WO2009084197A1 - 永久磁石同期モータ - Google Patents

永久磁石同期モータ Download PDF

Info

Publication number
WO2009084197A1
WO2009084197A1 PCT/JP2008/003951 JP2008003951W WO2009084197A1 WO 2009084197 A1 WO2009084197 A1 WO 2009084197A1 JP 2008003951 W JP2008003951 W JP 2008003951W WO 2009084197 A1 WO2009084197 A1 WO 2009084197A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
magnetic pole
permanent magnet
circumferential direction
phase
Prior art date
Application number
PCT/JP2008/003951
Other languages
English (en)
French (fr)
Inventor
Takayuki Koyama
Hiroshi Kanazawa
Shoichi Kawamata
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to US12/741,038 priority Critical patent/US20100253178A1/en
Publication of WO2009084197A1 publication Critical patent/WO2009084197A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/141Stator cores with salient poles consisting of C-shaped cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/145Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/145Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having an annular armature coil

Definitions

  • the present invention relates to a permanent magnet synchronous motor composed of a stator composed of a plurality of divided stator magnetic poles and a rotor having permanent magnets.
  • Patent Document 1 discloses that the stator is divided into at least two in a direction orthogonal to the rotation axis, and at least one of the divided stators is used as a movable stator.
  • a method has been proposed in which the phase of the movable stator is controlled to perform a field-weakening magnetic field and realize a high rotation of the permanent magnet synchronous motor.
  • the present invention is characterized in that the magnetic poles of each phase are divided into a plurality of circumferential directions with respect to the rotational axis, and at least one of the divided stator magnetic poles is movable in the circumferential direction with respect to the rotational axis. Is.
  • the present invention makes it possible to perform mechanical field weakening without increasing the axial length of the permanent magnet synchronous motor, to reduce the back electromotive force in the high speed range, to drive the motor, and to generate field weakening current.
  • the efficiency in the high speed range is improved by eliminating the necessity.
  • the motor structure perspective view of the 1st example of the present invention The component figure which showed the components which comprise the stator magnetic pole of this invention.
  • the division figure of the stator magnetic pole of this invention The perspective view for one phase of the stator magnetic pole of the present invention.
  • the motor structure perspective view at the time of the field weakening of 1st Example of this invention The perspective view for the stator magnetic pole one phase at the time of the field weakening of this invention.
  • the perspective view for one phase of the stator magnetic pole of the present invention The figure which showed the motor of the 2nd Example of this invention from the rotating shaft direction.
  • the perspective view for the stator magnetic pole one phase at the time of the field weakening of this invention.
  • the present invention provides a stator in which a magnetic pole composed of an N pole and an S pole is formed in the circumferential direction with respect to the rotation axis, and a small gap between the stator and the inner diameter side of the radial yoke portion of the stator.
  • a permanent magnet synchronous motor having a rotor with permanent magnets arranged in the circumferential direction and a multi-phase coil provided in the stator
  • the magnetic poles are arranged in multiple pieces perpendicular to the circumferential direction.
  • the magnetic poles are movable in the circumferential direction with respect to the rotation axis. In this case, each phase of the divided magnetic poles has a phase difference.
  • the permanent magnet motor of the present invention is characterized in that the magnetic pole pitch of the stator and the magnetic pole pitch of the rotor are substantially equal.
  • the magnetic poles of each phase of the stator are preferably arranged so as to be independent in the circumferential direction, and the stator is preferably magnetically divided perpendicular to the circumferential direction.
  • the magnetic pole of the stator is divided into two along the axial direction, and one of the divided magnetic poles is movable in the circumferential direction.
  • the effect of the present invention can also be achieved by arranging the divided magnetic poles of each phase of the stator independently in the axial direction.
  • the stator of the permanent magnet motor of the present invention has a plurality of magnetic poles perpendicularly divided in the circumferential direction, and the magnetic poles have a plurality of claw magnetic poles extending in the axial direction. And a coil wound in an elliptical shape, and the magnetic pole is movable along the circumferential direction.
  • the permanent magnet motor of the present invention includes a connecting portion that connects the piezoelectric element and the magnetic pole vertically divided in the circumferential direction, and the magnetic pole is movable using the piezoelectric element according to the operating state of the permanent magnet motor. Is controlled.
  • the permanent magnet motor of the present invention includes a radial yoke portion, a plurality of claw portions arranged on the inner diameter side of the radial yoke portion, and an outer diameter side of the radial yoke portion.
  • the first claw pole composed of the extending outer yoke, the radial yoke portion, the plurality of claw portions arranged on the inner diameter side of the radial yoke portion, and the outer diameter of the radial yoke portion
  • the stator is formed so that the second claw magnetic pole made of the outer peripheral side yoke extending to the side faces each other and the first claw portion and the second claw portion mesh with each other.
  • a plurality of stators are stacked along the rotation axis.
  • FIG. 1 shows a permanent magnet synchronous motor in which stator magnetic poles according to an embodiment of the present invention are magnetically arranged in three phases independently with respect to the circumferential direction of rotation.
  • the rotor has 24 poles.
  • a shaft (not shown) is disposed at the center, and the rotor yoke 2 is disposed on the outer periphery of the shaft.
  • a permanent magnet 3 is disposed on the outer periphery of the rotor yoke 2.
  • the permanent magnet 3 is magnetized to 24 poles.
  • a support mechanism such as a case and a bearing is necessary as a motor, but it is omitted in this figure.
  • the stator 200 will be described.
  • the three-phase stator magnetic pole is composed of a U-phase magnetic pole 4U, a V-phase magnetic pole 4V, and a W-phase magnetic pole 4W, and is disposed so as to substantially overlap the permanent magnet 3 of the rotor.
  • a stator coil is arranged at the center of each phase magnetic pole, the U phase coil is indicated by 5 U, the V phase coil is indicated by 5 V, and the W phase magnetic pole is indicated by 5 W. Further, each phase coil forms a coil end portion in a U shape at the end of the stator magnetic pole.
  • each stator magnetic pole is arranged on the outer periphery of the rotor with a phase difference of 120 degrees in electrical angle by a connecting material (not shown).
  • the connecting material may have any structure as long as it can mechanically fix the stator magnetic poles of each phase, and is preferably composed of a nonmagnetic metal. Further, after being connected, it may be molded into a cylindrical shape by resin.
  • the U-phase magnetic pole 4U is composed of five parts.
  • the stator magnetic pole 4U is composed of two magnetic pole rows of 4Ua and 4Ub.
  • the 4Ua magnetic pole array is composed of magnetic pole teeth 4Ua1 arranged toward the inner peripheral side and 4Ua2 arranged outward, and a coil on one side of the U-phase coil 5U is located at the center of the 4Ua1 and 4Ua2. It is comprised so that it may be inserted
  • the other coil of the U-phase coil 5U is sandwiched between the central portions of 4Ub1 and 4Ub2 constituting another magnetic pole row 4Ub.
  • the lead wire of the U-phase coil 5U is taken out from a U-shaped coil end portion that is not sandwiched between magnetic poles.
  • FIG. 3 (a) shows a structure in which a U-phase coil 5U is sandwiched between 4Ub rows of U-phase magnetic poles described above.
  • the 4Ua row of magnetic poles are arranged in the coil portion in front of the page.
