite has a shape in which slight irregularities are formed on the surface thereof as compared with the single crystal diamond bite. For this reason, a plurality of linear recesses 4A are formed on the inclined surface 4 of the linear part 3 along the longitudinal direction of the linear part 3 due to the uneven part of the sintered diamond bite. The stamper 1 is manufactured as described above.
[0033] このようにして作製されたスタンパー 1を、凹凸構造 2が形成された面が射出成形金 型のキヤビティ面となるように配置して、前記榭脂を用いて射出成形することにより、 光拡散板等の平板成形品である光学部品を成形することができる。 [0033] By arranging the stamper 1 produced in this way so that the surface on which the concavo-convex structure 2 is formed becomes the cavity surface of the injection mold, and injection molding using the above-mentioned resin, An optical component which is a flat plate molded product such as a light diffusion plate can be molded.
[0034] 本実施形態によれば、スタンパー 1の線状部 3の斜面 4に、中心線平均粗さ Raが前 記関係 1, 2を満たすような線状凹部 4Aが設けられており、この微細な線状凹部 4A には成形用の樹脂が入り込みにくいことから、スタンパー 1と平板成形品との間に空 隙が生じ得ることに起因して平板成形品をスタンパー 1から簡便に離型できる。この ため、平板成形品を効率よく成形できる。また、平板成形品には、複数の線状部 3か らなる凹凸構造 2に対応する、断面三角形状の線状プリズムが略平行に並んで構成 されたプリズム条列が形成されるため、この平板成形品を光拡散板として使用し、こ の光拡散板を複数の光源上に配置して直下型バックライト装置を作製した場合には 、十分な輝度を維持しつつ、輝度むらの少ない (輝度均斉度の高い)発光面を有す る装置とすることができる。従って、得られた平板成形品は十分な光学性能を有する 。以上より、本実施形態によれば、光学性能に優れた平板成形品を効率よく成形で きるという効果がある。  [0034] According to the present embodiment, the linear recess 4A is provided on the slope 4 of the linear portion 3 of the stamper 1 so that the center line average roughness Ra satisfies the relations 1 and 2 described above. Since the molding resin does not easily enter the fine linear recess 4A, the flat molded product can be easily released from the stamper 1 due to the possibility of a gap between the stamper 1 and the flat molded product. . For this reason, a flat plate molded product can be molded efficiently. In addition, the flat plate molded product is formed with a prism array composed of linear prisms having a triangular cross section corresponding to the concavo-convex structure 2 composed of a plurality of linear portions 3. When a flat molded product is used as a light diffusing plate and this light diffusing plate is arranged on a plurality of light sources to produce a direct type backlight device, sufficient luminance is maintained and luminance unevenness is small ( A device having a light-emitting surface with a high luminance uniformity can be obtained. Therefore, the obtained flat plate molded article has sufficient optical performance. As described above, according to the present embodiment, there is an effect that a flat molded product having excellent optical performance can be efficiently molded.
[0035] 前記スタンパー 1により得られた平板成形品は、スタンパー 1の凹凸構造 2が少なく とも一方の主面に転写されるため、平板成形品には前記プリズム条列が形成される。 このプリズム条列を構成する各線状プリズムの各平面には、線状部 3に対応する凹凸 構造が形成され得るが、平板成形品と金型部品との離型性を考慮すれば、線状部 3 に対応する凹凸構造があまり転写されず、少なくとも転写される部分が部分的な範囲 であることが好ましい。なお、本実施形態の平板成形品は、光拡散板である。  [0035] The flat plate molded product obtained by the stamper 1 is transferred to at least one main surface of the uneven structure 2 of the stamper 1, so that the prism row is formed on the flat plate molded product. An uneven structure corresponding to the linear portion 3 can be formed on each plane of each linear prism constituting the prism row, but if the releasability between the flat plate molded product and the mold part is taken into consideration, the linear shape It is preferable that the uneven structure corresponding to the portion 3 is not transferred so much and at least the transferred portion is in a partial range. In addition, the flat plate molded product of this embodiment is a light diffusing plate.
[0036] 前記線状プリズムは、断面凸状で二等辺三角形状の線状プリズムである。三角形 の頂角は、通常 60° 〜170° で、好ましくは 70° 〜160° である。また、前記三角 形の底辺咅分の幅 ίま、通常 20 μ m〜700 μ mで、好ましく ίま 30 μ m〜600 μ mであ る。前記三角形の高さは、通常 0. 9 μ m〜606 μ mで、好ましくは 2. 6 μ m〜428 μ mである。また、隣接する三角形同士の間隔(ピッチ)は、通常 20 π!〜 700 mで、 好ましくは 30 μ m〜600 μ mである。  [0036] The linear prism is a linear prism having a convex cross section and an isosceles triangle shape. The apex angle of the triangle is usually 60 ° to 170 °, preferably 70 ° to 160 °. In addition, the width of the base portion of the triangle is generally 20 μm to 700 μm, preferably 30 μm to 600 μm. The height of the triangle is usually 0.9 μm to 606 μm, preferably 2.6 μm to 428 μm. The interval (pitch) between adjacent triangles is usually 20 π! ˜700 m, preferably 30 μm to 600 μm.
[0037] このような複数の線状プリズムを有するプリズム条列では、当該平板成形品の厚み 方向および線状プリズムの長手方向を含む平面に垂直な方向に測定した最大中心 線平均粗さ Ra (Dmaxl)力 ^3. 0 /ζ πι〜1, 000 mであり、好ましくは 4. 0 /ζ πι〜900 μ mである。なお、この方向が、 Raが最大となる方向である。 [0037] In such a prism array having a plurality of linear prisms, the maximum center line average roughness Ra (measured in the direction perpendicular to the plane including the thickness direction of the flat plate molded product and the longitudinal direction of the linear prisms Ra ( Dmaxl) force ^ 3.0 / ζ πι ~ 1,000 m, preferably 4.0 / ζ πι ~ 900 μm. This direction is the direction where Ra is maximum.
[0038] また、線状プリズムの各斜面の表面は、前記スタンパー 1の線状凹部 4Aが転写さ れた凹凸面である。この凹凸面では、当該斜面に平行で、かつ線状プリズムの長手 方向に垂直な方向を含む方向に測定した最大中心線平均粗さ Ra (Dmax2)と、前記 Ra (Dmaxl)との間に、 0. 5 >Ra (Dmax2) /Ra (Dmaxl) >0. 002の関係を満たし ている。なお、前記斜面に平行で、かつ線状プリズムの長手方向に垂直な方向を含 む方向が、 Raが最大となる方向である。  [0038] The surface of each inclined surface of the linear prism is an uneven surface to which the linear recess 4A of the stamper 1 is transferred. In this uneven surface, between the maximum center line average roughness Ra (Dmax2) measured in a direction parallel to the inclined surface and including a direction perpendicular to the longitudinal direction of the linear prism, and Ra (Dmaxl), The relationship 0.5> Ra (Dmax2) / Ra (Dmaxl)> 0.002 is satisfied. The direction including the direction parallel to the slope and perpendicular to the longitudinal direction of the linear prism is the direction in which Ra is maximum.
[0039] また、前記凹凸面では、当該斜面に平行で、かつ線状プリズムの長手方向を含む 方向に測定した最小中心線平均粗さ Ra (Dmin2)と、前記 Ra (Dmax2)との間に、 Ra (Dmax2) /Ra (Dmin2) > l. 5の関係を満たしている。なお、前記斜面に平行で、 つ線状プリズムの長手方向を含む方向が、 Raが最小となる方向である。  [0039] Further, in the uneven surface, between the minimum center line average roughness Ra (Dmin2) measured in a direction parallel to the inclined surface and including the longitudinal direction of the linear prism, and Ra (Dmax2) Ra (Dmax2) / Ra (Dmin2)> l. 5 is satisfied. The direction parallel to the slope and including the longitudinal direction of the linear prism is the direction in which Ra is minimized.
[0040] また、前記凹凸面に沿った方向に測定した、前記線状凹部 4Aに相当する部分の 平均間隔 Sm (D)は、前記 Ra (Dmaxl)との間に、 Ra (Dmaxl) X 10>Sm (D) >Ra (Dmaxl) X O. 001の関係を満たしていることが好ましぐ Ra (Dmaxl) X 9 >Sm(D) >Ra (Dmaxl) X O. 002の関係を満たしていることがより好ましい。  [0040] The average distance Sm (D) of the portion corresponding to the linear recess 4A measured in the direction along the concavo-convex surface is between Ra (Dmaxl) and Ra (Dmaxl) X 10 It is preferable to satisfy the relationship> Sm (D)> Ra (Dmaxl) X O. 001 Ra (Dmaxl) X 9> Sm (D)> Ra (Dmaxl) X O. 002 More preferably.
[0041] <変形例>  [0041] <Modification>
なお、本発明は、前記実施形態には限定されない。  In addition, this invention is not limited to the said embodiment.
例えば、前記実施形態において、線状部 3の斜面 4の凹凸部を線状凹部 4Aとした 力 線状の凸部 (線状凸部)としてもよいし、線状凹部および線状凸部の両方を有す る構成としてもよい。また、斜面 4には、線状部 3の長手方向と略平行となるように複数 の線状凹部 4Aを形成した力 複数の線状凹部 4Aが、線状部 3の長手方向と略平行 でなくてもよい。ただし、複数の線状凹部 4A同士が互いに略平行であることが好まし い。  For example, in the above-described embodiment, the concavo-convex part of the slope 4 of the linear part 3 may be a linear convex part (linear convex part) with the linear concave part 4A, or the linear concave part and the linear convex part It is good also as a structure which has both. In addition, the slope 4 has a force that forms a plurality of linear recesses 4A so as to be substantially parallel to the longitudinal direction of the linear portion 3. The plurality of linear recesses 4A are substantially parallel to the longitudinal direction of the linear portion 3. It does not have to be. However, it is preferable that the plurality of linear recesses 4A are substantially parallel to each other.
[0042] また、前記実施形態において、線状部 3を断面三角形状としたが、三角形状以外の 多角形状としてもよい。ここで、多角形状の線状部としては、例えば、図 3に示すよう に、凹凸構造 2が少なくとも 4つの面 11〜14を含み、これらの少なくとも 4つの面 11 〜14のうち、ある 2つの面 11, 12と他の 2つの面 13, 14と力 スタンパー 1の厚み方 向に垂直な面(図中左右方向を含み、紙面に垂直な面)に対して、互いに逆向きに 傾斜した構成としてもよい。このような構成のスタンパーを用いて形成された光拡散 板と複数の光源とを用いて直下型バックライト装置を構成することにより、発光面の輝 度および輝度均斉度を高めることができる。従って、光拡散板は十分な光学性能を 有する。 In the embodiment, the linear portion 3 has a triangular cross section, but may have a polygonal shape other than the triangular shape. Here, as the polygonal linear portion, for example, as shown in FIG. 3, the concavo-convex structure 2 includes at least four surfaces 11 to 14, and two of the at least four surfaces 11 to 14 are present. Surfaces 11, 12 and other two surfaces 13, 14 and force Stampers 1 are perpendicular to each other in a direction perpendicular to the thickness direction (including the horizontal direction in the figure and perpendicular to the paper) It is good also as an inclined structure. By configuring a direct type backlight device using a light diffusing plate formed using a stamper having such a configuration and a plurality of light sources, the luminance and luminance uniformity of the light emitting surface can be increased. Therefore, the light diffusing plate has sufficient optical performance.
