WO2009084178A1 - 焼結磁石製造装置 - Google Patents

焼結磁石製造装置 Download PDF

Info

Publication number
WO2009084178A1
WO2009084178A1 PCT/JP2008/003877 JP2008003877W WO2009084178A1 WO 2009084178 A1 WO2009084178 A1 WO 2009084178A1 JP 2008003877 W JP2008003877 W JP 2008003877W WO 2009084178 A1 WO2009084178 A1 WO 2009084178A1
Authority
WO
WIPO (PCT)
Prior art keywords
filling
container
sintering
sintered magnet
manufacturing apparatus
Prior art date
Application number
PCT/JP2008/003877
Other languages
English (en)
French (fr)
Inventor
Masato Sagawa
Original Assignee
Intermetallics Co., Ltd.
Mitsubishi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intermetallics Co., Ltd., Mitsubishi Corporation filed Critical Intermetallics Co., Ltd.
Priority to US12/810,620 priority Critical patent/US8657593B2/en
Priority to CN2008801187200A priority patent/CN101884077A/zh
Priority to EP08868621.7A priority patent/EP2244271B1/en
Publication of WO2009084178A1 publication Critical patent/WO2009084178A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/087Compacting only using high energy impulses, e.g. magnetic field impulses

Definitions

  • the present invention relates to an apparatus for producing a sintered magnet made of a sintered body such as a rare earth / iron / boron magnet (RFeB magnet) or a rare earth / cobalt magnet (RCo magnet).
  • a sintered magnet made of a sintered body such as a rare earth / iron / boron magnet (RFeB magnet) or a rare earth / cobalt magnet (RCo magnet).
  • RFeB magnet was discovered by Sagawa (the inventors of the present invention) in 1982 and has characteristics far exceeding those of the permanent magnets used so far, and it is relatively abundant and inexpensive with neodymium (a rare earth), iron and boron. It can be manufactured from various raw materials. Therefore, RFeB magnets are a variety of products such as voice coil motors such as hard disks, drive motors for hybrid and electric vehicles, motors for electric assist type bicycles, industrial motors, high-end speakers, headphones, and permanent magnet magnetic resonance diagnostic equipment. Is used.
  • the RFeB magnet is mainly composed of an R 2 Fe 14 B intermetallic compound having a tetragonal crystal structure and magnetic anisotropy (Patent Document 1).
  • Patent Document 1 An R 2 Fe 14 B intermetallic compound having a tetragonal crystal structure and magnetic anisotropy.
  • Patent Document 1 In order to enhance the magnetic properties of the RFeB magnet, it is necessary to make use of this magnetic anisotropy, and therefore, it is manufactured by a sintering method capable of obtaining a dense and homogeneous microstructure.
  • an alloy powder of an RFeB magnet is filled in a mold, and then a magnetic field is applied to the alloy powder while applying pressure with a press machine, and molding and orientation treatment are performed simultaneously. After being removed from the mold, it is heated and sintered.
  • Patent Document 2 an alloy powder of an RFeB magnet is filled in a filled firing container (filling step), and the alloy powder is oriented in a magnetic field without performing press forming (orientation step), and then heated as it is ( It is described that an RFeB sintered magnet is manufactured by a sintering process. According to this method, since the orientation of the alloy powder is not disturbed by press forming, an RFeB magnet having higher magnetic characteristics can be obtained.
  • a filling means, an orientation means, and a sintering means are provided in a sealed container that holds the interior in an oxygen-free or inert gas atmosphere, and further, the filling means to the orientation means, and the orientation means to the sintering means.
  • a sintered magnet manufacturing apparatus provided with a conveying means for conveying a filled and fired container. According to this apparatus, since the alloy powder can be handled consistently in an oxygen-free or inert gas atmosphere throughout the entire process, its oxidation and deterioration of magnetic properties can be prevented.
  • Sintered magnets are manufactured in a flow process. That is, filling, orientation, and sintering operations are performed in parallel.
  • it is difficult to prevent the magnetic field from leaking to the outside of the orientation means because the orientation means needs to apply a strong magnetic field having a magnetic flux density of several Tesla to the alloy powder. Therefore, a force acts on the alloy powder due to the leaked magnetic field, thereby disturbing the orientation of the alloy powder in the sintering means, or hindering the filling of the alloy powder in the filling means.