  • FIG. 3B shows a magnetic pole at the center of the coil around which the U-phase coil 5U is wound.
  • the U-phase coil 5U may be directly wound around the illustrated outward-facing magnetic pole teeth 4Ua2 and 4Ub2, or may be arranged in a horseshoe shape. It is also possible to create 4Ua2 and 4Ub2 integrally.
  • FIG. 4 shows a completed drawing of the U-phase magnetic pole 4U.
  • the U-phase coil 5U is disposed at the center of the magnetic pole row composed of two rows.
  • the magnetic pole teeth constituting the magnetic pole row 4Ua are formed in the same shape.
  • the other magnetic pole row 4Ub is formed of substantially the same shape.
  • the phases of the magnetic pole teeth 4Ua2 and 4Ub2 configured outward and the magnetic pole teeth 4Ua1 and 4Ub1 configured inward are configured to be 180 degrees in electrical angle.
  • the magnetic pole array 4Ua and the magnetic pole array 4Ub shown in FIG. 4 are in a positional relationship that generates the maximum counter electromotive force in the coil 5U.
  • the magnetic pole row 4Ua is configured to be movable in the circumferential direction with respect to the rotation axis, and the magnetic pole row 4Ub is fixed to a case (not shown).
  • the magnetic pole arrays 4Va and 4Wa are configured to be movable in the circumferential direction with respect to the rotation axis, and the magnetic pole arrays 4Vb and 4Wb are fixed to the case.
  • FIG. 5 shows an external view when the magnetic pole arrays 4Ua, 4Va, 4Wa are moved in the circumferential direction by an electrical angle of 120 degrees.
  • the magnetic pole rows 4Ua, 4Va, 4Wa are moved in the same direction.
  • the magnetic pole arrays 4Ua, 4Va, and 4Wa are referred to as movable stators.
  • FIG. 6 is an external view of the U-phase magnetic pole 4U when the movable stator 4Ua is moved in the circumferential direction by an electrical angle of 120 degrees.
  • the movable stator 4Ua is moved so that the phase of the magnetic pole teeth 4Ua2 and 4Ub2 configured outwardly is shifted by 120 degrees in electrical angle.
  • the phase difference between the magnetic flux interlinking with the coil in the movable stator 4Ua and the counter electromotive force generated in the coil in the magnetic pole row 4Ub is 120 degrees. Therefore, the magnitude of the counter electromotive force generated in the coil 5U is 1 ⁇ 2 of the maximum.
  • the magnitude of the back electromotive force generated in the coils 5V and 5W is also 1 ⁇ 2 of the maximum. That is, it is possible to suppress the back electromotive force without requiring a field weakening current in the high rotation region.
  • the degree of suppression of the counter electromotive force can be arbitrarily set by adjusting the amount of movement of the movable stator 4Ua.
  • the permanent magnet synchronous motor according to the present embodiment can be driven in the high rotation region even with a limited inverter and battery voltage.
  • a field weakening current is not required, a loss due to the field weakening current does not occur and the loss is reduced.
  • the coil end does not exist in the rotation axis direction in this configuration, it is possible to keep the shaft length short.
  • FIG. 7 is a view showing one embodiment of a permanent magnet motor according to the present invention.
  • the number of poles of the rotor is 16, and the other rotor configurations are the same as those shown in FIG.
  • Six magnetic poles are arranged on the outer periphery of the permanent magnet 3 of the rotor via a slight gap so that the stator magnetic pole has a three-phase phase difference.
  • the three-phase stator magnetic poles are composed of U-phase magnetic poles 4U1, 4U2, V-phase magnetic poles 4V1, 4V2, and W-phase magnetic poles 4W1, 4W2, and are arranged so as to substantially overlap the permanent magnet 3 of the rotor.
  • a stator coil is arranged at the center of each phase magnetic pole, U phase coil 5U1, U phase magnetic pole 4U2, U phase coil 5U2, V phase magnetic pole 4V1, V phase coil 5V1, and V phase magnetic pole 4V2 at U phase magnetic pole 4U1.
  • a W-phase coil 5W2 is housed in a W-phase coil 5W1 and a W-phase magnetic pole 4W2.
  • Each phase coil forms a coil end portion in a U shape at the end of the stator magnetic pole, and is connected to the drawer from the coil end portion.
  • a U-phase coil 5U1, a U-phase coil 5U2, a V-phase coil 5V1, a V-phase coil 5V2, a W-phase coil 5W1, and a W-phase coil 5W2 are connected in series to form a three-phase winding.
  • the U-phase magnetic pole 4U1, the V-phase magnetic pole 4V1, and the W-phase magnetic pole 4W1 are fixed to a case (not shown), and the U-phase magnetic pole 4U2, the V-phase magnetic pole 4V2, and the W-phase magnetic pole 4W2 It is configured to be movable in the direction.
  • FIG. 8 shows an exploded view of the stator magnetic pole 4U1 described in FIG.
  • the other stator magnetic poles 4U2, 4V1, 4V2, 4W1, and 4W2 have the same structure, and thus description thereof is omitted.
  • the U-phase magnetic pole 4U is composed of five parts.
  • the stator magnetic pole 4U1 is composed of two magnetic pole rows of 4U1a and 4U1b.
  • the magnetic pole row of 4U1a is composed of magnetic pole teeth 4Ua1 arranged toward the inner peripheral side and 4Ua2 arranged outward, and a coil on one side of the U-phase coil 5U is located at the center of the 4U1a1 and 4U1a2. It is comprised so that it may be inserted
  • the other coil of the U-phase coil 5U is sandwiched between the central portions of 4U1b1 and 4U1b2 constituting another magnetic pole row 4U1b.
  • FIG. 9 shows an external view of the stator magnetic pole 4U1.
  • the U-phase coil 5U1 is disposed at the center of the magnetic pole row composed of two rows.
  • the phase difference between the magnetic pole teeth 4U1a2 and 4U1b2 configured outward and the magnetic pole teeth 4U1a1 and 4U1b1 configured inward is configured to be 180 degrees in electrical angle. .
  • the U-phase magnetic poles 4U1, 4U2, the V-phase magnetic poles 4V1, 4V2, and the W-phase magnetic poles 4W1, 4W2, which are three-phase stator magnetic poles, have a mechanical angle of 60 degrees in the circumferential direction (120 degrees in electrical angle because they are 20 poles). ) It is arranged at equal intervals at shifted positions. As a result, the U-phase magnetic poles 4U1 and 4U2 are arranged at positions shifted by 180 degrees in mechanical angle, so that the phases of the counter electromotive forces generated in the U-phase coils 5U1 and 5U2 are the same.
  • the phases of the counter electromotive forces generated in the V-phase coils 5V1 and 5V2 and the W-phase coils 5W1 and 5W2 are the same.
  • size of the counter electromotive force which appears in the U phase coil which connected U phase coil 5U1 and 5U2 in series is the largest in this structure.
  • FIG. 11 shows a configuration in which the U-phase magnetic pole 4U2, the V-phase magnetic pole 4V2, and the W-phase magnetic pole 4W2 that are configured to be movable in the circumferential direction with respect to the rotation axis are moved by a mechanical angle of 15 degrees in the circumferential direction. Indicates.
  • the U-phase magnetic poles 4U1 and 4U2 are arranged at positions shifted by 165 degrees in mechanical angle, so that the phase difference of the counter electromotive force generated at each is 120 degrees.
  • the magnitude of the counter electromotive force appearing in the U-phase coil in which the U-phase coils 5U1 and 5U2 are connected in series is 1 ⁇ 2 of the maximum.
  • the magnitude of the counter electromotive force appearing in the V-phase coil and the W-phase coil is 1 ⁇ 2 of the maximum.
  • FIG. 12 is a view showing one embodiment of the stator of the permanent magnet motor according to the present invention.
  • the rotor (not shown) has 24 poles, and the other rotor configurations are the same as those shown in FIG.
  • the stator is configured in a plurality of phases by arranging a plurality of one-phase stators having claw magnetic poles in the axial direction.
  • the three-phase stator is configured by arranging the one-phase stators 4U, 4V, and 4W in the axial direction by shifting the phases in the circumferential direction by 10 degrees in mechanical angle (120 degrees in electrical angle). Yes.
  • the single-phase stators 4U, 4V, and 4W each contain coils 5U, 5V, and 5W each of which is formed by winding a conductor formed in an annular shape, thereby constituting a stator of a rotating electric machine. .
  • the stator 4U for one phase will be described in detail with reference to FIGS.
  • the stators 4V and 4W for one phase have the same configuration.