[0043] また、前記実施形態では、線状部 3の頂角 Θをすベて同じ角度としたが、頂角 Θが 異なるようにしてもよい。例えば、線状部の断面三角形を構成する 2つの平面の一方 と、当該金型部品の厚み方向に直交する面とのなす角度は、当該三角形を構成する 2つの平面のうちの他方と、当該金型部品の厚み方向に直交する面とのなす角度に 等しぐ前記角度は、ある特定の X点と、この X点から前記線状部の長手方向に直交 する方向に沿って所定距離離れた Y点との間で、前記 X点および前記 Y点から離れ るにつれて連続的または段階的に大きくなるようにすることができる。即ち、図 4に示 すように、各線状部 3の 2つの斜面 4と、スタンパー 1の厚み方向に直交する方向の面 とのなす角度が等しくなるように形成し、地点 Xと、この地点 Xから線状部 3の長手方 向に直交する方向(図中の左右方向)に沿って所定距離離れた地点 Yとの間で、地 点 Xおよび地点 Yから離れるにつれて、角度 Θが連続的または段階的に小さくなるよ うに形成してもよ!/ヽ。このような構成のスタンパーを用いて形成された光拡散板の地 点 Xおよび地点 Yに相当する位置に光源を配置して直下型バックライト装置を構成す ることにより、発光面の輝度および輝度均斉度を高めることができる。従って、光拡散 板は十分な光学性能を有する。  [0043] In the above embodiment, the apex angles Θ of the linear portions 3 are all the same, but the apex angles Θ may be different. For example, the angle formed between one of the two planes constituting the cross-sectional triangle of the linear portion and the plane orthogonal to the thickness direction of the mold part is the other of the two planes constituting the triangle and the plane The angle equal to the angle formed with the surface orthogonal to the thickness direction of the mold part is a predetermined X point and a predetermined distance away from this X point along the direction orthogonal to the longitudinal direction of the linear portion. Further, the distance between the point Y and the point Y can be increased continuously or stepwise as the point moves away from the point X and the point Y. That is, as shown in FIG. 4, the angle formed between the two inclined surfaces 4 of each linear portion 3 and the surface in the direction perpendicular to the thickness direction of the stamper 1 is formed to be equal. The angle Θ continuously increases as the distance from the point X and the point Y increases from X to the point Y that is a predetermined distance along the direction perpendicular to the longitudinal direction of the linear portion 3 (the horizontal direction in the figure). Or you can make it smaller in steps! / ヽ. By configuring a direct type backlight device by arranging a light source at positions corresponding to the point X and the point Y of the light diffusing plate formed using the stamper having such a configuration, the luminance and luminance of the light emitting surface are configured. The uniformity can be increased. Therefore, the light diffusing plate has sufficient optical performance.
[0044] また、前記実施形態において、凹凸構造 2を、 3個以上の面を有する凸構造または 凹構造としてもよい。 3個以上の面を有する凹構造または凸構造としては、例えば図 5に示すような四角錘等の多角錐、多角錐台状とすることができる。このような凸構造 または凹構造を有するスタンパーを用いて形成された光拡散板と複数の光源とを用 いて直下型バックライト装置を構成することにより、発光面の輝度および輝度均斉度 を高めることができる。従って、光拡散板は、十分な光学性能を有する。  [0044] In the embodiment, the concavo-convex structure 2 may be a convex structure or a concave structure having three or more surfaces. As the concave structure or convex structure having three or more surfaces, for example, a polygonal pyramid such as a quadrangular pyramid as shown in FIG. By constructing a direct type backlight device using a light diffusing plate formed using a stamper having such a convex structure or a concave structure and a plurality of light sources, the luminance and the luminance uniformity of the light emitting surface are increased. Can do. Therefore, the light diffusing plate has sufficient optical performance.
[0045] 前記 3個以上の面を有する凸構造は、断面凹状又は凸状の多角形からなる線状部 を形成した後、この線状部に、当該線状部の長手方向とは異なる向きに V字状の切り 込みを入れて形成することができる。 [0046] また、前記 3個以上の面を有する凹構造は、例えば前記実施形態に示すようにして 、断面凹状又は凸状の多角形力 なる線状部を形成した後、この線状部に、当該線 状部の長手方向とは異なる向きに V字状の切り込みを入れて凸形状を有するスタン パー等の転写部材を作製し、この転写部材の当該凸形状を転写することにより形成 することができる。 [0045] In the convex structure having three or more surfaces, after forming a linear portion having a polygonal shape having a concave or convex cross section, a direction different from the longitudinal direction of the linear portion is formed on the linear portion. It can be formed with V-shaped cuts. [0046] Further, the concave structure having three or more surfaces, for example, as shown in the embodiment, after forming a linear part having a polygonal force having a concave or convex cross section, the linear part is formed on the linear part. And forming a transfer member such as a stamper having a convex shape by making a V-shaped cut in a direction different from the longitudinal direction of the linear portion, and transferring the convex shape of the transfer member. Can do.
[0047] なお、前記実施形態では、すべての線状部 3のすベての斜面 4に、当該斜面 4の略 全面に亘つて線状凹部 4Aを形成していたが、これに限らず、本発明には、複数の線 状部 3の全斜面 4のうちの一部分に線状凹部 4Aのない平坦な面 (鏡面状)を設けた 構成も含まれる。このように平坦な面を一部に設けることにより、十分な成形効率を確 保しつつ、より一層輝度均斉度の高 ヽ (輝度むらの少な 、)成形品を得ることができる 利点がある。一部分の平坦な面を有するスタンパーの具体的な構成を以下に示す。  [0047] In the above embodiment, the linear recesses 4A are formed on the entire slopes 4 of all the linear parts 3 over substantially the entire surface of the slopes 4. However, the present invention is not limited to this. The present invention also includes a configuration in which a flat surface (mirror-like shape) without the linear concave portion 4A is provided on a part of the entire slope 4 of the plurality of linear portions 3. Providing a part of the flat surface in this way has an advantage that it is possible to obtain a molded product with a higher luminance uniformity (with less luminance unevenness) while ensuring sufficient molding efficiency. A specific configuration of a stamper having a part of a flat surface is shown below.
[0048] 図 7は、第 4の変形例に係るスタンパー 201を示す断面図である。  FIG. 7 is a cross-sectional view showing a stamper 201 according to a fourth modification.
図 7に示すように、スタンパー 201は、複数の線状部 3のうち、一部の線状部 3の斜 面 4にのみ線状凹部 4Aが形成された構成である。このようなスタンパー 201は、前記 焼結体ダイヤモンドバイトと前記単結晶ダイヤモンドバイトとを併用することにより、簡 単に作製できる。  As shown in FIG. 7, the stamper 201 has a configuration in which a linear recess 4A is formed only on the inclined surface 4 of a part of the linear portions 3 among the plurality of linear portions 3. Such a stamper 201 can be easily produced by using both the sintered diamond bite and the single crystal diamond bite.
[0049] 図 8は、第 5の変形例に係るスタンパー 202を示す断面図である。  FIG. 8 is a cross-sectional view showing a stamper 202 according to a fifth modification.
図 8に示すように、スタンパー 202は、複数の線状部 3の各斜面 4において、当該斜 面 4の一部分にのみ線状凸部(凹凸部) 4Bが形成された構成である。具体的には、 スタンパー 202では、線状部 3を構成する斜面 4において、線状部 3の根元側および 頂上側を除いた該斜面 4の中央部分にのみ、線状凸部 4Bが形成されている。中央 部分にのみ線状凸部 4Bを形成するようにすることにより、線状部 3の加工を容易にで きるという利点がある。  As shown in FIG. 8, the stamper 202 has a configuration in which each of the slopes 4 of the plurality of linear parts 3 has a linear convex part (uneven part) 4B formed only on a part of the inclined surface 4. Specifically, in the stamper 202, on the slope 4 constituting the linear portion 3, the linear convex portion 4B is formed only on the central portion of the slope 4 excluding the root side and the top side of the linear portion 3. ing. By forming the linear convex portion 4B only at the central portion, there is an advantage that the processing of the linear portion 3 can be facilitated.
[0050] 前記中央部分の範囲は、図 8に示すように、各斜面 4に沿った方向の長さを Dとし、 この長さ Dを、線状部 3の根元側から頂上側にかけた 3つの領域に分割し、各領域の 長さを前記の順に Dl、 D2、 D3とすると、例えば、長さ D2を長さ Dの 1%〜98%、長 さ D1を長さ Dの 1%〜98%、長さ D3を長さ Dの 1%〜98%とすることができる。また 、長さ D2を長さ Dの 5%〜90%、長さ D1を長さ Dの 5%〜90%、長さ D3を長さ Dの 5%〜90%とすることが好ましい。さらに、長さ D2を長さ Dの 10%〜80%、長さ D1を 長さ Dの 10%〜80%、長さ D3を長さ Dの 10%〜80%とすることがより好ましい。具 体的には、例えば、長さ D力 5. である場合に、長さ D1および D3をそれぞれ 4. 6 m、長さ D2を 36. 5 μ mとすることができる。なお、長さ D2と長さ D3とを同じ寸 法とした力 異なる寸法としてもよい。 [0050] As shown in FIG. 8, the range of the central portion is defined as a length in the direction along each slope 4 being D, and this length D is applied from the root side to the top side of the linear portion 3 3 If the length of each region is D1, D2, and D3 in the above order, for example, the length D2 is 1% to 98% of the length D, and the length D1 is 1% to 1% of the length D. 98%, length D3 can be 1% to 98% of length D. Also, length D2 is 5% to 90% of length D, length D1 is 5% to 90% of length D, length D3 is length D 5% to 90% is preferable. More preferably, the length D2 is 10% to 80% of the length D, the length D1 is 10% to 80% of the length D, and the length D3 is 10% to 80% of the length D. Specifically, for example, when the length D force is 5, the lengths D1 and D3 can be 4.6 m and the length D2 can be 36.5 μm, respectively. It should be noted that the length D2 and the length D3 may be the same size but different forces.
[0051] このようなスタンパー 202は、前記単結晶ダイヤモンドチップの表面に、例えば、集 束イオンビーム(Focused Ion Beam: FIB)装置(日立ハイテクノロジ一社製)を用 V、て微細加工を施して一部に線状凸部が形成されたチップを作製した後、このチッ プが取り付けられたバイトを用いて前記同様の加工を行うことにより作製できる。  [0051] Such a stamper 202 performs fine processing on the surface of the single crystal diamond tip using, for example, a focused ion beam (FIB) apparatus (manufactured by Hitachi High-Technologies Corporation) V. Then, after a chip having a linear convex portion formed in part is manufactured, the same processing as described above is performed using a bite to which this chip is attached.
[0052] ここで、前記中央部分の詳細な形状について説明する。  [0052] Here, the detailed shape of the central portion will be described.