  • the problem to be solved by the present invention is to provide a sintered magnet manufacturing apparatus capable of preventing the influence of a magnetic field leaking in an orientation process.
  • the sintered magnet manufacturing apparatus which has been made to solve the above problems, a) filling means for filling the alloy powder into a filling and firing container; b) an orientation means having an air-core coil for orienting the alloy powder in the filled firing container with a magnetic field; c) a sintering means for sintering the alloy powder; d) Conveying means for conveying the filled firing container in the order of the filling means, the orientation means, and the sintering means; With e) The orientation means is arranged so that the axis of the air-core coil is deviated from a straight line connecting the filling means and the sintering means. It is characterized by that.
  • the intensity of the magnetic field leaking from the air core coil is strongest on the extension line of the air core coil axis and relatively weak around the axis. Therefore, when the filling means, the orientation means, and the sintering means are arranged in a straight line, the filling means and the sintering means are strongly affected by the leakage magnetic field.
  • the strength of the leakage magnetic field at the position of the filling means and the sintering means is set to the linear arrangement described above. Can be weaker than the case.
  • the orientation means can be arranged so that the axis of the air-core coil faces a direction different from the straight line.
  • the axis of the air-core coil is orthogonal to the straight line.
  • the axis of the air-core coil can be arranged so as to be shifted in parallel from the straight line.
  • the transport means includes a main transport means for transporting the filling and firing container on a main transport line connecting the filling means and the sintering means, and a sub-transport line connecting a predetermined position on the main transport line and the orientation means.
  • a sub-transporting means for transporting the filling and baking container can be used.
  • the filling means and the orientation means are accommodated in one sealed container, and the sealed container and the sintering means are in communication.
  • the orientation means may be a coil wound around a part of the outer wall of the sealed container.
  • the strength of the magnetic field leaking from the orientation means can be suppressed at the positions of the filling means and the sintering means. For this reason, it is possible to prevent the orientation of the alloy powder from being disturbed in the sintering means and the filling of the alloy powder from being hindered in the filling means.
  • the position of the filling means and the sintering means is shifted from the extension line of the axis of the air-core coil having the strongest leakage magnetic field strength, these means are more effective than the case where the filling means and the sintering means are on the extension line. It can approach the orientation means. Thereby, the apparatus can be reduced in size. In connection with it, when using an airtight container, the capacity
  • the top view which shows schematic structure of 1st Example of the sintered magnet manufacturing apparatus which concerns on this invention. Schematic which shows the leakage range of the magnetic field from the orientation means 12 in the sintered magnet manufacturing apparatus of (a) Comparative example 1, (b) Comparative example 2 and (c) 1st Example.
  • the side view which shows schematic structure of 2nd Example of the sintered magnet manufacturing apparatus which concerns on this invention.
  • the top view which shows schematic structure of 3rd Example of the sintered magnet manufacturing apparatus which concerns on this invention.
  • FIG. 1 shows a first embodiment 10 of the sintered magnet manufacturing apparatus according to the present invention.
  • the sintered magnet manufacturing apparatus 10 includes a filling means 11 for filling an alloy powder in a filling and firing container, an orientation means 12 for orienting the alloy powder filled in the filling and firing container, and a firing for sintering the oriented alloy powder. It has a linking means 13.
  • the orientation means 12 is disposed at a position deviated from the straight line connecting the filling means 11 and the sintering means 13.
  • the sintered magnet manufacturing apparatus 10 has a conveying means 14 for conveying the filled and fired container.
  • the sintered magnet manufacturing apparatus 10 includes a sealed container 15 that holds the filling means 11, the orientation means 12, the sintering means 13, and the conveying means 14 in an oxygen-free or inert gas atmosphere.
  • a sealed container 15 that holds the filling means 11, the orientation means 12, the sintering means 13, and the conveying means 14 in an oxygen-free or inert gas atmosphere.
  • the filling means 11 includes a powder feeding means 111 for feeding the alloy powder to the filling and firing container, a leveling means 112 for flattening the pile of the alloy powder fed to the filling and firing container, and a lid attached to the filling and firing container. And vibrate means 113 for vibrating the alloy powder by an air vibrator, and tapping means 114 for impacting the alloy powder by hitting the filling and firing container against the table.
  • the vibrating means 113 and the tapping means 114 can fill the alloy powder with high density without pressing.
  • a fine powder of NdFeB magnet having an average particle size of about 3 ⁇ m can be filled at a density of 3.5 to 4.0 g / cm 3 .