  • the stator 4U for one phase has a plurality of claw magnetic poles and is divided into a plurality of portions in the circumferential direction.
  • the stator 4U for one phase has 22 claw magnetic poles and is constituted by two stators 4U1 and 4U2 divided in the circumferential direction.
  • the stator 4U1 is divided into two in the axial direction, and includes a plurality of claw magnetic poles 4U1a and a plurality of claw magnetic poles 4U1b that are opposite to the claw magnetic poles 4U1a.
  • the stator 4U2 is also divided into two in the axial direction, and includes a plurality of claw magnetic poles 4U2a and a plurality of claw magnetic poles 4U2b which are opposite to the claw magnetic poles 4U2a.
  • the claw magnetic pole 4U1a and the claw magnetic pole 4U1b are arranged with a phase difference of 15 degrees in mechanical angle (180 degrees in electrical angle) in the circumferential direction, and the relationship between the claw magnetic pole 4U2a and claw magnetic pole 4U2b is the same.
  • the coil 5U is housed in the stator 4U so as to be sandwiched from the axial direction by the claw magnetic pole 4U1a and claw magnetic pole 4U1b, claw magnetic pole 4U2a and claw magnetic pole 4U2b from the axial direction.
  • the two stators 4U1 and 4U2 divided in the circumferential direction are arranged with a phase difference of 30 degrees in mechanical angle, that is, the phases in electrical angle are equal.
  • the phase of the magnetic flux interlinking with the coil 5U in the stator 4U1 is equal to the phase of the magnetic flux interlinking with the coil 5U in the stator 4U2
  • the stators 4U1 and 4U2 generate the maximum counter electromotive force in the coil 5U. Placed in position.
  • the split stator 4U1 is fixed to a case (not shown), and the split stator 4U2 is configured to be movable in the circumferential direction.
  • the stators 4V and 4W the split stators 4V1 and 4W1 are fixed to the case, and the split stator 4V2 and the split stator 4W2 are configured to be movable in the circumferential direction.
  • FIG. 15 and FIG. 16 show configuration examples when the movable stators 4U2, 4V2, and 4W2 are moved in the circumferential direction by a mechanical angle of 10 degrees (electrical angle of 120 degrees).
  • the phase of the magnetic flux interlinking with the coil 5U in the stator 4U1 and the phase of the magnetic flux interlinking with the coil 5U in the stator 4U2 are shifted by 120 degrees.
  • the magnitude of the counter electromotive force generated in the coil 5U is 1 ⁇ 2 of the maximum. From the above, it is possible to suppress the back electromotive force without requiring a field weakening current in the high rotation region as in the above-described embodiment. Also in this configuration, since there is no coil end in the rotation axis direction, the axial length can be kept short, and the copper loss at the coil end is reduced, so that the efficiency is improved.
  • Each magnetic pole described so far can be realized by pressing a dust core. It is also possible to create by bending an iron plate or using a magnetic sintered material. Furthermore, it can be realized by creating magnetic pole teeth in a ring shape and cutting and combining them in the required number.
  • FIG. 17 shows a view in which the stator shown in FIG. 1 is fixed by a connecting material.
  • Each stator magnetic pole 4U, 4V, 4W is fixed with a phase difference of 120 degrees in electrical angle in the circumferential direction by connecting members 20a and 20b.
  • the connecting member 20a fixes the magnetic pole rows 4Ua, 4Va, and 4Wa
  • the connecting member 20b fixes the magnetic pole rows 4Ub, 4Vb, and 4Wb.
  • the connecting member 20a is not in contact with the housing (not shown) and the connecting member 20b, and the connecting member 20b is fixed to the housing.
  • a donut-shaped piezoelectric element 30 is disposed between the connecting member 20a and the connecting member 20b.
  • a mechanical field weakening can be achieved as described above.
  • the connecting member 20a is fixed to the connecting member 20b by the static torque of the piezoelectric element.
  • the movable stator of the permanent magnet synchronous motor may be rotated when the permanent magnet synchronous motor is driven or may be rotated when the permanent magnet synchronous motor is not driven.
  • the torque necessary for the rotation can be minimized by rotating the movable stator in the direction opposite to the rotation direction of the rotor.
  • the phase of the movable stator is controlled between the position where the back electromotive force is maximized and the position where the counter electromotive force is minimized according to the operating state of the motor. Specifically, since a large torque is required in the case of starting from a stopped state or in a low-rotation operation state, the phase of the movable stator is controlled so that the counter electromotive force is maximized. Further, in the high rotation operation state, the back electromotive force is reduced by controlling the phase of the movable stator so that the voltage can be supplied from the battery.
  • a phase difference between the connecting member 20a and the connecting member 20b is fed back by a sensor (not shown) to control the rotational circumferential position of the connecting member 20a.
  • a sensor not shown
  • an open loop can be controlled by providing a mechanical stopper.
  • FIG. 18 shows the relationship between torque and rotational speed in the permanent magnet synchronous motor according to the present invention. It is assumed that the magnitudes of the induced voltages generated in the movable stator and the stator are equal, and the phase difference between the movable stator and the stator is 0 degrees, 83 degrees, and 120 degrees. When the phase difference between the movable stator and the stator is 0 degree, as shown as a vector in FIG. 19A, the phase difference of the counter electromotive force generated in each is 0, so that the maximum counter electromotive force is generated. To do.
  • phase difference between the movable stator and the stator is 83 degrees, a counter electromotive force of 75% of the maximum counter electromotive force is generated as shown in FIG. Furthermore, if the phase difference between the movable stator and the stator is 120 degrees, a counter electromotive force of 50% of the maximum counter electromotive force is generated.
  • the power source is a battery or the like and the power source voltage is limited, it can be seen that the output range can be expanded to the high speed range as shown in FIG. 18 by reducing the back electromotive force according to the present invention.
  • the phase difference between the movable stator and the stator in accordance with the rotational speed, it is possible to achieve both a large torque in the low speed range and an output in the high speed range. Further, unlike the field weakening due to the current, the field weakening current is not required, so that no loss due to the field weakening current is generated. Therefore, the efficiency of the permanent magnet synchronous motor is improved.
  • Patent Document 1 There is a configuration described in Patent Document 1 as a technique for securing an output in a high speed region that does not require a field weakening current in a similar permanent magnet synchronous motor.
  • the stator is divided into at least two in a direction orthogonal to the rotation axis, and at least one of the divided stators is made a movable stator, and the movable stator is phase-controlled. Do mechanical field weakening.
  • the coil end portion existing at the end portion in the rotation axis direction of the motor divided into a plurality is increased, there is a problem that the axial length of the motor becomes long and the copper loss in the coil end portion increases.
  • the permanent magnet synchronous motor of the present invention does not have a coil end in the direction of the rotation axis, it is possible to shorten the axial length of the motor and to reduce the number of coil end portions, thereby increasing copper loss. There is no problem. That is, according to the present invention, it is possible to ensure an output in a high speed range without increasing the shaft length of the permanent magnet synchronous motor, and to provide a highly efficient permanent magnet synchronous motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 永久磁石同期モータの軸長を増加させることなく、高速域において出力の確保を可能とし、高効率な永久磁石同期モータを実現する。  各相の磁極を回転軸に対して周方向に複数分割して配置し、分割された少なくとも1つの固定子磁極を回転軸に対して周方向に可動とすることで固定子磁極を形成するとともに、可動固定子を位相制御することにより、永久磁石同期モータの軸長を増加させることなく、高速域の出力を確保し、高効率な永久磁石同期モータを提供する。  