図 9は、図 8における範囲 Xを拡大して示す断面図である。図 9に示すように、斜面 4 の前記中央部分には、断面が頂角 90° の三角形状の線状凸部 4B (凹凸部)が 2つ 連なった条列部 4Xが間隔をあけて複数形成されている。このような条列部 4Xを設け ることにより、 2つの線状凸部 4B間には凹部 Zが形成される。凹部 Zを有するスタンパ 一 202を用いて成形品を成形すると、凹部 Zへの成形用榭脂の入り込みが困難であ ることから、凹部 Zの最深部に空隙が形成されること等に起因して、スタンパー 202か らの成形品の離型性が向上する傾向がある。このため、線状部の斜面 4に、凹部 Zの ような榭脂が入り込みにくい箇所を敢えて設けることにより、成形品の成形性を向上さ せることができる。ただし、凹部 Zの形状は、スタンパー 202から成形品を離型する際 に、離型に支障が生じないように、アンダーカット部分が生じない形状とする必要があ る。  FIG. 9 is an enlarged cross-sectional view of the range X in FIG. As shown in FIG. 9, the central portion of the slope 4 has a plurality of row portions 4X each having a series of two linear line-shaped convex portions 4B (concave portions) having a cross section of 90 ° in apex. Is formed. By providing such a row portion 4X, a concave portion Z is formed between the two linear convex portions 4B. When a molded product is formed using the stamper 202 having the recess Z, it is difficult to enter the molding resin into the recess Z, and therefore, a void is formed in the deepest portion of the recess Z. Therefore, there is a tendency that the release property of the molded product from the stamper 202 is improved. For this reason, it is possible to improve the moldability of the molded product by providing the slope 4 of the linear portion with a portion such as the recess Z that is difficult for the resin to enter. However, the shape of the recess Z must be such that when the molded product is released from the stamper 202, the undercut portion does not occur so as not to hinder the release.
[0053] なお、この変形例では、斜面 4の前記中央部分を、複数の条列部 4Xが間隔をあけ て形成された構成としたが、条列部 4X間の間隔がない、すなわち線状凸部 4B同士 が連続して連なった構成とすることができる。このような構成においても、線状部の根 元部分と頂上部分とは平坦な面であることから、十分な成形効率を確保しつつ、より 一層輝度均斉度の高い成形品を得ることができる利点を奏することができる。  [0053] In this modification, the central portion of the slope 4 has a configuration in which a plurality of row portions 4X are formed at intervals, but there is no interval between the row portions 4X, that is, a linear shape. Convex portions 4B can be continuously connected. Even in such a configuration, since the base portion and the top portion of the linear portion are flat surfaces, it is possible to obtain a molded product with higher brightness uniformity while ensuring sufficient molding efficiency. There are advantages.
[0054] また、前記中央部分にのみ条列部 4Xを形成した力 斜面 4の全面に亘つて図 9に 示すような構造を形成してもよい。この場合には、条列部 4X間に前述したような平坦 な部分が設けられることから、十分な成形効率を確保しつつ、より一層輝度均斉度の 高い成形品を得ることができる利点を奏することができる。 Further, a structure as shown in FIG. 9 may be formed over the entire surface of the force slope 4 in which the row portion 4X is formed only in the central portion. In this case, the flat portion as described above between the row portions 4X. Since such a portion is provided, it is possible to obtain an advantage that a molded product with higher luminance uniformity can be obtained while ensuring sufficient molding efficiency.
[0055] また、本変形例では、条列部 4Xの構成を線状凸部 4Bが 2つ連なった構成としたが 、線状凹部が 3つ以上連なった形状としてもよい。また、複数種類の条列部が組み合 わされた構成としてもよい。例えば、図 10に示すように、線状凸部 4Bが 2つ連なった 条列部 4Xと、線状凸部 4Bが 3つ連なった条列部 4Yとが混在するような構成とするこ とがでさる。  [0055] In the present modification, the configuration of the row portion 4X is a configuration in which two linear convex portions 4B are connected, but it may have a shape in which three or more linear concave portions are connected. Further, a configuration in which a plurality of types of row sections are combined may be employed. For example, as shown in FIG. 10, a configuration in which a row portion 4X including two linear convex portions 4B and a row portion 4Y including three linear convex portions 4B are mixed together. It is out.
[0056] 図 11は、第 6の変形例に係るスタンパー 203を示す断面図である。  FIG. 11 is a cross-sectional view showing a stamper 203 according to a sixth modification.
図 11に示すように、スタンパー 203は、各線状部 3のいずれかの斜面 4にのみ線状 凸部 4Bが形成された構成である。スタンパー 203は、前記単結晶ダイヤモンドチップ が設けられたバイトと、前記集束イオンビーム装置等により微細加工されたバイトとを 併用することにより作製できる。  As shown in FIG. 11, the stamper 203 has a configuration in which a linear convex portion 4B is formed only on one of the slopes 4 of each linear portion 3. The stamper 203 can be manufactured by using a bite provided with the single crystal diamond tip and a bite finely processed by the focused ion beam apparatus or the like.
[0057] 図 12は、第 7の変形例に係るスタンパー 204を示す断面図である。  FIG. 12 is a cross-sectional view showing a stamper 204 according to a seventh modification.
図 12に示すように、スタンパー 204は、各線状部 3のいずれかの斜面 4にのみ線状 凸部 4Bが形成された構成である。スタンパー 204は、前記単結晶ダイヤモンドバイト の!、ずれか一方の表面にのみ、前記集束イオンビーム装置等で微細加工を施した チップが取り付けられたバイトを用いて、前記同様の加工を行うことにより作製できる。  As shown in FIG. 12, the stamper 204 has a configuration in which the linear convex portion 4B is formed only on one of the slopes 4 of each linear portion 3. The stamper 204 is made of the single crystal diamond tool! It can be manufactured by performing the same processing as described above using a tool attached with a chip that has been finely processed by the focused ion beam device or the like on only one surface.
[0058] なお、本発明の変形例として金型部品の変形例のみを挙げたが、これらの変形例 に係る金型部品を用いて得られた光拡散板も同様の変形例を挙げることができる。 すなわち、本発明の変形例に係る光拡散板の少なくとも一方の主面は、当該金型部 品の凹凸構造が十分に転写された形状である。なお、十分に転写された形状とは、 金型部品の凹凸構造と略同じ寸法の形状とのことであり、以下も同様である。  [0058] Although only the modification examples of the mold parts are given as the modification examples of the present invention, the light diffusion plate obtained by using the mold parts according to these modification examples may also be the same modification examples. it can. That is, at least one main surface of the light diffusion plate according to the modification of the present invention has a shape in which the uneven structure of the mold part is sufficiently transferred. The sufficiently transferred shape is a shape having substantially the same dimensions as the concavo-convex structure of the mold part, and so on.
実施例  Example
[0059] 以下、本発明につ 、て、実施例および比較例を挙げてより詳細に説明する。なお、 本発明は、これらの実施例には限定されない。  Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. The present invention is not limited to these examples.
[0060] <実施例 1 > <Example 1>
寸法 800mm X 500mm、厚さ 2mmのステンレス鋼 SUS430製の矩形板材の全面 に、厚さ 100 mのニッケル-リン無電解メツキを施した。次いで、頂角 100度の焼結 体ダイヤモンドのチップ (スミダイヤ DA-2200、住友電工ハードメタル社製)が取り付 けられたバイトを、微細加工用の工作機械(例えば、ナノグルーバ AMG71P、不二 越社製)に用いて、ニッケル-リン無電解メツキ面に対して、板材の短辺方向に沿って 、幅 70 /ζ πι、高さ 24. 5 /ζ πι、ピッチ 70 m、頂角 100度の断面二等辺三角形状の 線状部を複数切削加工して凹凸構造を形成し、スタンパーを得た。 A stainless steel SUS430 rectangular plate with dimensions 800mm X 500mm and thickness 2mm was coated with nickel-phosphorous electroless plating with a thickness of 100m. Next, sintering with an apex angle of 100 degrees Using a tool with a diamond chip (Sumidia DA-2200, manufactured by Sumitomo Electric Hardmetal Co., Ltd.) on a micromachining machine tool (for example, Nano Gruber AMG71P, manufactured by Fujikoshi Co., Ltd.) A line with an isosceles triangle shape with a width of 70 / ζ πι, height of 24.5 / ζ πι, a pitch of 70 m, and an apex angle of 100 degrees along the short side of the plate against the electroless plating surface of phosphorus A plurality of parts were cut to form an uneven structure, and a stamper was obtained.
[0061] 得られたスタンパーについて、超深度顕微鏡を用いて、線状部の Ra (maxl)、前記 線状部の斜面の Ra (max2)、 Ra (min2)、および Smを求めた。その結果、 Ra (maxl) カ^. 1 μ mであった。また、 Ra (max2)が 0. 15 μ mであるため、 Ra (max2) /Ra (ma xl)が 0. 021であった。さらに、 Ra (max2) ZRa (min2)が 7. 5であり、 Smが であった。 [0061] With respect to the obtained stamper, Ra (maxl) of the linear portion, Ra (max2), Ra (min2), and Sm of the slope of the linear portion were determined using an ultradeep microscope. As a result, Ra (maxl) was ^ 1 μm. Since Ra (max2) was 0.15 μm, Ra (max2) / Ra (ma xl) was 0.021. Furthermore, Ra (max2) ZRa (min2) was 7.5 and Sm was.
[0062] 次に、成形品を構成する榭脂について説明する。  [0062] Next, the resin constituting the molded product will be described.
透明榭脂である脂環式構造を有する榭脂(日本ゼオン (株)、ゼォノア 1060R、吸 水率 0. 01%) 99. 7質量部と、光拡散剤として平均粒径 2 mのポリシロキサン重合 体の架橋物からなる微粒子 0. 3質量部とを混合し、二軸押出機で混練してストランド 状に押し出し、ペレタイザ一で切断して光拡散板用ペレットを製造した。この光拡散 板用ペレットを原料として、射出成形機 (型締め力 lOOOkN)を用いて、両面が平滑 な厚み 2mmで 100mm X 50mmの試験板を成形した。この試験板の全光線透過率 とヘーズを、 JIS K7361-liJIS K7136に基づいて、積分球方式色差濁度計を 用いて測定した。試験板は、全光線透過率は 85%であり、ヘーズは 99%であった。  Polysiloxane having an alicyclic structure, which is a transparent resin (Nippon ZEON Co., Ltd., ZEONOR 1060R, water absorption 0.01%) 99.7 parts by mass and a polysiloxane having an average particle size of 2 m as a light diffusing agent 0.3 parts by mass of fine particles of a polymer cross-linked product were mixed, kneaded with a twin-screw extruder, extruded into a strand, and cut with a pelletizer to produce a light diffusion plate pellet. Using this light diffusion plate pellet as a raw material, an injection molding machine (clamping force lOOOOkN) was used to mold a 100 mm × 50 mm test plate with a smooth thickness of 2 mm on both sides. The total light transmittance and haze of this test plate were measured using an integrating sphere color difference turbidimeter based on JIS K7361-liJIS K7136. The test plate had a total light transmittance of 85% and a haze of 99%.
[0063] 次に、金型を準備し、この金型を構成する一方の型に前記スタンパーを取り付け、 他方の金型のキヤビティ面を研磨した。この際、研磨した面の Raは 0. 003 mであ つた。このような金型を有する射出成形機 (型締め力 4, 410kN)を用いて、前記光拡 散板用ペレットを原料としてシリンダー温度 280度、金型温度 85度の条件下で光拡 散板を成形した。このようにして得られた光拡散板は、射出成形を 100ショット行って もスタンパーに一度も張り付くことがな力つた。  [0063] Next, a mold was prepared, the stamper was attached to one mold constituting the mold, and the cavity surface of the other mold was polished. At this time, Ra of the polished surface was 0.003 m. Using an injection molding machine having such a mold (clamping force 4,410 kN), the light diffusion plate is produced under the conditions of a cylinder temperature of 280 ° C. and a mold temperature of 85 ° C. using the light diffusion plate pellets as a raw material. Was molded. The light diffusing plate thus obtained was strong enough to stick to the stamper even after 100 shots of injection molding.