  • the orientation means 12 is substantially on the same plane as the filling means 11 and the sintering means 13, but deviated from a straight line connecting the both, specifically from an intermediate point 143 between the filling means 11 and the sintering means 13. It is arranged at a position perpendicular to the straight line and proceeding in the lateral direction. Accordingly, the sealed container 15 has a protruding portion 151 from which a portion of the orientation means 12 protrudes.
  • the orientation means 12 includes an air-core coil 121 that generates a magnetic field, and the axis of the air-core coil 121 is perpendicular to the straight line connecting the filling means 11 and the sintering means 13 (the direction indicated by the one-dot chain line in the figure). ).
  • the air-core coil 121 is wound around the outer wall 152 of the projecting portion 151, and the outer wall 152 also serves as a coil bobbin. As described above, the outer wall 152 also serves as a coil bobbin, so that the inner diameter of the air-core coil can be made smaller than when a coil bobbin is separately provided outside the outer wall 152 and the generated magnetic field strength can be increased.
  • the sintering means 13 is composed of a heating furnace that heats the filled baking container conveyed from the orientation means 12 as it is.
  • the inside of the heating furnace communicates with the sealed container 15, and both the inside of the heating furnace and the sealed container 15 can be maintained in an oxygen-free or inert gas atmosphere.
  • the conveying means 14 includes a main conveying line 141 that conveys the filling and firing container from the filling means 11 through the intermediate point 143 to the sintering means 13, and a direction perpendicular to the main conveying line 141 between the intermediate point 143 and the orientation means 12. And a sub-transport line 142 for transporting the filled firing container.
  • a belt conveyor made of non-magnetic resin or the like is used for the conveying means 14 in order to avoid the influence on the oriented alloy powder.
  • the filling and firing container is disposed in the filling unit 11 at the position of the powder supply unit 111.
  • the powder feeding means 111 has a weighing device, and puts a predetermined amount of NdFeB alloy powder into the filling and firing container from the hopper.
  • the piles of the alloy powder in the filling and firing container are flattened by the leveling means 112.
  • the filling and firing container is covered, the alloy powder is vibrated by the vibrating means 113, and an impact is further given by the tapping means 114.
  • the vibration means 113 and the tapping means 114 By the operation of the vibration means 113 and the tapping means 114, the density of the alloy powder in the filling and firing container is increased to about 3.5 to 4.0 g / cm 3 .
  • the conveying means 14 conveys the filled baking container from the filling means 11 to the orientation means 12 via the intermediate point 143.
  • the orientation means 12 applies a pulse magnetic field of 3 to 8 T to the alloy powder in a state where the filled and fired container is disposed in the air core of the air core coil 121.
  • the fine particles of the alloy powder are rotated by receiving a force from the magnetic field and are oriented so that the easy magnetization axes are aligned.
  • This orientation treatment is essentially different from the magnetization treatment performed by applying a magnetic field to the sintered body after the sintering treatment with many sintered magnets.
  • the orientation process moves the fine particles with the force received from the magnetic field as described above, whereas the magnetization process aligns the direction of the electron spin without moving the fine particles. For this reason, the process at the time of wearing is performed after the sintering process, whereas the alignment process is performed before the sintering process so that the fine particles can be moved.
  • the transport means 14 transports the filled firing container from the orientation means 12 through the intermediate point 143 to the sintering means 13.
  • the sintering means 13 sinters the alloy powder by heating to 950 to 1050 ° C. (without applying a load such as pressure) with the alloy powder in the filled firing container oriented. Thereby, a NdFeB sintered magnet is obtained.
  • the filling means 11 fills another filling and firing container with the alloy powder, and the sintering means 13 performs other processing.
  • the process of sintering the alloy powder in the filled and fired container is performed in parallel.
  • magnetic field leakage range 51 the range in which a strong leakage magnetic field that affects the alloy powder in the filled firing container exists.
  • the axis of the air-core coil 121 is orthogonal to the straight line connecting the filling means 11 and the sintering means 13, and the filling means 11 is also on the extension of this axis.
  • There is no sintering means 13 (FIG. 2 (c)).
  • the filling means 11 and the sintering means 13 are out of the magnetic field leakage range 51, there is no effect on the orientation of the alloy powder, and there is no need to increase the size of the apparatus.
  • FIG. 3 shows a second embodiment 20 of the sintered magnet manufacturing apparatus according to the present invention.