Description

永久磁石同期モータ
 本発明は、複数の分割された固定子磁極から構成される固定子と、永久磁石を有する回転子とから構成された永久磁石同期モータに関するものである。
 従来の永久磁石同期モータは、回転数の上昇とともに磁石による逆起電力が大きくなるため、電源がバッテリ等の場合、電源電圧の制約により高回転領域で駆動するのが困難であった。高回転領域で永久磁石同期モータを駆動する駆動方式として、電流により磁石磁束を等価的に弱める弱め界磁制御があるが、トルクに寄与しない電流を流すため効率の低下を招いていた。
 これらの問題を解決する方式として、特許文献1には、固定子を回転軸に直交する方向に少なくとも2つに分割し、分割した固定子のうち少なくとも1つの固定子を可動固定子とするとともに、この可動固定子を位相制御することで、機械的な弱め界磁を行い、永久磁石同期モータの高回転化を実現する方式が提案されている。
特開2005-160278号公報
 しかしながら、上記従来技術においては、複数に分割された永久磁石同期モータのそれぞれの回転軸方向端部にはコイルエンド部が存在するため、分割前と比べてコイルエンド部が増加する。そのため、永久磁石同期モータの軸長が伸びるという問題があった。さらに、それぞれのコイルエンドの間は、絶縁特性の観点から、空気層などを設ける必要があり、これによりさらにモータ軸長が伸びる。また、コイルエンド部に発生する銅損が増加し、効率が低下するという問題があった。
 本発明は、各相の磁極を回転軸に対して周方向に複数分割して配置し、分割された少なくとも1つの固定子磁極を回転軸に対して周方向に可動とすることを特徴とするものである。
 本発明により、永久磁石同期モータの軸長を増加させることなく、機械的な弱め界磁を行うことが可能となり、高速域において逆起電力を低下させモータの駆動ができ、弱め界磁電流が不要となることで高速域での効率が向上する。
本発明の第一の実施例のモータ構造斜視図。 本発明の固定子磁極を構成する部品を示した部品図。 本発明の固定子磁極の分割図。 本発明の固定子磁極一相分の斜視図。 本発明の第一の実施例の弱め界磁時のモータ構造斜視図。 本発明の弱め界磁時の固定子磁極一相分の斜視図。 本発明の第二の実施例のモータ構造斜視図。 本発明の固定子磁極を構成する部品を示した部品図。 本発明の固定子磁極一相分の斜視図。 本発明の第二の実施例のモータを回転軸方向から示した図。 本発明の第二の実施例の弱め界磁時のモータを回転軸方向から示した図。 本発明の第三の実施例のモータ構造斜視図。 本発明の固定子磁極を構成する部品を示した部品図。 本発明の固定子磁極一相分の斜視図。 本発明の第三の実施例の弱め界磁時のモータ構造斜視図。 本発明の弱め界磁時の固定子磁極一相分の斜視図。 本発明による弱め界磁の方式を示す図。 本発明によるモータの回転数とトルクの関係を表す図。 本発明による可動固定子と固定子で発生する逆起電力の関係を示す図。
符号の説明
 2…回転子ヨーク、3…永久磁石、4…固定子磁極、5…コイル、20…固定子連結材、100…回転子、200…固定子。
 本発明は、回転軸に対して周方向にN極とS極とからなる磁極が形成される固定子と、固定子の径方向継鉄部の内径側に、固定子と微小な隙間を介して周方向に永久磁石を配置した回転子と、固定子内に設けられた多相のコイルと、を備えた永久磁石同期モータにおいて、磁極を周方向に垂直に複数分割して配置し、分割された磁極が、回転軸に対して周方向に可動であることを特徴とする。この場合、分割された磁極の各相は位相差を有する。
 尚、本発明の、永久磁石モータは、固定子の磁極ピッチと前記回転子の磁極ピッチが略等しいことを特徴とする。
 また、固定子の各相の磁極を周方向に独立となるように配置することが好ましく、固定子が周方向に垂直に、磁気的に分割されていることが好ましい。
 さらに、固定子の磁極が軸方向に沿って2つに分割され、分割された一方の磁極が周方向に可動である場合はより好ましい。
 一方、固定子の各相の分割された磁極を、軸方向に独立に配置することによっても本発明の効果を達成することが可能である。
 また、本発明の永久磁石モータの固定子は、具体的に説明すると、周方向に垂直に分割された複数相の磁極を有し、磁極は軸方向に延びる複数の爪磁極を有した円弧状の固定子鉄心と、楕円形に捲回されたコイルと、を有し、磁極が周方向に沿って可動であることを特徴とする。
 また、本発明の永久磁石モータは、圧電素子及び周方向に垂直に分割された磁極を連結する連結部を具備し、磁極は永久磁石モータの運転状況に応じて、圧電素子を用いて可動状態が制御されることを特徴とする。
 さらに具体的に説明すると、本発明の永久磁石モータは、径方向継鉄部と、径方向継鉄部の内径側に配置される複数の爪部と、径方向継鉄部の外径側に延在する外周側継鉄とからなる第一の爪磁極と、径方向継鉄部と、径方向継鉄部の内径側に配置される複数の爪部と、径方向継鉄部の外径側に延在する外周側継鉄とからなる第二の爪磁極と、が向かい合うように配置され、第一の爪部と、第二の爪部とが噛合うようにして形成される固定子と、第一の爪部と、第二の爪部との間に配置されるコイルと、固定子の内径側に周方向に隙間を介して位置する回転子と、を有するモータにおいて、固定子が、周方向に沿って可動であることを特徴とする。
 また、固定子が、回転軸に沿って複数積層されていることが好ましい。
 以下、本発明を実施するための最良の形態を図面に基づいて説明する。
 図1は本発明の一実施例であるステータ磁極を回転周方向に対して磁気的に3相独立に配置した永久磁石同期モータである。回転子の極数は24極である。まず、構成について説明する。回転子100は中心部分に図には示していないシャフトが配置され、シャフトの外周部に回転子ヨーク2が配置されている。回転子ヨーク2の外周部に永久磁石3が配置されている。永久磁石3は24極に着磁されている。本来モータとしてはケースやベアリング等の支持機構が必要であるが、この図では省略している。次に、固定子200について説明する。固定子磁極は3相の位相差を持つように3個の磁極が、回転子の永久磁石3の外周部に僅かな空隙を介して配置されている。3相の固定子磁極はU相磁極4U,V相磁極4V,W相磁極4Wで構成され、前記回転子の永久磁石3にほぼ重なるように配置されている。各相磁極の中心部には固定子コイルが配置され、U相コイルは5U、V相コイルは5V、W相磁極は5Wで示している。更に各相コイルは固定子磁極の端部でU字状にコイルエンド部を構成している。また、コイルエンド部の軸方向よりコイルが引き出され、インバータを介してバッテリに接続されている。この様な固定子構成において、各固定子磁極は連結材(図示せず)により、電気角で120度の位相差を持って、ロータ外周部に配置されている。この連結材は各相の固定子磁極を機械的に固定できるものであればどのような構造であっても良く、好ましくは非磁性体の金属で構成されるのが望ましい。更に、連結された後、樹脂により円筒型にモールドしても良い。
 図2を用いて図1で説明した固定子磁極4Uの詳細を説明する。他の相である4V及び4Wは同一構造であるため説明は省略する。先に説明したようにU相磁極4Uは、5つの部品から構成されている。固定子磁極4Uは、4Uaと4Ubの2列の磁極列からなっている。例えば、4Uaの磁極列は内周側に向かって配置される磁極歯4Ua1と外向きに向かって配置される4Ua2から構成され、その4Ua1と4Ua2の中心部にU相コイル5Uの片側のコイルが挟み込まれるように構成されている。更に、もう一列の磁極列4Ubを構成する4Ub1と4Ub2の中心部にU相コイル5Uのもう一方のコイルが挟まれている。図示していないが、U相コイル5Uの口出し線は、磁極に挟まれていないU型のコイルエンド部から取り出されている。