[0064] 得られた光拡散板は、スタンパーの凹凸構造が十分に転写された、厚み 2mm、 72 7. 5mm X 415mmの長方形状であり、その一方の面には断面三角形状の線状プリ ズムが略平行に複数並んでなるプリズム条列が形成されて 、た。この線状プリズムは 、その頂角が 100° で、ピッチが 70 μ mであった。なお、スタンパーにおける凹凸構 造の平面に形成された複数の凹凸部は、部分的に転写されたものの、全体としては あまり転写されて ヽなかった。 [0064] The obtained light diffusing plate has a rectangular shape with a thickness of 2mm, 727.5mm x 415mm, to which the concave-convex structure of the stamper is sufficiently transferred, and has a linear pre-shaped cross section on one surface. A prism row consisting of a plurality of prisms arranged substantially in parallel was formed. This linear prism is The apex angle was 100 ° and the pitch was 70 μm. Note that the plurality of uneven portions formed on the flat surface of the uneven structure in the stamper were partially transferred, but were not transferred as much as a whole.
[0065] 次に、内寸幅 700mm、奥行き 400mm、深さ 20mmの乳白色プラスチック製ケー スの内面に反射シート (株式会社ッジデン製、 RF 188)を貼着して反射板とし、反射 板の底から 5mm離して、直径 3mm、長さ 750mmの冷陰極管 12本を、冷陰極管の 中心間の距離が 33mmとなるように配置し、電極部近傍をシリコーンシーラントで固 定し、インバーターを取り付けた。 [0065] Next, a reflective sheet (RF 188, manufactured by Gidden Co., Ltd.) is attached to the inner surface of a milky white plastic case with an inner width of 700mm, a depth of 400mm, and a depth of 20mm. 12 mm cold cathode fluorescent lamps with a diameter of 3 mm and a length of 750 mm are arranged so that the distance between the centers of the cold cathode fluorescent lamps is 33 mm, and the vicinity of the electrodes is fixed with a silicone sealant, and an inverter is installed. It was.
[0066] 次に、得られた光拡散板を、プリズム条列が冷陰極管の反対側 (反光源位置)にな るように配置し、冷陰極管を取り付けたプラスチックケース上に設置した。この際、冷 陰極管の長手方向と、プリズム条列を構成する三角プリズムの長手方向とが略平行と なるように配置した。さらに、この光拡散板の上に、 3枚の拡散シート(「188GM3」、 きもと社製)を設置した。このようにして、図 6に示すように、複数の光源 101と、反射 板 102と、前記光拡散板 1とを有する直下型バックライト装置 100を作製した。 [0066] Next, the obtained light diffusion plate was arranged so that the prism row was on the opposite side of the cold-cathode tube (counter-light source position), and was placed on a plastic case with the cold-cathode tube attached. At this time, the cold cathode tubes were arranged so that the longitudinal direction of the cold cathode tubes and the longitudinal direction of the triangular prisms constituting the prism row were substantially parallel. In addition, three diffusion sheets (“188GM3”, manufactured by Kimoto Co., Ltd.) were installed on this light diffusion plate. In this manner, as shown in FIG. 6, a direct type backlight device 100 having a plurality of light sources 101, a reflecting plate 102, and the light diffusing plate 1 was produced.
[0067] 次に、得られた直下型バックライトに対して管電流 5mAを印加して冷陰極管を点灯 させ、二次元色分布測定装置を用いて、短手方向中心線上で等間隔に 100点の正 面方向の輝度を測定し、下記の数式 1と数式 2に従つて輝度平均値 Laと輝度むら Lu を得た。このとき、輝度平均値は 6, 879cd/m2で、輝度むらは 0. 4%であった。 輝度平均値 La= (Ll +L2) Z2 (数式 1) [0067] Next, a cold cathode tube was turned on by applying a tube current of 5 mA to the obtained direct type backlight, and 100-second equidistant on the center line in the short direction using a two-dimensional color distribution measuring device. The brightness in the front direction of the points was measured, and the brightness average value La and brightness unevenness Lu were obtained according to the following formulas 1 and 2. At this time, the luminance average value was 6,879 cd / m 2 and the luminance unevenness was 0.4%. Luminance average value La = (Ll + L2) Z2 (Formula 1)
輝度むら Lu= ( (Ll- L2) ZLa) X 100 (数式 2)  Luminance unevenness Lu = ((Ll- L2) ZLa) X 100 (Equation 2)
L1:複数本設置された冷陰極管真上での輝度極大値の平均  L1: Average brightness maxima just above the cold cathode tubes installed
L2:極大値に挟まれた極小値の平均  L2: Average of local minimum values between local maximums
なお、輝度むらは、輝度の均一性を示す指標であり、輝度むらが悪いときは、その 数値は大きくなる。  Note that the luminance unevenness is an index indicating the uniformity of luminance, and the value increases when the luminance unevenness is bad.
[0068] <実施例 2> <Example 2>
他方の金型のキヤビティ面を長手方向に沿った研削処理により粗面化した以外は、 実施例 1と同様にして光拡散板および直下型バックライト装置を得た。その結果、前 記粗面化した面の Raが 0. 6 mであった。得られた光拡散板は、スタンパーの凹凸 構造が十分に転写されており、プリズム条列が形成された面は実施例 1と同様の形 状 (ただし、光拡散板では、線状凹部の凹凸が逆転した形状となる)で、プリズム条列 が形成されていない面は実施例 1に比べ粗面化していた。なお、スタンパーにおける 凹凸構造の平面に形成された複数の凹凸部は、部分的に転写されたものの、全体と してはあまり転写されていな力つた。得られた光拡散板は、射出成形を 100ショット行 つてもスタンパーに一度も張り付くことがな力つた。また、得られた直下型バックライト 装置では、輝度平均値が 6, 810cdZm2で、輝度むらが 0. 5%であった。 A light diffusing plate and a direct type backlight device were obtained in the same manner as in Example 1 except that the cavity surface of the other mold was roughened by grinding along the longitudinal direction. As a result, Ra of the roughened surface was 0.6 m. The resulting light diffusion plate The surface on which the structure is sufficiently transferred and the prism rows are formed has the same shape as in Example 1 (however, the light diffusing plate has a shape in which the concave and convex portions of the linear recesses are reversed). The surface on which no row was formed was roughened as compared with Example 1. The plurality of uneven portions formed on the flat surface of the uneven structure in the stamper was partially transferred but was not transferred as a whole. The obtained light diffusion plate was strong enough to stick to the stamper even after 100 shots of injection molding. Further, in the obtained direct type backlight device, the average luminance was 6,810 cdZm 2 and the luminance unevenness was 0.5%.
[0069] <実施例 3 >  [0069] <Example 3>
寸法 800mm X 500mm、厚さ 2mmのステンレス鋼 SUS430製の矩形板材の全面 に、厚さ 100 mのニッケル-リン無電解メツキを施した。次いで、頂角 100度の焼結 体ダイヤモンドのチップ (スミダイヤ DA-2200、住友電工ハードメタル社製)が取り付 けられたバイトと、頂角 100度の単結晶ダイヤモンドチップ(コンツールファインツーリ ング社製)が取り付けられたバイトとを、適宜交換しながら、微細加工用の工作機械( 例えば、ナノグルーバ AMG71P、不二越社製)に用いて、ニッケル-リン無電解メッ キ面に対して、板材の短辺方向に沿って、幅 70 μ m、高さ 24. 5 m、ピッチ 70 μ m 、頂角 100度の断面二等辺三角形状の線状部を複数切削加工して凹凸構造を形成 しスタンパーを得た。具体的には、複数の線状部を、焼結体ダイヤモンドチップが取 り付けられたバイトにより形成された第 1の線状部と、単結晶ダイヤモンドチップが取り 付けられたバイトにより形成された第 2の線状部と、前記第 2の線状部とを、この順に 繰り返すような構成とした。  A stainless steel SUS430 rectangular plate with dimensions 800mm X 500mm and thickness 2mm was coated with nickel-phosphorous electroless plating with a thickness of 100m. Next, a bit on which a sintered diamond tip (Sumidia DA-2200, manufactured by Sumitomo Electric Hardmetal Co., Ltd.) with an apex angle of 100 degrees was mounted, and a single crystal diamond tip with an apex angle of 100 degrees (Contool Fine Touring). Using a tool for micromachining (for example, Nano Gruber AMG71P, manufactured by Fujikoshi Co., Ltd.) while replacing the tool with a tool attached to the nickel-phosphorous electroless mesh surface, Along the short side direction, a stamper is formed by cutting a plurality of isosceles triangular lines with a width of 70 μm, a height of 24.5 m, a pitch of 70 μm, and an apex angle of 100 degrees to form a concavo-convex structure. Got. Specifically, a plurality of linear portions are formed by a first linear portion formed by a cutting tool to which a sintered diamond tip is attached and a cutting tool to which a single crystal diamond tip is attached. The second linear portion and the second linear portion are configured to repeat in this order.
[0070] 得られたスタンパーについて、超深度顕微鏡を用いて、線状部の Ra (maxl)、前記 第 1の線状部の斜面の Ra (max2)、 Ra (min2)、および Smを求めた。その結果、 Ra ( maxl)が 7. 1 μ mであった。また、 Ra (max2)が 0. 15 μ mであるため、 Ra (max2) / Ra (maxl)が 0. 021であった。さらに、 Ra (max2) ZRa (min2)が 7. 5であり、 Smが 7 0 μ mであつ 7こ。  [0070] With respect to the obtained stamper, Ra (maxl) of the linear portion, Ra (max2), Ra (min2), and Sm of the slope of the first linear portion were obtained using an ultradeep microscope. . As a result, Ra (maxl) was 7.1 μm. Since Ra (max2) was 0.15 μm, Ra (max2) / Ra (maxl) was 0.021. Furthermore, Ra (max2) ZRa (min2) is 7.5, and Sm is 70 μm.
[0071] このようなスタンパーを一方の金型に取り付けるとともに、実施例 2と同様に他方の 金型のキヤビティ面を粗面化したものを用いて、前記実施例 1と同様にして成形品で ある光拡散板および直下型バックライト装置を得た。 [0072] 得られた光拡散板は、スタンパーの凹凸構造が十分に転写されており、プリズム条 列が形成された面は図 7に示す金型部品の形状に類似した形状であった (なお、図 7では、第 1の線状部と第 2の線状部とが繰り返し形成された構成であり、本実施例の ものとは相違する)。また、スタンパーの線状凸部が転写されるため、光拡散板では、 その凹凸が逆転する)。また、実施例 2と同様に、プリズム条列が形成されていない面 は粗面化されており、この粗面化した面の Raが 0. 6 μ mであった。なお、スタンパー における凹凸構造の平面に形成された複数の凹凸部は、部分的に転写されたもの の、全体としてはあまり転写されていな力つた。得られた光拡散板は、射出成形を 10 0ショット行った際に 1度だけスタンパーへの張り付きが生じたが、成形性への大きな 支障とはならな力つた。得られた直下型バックライト装置では、輝度平均値が 6, 878 cd/m2で、輝度むらが 0. 3%であった。 [0071] With such a stamper attached to one mold, the molded surface of the other mold was roughened in the same manner as in Example 2, and the molded product was formed in the same manner as in Example 1 above. A certain light diffusion plate and direct type backlight device were obtained. [0072] In the obtained light diffusion plate, the uneven structure of the stamper was sufficiently transferred, and the surface on which the prism array was formed had a shape similar to the shape of the mold part shown in FIG. FIG. 7 shows a configuration in which the first linear portion and the second linear portion are repeatedly formed, which is different from that of the present embodiment. Further, since the linear convex portion of the stamper is transferred, the concave and convex portions are reversed in the light diffusion plate). Further, as in Example 2, the surface on which the prism rows were not formed was roughened, and Ra of the roughened surface was 0.6 μm. The plurality of uneven portions formed on the flat surface of the uneven structure in the stamper was partially transferred but was not transferred as a whole. The resulting light diffusing plate stuck to the stamper only once when injection molding was carried out 100 shots, but it did not greatly affect moldability. In the obtained direct type backlight device, the average luminance was 6,878 cd / m 2 and the luminance unevenness was 0.3%.