  • the sintered magnet manufacturing apparatus 20 includes a filling unit 21, an outer container housing unit 26, an orientation unit 22, a sintering unit 23, and a transport unit 24. Each of these means is accommodated in a sealed container 25.
  • the filling means 21, the sintering means 23, and the sealed container 25 are the same as those in the first embodiment.
  • the outer container accommodating means 26, the conveying means 24, and the orientation means 22 will be described.
  • the outer container accommodating means 26 performs an operation of accommodating the filled and fired container 52 in the outer container 53, and includes a filled and fired container elevator 261, a guide 262, and an outer container holder 263.
  • the outer container 53 is a container in which a plurality of filled and fired containers 52 are stacked and accommodated.
  • the filled baking container elevator 261 lowers the filled baking container 52 by one container and sequentially receives and stacks the filled baking containers 52.
  • the guide 262 holds the side of the stacked baking containers 52.
  • the filled and fired container elevator 261 raises the stacked filled and fired containers 52.
  • the outer container holder 263 moves the outer container 53 in the lateral direction so that the opening provided below the outer container 53 is directly above the filling and baking container 52, the outer container 53 is lowered.
  • the stacked baking containers 52 are accommodated in the outer container 53 by the operations of the filling baking container elevator 261 and the outer container holder 263.
  • the conveying means 24 includes a main conveying means 241 that conveys the filling and firing container 52 and the outer container 53 from the filling means 21 through the outer container accommodating means 26 to the sintering means 23 in the lateral direction. At the same time, it is provided between the outer container housing means 26 and the sintering means 23, and is a sub-transport means for transporting the outer container 53 containing the filled and fired container 52 in the vertical direction between the main transport means 241 and the orientation means 22. 242.
  • a belt conveyor made of non-metallic parts can be used for the main conveying means 241 as in the first embodiment.
  • An elevator similar to the filling and firing container elevator 261 can be used for the sub-transport means 242.
  • the orientation means 22 is provided directly above the sub-transport means 242 and has an air-core coil 221 with the vertical direction as an axis (a chain line in the figure).
  • the outer container 53 is carried in / out by the sub transport means 242 as described above.
  • a coil can also be wound around the applicable part of an airtight container like Example 1.
  • the filling means 21 weighs the alloy powder by the powder supply means and feeds it into the filling and firing container 52, and then feeds the alloy powder to 3.5 to 4.0 g / cm by the leveling means, vibration means and tapping means. Fill to a high density of 3 .
  • the conveying means 24 sequentially conveys the filled and fired containers 52 filled with the alloy powder in this way to the outer container accommodating means 26, and the outer container accommodating means 26 accommodates the filled and fired containers 52 in the outer container 53 as described above. To do.
  • the transport unit 24 transports the outer container 53 into the air core coil of the orientation unit 22 by the main transport unit 241 and the sub transport unit 242.
  • the orientation means 22 orients the alloy powder by applying a pulse magnetic field of 3 to 8 T in the vertical direction to the alloy powder in the filling and firing vessel 52. Thereafter, the conveying means 24 conveys the outer container 53 to the sintering means 23, and the sintering means 23 sinters the alloy powder by heating to 950 to 1050 ° C. with the alloy powder oriented. Thereby, a NdFeB sintered magnet is obtained.
  • the orientation means 22 is provided above the transport means 24, the installation area can be further reduced.
  • this apparatus simultaneously performs the alignment process on the plurality of filled baking containers 52, it is possible to further suppress the influence of the magnetic field on the area other than the alignment means 22.
  • FIG. 4 shows a third embodiment 30 of the sintered magnet manufacturing apparatus of the present invention.
  • the sintered magnet manufacturing apparatus 30 of the present embodiment has the same filling means 31, sintering means 33, and atmosphere holding container 35 as in the first embodiment.
  • the orientation means 32 has the same configuration as in the second embodiment. However, the orienting means 32 is arranged so that the axis of the coil (the one-dot chain line in the figure) is oriented in a direction parallel to the straight line connecting the filling means 31 and the sintering means 33 and deviates from the straight line. By arranging the orientation means 32 in this way, the positions of the filling means 31 and the sintering means 33 deviate from the magnetic field leakage range 51 of the orientation means 32.
  • the conveying means 34 conveys the filling and firing container from the filling means 31 through the orientation means 32 to the sintering means 33 in a non-linear manner according to the position of the orientation means 32.