 図3(a)は、先に説明したU相磁極の4Ub列にU相コイル5Uが挟まれた構造を示したものである。紙面手前のコイル部分に、4Ua列の磁極が配置される。図3(b)はU相コイル5Uが巻装されるコイル中心部の磁極を示したものである。U相コイル5Uは図示した、外向き磁極歯4Ua2と4Ub2に直巻きするか、馬蹄形に成形したものを配置しても良い。また、4Ua2と4Ub2を一体的に作成することも可能である。
 図4はU相磁極4Uの完成図を示したものである。先に説明したように、U相コイル5Uは2列で構成される磁極列の中心部に配置されている。図からも分かるように磁極列4Uaを構成する各磁極歯は同一形状で構成されている。また、もう一方の磁極列4Ubも同様にほぼ同じ形状のもので構成されている。図に示されているように、外向きに構成される磁極歯4Ua2,4Ub2と、内向きに構成される磁極歯4Ua1,4Ub1の位相は電気角で180度になるように構成されている。図4における磁極列4Uaと磁極列4Ubの位置関係は、磁極列4Ua内のコイルに鎖交する磁束と磁極列4Ub内のコイルに鎖交する磁束の位相を同一とするように構成されている。よって、回転子が回転することで、磁極列4Uaと4Ub内のコイルに発生する逆起電力の位相も同一となる。そのため、図4に示す磁極列4Uaと磁極列4Ubは、コイル5Uに最大の逆起電力を発生させる位置関係になっている。
 また、本例では、磁極列4Uaは回転軸に対して周方向に可動であるように構成され、磁極列4Ubはケース(図示せず)に固定されている。他の相も同様に、磁極列4Va及び4Waは回転軸に対して周方向に可動であるように構成され、磁極列4Vb及び4Wbはケースに固定されている。図5に磁極列4Ua,4Va,4Waを周方向に電気角で120度だけ移動させた場合の外観図を示す。磁極列4Ua,4Va,4Waは、それぞれ同一方向に移動させている。以下、磁極列4Ua,4Va,4Waを可動固定子と呼ぶ。
 図6は、可動固定子4Uaを周方向に電気角で120度だけ移動させた場合のU相磁極4Uの外観である。外向きに構成される磁極歯4Ua2,4Ub2の位相が電気角で120度ずれるように、可動固定子4Uaを移動させている。これにより、可動固定子4Ua内のコイルに鎖交する磁束と磁極列4Ub内のコイルに発生する逆起電力の位相差は120度となる。よって、コイル5Uに発生する逆起電力の大きさは、最大時の1/2となる。V相磁極4VとW相磁極4Wも同様の操作を行うことで、コイル5V,5Wに発生する逆起電力の大きさも、最大時の1/2となる。すなわち、高回転領域において弱め界磁電流を必要とせずに逆起電力を抑制することが可能である。また、可動固定子4Uaの移動量を調整することで、逆起電力の抑制の度合いは任意に設定することができる。これにより、限られたインバータやバッテリ電圧でも、本実施例による永久磁石同期モータを高回転領域で駆動することが可能となる。さらに、弱め界磁電流を必要としないため、弱め界磁電流に起因する損失が発生せず損失が低減される。また、本構成には回転軸方向にコイルエンドが存在しないため、軸長を短く保つことが可能である。
 次に本発明による永久磁石モータの別の実施形態を示す。以下に特に示す事項以外については、上述の実施例と同様である。
 図7は、本発明による永久磁石モータの1つの実施形態を示した図である。回転子の極数が16極であり、その他の回転子の構成は、図1に示したものと同一である。固定子磁極は3相の位相差を持つように6個の磁極が、回転子の永久磁石3の外周部に僅かな空隙を介して配置されている。3相の固定子磁極はU相磁極4U1,4U2,V相磁極4V1,4V2,W相磁極4W1,4W2で構成され、前記回転子の永久磁石3にほぼ重なるように配置されている。各相磁極の中心部には固定子コイルが配置され、U相磁極4U1にU相コイル5U1,U相磁極4U2にU相コイル5U2,V相磁極4V1にV相コイル5V1,V相磁極4V2にV相コイル5V2,W相磁極4W1にW相コイル5W1,W相磁極4W2にW相コイル5W2が収められている。各相コイルは固定子磁極の端部でU字状にコイルエンド部を構成し、コイルエンド部から引き出しに接続される。更にU相コイル5U1とU相コイル5U2,V相コイル5V1とV相コイル5V2,W相コイル5W1とW相コイル5W2をそれぞれ直列に接続することで、3相巻線を構成している。また、U相磁極4U1,V相磁極4V1,W相磁極4W1はケース(図示せず)に固定されており、U相磁極4U2,V相磁極4V2,W相磁極4W2は回転軸に対して周方向に可動となるように構成されている。
 図8に図7で説明した固定子磁極4U1の分解図を示す。他の固定子磁極である4U2,4V1,4V2,4W1,4W2は同一構造であるため説明は省略する。先に説明したようにU相磁極4Uは、5つの部品から構成されている。固定子磁極4U1は、4U1aと4U1bの2列の磁極列からなっている。例えば、4U1aの磁極列は内周側に向かって配置される磁極歯4Ua1と外向きに向かって配置される4Ua2から構成され、その4U1a1と4U1a2の中心部にU相コイル5Uの片側のコイルが挟み込まれるように構成されている。更に、もう一列の磁極列4U1bを構成する4U1b1と4U1b2の中心部にU相コイル5Uのもう一方のコイルが挟まれている。
 図9に固定子磁極4U1の外観図を示す。先に説明したように、U相コイル5U1は2列で構成される磁極列の中心部に配置されている。図に示されているように、外向きに構成される磁極歯4U1a2,4U1b2と、内向きに構成される磁極歯4U1a1,4U1b1の位相差は電気角で180度になるように構成されている。
 図10に図7を回転軸方向から見た図を示す。3相の固定子磁極であるU相磁極4U1,4U2,V相磁極4V1,4V2,W相磁極4W1,4W2は、それぞれ周方向に機械角で60度(20極であるため電気角で120度)ずれた位置に等間隔に配置されている。これにより、U相磁極4U1と4U2は機械角で180度ずれた位置に配置されるため、U相コイル5U1と5U2に発生する逆起電力の位相は同一となる。同様にV相コイル5V1と5V2,W相コイル5W1と5W2に発生する逆起電力の位相は、それぞれ同一である。これにより、U相コイル5U1と5U2を直列に繋いだU相コイルに表れる逆起電力の大きさは、本構成において最大である。
 以下に本構成において、永久磁石同期モータを高回転領域で駆動する方法について詳述する。図11に、回転軸に対して周方向に可動となるように構成されたU相磁極4U2,V相磁極4V2,W相磁極4W2を、それぞれ周方向に機械角で15度動かした場合の構成を示す。これにより、U相磁極4U1と4U2は機械角で165度ずれた位置に配置されるため、それぞれで発生する逆起電力の位相差は120度である。これにより、U相コイル5U1と5U2を直列に繋いだU相コイルに表れる逆起電力の大きさは、最大時の1/2となる。同様にV相コイル,W相コイルに表れる逆起電力の大きさは、最大時の1/2となる。以上より、先述の実施例と同様に、高回転領域において弱め界磁電流を必要とせずに逆起電力を抑制することが可能である。本構成においても、回転軸方向にコイルエンドが存在しないため、軸長を短く保つことが可能であり、コイルエンドにおける銅損が削減されるため効率が向上される。つまり、高速で連続的に動作が必要な用途において、本発明の効果が特に期待される。