[0073] <実施例 4 >  <Example 4>
寸法 800mm X 500mm、厚さ 2mmのステンレス鋼 SUS430製の矩形板材の全面 に、厚さ 100 mのニッケル-リン無電解メツキを施した。次いで、頂角 100度の単結 晶ダイヤモンドチップ (コンツールファインツーリング社製)の表面に、集束イオンビー ム(Focused Ion Beam : FIB)装置(日立ハイテクノロジ一社製)を用いて微細な 加工を施して、微細加工済みのチップを作製した。このチップをバイトに取り付けて微 細加工済みチップが取り付けられたバイトを作製した。  A stainless steel SUS430 rectangular plate with dimensions 800mm X 500mm and thickness 2mm was coated with nickel-phosphorous electroless plating with a thickness of 100m. Next, fine processing is performed on the surface of a single-crystal diamond tip (manufactured by Contool Fine Tooling) with an apex angle of 100 degrees using a focused ion beam (FIB) device (manufactured by Hitachi High-Technologies Corporation). To produce a finely processed chip. This tip was attached to a bite to produce a bite with a micromachined tip.
[0074] このような微細加工済みチップが取り付けられたバイトを、微細加工用の工作機械( 例えば、ナノグルーバ AMG71P、不二越社製)に用いて、ニッケル-リン無電解メッ キ面に対して、板材の短辺方向に沿って、幅 70 μ m、高さ 24. 5 m、ピッチ 70 μ m 、頂角 100度の断面二等辺三角形状の線状部を複数切削加工して凹凸構造を形成 しスタンパーを得た。  [0074] Using a bit with such a micromachined chip attached to a machine tool for micromachining (for example, Nano Gruber AMG71P, manufactured by Fujikoshi Co., Ltd.), the plate material is applied to the nickel-phosphorous electroless mesh surface. Along the short side, a plurality of isosceles triangular sections with a width of 70 μm, a height of 24.5 m, a pitch of 70 μm, and an apex angle of 100 degrees are cut to form a concavo-convex structure. Got a stamper.
[0075] 得られたスタンパーについて、超深度顕微鏡を用いて、線状部の Ra (maxl)、線状 部の斜面の Ra (max2)、 Ra (min2)、および Smを求めた。その結果、 Ra (maxl)が 7. 1 μ mであった。また、 Ra (max2)が 0. 1 μ mであるため、 Ra (max2) /Ra (maxl)が 0 . 014であった。さらに、 Ra (max2) ZRa (min2)が 5. 0であり、 Smが であった 。また、図 8における、長さ Dl , D3力 ^4. 6 mであり、長さ D2力 ^36. 5 mであった。 また、図 9において、線状凸部 4Bの底辺の長さが 0. 5 mであり、条列部 4X間の間 隔が 1. O /z mであった。 [0075] For the obtained stamper, Ra (maxl) of the linear portion, Ra (max2), Ra (min2), and Sm of the slope of the linear portion were determined using an ultradeep microscope. As a result, Ra (maxl) was 7.1 μm. Since Ra (max2) was 0.1 μm, Ra (max2) / Ra (maxl) was 0.014. Furthermore, Ra (max2) ZRa (min2) was 5.0 and Sm was. In FIG. 8, the length Dl and the D3 force ^ 4.6 m, and the length D2 force ^ 36.5 m. In FIG. 9, the length of the bottom of the linear convex portion 4B was 0.5 m, and the interval between the row portions 4X was 1. O / zm.
[0076] このようなスタンパーを一方の金型に取り付けるとともに、実施例 2と同様に他方の 金型のキヤビティ面を粗面化したものを用いて、前記実施例 1と同様にして成形品で ある光拡散板および直下型バックライト装置を得た。  [0076] Such a stamper is attached to one mold, and the molded surface of the other mold is roughened in the same manner as in the second embodiment. A certain light diffusion plate and direct type backlight device were obtained.
[0077] 得られた光拡散板は、スタンパーの凹凸構造が十分に転写されており、プリズム条 列が形成された面は図 8に示す形状に類似した形状であった (なお、スタンパーの線 状凸部が転写されているため、光拡散板ではその凹凸が逆転する)。また、実施例 2 と同様に、プリズム条列が形成されていない面は粗面化されており、この粗面化した 面の Raが 0. 6 μ mであった。なお、スタンパーにおける凹凸構造の平面に形成され た複数の凹凸部は、部分的に転写されたものの、全体としてはあまり転写されていな かった。得られた光拡散板は、射出成形を 100ショット行った際に 1度もスタンパーに 張り付かな力つた。得られた直下型バックライト装置では、輝度平均値が 6, 946cd/ m2で、輝度むらが 0. 3%であった。 In the obtained light diffusion plate, the uneven structure of the stamper was sufficiently transferred, and the surface on which the prism array was formed had a shape similar to the shape shown in FIG. Since the convex portion is transferred, the concave and convex portions are reversed in the light diffusion plate). Further, as in Example 2, the surface on which the prism row was not formed was roughened, and Ra of the roughened surface was 0.6 μm. Note that the plurality of uneven portions formed on the flat surface of the uneven structure in the stamper were partially transferred but were not transferred as a whole. The obtained light diffusion plate was strong enough to stick to the stamper after 100 shots of injection molding. In the obtained direct type backlight device, the average luminance was 6,946 cd / m 2 and the luminance unevenness was 0.3%.
[0078] <実施例 5 >  <Example 5>
実施例 4で作製した微細加工済みのチップが取り付けられたノイトと、前記頂角 10 0度の単結晶ダイヤモンドチップが取り付けられたバイトとを、適宜交換しながら、微 細加工用の工作機械 (例えば、ナノグルーバ AMG71P、不二越社製)に用いて、 ニッケル-リン無電解メツキ面に対して、板材の短辺方向に沿って、幅 70 /ζ πι、高さ 2 4. 5 /ζ πι、ピッチ 70 /ζ πι、頂角 100度の断面二等辺三角形状の線状部を複数切削 加工して凹凸構造を形成しスタンパーを得た。具体的には、実施例 3と同様に、複数 の線状部を、微細加工済みのチップが取り付けられたノイトにより形成された第 3の 線状部と、単結晶ダイヤモンドチップが取り付けられたバイトにより形成された第 4の 線状部と、前記第 4の線状部とを、この順に繰り返すような構成とした。  A machine tool for microfabrication is performed by appropriately exchanging the noite to which the micromachined chip manufactured in Example 4 is attached and the bite to which the single crystal diamond chip having the apex angle of 100 degrees is attached ( For example, the width of 70 / ζ πι, height 24.5 / ζ πι, and pitch along the short side of the plate against the nickel-phosphorous electroless plating surface A stamper was obtained by forming a concavo-convex structure by cutting a plurality of linear parts having an isosceles cross section of 70 / ζ πι and an apex angle of 100 degrees. Specifically, in the same manner as in Example 3, a plurality of linear portions are divided into a third linear portion formed by a knot to which a micromachined chip is attached, and a bite to which a single crystal diamond tip is attached. The fourth linear portion formed by the above and the fourth linear portion are configured to repeat in this order.
[0079] 得られたスタンパーについて、超深度顕微鏡を用いて、線状部の Ra (maxl)、前記 第 3の線状部の斜面の Ra (max2)、 Ra (min2)、および Smを求めた。その結果、 Ra ( maxl)が 7. 1 μ mであった。ま 、 Ra (max2)が 0. 1 μ mであるため、 Ra max2) /Ra (maxl)が 0. 014であった。さらに、 Ra (max2) ZRa (min2)が 5. 0であり、 Sm力 0 mであった。 [0079] For the obtained stamper, Ra (maxl) of the linear portion, Ra (max2), Ra (min2), and Sm of the slope of the third linear portion were obtained using an ultra-deep microscope. . As a result, Ra (maxl) was 7.1 μm. Since Ra (max2) was 0.1 μm, Ra max2) / Ra (maxl) was 0.014. Furthermore, Ra (max2) ZRa (min2) is 5.0 and Sm force is 0 m.
[0080] このようなスタンパーを一方の金型に取り付けるとともに、実施例 2と同様に他方の 金型のキヤビティ面を粗面化したものを用いて、前記実施例 1と同様にして成形品で ある光拡散板および直下型バックライト装置を得た。  [0080] While mounting such a stamper on one mold and using a roughened cavity surface of the other mold in the same manner as in Example 2, a molded product was obtained in the same manner as in Example 1 above. A certain light diffusion plate and direct type backlight device were obtained.
[0081] 得られた光拡散板は、スタンパーの凹凸構造が十分に転写されており、プリズム条 列が形成された面は図 11に示すスタンパーの形状に類似した形状であった (なお、 図 11では、第 3の線状部と第 4の線状部とが繰り返し形成された構成であり、本実施 例のものとは相違する。また、スタンパーの線状凸部が転写されているため、光拡散 板では、その凹凸が逆転する)。また、実施例 2と同様に、プリズム条列が形成されて いない面は粗面化されており、この粗面化した面の Raが 0. 6 mであった。なお、ス タンパ一における凹凸構造の平面に形成された複数の凹凸部は、部分的に転写さ れたものの、全体としてはあまり転写されていな力つた。得られた光拡散板は、射出 成形を 100ショット行った際に 1度だけスタンパーへの張り付きが生じた力 成形性へ の大きな支障とはならな力つた。得られた直下型バックライト装置では、輝度平均値 が 7, 016cdZm2で、輝度むらが 0. 2%であった。 In the obtained light diffusion plate, the uneven structure of the stamper was sufficiently transferred, and the surface on which the prism array was formed had a shape similar to the shape of the stamper shown in FIG. 11 is a configuration in which the third linear portion and the fourth linear portion are repeatedly formed, which is different from that of the present example, and because the linear convex portion of the stamper is transferred. In the light diffusion plate, the unevenness is reversed). Further, as in Example 2, the surface on which the prism row was not formed was roughened, and Ra of the roughened surface was 0.6 m. The plurality of uneven portions formed on the flat surface of the uneven structure in the stamper was partially transferred but was not transferred as a whole. The resulting light diffusing plate had a force that caused sticking to the stamper only once after 100 shots of injection molding, which was not a major hindrance to moldability. In the obtained direct type backlight device, the average luminance was 7,016 cdZm 2 and the luminance unevenness was 0.2%.