  • the operation of the sintered magnet manufacturing apparatus 30 of the present embodiment is the same as the operation of the sintered magnet manufacturing apparatus 10 of the first embodiment except for the above-described operation of the conveying means 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

 本発明は、配向工程で漏洩する磁界の影響を防ぐことができる焼結磁石製造装置を提供することを目的としている。本発明に係る焼結磁石製造装置は、合金粉末を充填焼成容器に充填する充填手段11と、合金粉末を焼結させる焼結手段13と、充填後且つ焼結前に充填焼成容器内の合金粉末を配向させるための磁界を生成する空芯コイルを有し、その空芯コイルの軸が充填手段11と焼結手段13を結ぶ直線からずれた位置に配置された配向手段12と、を備える。配向手段12から漏洩する磁界は空芯コイルの軸の延長線上が最も強く、それに垂直な方向には比較的弱いため、空芯コイルの軸を上記直線からずらすことにより、配向手段12から漏洩する磁界の強度を充填手段11及び焼結手段13の位置において抑え、高特性磁石を得ることができる。

Description

焼結磁石製造装置
 本発明は、希土類・鉄・ホウ素系磁石(RFeB磁石)や希土類・コバルト系磁石(RCo磁石)等の焼結体から成る焼結磁石を製造する装置に関する。
 RFeB磁石は、1982年に佐川(本願発明者)らによって見出され、それまでの永久磁石をはるかに凌駕する特性を有し、ネオジム(希土類の一種)、鉄及び硼素という比較的豊富で廉価な原料から製造することができるという特長を有する。そのため、RFeB磁石はハードディスク等のボイスコイルモータ、ハイブリッド自動車や電気自動車の駆動用モータ、電動補助型自転車用モータ、産業用モータ、高級スピーカー、ヘッドホン、永久磁石式磁気共鳴診断装置等、様々な製品に使用されている。
 RFeB磁石は、正方晶の結晶構造を持ち磁気異方性を有するR2Fe14B金属間化合物を主相とする(特許文献1)。RFeB磁石の磁気特性を高めるためにはこの磁気異方性を活かすことが必要であり、そのため緻密で均質な微細組織を得ることができる焼結法により製造されている。
 焼結法では一般的に、まずRFeB磁石の合金粉末を金型に充填した後、合金粉末にプレス機で圧力を印加しつつ磁界を印加して成形と配向処理を同時に行い、成形体を金型から取り出した後に加熱して焼結させている。それに対して特許文献2には、RFeB磁石の合金粉末を充填焼成容器に充填し(充填工程)、プレス成形を行うことなく磁界中で合金粉末を配向した(配向工程)後、そのまま加熱する(焼結工程)ことよりRFeB焼結磁石を製造することが記載されている。この方法によれば、プレス成形により合金粉末の配向が乱れることがないため、より高い磁気特性を持つRFeB磁石を得ることができる。
 また、特許文献2には、内部を無酸素又は不活性ガス雰囲気に保持する密閉容器内に、充填手段、配向手段、焼結手段を設け、更に充填手段から配向手段、配向手段から焼結手段に充填焼成容器を搬送する搬送手段を設けた焼結磁石の製造装置が記載されている。この装置によれば、合金粉末を全工程に亘って一貫して無酸素又は不活性ガス雰囲気中で取り扱うことができるため、その酸化と磁気特性の低下を防ぐことができる。
特開昭59-046008号公報 特開2006-019521号公報
 焼結磁石の製造は流れ作業で行われる。すなわち、充填、配向及び焼結の各操作は同時並行して行われる。特に配向手段では磁束密度が数テスラという強い磁界を合金粉末に印加する必要があるため、配向手段の外部に磁界が漏洩することを防ぐことは困難である。そのため、漏洩した磁界により合金粉末に力が作用し、それにより、焼結手段において合金粉末の配向が乱れたり、充填手段において合金粉末の充填に支障が生じたりする。