 図12は、本発明による永久磁石モータの固定子の1つの実施形態を示した図である。回転子(図示せず)の極数は24極であり、その他の回転子の構成は、図1に示したものと同一である。固定子は、爪磁極を有する1相分の固定子を軸方向に複数個配置することで複数相に構成している。本実施例では1相固定子4U,4V,4Wを機械角で10度(電気角で120度)ずつ周方向に位相をずらして軸方向に配置することで、3相固定子を構成している。1相固定子4U,4V,4Wは、円環状に構成された導電体を複数回巻きまわしたコイル5U,5V,5Wがそれぞれ収められており、これにより回転電機の固定子を構成している。
 図13及び図14を用いて1相分の固定子4Uについて詳述する。1相分の固定子4V,4Wも同じ構成である。1相分の固定子4Uは、複数の爪磁極を有しており、周方向に複数に分割されて配置されている。図13で示される構成では、1相分の固定子4Uは22個の爪磁極を有しており、周方向に分割された2つの固定子4U1,4U2により構成されている。固定子4U1は軸方向に2つに分割されており、複数の爪磁極4U1aとその反対極となる複数の爪磁極4U1bにより構成されている。同様に固定子4U2も軸方向に2つに分割されており、複数の爪磁極4U2aとその反対極となる複数の爪磁極4U2bにより構成されている。爪磁極4U1aと爪磁極4U1bは周方向に機械角で15度(電気角で180度)の位相差をつけて配置されており、爪磁極4U2aと爪磁極4U2bの関係も同様である。コイル5Uは、軸方向より爪磁極4U1a及び爪磁極4U1b,爪磁極4U2a及び爪磁極4U2bより軸方向から挟みこむようにして、固定子4Uに収められている。周方向に分割された2つの固定子4U1,4U2は、機械角で30度の位相差をつけて配置されており、すなわち電気角での位相は等しい。これにより、固定子4U1においてコイル5Uに鎖交する磁束と、固定子4U2においてコイル5Uに鎖交する磁束の位相は等しくなり、固定子4U1と4U2はコイル5Uに最大の逆起電力を発生させる位置に配置されている。
 また、固定子4Uにおいて、分割固定子4U1はケース(図示せず)に固定されており、分割固定子4U2は周方向に可動となるように構成されている。固定子4V,4Wについても、分割固定子4V1及び4W1はケースに固定され、分割固定子4V2及び分割固定子4W2は周方向に可動となるように構成されている。図15,図16に可動固定子4U2,4V2,4W2を機械角で10度(電気角で120度)だけ周方向に移動させた場合の構成例を示す。このような場合、固定子4U1においてコイル5Uに鎖交する磁束と、固定子4U2においてコイル5Uに鎖交する磁束の位相は120度ずれている。このため、コイル5Uに発生する逆起電力の大きさは、最大時の1/2となる。以上より、先述の実施例と同様に、高回転領域において弱め界磁電流を必要とせずに逆起電力を抑制することが可能である。本構成においても、回転軸方向にコイルエンドが存在しないため、軸長を短く保つことが可能であり、コイルエンドにおける銅損が削減されるため効率が向上される。
 今まで説明してきた各磁極は、圧粉磁心のプレス加工で実現することが可能である。また、鉄板を曲げて作成することや磁性体の焼結材で作成することも可能である。更には、リング状に磁極歯を作成し、必要な個数でカットして組み合わせることで実現することも可能である。
 次に本発明による永久磁石モータの可動固定子の移動方式について示す。図17に図1に示した固定子を連結材により固定した図を示す。各固定子磁極4U,4V,4Wは連結材20a及び20bにより周方向に電気角で120度の位相差を持って固定されている。特に、連結材20aは磁極列4Ua,4Va,4Waを固定し、連結材20bは磁極列4Ub,4Vb,4Wbを固定している。ここで、連結材20aはハウジング(図示せず)及び連結材20bと非接触の状態にあり、連結材20bはハウジングに固定されている。また、本例では、磁極列4Ua,4Va,4Waを周方向に回転させ、機械的な弱め界磁を行うために、連結材20aと連結材20bの間にドーナツ状の圧電素子30を配置し、連結材20aを圧電素子により回転させることで、上記と同様に機械的な弱め界磁を可能とする。また、圧電素子の非駆動時には、圧電素子の静止トルクにより連結材20aは連結材20bと固定されることになる。
 ところで、永久磁石同期モータの可動固定子は、永久磁石同期モータの駆動時に回転させても、非駆動時に回転させてもどちらでもよい。駆動時に回転させる場合、回転子の回転方向と逆方向に可動固定子を回転させることで、回転に必要なトルクを最小限のものとすることができる。
 次に本発明による永久磁石モータの可動固定子の位相制御方法について詳述する。本発明において、可動固定子の位相は、逆起電力が最大になる位置から最小になる位置の間を、モータの運転状態に応じて制御されている。具体的には、停止状態から始動する場合や、低回転運転状態では大きいトルクを必要とするため、逆起電力が最大になるように可動固定子の位相を制御する。また、高回転運転状態においては、バッテリから電圧を供給できるように可動固定子の位相を制御して、逆起電力を低減させる。これにより、モータの出力を高速域まで広げることができる。この場合、連結材20aと連結材20bの位相差をセンサ(図示せず)によりフィードバックして、連結材20aの回転周方向位置を制御する。また、連結材20aと連結材20bの位相差を0度と120度と、決められた値を用いる場合には、機械的なストッパを設けることで、オープンループの制御も可能である。
 次に本発明の効果について詳述する。図18に本発明による永久磁石同期モータにおけるトルクと回転数の関係を示している。可動固定子と固定子で発生する誘起電圧の大きさが等しいものとし、可動固定子と固定子の位相差が0度,83度,120度の場合を示している。可動固定子と固定子の位相差が0度の場合、図19(a)でベクトルとして示すように、それぞれで発生する逆起電力の位相差が0となるため、最大の逆起電力が発生する。可動固定子と固定子の位相差を83度とすると、図19(b)で示すように最大逆起電力の75%の逆起電力が発生する。さらに可動固定子と固定子の位相差を120度とすると、最大逆起電力の50%の逆起電力が発生する。電源がバッテリ等で電源電圧に制約がある場合、本発明により逆起電力を低下させることで、図18に示すように高速域まで出力範囲を拡大できることがわかる。また、回転数に応じて可動固定子と固定子の位相差を制御することで、低速域での大トルクと高速域での出力の確保を両立することが可能である。また、電流による弱め界磁と異なり、弱め界磁電流を必要としないため、弱め界磁電流に起因する損失が発生しない。そのため、永久磁石同期モータの効率が向上する。
 同様の永久磁石同期モータにおける弱め界磁電流を必要としない高速域の出力確保の手法として、特許文献1記載の構成がある。この構成では、固定子を回転軸に直交する方向に少なくとも2つに分割し、分割した固定子のうち少なくとも1つの固定子を可動固定子とするとともに、この可動固定子を位相制御することで、機械的な弱め界磁を行っている。しかしながら、この構成では複数に分割されたモータの回転軸方向端部に存在するコイルエンド部が増加するため、モータの軸長が長くなり、コイルエンド部における銅損が増加するという問題がある。これに対し、本発明の永久磁石同期モータは回転軸方向にコイルエンドを有しないため、モータの軸長を短くすることが可能であり、コイルエンドの部分を少なく構成できるため銅損が増加するという問題がない。すなわち、本発明によれば永久磁石同期モータの軸長を増加させることなく、高速域において出力の確保を可能とし、高効率な永久磁石同期モータを提供することが可能となる。
 