[0082] <実施例 6 >  <Example 6>
寸法 800mm X 500mm、厚さ 2mmのステンレス鋼 SUS430製の矩形板材の全面 に、厚さ 100 mのニッケル-リン無電解メツキを施した。次いで、頂角 100度の単結 晶ダイヤモンドチップ(コンツーノレファインツーリング社製)の表面の!/、ずれか一方の 表面にのみ、集束イオンビーム(Focused Ion Beam: FIB)装置(日立ハイテクノ ロジ一社製)を用いて、前記実施例 4の微細加工済みチップの一方の面と同様の微 細加工を施して、微細加工済みチップ 2を作製した。このチップをバイトに取り付けて 微細加工済みチップ 2が取り付けられたバイトを作製した。  A stainless steel SUS430 rectangular plate with dimensions 800mm X 500mm and thickness 2mm was coated with nickel-phosphorous electroless plating with a thickness of 100m. Next, a focused ion beam (FIB) device (Hitachi High-Technology) is applied only to one of the surfaces of the single crystal diamond tip (manufactured by Contour Nole Fine Tooling) with an apex angle of 100 degrees. The same microfabrication as that of one surface of the micromachined chip of Example 4 was performed using a single company) to produce micromachined chip 2. This chip was attached to a cutting tool to produce a cutting tool with a micro-processed chip 2 attached.
[0083] このような微細加工済みチップ 2が取り付けられたバイトを、微細加工用の工作機械  [0083] A tool with a micro-processed chip 2 attached thereto is used as a machine tool for micro-processing.
(例えば、ナノグルーバ AMG71P、不二越社製)に用いて、ニッケル-リン無電解メ ツキ面に対して、板材の短辺方向に沿って、幅 70 m、高さ 24. 5 m、ピッチ 70 m、頂角 100度の断面二等辺三角形状の線状部を複数切削加工して凹凸構造を形 成しスタンパーを得た。 [0084] 得られたスタンパーについて、超深度顕微鏡を用いて、線状部の Ra (maxl)、線状 凸部が形成された斜面の Ra (max2)、 Ra (min2)、および Smを求めた。その結果、 R a (maxl)が 7. 1 μ mであった。ま 、 Ra (max2)が 0. 1 μ mであるため、 Ra max2) / Ra (maxl)が 0. 014であった。さらに、 Ra (max2) ZRa (min2)が 5. 0であり、 Smが 7 0 μ mであつ 7こ。 (For example, Nano Gruber AMG71P, manufactured by Fujikoshi Co., Ltd.), 70m wide, 24.5m high, 70m pitch along the short side of the plate against the nickel-phosphorus electroless plating surface. A stamper was obtained by forming a concavo-convex structure by cutting a plurality of linear parts having an isosceles triangular section with an apex angle of 100 degrees. [0084] For the obtained stamper, Ra (maxl) of the linear portion, Ra (max2), Ra (min2), and Sm of the slope on which the linear convex portion was formed were obtained using an ultra-deep microscope. . As a result, R a (maxl) was 7.1 μm. Since Ra (max2) was 0.1 μm, Ra max2) / Ra (maxl) was 0.014. Furthermore, Ra (max2) ZRa (min2) is 5.0 and Sm is 70 μm.
[0085] このようなスタンパーを一方の金型に取り付けるとともに、実施例 2と同様に他方の 金型のキヤビティ面を粗面化したものを用いて、前記実施例 1と同様にして成形品で ある光拡散板および直下型バックライト装置を得た。  [0085] While mounting such a stamper on one mold and using a roughened cavity surface of the other mold in the same manner as in Example 2, a molded product was obtained in the same manner as in Example 1 above. A certain light diffusion plate and direct type backlight device were obtained.
[0086] 得られた光拡散板は、スタンパーの凹凸構造が十分に転写されており、プリズム条 列が形成された面は図 12に示す形状に類似した形状であった (なお、スタンパーの 線状凸部が転写されているため、光拡散板ではその凹凸が逆転する)。また、実施例 2と同様に、プリズム条列が形成されていない面は粗面化されており、この粗面化した 面の Raが 0. 6 μ mであった。なお、スタンパーにおける凹凸構造の平面に形成され た複数の凹凸部は、部分的に転写されたものの、全体としてはあまり転写されていな かった。得られた光拡散板は、射出成形を 100ショット行った際に 1度もスタンパーに 張り付かな力つた。得られた直下型バックライト装置では、輝度平均値が 6, 981cd/ m2で、輝度むらが 0. 2%であった。 [0086] The obtained light diffusion plate had the uneven structure of the stamper sufficiently transferred, and the surface on which the prism array was formed had a shape similar to the shape shown in FIG. Since the convex portion is transferred, the concave and convex portions are reversed in the light diffusion plate). Further, as in Example 2, the surface on which the prism row was not formed was roughened, and Ra of the roughened surface was 0.6 μm. Note that the plurality of uneven portions formed on the flat surface of the uneven structure in the stamper were partially transferred but were not transferred as a whole. The obtained light diffusion plate was strong enough to stick to the stamper after 100 shots of injection molding. In the obtained direct type backlight device, the average luminance was 6,981 cd / m 2 and the luminance unevenness was 0.2%.
[0087] <比較例 1 >  [0087] <Comparative Example 1>
前記焼結体のダイヤモンドチップを、単結晶のダイヤモンドチップ(コンツールファ インツーリング社製)に代えた以外は、実施例 1と同様にして光拡散板および直下型 ノ ックライト装置を得た。その結果、金型部品では、 Ra (maxl)が 7. 1 μ mであった。 また、 Ra (max2)が 0. 003 μ mであるため、 Ra (max2) /Ra (maxl)が 0. 00042であ つた。さらに、 Ra (max2) ZRa (min2)が 6. 0であり、 Smが 70 mであった。得られた 光拡散板は、上記金型部品の凹凸構造が十分に転写された形状であった。このよう な金型部品を用いて得られた光拡散板は、射出成形を 100ショット行った際に、 100 ショットすべてにぉ 、てスタンパーに張り付 、て 、た。得られた直下型バックライト装 置では、輝度平均値が 6, 948cdZm2で、輝度むらが 1. 6%であった。 A light diffusing plate and a direct type knock light device were obtained in the same manner as in Example 1 except that the diamond chip of the sintered body was replaced with a single crystal diamond chip (manufactured by Contool Fine Tooling). As a result, in the mold part, Ra (maxl) was 7.1 μm. Since Ra (max2) is 0.003 μm, Ra (max2) / Ra (maxl) is 0.00042. Furthermore, Ra (max2) ZRa (min2) was 6.0 and Sm was 70 m. The obtained light diffusion plate had a shape in which the concavo-convex structure of the mold part was sufficiently transferred. The light diffusing plate obtained using such a mold part was attached to the stamper after 100 shots of injection molding, and was attached to the stamper. In the obtained direct type backlight device, the average luminance was 6,948 cdZm 2 and the luminance unevenness was 1.6%.
[0088] <比較例 2 > 前記単結晶のダイヤモンドチップの表面を研石で粗面化処理した以外は、実施例[0088] <Comparative Example 2> Except that the surface of the single-crystal diamond tip was roughened by grinding stone, Example
1と同様にして光拡散板および直下型バックライト装置を得た。その結果、金型部品 では、 Ra (maxl)が 7. 1 μ mであった。また、 Ra (max2)が 5. 0 μ mであるため、 Ra ( max2) ZRa (maxl)が 0. 7であった。さらに、 Ra (max2) ZRa (min2)が 7. 5であり、 S mが 70 mであった。得られた光拡散板は、上記金型部品の凹凸構造が十分に転 写された形状であった。このような金型部品を用いて得られた光拡散板は、射出成形 を 100ショット行ってもスタンパーに一度も張り付くことがな力つた。得られた直下型バ ックライト装置では、輝度平均値が 6, 470cd/m2で、輝度むらが 4. 8%であった。 A light diffusing plate and a direct backlight device were obtained in the same manner as in 1. As a result, Ra (maxl) was 7.1 μm for the mold parts. Since Ra (max2) was 5.0 μm, Ra (max2) ZRa (maxl) was 0.7. Furthermore, Ra (max2) ZRa (min2) was 7.5 and Sm was 70 m. The obtained light diffusion plate had a shape in which the uneven structure of the mold part was sufficiently transferred. The light diffusing plate obtained using such mold parts was strong enough to stick to the stamper even after 100 shots of injection molding. In the obtained direct type backlight device, the average luminance was 6,470 cd / m 2 and the luminance unevenness was 4.8%.
[0089] <比較例 3 >  [0089] <Comparative Example 3>
比較例 2で得られた金型部品の凹凸構造に対してブラスト処理を施して表面を粗 化した以外は、比較例 2と同様の方法で金型部品を作製した。このような金型部品を 用いて、光拡散板および直下型バックライト装置を得た。その結果、金型部品では、 Ra (maxl)が 7. 1 μ mであった。また、 Ra (max2)が 3. 0 μ mであるため、 Ra (max2) ZRa (maxl)が 0. 42であった。さらに、 Ra (max2) ZRa (min2)が 1. 2であり、 Smが 7 O /z mであった。得られた光拡散板は、上記金型部品の凹凸構造が十分に転写され た形状であった。このような金型部品を用いて得られた光拡散板は、射出成形を 100 ショット行ってもスタンパーに一度も張り付くことがな力つた。得られた直下型バックラ イト装置では、輝度平均値が 6, 600cd/m2で、輝度むらが 3. 6%であった。 A mold part was produced in the same manner as in Comparative Example 2, except that the concavo-convex structure of the mold part obtained in Comparative Example 2 was subjected to blasting to roughen the surface. Using such mold parts, a light diffusion plate and a direct type backlight device were obtained. As a result, in the mold part, Ra (maxl) was 7.1 μm. Since Ra (max2) was 3.0 μm, Ra (max2) ZRa (maxl) was 0.42. Furthermore, Ra (max2) ZRa (min2) was 1.2, and Sm was 7 O / zm. The obtained light diffusion plate had a shape in which the uneven structure of the mold part was sufficiently transferred. The light diffusing plate obtained using such mold parts was strong enough to stick to the stamper even after 100 shots of injection molding. In the obtained direct backlight device, the average luminance was 6,600 cd / m 2 and the luminance unevenness was 3.6%.
[0090] 実施例 1〜6と比較例 1〜3の結果をそれぞれ表 1及び表 2に示す。  [0090] The results of Examples 1 to 6 and Comparative Examples 1 to 3 are shown in Table 1 and Table 2, respectively.