 これら漏洩磁界の影響を排除するために、配向手段と焼結手段、及び配向手段と充填手段の距離を長く取ることが考えられるが、その場合には製造装置の大型化が避けられない。このように装置全体が大型化すると、装置を設置するために必要なスペースが増加するうえ、密閉容器も大型化する必要が生じることから無酸素又は不活性ガス雰囲気を維持するためのコストが増大する、という問題が生じる。
 ここまでは酸化の影響を特に受けやすいRFeB磁石を例に説明したが、酸化による影響を比較的受け難く密閉容器を使用する必要がない磁石を製造する場合においても、広いスペースを占拠するという問題は同様に生じる。
 本発明が解決しようとする課題は、配向工程で漏洩する磁界の影響を防ぐことができる焼結磁石製造装置を提供することである。
 上記課題を解決するために成された本発明に係る焼結磁石製造装置は、
 a) 合金粉末を充填焼成容器に充填する充填手段と、
 b) 前記充填焼成容器内の合金粉末を磁界で配向させる空心コイルを有する配向手段と、
 c) 合金粉末を焼結する焼結手段と、
 d) 前記充填手段、前記配向手段、前記焼結手段の順に前記充填焼成容器を搬送する搬送手段と、
を備え、
 e) 前記空心コイルの軸が、前記充填手段と前記焼結手段を結ぶ直線からずれるように前記配向手段が配置されている、
ことを特徴とする。
 空芯コイルから漏洩する磁界の強度は、空芯コイルの軸の延長線上が最も強く、軸の周りでは比較的弱い。そのため、充填手段、配向手段及び焼結手段を直線状に配置すると、充填手段及び焼結手段は漏洩磁界の影響を強く受ける。それに対して本発明では、充填手段と焼結手段を結ぶ直線から空芯コイルの軸をずらして配置することにより、充填手段及び焼結手段の位置における漏洩磁界の強度を、上記直線状配置の場合よりも弱くすることができる。
 配向手段は、前記空心コイルの軸が前記直線とは異なる方向を向くように配置することができる。特に、空心コイルの軸を前記直線に対し直交させることが好ましい。一方、空心コイルの軸を前記直線から平行にずらしたように配置することもできる。
 前記搬送手段には、前記充填手段と前記焼結手段を結ぶ主搬送ライン上で前記充填焼成容器を搬送させる主搬送手段と、前記主搬送ライン上の所定位置と前記配向手段を結ぶ副搬送ライン上で前記充填焼成容器を搬送させる副搬送手段と、を備えるものを用いることができる。
 前記充填手段及び前記配向手段は一の密閉容器に収容され、該密閉容器と前記焼結手段は連通していることが好ましい。
 前記配向手段は前記密閉容器の外壁の一部にコイルを巻き付けたものとすることができる。
 本発明により、充填手段及び焼結手段の位置において、配向手段から漏出する磁界の強度を抑えることができる。そのため、焼結手段において合金粉末の配向が乱れたり、充填手段において合金粉末の充填に支障が生じたりすることを防ぐことができる。
 また、充填手段及び焼結手段の位置が、漏洩磁界の強度が最も強い空芯コイルの軸の延長線上からずれるため、この延長線上に充填手段及び焼結手段がある場合よりもそれらの手段を配向手段に近づけることができる。これにより、装置を小型化することができる。それに伴い、密閉容器を使用する場合には、その容積を小さくでき、不活性ガスの使用量を減らし、ランニングコストを抑えることができる。
本発明に係る焼結磁石製造装置の第1実施例の概略構成を示す上面図。 (a)比較例1、(b)比較例2及び(c)第1実施例の焼結磁石製造装置における配向手段12からの磁界の漏洩範囲を示す概略図。 本発明に係る焼結磁石製造装置の第2実施例の概略構成を示す側面図。 本発明に係る焼結磁石製造装置の第3実施例の概略構成を示す上面図。
符号の説明
10、20、30…焼結磁石製造装置
11、21、31…充填手段
111…給粉手段
112…ならし手段
113…振動手段
114…タッピング手段
12、22、32…配向手段
121、221…空芯コイル
13、23、33…焼結手段
14、24、34…搬送手段
141…主搬送ライン
142…副搬送ライン
143…中間点
15、25、35…雰囲気保持容器
151…突出部
152…外壁
241…主搬送手段
242…副搬送手段
26…外容器収容手段
261…充填焼成容器昇降機
262…ガイド
263…外容器ホルダ
51…磁界漏洩範囲
52…充填焼成容器
53…外容器
 本発明に係る焼結磁石製造装置の実施例を図1~図4を用いて説明する。