 

Claims (13)

  1.  回転軸に対して周方向にN極とS極とからなる磁極が形成される固定子と、
     前記固定子の径方向継鉄部の内径側に、前記固定子と微小な隙間を介して周方向に永久磁石を配置した回転子と、
     前記固定子内に設けられた多相のコイルと、を備えた永久磁石同期モータにおいて、
     前記磁極を周方向に垂直に複数分割して配置し、
     分割された磁極が、回転軸に対して周方向に可動であることを特徴とする永久磁石同期モータ。
  2.  前記固定子の各相の前記分割された磁極を周方向に独立となるように配置することを特徴とする請求項1に記載の永久磁石同期モータ。
  3.  前記固定子が、周方向に垂直に、磁気的に分割されていることを特徴とする請求項1に記載の永久磁石同期モータ。
  4.  前記磁極が、軸方向に垂直に分割され、分割された一方の磁極が周方向に可動であることを特徴とする請求項1に記載の永久磁石同期モータ。
  5.  周方向に垂直に前記分割された磁極が周方向に可動であり、前記分割された磁極の各相が位相差を有することを特徴とする請求項2に記載の永久磁石同期モータ。
  6.  前記固定子の各相の前記分割された磁極を軸方向に独立に配置することを特徴とする請求項1に記載の永久磁石同期モータ。
  7.  前記固定子の磁極ピッチと前記回転子の磁極ピッチが略等しいことを特徴とする請求項1に記載の永久磁石同期モータ。
  8.  固定子は、周方向に垂直に分割された複数相の磁極を有し、
     前記分割された磁極は軸方向に延びる複数の爪磁極を有した円弧状の固定子鉄心と、楕円形に捲回されたコイルと、を有し、
     前記磁極が、周方向に沿って可動であることを特徴とする永久磁石モータ。
  9.  前記分割された磁極が、回転軸に垂直に分割され、前記分割された一方の磁極が周方向に可動であることを特徴とする請求項8に記載の永久磁石同期モータ。
  10.  前記永久磁石モータは、圧電素子及び周方向に垂直に分割された磁極を連結する連結部を具備し、
     前記磁極は、前記永久磁石モータの運転状況に応じて、前記圧電素子を用いて可動状態が制御されることを特徴とする請求項8に記載の永久磁石モータ。
  11.  径方向継鉄部と、該径方向継鉄部の内径側に配置される複数の爪部と、前記径方向継鉄部の外径側に延在する外周側継鉄とからなる第一の爪磁極と、
     径方向継鉄部と、該径方向継鉄部の内径側に配置される複数の爪部と、前記径方向継鉄部の外径側に延在する外周側継鉄とからなる第二の爪磁極と、が向かい合うように配置され、前記第一の爪部と、前記第二の爪部とが噛合うようにして形成される固定子と、
     前記第一の爪部と、前記第二の爪部との間に配置されるコイルと、
     前記固定子の内径側に周方向に隙間を介して位置する回転子と、を有するモータにおいて、
     前記固定子が、周方向に沿って可動であることを特徴とする永久磁石モータ。
  12.  前記固定子が、周方向に垂直に、磁気的に分割されていることを特徴とする請求項11に記載の永久磁石モータ。
  13.  前記固定子が、回転軸に沿って複数積層されていることを特徴とする請求項11に記載の永久磁石モータ。
PCT/JP2008/003951 2007-12-27 2008-12-25 永久磁石同期モータ WO2009084197A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/741,038 US20100253178A1 (en) 2007-12-27 2008-12-25 Permanent-magnet synchronous motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-335500 2007-12-27
JP2007335500A JP2009159738A (ja) 2007-12-27 2007-12-27 永久磁石同期モータ