[0091] [表 1] [0091] [Table 1]
実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6 aCmaxl^ μιη 7.1 7.1 7.1 7.1 7.1 7.1Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 aCmaxl ^ μιη 7.1 7.1 7.1 7.1 7.1 7.1
Ravmax2) μιη 0.15 0.15 0.15 0.1 0.1 0.1Ravmax2) μιη 0.15 0.15 0.15 0.1 0.1 0.1
Ra(max2) 1 ― 0.021 0.021 0.021 0.014 0.014 0.014 スタンパー Ra (max2) 1 ― 0.021 0.021 0.021 0.014 0.014 0.014 Stamper
Ravmaxi  Ravmaxi
(一方の金型)  (One mold)
Ra(max2) / 一 7.5 7.5 7.5 5.0 5.0 5.0 Ra(min2)  Ra (max2) / 1 7.5 7.5 7.5 5.0 5.0 5.0 Ra (min2)
Sm μπι 70.0 70.0 70.0 70.0 70.0 70.0 他方の金型 Ra μπι 0.003 0.6 0.6 0.6 0.6 0.6 プリ 形状 断 断 断 断面 断面 断面 ズム 二等辺 二等辺 二等辺 二等辺 二等辺 光拡散板 条列 三角形 三角形 三角形 三角形 三角形 三角形 頂角 度 100 100 100 100 100 100 ピッチ μιη 70 70 70 70 70 70 直下型 輝度 cd/m2 6879 6810 6878 6946 7016 6981 バックライト 輝度むら % 0.4 0.5 0.3 0.3 0.2 0.2 装置 成形性 枚 0 0 1 0 1 0 ] 比較例 1 比較例 2 比較例 3 Sm μπι 70.0 70.0 70.0 70.0 70.0 70.0 The other mold Ra μπι 0.003 0.6 0.6 0.6 0.6 0.6 Pre-shape Cut Cross-section Cross-section Cross section Isosceles Isosceles Isosceles Isosceles Isosceles Light diffuser strip Triangle Triangle Triangle Triangle Triangle Triangle Vertical angle 100 100 100 100 100 100 Pitch μιη 70 70 70 70 70 70 Direct type brightness cd / m 2 6879 6810 6878 6946 7016 6981 Backlight brightness unevenness% 0.4 0.5 0.3 0.3 0.2 0.2 Equipment Formability Sheet 0 0 1 0 1 0] Comparative Example 1 Comparative Example 2 Comparative Example 3
Ra(maxl) μπι 7.1 7.1 7.1  Ra (maxl) μπι 7.1 7.1 7.1
Ra(max2) μιη 0.003 5.0 3.0  Ra (max2) μιη 0.003 5.0 3.0
Ra(max2) / 0.00042 0.70 0.42  Ra (max2) / 0.00042 0.70 0.42
ハク  Haku
Ra(m axl)  Ra (m axl)
(一方の金型)  (One mold)
Ra(max2) / ― 6.0 7.5 1.2  Ra (max2) / ― 6.0 7.5 1.2
Ra(min2)  Ra (min2)
Sm μπι 70.0 70.0 70.0  Sm μπι 70.0 70.0 70.0
他方の金型 Ra μιη 0.003 0.003 0.003  The other mold Ra μιη 0.003 0.003 0.003
プリ 形状 ― 断 断 断 [S  Pre-shape ― Cut off Cut [S
ズム 二等辺 二等辺 二等辺  Zum Isosic Isosic Isosic
光拡散板 条列 三角形 三角形 三角形  Light diffusing plate Row Triangle Triangle Triangle
頂角 度 100 100 100  Vertical angle 100 100 100
ピッチ μπι 70 70 70  Pitch μπι 70 70 70
直下型 輝度 cd/m2 6948 6470 6600 バックライ ト 輝度むら % 1.6 4.8 3.6 Direct type brightness cd / m 2 6948 6470 6600 Backlight brightness unevenness% 1.6 4.8 3.6
装置 成形性 枚 100 0 0 [0093] なお、表 1において、成形性とは、射出成形を 100ショット行った際に、平板成形品 が何回スタンパーに張り付いたかを示す値である。 Equipment Formability Sheet 100 0 0 [0093] In Table 1, formability is a value indicating how many times a flat molded product has stuck to a stamper when injection molding is performed 100 shots.
[0094] 表 1に示すように、実施例 1, 2では、成形性 (離型性)に優れ、かつ輝度および輝 度むらともに良好であることがわ力つた。また、実施例 1, 2に示すように、スタンパー が設けられた金型とは反対側の金型の表面を、研磨面としてもよいし、粗面としてもよ いことがわかる。また、実施例 3〜6においても、成形性 (離型性)が十分に優れ、力 つ輝度および輝度むらともに良好であることがわ力つた。  [0094] As shown in Table 1, in Examples 1 and 2, it was found that the moldability (releasability) was excellent and the luminance and brightness unevenness were also good. Further, as shown in Examples 1 and 2, it can be seen that the surface of the mold opposite to the mold provided with the stamper may be a polished surface or a rough surface. Also in Examples 3 to 6, it was found that the moldability (releasability) was sufficiently excellent, and both the brightness and the brightness unevenness were good.
[0095] 比較例 1に示すように、凹凸構造の各面の表面に凹凸部が形成されないような場合 には、成形性が不十分であるとともに、輝度むらが生じることがわ力つた。また、比較 例 2に示すように、凹凸構造の各面の表面に所定以上の寸法の凹凸部が形成されて いる場合には、輝度むらが大きくなることがわ力つた。さらに、比較例 3に示すように、 凹凸構造の各面の表面にランダムな (異方性のない)凹凸部を形成した場合には、 輝度むらが大きくなることがわ力つた。  [0095] As shown in Comparative Example 1, in the case where the concavo-convex portions were not formed on the surface of each surface of the concavo-convex structure, the moldability was insufficient and the luminance unevenness was generated. In addition, as shown in Comparative Example 2, when uneven portions having dimensions of a predetermined size or more were formed on the surface of each surface of the uneven structure, it was found that the luminance unevenness was increased. Further, as shown in Comparative Example 3, when random (non-anisotropic) uneven portions were formed on the surface of each surface of the uneven structure, it was found that the luminance unevenness was increased.

Claims

請求の範囲 The scope of the claims
[1] 光学部品に用いられる榭脂製の平板成形品を形成するための金型部品であって、 前記平板成形品の表面を形成するためのキヤビティ面を有し、  [1] A mold part for forming a resin-made flat molded product used for an optical component, having a cavity surface for forming the surface of the flat molded product,
前記キヤビティ面は、該キヤビティ面上において中心線平均粗さ Raが最大となる方 向に測定した最大中心線平均粗さ Ra(maxl)が 3.0/ζπι〜1, 000 mである凹凸 構造を備え、  The cavity surface has a concavo-convex structure with a maximum center line average roughness Ra (maxl) measured in the direction in which the center line average roughness Ra is maximum on the cavity surface being 3.0 / ζπι to 1,000 m. ,
前記凹凸構造は、 2個以上の平面を有する凹又は凸の構造単位を繰り返し単位と して複数備え、  The concavo-convex structure comprises a plurality of concave or convex structural units having two or more planes as repeating units,
前記構造単位の前記 2個以上の平面のうち、少なくとも 1つの平面は、複数の凹凸 部を備え、  Of the two or more planes of the structural unit, at least one plane includes a plurality of uneven portions,
これらの凹凸部を備えた平面では、該平面上の中心線平均粗さ Raが最大となる方 向に測定した最大中心線平均粗さ Ra(max2)力 前記 Ra(maxl)との間に、 0.5>R a(max2)/Ra(maxl) >0.002の関係 1を満たし、かつ、該平面上の中心線平均粗 さ Raが最小となる方向に測定した最小中心線平均粗さ Ra(min2)との間に、 Ra(max 2)/Ra(min2)>l.5の関係 2を満たすことを特徴とする金型部品。  In a plane provided with these uneven portions, the maximum center line average roughness Ra (max2) force measured in the direction in which the center line average roughness Ra on the plane is maximum, Ra (maxl), 0.5> R a (max2) / Ra (maxl)> 0.002 The minimum centerline average roughness Ra (min2) measured in the direction satisfying 1 and having the minimum centerline average roughness Ra on the plane And a mold part characterized by satisfying the relation 2 of Ra (max 2) / Ra (min2)> l.5.
[2] 請求項 1に記載の金型部品において、 [2] In the mold part according to claim 1,
前記 Ra(max2)を測定した方向と同方向に測定した際に、隣り合う前記凹凸部同士 の平均間隔 Smが、前記 Ra(maxl)との間に、 Ra(maxl) X10>Sm>Ra(maxl) XO .001の関係 3を満たすことを特徴とする金型部品。  When the Ra (max2) is measured in the same direction as the measurement direction, the average interval Sm between the adjacent concavo-convex portions is between Ra (maxl) and Ra (maxl) X10> Sm> Ra ( maxl) Mold part characterized by satisfying relation 3 of XO .001.
[3] 請求項 1に記載の金型部品において、 [3] In the mold part according to claim 1,
前記構造単位は、線状に延びる断面多角形状の線状部であり、  The structural unit is a linear portion having a polygonal cross section extending linearly,
前記凹凸構造は、前記線状部が互いに略平行に複数並んでなることを特徴とする 金型部品。  The mold part according to claim 1, wherein the concavo-convex structure includes a plurality of the linear portions arranged substantially parallel to each other.
[4] 請求項 3に記載の金型部品において、  [4] In the mold part according to claim 3,
前記線状部は、その頂角が 60° 〜170° の三角形の断面形状を有し、ある線状 部とその線状部の隣りの線状部との間隔が 20 m〜700 mであることを特徴とす る金型部品。  The linear portion has a triangular cross-sectional shape with an apex angle of 60 ° to 170 °, and a distance between a linear portion and a linear portion adjacent to the linear portion is 20 m to 700 m. Mold parts characterized by this.
[5] 請求項 3に記載の金型部品において、 前記線状部は、 4つ以上の平面を有し、 [5] In the mold part according to claim 3, The linear portion has four or more planes,
前記 4つ以上の平面のうちの少なくとも 2つの平面は、当該金型部品の厚み方向を 基準として一方の側に傾斜し、  At least two of the four or more planes are inclined to one side with respect to the thickness direction of the mold part,
前記少なくとも 2つの平面以外の平面は、前記少なくとも 2つの平面とは反対側に 傾斜することを特徴とする金型部品。  A mold part characterized in that a plane other than the at least two planes is inclined opposite to the at least two planes.
[6] 請求項 3に記載の金型部品において、 [6] In the mold part according to claim 3,
前記線状部は、断面三角形状であり、  The linear portion has a triangular cross-section,
当該三角形を構成する 2つの平面の一方と、当該金型部品の厚み方向に直交する 面とのなす角度は、当該三角形を構成する 2つの平面のうちの他方と、当該金型部 品の厚み方向に直交する面とのなす角度に等しぐ  The angle between one of the two planes constituting the triangle and the plane perpendicular to the thickness direction of the mold part is the other of the two planes constituting the triangle and the thickness of the mold part. Equal to the angle between the plane perpendicular to the direction
前記角度は、ある特定の X点と、この X点から前記線状部の長手方向に直交する方 向に沿って所定距離離れた Y点との間で、前記 X点および前記 Y点から離れるにつ れて連続的または段階的に大きくなることを特徴とする金型部品。  The angle is between the X point and the Y point between a specific X point and a Y point that is a predetermined distance away from the X point in a direction perpendicular to the longitudinal direction of the linear portion. Die parts that increase in size continuously or stepwise.
[7] 請求項 1に記載の金型部品において、 [7] The mold part according to claim 1,
前記構造単位は、 3個以上の平面を有する凸構造または凹構造であることを特徴と する金型部品。  The mold unit is characterized in that the structural unit is a convex structure or a concave structure having three or more planes.
[8] 請求項 7に記載の金型部品において、 [8] The mold part according to claim 7,
前記 3個以上の平面を有する凸構造または凹構造は、角錐または角錐台状である ことを特徴とする金型部品。  The convex or concave structure having three or more planes is a pyramid or a truncated pyramid shape.
[9] 請求項 7に記載の金型部品において、 [9] In the mold part according to claim 7,
前記構造単位は、 3個以上の平面を有する凸構造であり、  The structural unit is a convex structure having three or more planes,
前記凸構造は、線状に延びる断面多角形状の線状部を形成した後、この線状部に 、当該線状部の長手方向とは異なる向きに V字状の切り込みを入れて得られるもの である金型部品。  The convex structure is obtained by forming a linear portion having a polygonal cross section extending in a linear shape, and then making a V-shaped cut into the linear portion in a direction different from the longitudinal direction of the linear portion. Is mold parts.
[10] 請求項 7に記載の金型部品において、 [10] The mold part according to claim 7,
前記構造単位は、 3個以上の平面を有する凹構造であり、  The structural unit is a concave structure having three or more planes,
前記凹構造は、線状に延びる断面多角形状の線状部を形成した後、この線状部に 、当該線状部の長手方向とは異なる向きに V字状の切り込みを入れて得られる凸形 状を有する転写部材の当該凸形状を転写して得られるものであることを特徴とする金 型部品。 The concave structure is formed by forming a linear portion having a polygonal cross section extending in a linear shape, and then inserting a V-shaped cut into the linear portion in a direction different from the longitudinal direction of the linear portion. form A mold part obtained by transferring the convex shape of a transfer member having a shape.