Publications (1)

Publication Number Publication Date
WO2009084197A1 true WO2009084197A1 (ja) 2009-07-09

Family

ID=40823933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003951 WO2009084197A1 (ja) 2007-12-27 2008-12-25 永久磁石同期モータ

Country Status (3)

Country Link
US (2) US20100253178A1 (ja)
JP (1) JP2009159738A (ja)
WO (1) WO2009084197A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2317633A2 (en) * 2009-10-28 2011-05-04 University of Bahrain Transverse Flux Machine
EP4106155A1 (en) 2021-06-18 2022-12-21 Marjan Zupancic A magnetic motor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159738A (ja) * 2007-12-27 2009-07-16 Hitachi Ltd 永久磁石同期モータ
JP5496154B2 (ja) * 2011-06-29 2014-05-21 シナノケンシ株式会社 アウターロータ型モータの固定子構造
DE102012001115B4 (de) * 2012-01-23 2023-06-07 Sew-Eurodrive Gmbh & Co Kg Elektromaschine
GB2508022B (en) * 2012-11-20 2015-07-15 Jaguar Land Rover Ltd Electric machine and method of operation thereof
GB2511353B (en) * 2013-03-01 2015-11-04 Jaguar Land Rover Ltd Electric machine having segmented stator with shield elements
WO2014079881A2 (en) * 2012-11-20 2014-05-30 Jaguar Land Rover Limited Electric machine and method of operation thereof
JP6040051B2 (ja) * 2013-02-22 2016-12-07 アスモ株式会社 ステータ、及びモータ
US20150022126A1 (en) * 2013-07-18 2015-01-22 GM Global Technology Operations LLC Method and apparatus for monitoring a permanent magnet electric machine
EP4170878A1 (en) * 2015-05-15 2023-04-26 Enedym Inc. Switched reluctance machine with odd pole-phase index
JP6737994B2 (ja) * 2016-08-12 2020-08-12 アドバンストマテリアルテクノロジーズ株式会社 モータ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216339A (en) * 1991-09-30 1993-06-01 Dmytro Skybyk Lateral electric motor
JP2003513599A (ja) * 1999-10-26 2003-04-08 フィッシャー アンド ペイケル アプライアンシズ リミティド 多相トランスバース磁束電動機
JP2003204665A (ja) * 2002-01-07 2003-07-18 Hitachi Unisia Automotive Ltd ステップモータ
JP2005124378A (ja) * 2003-10-12 2005-05-12 Yoshimitsu Okawa リング状の固定子コイルを有する誘導電動機
JP2005160278A (ja) * 2003-11-28 2005-06-16 Nissan Motor Co Ltd 同期モータおよびそれを用いた車両ユニット
JP2007503198A (ja) * 2003-08-18 2007-02-15 ライト・エンジニアリング・インコーポレーテッド 低損失材料から構成されるアキシャルエアギャップ型電気装置におけるステータの選択的整列
JP2007185087A (ja) * 2005-12-29 2007-07-19 Korea Electrotechnology Research Inst 外転形永久磁石励磁横磁束電動機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334898A (en) * 1991-09-30 1994-08-02 Dymytro Skybyk Polyphase brushless DC and AC synchronous machines
US5334899A (en) * 1991-09-30 1994-08-02 Dymytro Skybyk Polyphase brushless DC and AC synchronous machines
DE69313165T2 (de) * 1992-03-06 1997-12-18 Central Glass Co Ltd Scheibenantenne für Kraftfahrzeug
US6153953A (en) * 1997-08-05 2000-11-28 Japan Servo Co., Ltd. Multi-phase PM-type stepping motor
DE10036288A1 (de) * 2000-07-26 2002-02-07 Bosch Gmbh Robert Unipolar-Transversalflußmaschine
US20070024147A1 (en) * 2003-08-18 2007-02-01 Hirzel Andrew D Selective alignment of stators in axial airgap electric devices comprising low-loss materials
JP2009159738A (ja) * 2007-12-27 2009-07-16 Hitachi Ltd 永久磁石同期モータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216339A (en) * 1991-09-30 1993-06-01 Dmytro Skybyk Lateral electric motor
JP2003513599A (ja) * 1999-10-26 2003-04-08 フィッシャー アンド ペイケル アプライアンシズ リミティド 多相トランスバース磁束電動機
JP2003204665A (ja) * 2002-01-07 2003-07-18 Hitachi Unisia Automotive Ltd ステップモータ
JP2007503198A (ja) * 2003-08-18 2007-02-15 ライト・エンジニアリング・インコーポレーテッド 低損失材料から構成されるアキシャルエアギャップ型電気装置におけるステータの選択的整列
JP2005124378A (ja) * 2003-10-12 2005-05-12 Yoshimitsu Okawa リング状の固定子コイルを有する誘導電動機
JP2005160278A (ja) * 2003-11-28 2005-06-16 Nissan Motor Co Ltd 同期モータおよびそれを用いた車両ユニット
JP2007185087A (ja) * 2005-12-29 2007-07-19 Korea Electrotechnology Research Inst 外転形永久磁石励磁横磁束電動機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2317633A2 (en) * 2009-10-28 2011-05-04 University of Bahrain Transverse Flux Machine
EP4106155A1 (en) 2021-06-18 2022-12-21 Marjan Zupancic A magnetic motor

Also Published As

Publication number Publication date
JP2009159738A (ja) 2009-07-16
US20100253178A1 (en) 2010-10-07
US20110163641A1 (en) 2011-07-07

Similar Documents

Publication Publication Date Title
WO2009084197A1 (ja) 永久磁石同期モータ
US10862355B2 (en) Armature with a core having teeth of different circumferential widths and electric motor including the armature and a rotor
US7408281B2 (en) Stator and brushless motor
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
JP5248751B2 (ja) スロットレス永久磁石型回転電機
US9236784B2 (en) Flux-switching electric machine
JP2009540788A (ja) リングコイルモータ
CN102577028A (zh) 无电刷的同步马达
JP5605164B2 (ja) 永久磁石型同期電動機及び永久磁石型同期電動機の運転方法
US20080296992A1 (en) Electrical Drive Machine
US10236732B2 (en) Inductor type rotary motor
JP2007215305A (ja) モータおよびその制御装置
US20220255386A1 (en) Coil, stator, and motor
JP2011223676A (ja) 永久磁石式電動機
JP2012182942A (ja) 回転電機
JP2011087382A (ja) モータ
US10361614B2 (en) AC excitation synchronous rotating electric machine
US20090051253A1 (en) Printing Machine or Electrical Machine for a Printing Machine
JP2018148675A (ja) 回転電機のステータ
US20190312476A1 (en) Motor
KR101259171B1 (ko) 고효율 전기모터, 고효율 전기 발전기
GB2544712A (en) An improved electrical machine
WO2018123830A1 (ja) 回転電機
WO2002082622A1 (fr) Moteur synchrone du type a aimant permanent
JP6582973B2 (ja) 回転電機およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869048

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12741038

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08869048

Country of ref document: EP

Kind code of ref document: A1