[11] 請求項 1に記載の金型部品において、  [11] The mold part according to claim 1,
前記凹凸部は、複数の前記構造単位のうちの一部の構造単位の平面に形成され ていることを特徴とする金型部品。  The uneven part is formed on a plane of a part of a plurality of the structural units.
[12] 請求項 1に記載の金型部品において、  [12] In the mold part according to claim 1,
前記凹凸部は、前記構造単位を構成する前記 2個以上の平面のうちの一部の平面 にのみ形成されていることを特徴とする金型部品。  The mold part is characterized in that the uneven part is formed only on a part of the two or more planes constituting the structural unit.
[13] 請求項 1に記載の金型部品において、 [13] In the mold part according to claim 1,
前記凹凸部は、前記構造単位を構成する前記平面の一部分にのみ形成されてい ることを特徴とする金型部品。  The mold part, wherein the concavo-convex part is formed only on a part of the plane constituting the structural unit.
[14] 請求項 1に記載された金型部品を用いて射出成形により得られる、光学部品用の 平板成形品であって、 [14] A flat molded product for an optical component obtained by injection molding using the mold component according to claim 1,
少なくともいずれか一方の主面に、該主面上において中心線平均粗さ Raが最大と なる方向に測定した最大中心線平均粗さ Ra (Dmaxl)が 3. O /z m〜: L, OOO /z mであ るプリズム構造を有し、  At least one of the main surfaces has a maximum center line average roughness Ra (Dmaxl) measured in the direction in which the center line average roughness Ra is maximum on the main surface 3. O / zm ~: L, OOO / It has a prism structure that is zm,
このプリズム構造を構成する複数のプリズム部のそれぞれは 2個以上の面を有し、 前記プリズム部の各面の表面は、該表面上の中心線平均粗さ Raが最大となる方向 に測定した最大中心線平均粗さ Ra (Dmax2)が、前記 Ra (Dmaxl)との間に、 0. 5 > Ra (Dmax2) /Ra (Dmax2) >0. 002の関係を満たし、かつ、該表面上の中心線平 均粗さ Raが最小となる方向に測定した最小中心線平均粗さ Ra (Dmin2)との間に、 R a (Dmax2) /Ra (Dmin2) > l . 5の関係を満たす凹凸面であることを特徴とする平板 成形品。  Each of the plurality of prism portions constituting the prism structure has two or more surfaces, and the surface of each surface of the prism portions was measured in a direction in which the center line average roughness Ra on the surface is maximized. The maximum center line average roughness Ra (Dmax2) satisfies the relationship 0.5> Ra (Dmax2) / Ra (Dmax2)> 0.002 with the Ra (Dmaxl), and on the surface Roughness surface satisfying the relationship of R a (Dmax2) / Ra (Dmin2)> l.5 with the minimum centerline average roughness Ra (Dmin2) measured in the direction that minimizes the centerline average roughness Ra A flat plate molded product characterized by
PCT/JP2006/325377 2005-12-28 2006-12-20 Mold part and molded flat-plate product WO2007077737A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007552903A JPWO2007077737A1 (en) 2005-12-28 2006-12-20 Mold parts and flat plate molded products
TW095149177A TW200740595A (en) 2005-12-28 2006-12-27 Mold part and molded flat-plate product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-378178 2005-12-28
JP2005378178 2005-12-28
JP2006-073919 2006-03-17
JP2006073919 2006-03-17

Publications (1)

Publication Number Publication Date
WO2007077737A1 true WO2007077737A1 (en) 2007-07-12

Family

ID=38228093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325377 WO2007077737A1 (en) 2005-12-28 2006-12-20 Mold part and molded flat-plate product

Country Status (3)

Country Link
JP (1) JPWO2007077737A1 (en)
TW (1) TW200740595A (en)
WO (1) WO2007077737A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034894A (en) * 2007-08-01 2009-02-19 Meiki Co Ltd Mold for injection compression molding of light guide plate
JP2009162831A (en) * 2007-12-28 2009-07-23 Oji Paper Co Ltd Rugged pattern sheet and method of manufacturing the same, method of manufacturing optical sheet, and optical apparatus
WO2010010840A1 (en) * 2008-07-22 2010-01-28 日本ゼオン株式会社 Photodiffusion plate, photodiffusion plate manufacturing method, surface illuminant device, and display device
JP2010237398A (en) * 2009-03-31 2010-10-21 Kimoto & Co Ltd Prism sheet and backlight using the same
JP2012066417A (en) * 2010-09-21 2012-04-05 Iwate Univ Mold, method for manufacturing the same, method for manufacturing resin molding using the mold, and resin molding manufactured by the method for manufacturing the resin molding
JP2013083997A (en) * 2012-12-13 2013-05-09 Oji Holdings Corp Rugged pattern sheet and optical device
WO2015162978A1 (en) * 2014-04-24 2015-10-29 デクセリアルズ株式会社 Optical member, production method therefor, window material, and fixture
JP2017126032A (en) * 2016-01-15 2017-07-20 大日本印刷株式会社 Optical sheet and optical panel
JP2020131591A (en) * 2019-02-21 2020-08-31 テクノUmg株式会社 Molded product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101909847B (en) * 2007-12-27 2014-08-13 可乐丽股份有限公司 Die member, method for manufacturing the die member and method for forming light controlling member by using the die member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079854A (en) * 1999-07-15 2001-03-27 Matsushita Electric Works Ltd Mold for optical panel and its production
JP2001150064A (en) * 1999-12-02 2001-06-05 Matsushita Electric Ind Co Ltd Method of manufacturing fine and precise metal mold
JP2003014938A (en) * 2001-04-12 2003-01-15 Mitsubishi Engineering Plastics Corp Light transmission plate composed of transparent resin, method for molding the same, bushing, metallic mold assembling body and surface light source device
JP2004031312A (en) * 2002-06-26 2004-01-29 Samsung Electronics Co Ltd Backlight assembly and perpendicular transmission type liquid crystal display device
JP2005037868A (en) * 2003-06-30 2005-02-10 Sankyo Seiki Mfg Co Ltd Method for forming antireflection face, method for manufacturing mold for forming antireflection member, mold, antireflection member, and method for manufacturing master member for manufacturing mold
JP2005049857A (en) * 2003-07-15 2005-02-24 Mitsubishi Rayon Co Ltd Light source device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079854A (en) * 1999-07-15 2001-03-27 Matsushita Electric Works Ltd Mold for optical panel and its production
JP2001150064A (en) * 1999-12-02 2001-06-05 Matsushita Electric Ind Co Ltd Method of manufacturing fine and precise metal mold
JP2003014938A (en) * 2001-04-12 2003-01-15 Mitsubishi Engineering Plastics Corp Light transmission plate composed of transparent resin, method for molding the same, bushing, metallic mold assembling body and surface light source device
JP2004031312A (en) * 2002-06-26 2004-01-29 Samsung Electronics Co Ltd Backlight assembly and perpendicular transmission type liquid crystal display device
JP2005037868A (en) * 2003-06-30 2005-02-10 Sankyo Seiki Mfg Co Ltd Method for forming antireflection face, method for manufacturing mold for forming antireflection member, mold, antireflection member, and method for manufacturing master member for manufacturing mold
JP2005049857A (en) * 2003-07-15 2005-02-24 Mitsubishi Rayon Co Ltd Light source device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034894A (en) * 2007-08-01 2009-02-19 Meiki Co Ltd Mold for injection compression molding of light guide plate
JP2009162831A (en) * 2007-12-28 2009-07-23 Oji Paper Co Ltd Rugged pattern sheet and method of manufacturing the same, method of manufacturing optical sheet, and optical apparatus
WO2010010840A1 (en) * 2008-07-22 2010-01-28 日本ゼオン株式会社 Photodiffusion plate, photodiffusion plate manufacturing method, surface illuminant device, and display device
JP2010237398A (en) * 2009-03-31 2010-10-21 Kimoto & Co Ltd Prism sheet and backlight using the same
JP2012066417A (en) * 2010-09-21 2012-04-05 Iwate Univ Mold, method for manufacturing the same, method for manufacturing resin molding using the mold, and resin molding manufactured by the method for manufacturing the resin molding
JP2013083997A (en) * 2012-12-13 2013-05-09 Oji Holdings Corp Rugged pattern sheet and optical device
WO2015162978A1 (en) * 2014-04-24 2015-10-29 デクセリアルズ株式会社 Optical member, production method therefor, window material, and fixture
JP2015210319A (en) * 2014-04-24 2015-11-24 デクセリアルズ株式会社 Optical member and production method thereof, and window material and fixture
CN106461832A (en) * 2014-04-24 2017-02-22 迪睿合株式会社 Optical member, production method therefor, window material, and fixture
JP2017126032A (en) * 2016-01-15 2017-07-20 大日本印刷株式会社 Optical sheet and optical panel
JP2020131591A (en) * 2019-02-21 2020-08-31 テクノUmg株式会社 Molded product
JP7257179B2 (en) 2019-02-21 2023-04-13 テクノUmg株式会社 Molding

Also Published As

Publication number Publication date
TW200740595A (en) 2007-11-01
JPWO2007077737A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
WO2007077737A1 (en) Mold part and molded flat-plate product
US7887208B2 (en) Direct type back-light device
US7616858B2 (en) Light guiding plate made of transparent resin, surface-emitting light source apparatus and process for manufacturing light guiding plate
KR102072241B1 (en) Diffusion sheet, backlight, liquid crystal display apparatus, and method of producing a diffusion sheet
US7857475B2 (en) Direct-type backlight device
JP2003014938A (en) Light transmission plate composed of transparent resin, method for molding the same, bushing, metallic mold assembling body and surface light source device
KR101087551B1 (en) Optical sheet and method for manufacturing the same
KR20080047305A (en) Light diffuser plate, surface emission light source apparatus and liquid crystal display
US20120062820A1 (en) Diffusion sheet, backlight, liquid crystal display apparatus and method of manufacturing diffusion sheet
JPWO2010010840A1 (en) Light diffusing plate, light diffusing plate manufacturing method, surface light source device, and display device
JP2008238610A (en) Mold part and light diffusion plate
CN201819114U (en) Backlight module and liquid crystal display device
TWI491937B (en) A composite light guide plate
CN102224373A (en) Planar light source device and light guide used for the same
JP2006310150A (en) Direct backlight device
JP5377121B2 (en) Surface light source device and light guide used therefor
JP2008091114A (en) Direct backlight device and display device
JP2013051135A (en) Light guide plate, and backlight unit and display device using this
JP5527711B2 (en) Surface light source device and light guide used therefor
JP5741121B2 (en) A mold for manufacturing an optical lens sheet for controlling an illumination optical path, the sheet manufactured using the mold, a method of manufacturing the sheet using the mold, a liquid crystal display device, and a display
KR20070084193A (en) Light guide plate and method for producing same
JP2005209558A (en) Light guide plate and backlight
JP2006155926A (en) Direct backlight device
KR20060126796A (en) Light guide for area light source, its production method, and area light source
KR20110053466A (en) Method for producing optical sheet, optical sheet, and light source unit including optical sheet, display unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007552903

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06842931

Country of ref document: EP

Kind code of ref document: A1