 本発明に係る焼結磁石製造装置の第1実施例10を図1に示す。この焼結磁石製造装置10は、合金粉末を充填焼成容器に充填する充填手段11と、充填焼成容器に充填された合金粉末を配向させる配向手段12と、配向させた合金粉末を焼結させる焼結手段13を有する。配向手段12は、充填手段11と焼結手段13を結ぶ直線からずれた位置に配置されている。また、焼結磁石製造装置10は充填焼成容器を搬送する搬送手段14を有する。更に、焼結磁石製造装置10は、充填手段11、配向手段12、焼結手段13及び搬送手段14を無酸素又は不活性ガス雰囲気中に保持する密閉容器15を有する。以下、上記各手段について詳しく説明する。
 充填手段11は、充填焼成容器に合金粉末を給粉する給粉手段111、充填焼成容器に給粉された合金粉末の山を平らにするならし手段112、充填焼成容器に蓋を取り付けたうえでエアバイブレータにより合金粉末に振動を与える振動手段113、充填焼成容器を台に叩きつけることにより合金粉末に衝撃を与えるタッピング手段114と、を備える。振動手段113及びタッピング手段114により、合金粉末をプレスすることなく高密度に充填することができる。例えば、平均粒径が3μm程度のNdFeB磁石の微粉末であれば、3.5~4.0g/cm3の密度で充填することが可能である。
 配向手段12は、充填手段11と焼結手段13とほぼ同一平面上ではあるがその両者を結ぶ直線からずれた位置、具体的には充填手段11と焼結手段13の間の中間点143から前記直線に垂直且つ横方向に進んだ位置に配置されている。それに伴い、密閉容器15は配向手段12の部分が突出した突出部151を有している。配向手段12は、磁界を発生する空芯コイル121を備え、空芯コイル121の軸は充填手段11と焼結手段13を結ぶ直線に対して直交する方向(図中の一点鎖線で示した方向)に配置されている。また、空芯コイル121は突出部151の外壁152に巻き付けられており、外壁152がコイルボビンの役割を兼ねている。このように外壁152がコイルボビンを兼ねることで、外壁152の外側に別途コイルボビンを設けた場合よりも空芯コイルの内径を小さくし、発生磁界強度を高めることができる。
 焼結手段13は、配向手段12から搬送された充填焼成容器をそのまま加熱する加熱炉から成る。加熱炉の内部は密閉容器15と連通しており、加熱炉内と密閉容器15内の双方を無酸素又は不活性ガス雰囲気に維持することができる。加熱炉と密閉容器15の間には断熱性の扉(図示せず)があり、加熱中はこの扉を閉じることにより密閉容器15内の昇温を抑えると共に、加熱炉単独で無酸素又は不活性ガス雰囲気を保持することができる。
 搬送手段14は、充填手段11から中間点143を経て焼結手段13に充填焼成容器を搬送する主搬送ライン141と、中間点143と配向手段12の間で主搬送ライン141に垂直な方向に充填焼成容器を搬送する副搬送ライン142と、を有する。搬送手段14には、配向させた合金粉末への影響を避けるため非磁性樹脂等製のベルトコンベアを用いる。
 本実施例の焼結磁石製造装置10の動作を、NdFeB焼結磁石を製造する場合を例に説明する。
 まず、充填手段11内で充填焼成容器を給粉手段111の位置に配置する。給粉手段111は秤量器を有し、所定量のNdFeB合金粉末をホッパから充填焼成容器に投入する。次に、充填焼成容器内の合金粉末の山をならし手段112により平らに整える。そして充填焼成容器に蓋をしたうえで振動手段113により合金粉末を振動させ、更にタッピング手段114により衝撃を与える。これら振動手段113及びタッピング手段114の動作により、充填焼成容器内の合金粉末の密度が3.5~4.0g/cm3程度にまで高められる。
 次に、搬送手段14は充填手段11から中間点143を経由して配向手段12まで充填焼成容器を搬送する。配向手段12は、充填焼成容器を空芯コイル121の空芯内に配置した状態で、合金粉末に対して3~8Tのパルス磁界を印加する。すると、合金粉末の微粒子は磁界から力を受けて回動し、磁化容易軸が整列するように配向する。
 なお、この配向処理は、多くの焼結磁石で焼結処理後に焼結体に磁界を印加することにより行われている着磁処理とは本質的に異なるものである。配向処理は上述のように微粒子を磁界から受ける力で動かすのに対して、着磁処理は微粒子を動かすことなく電子スピンの方向を揃えるものである。そのため、着時処理は焼結処理後に行われるのに対して、配向処理は微粒子を動かすことができるように焼結処理の前に行われる。
 配向処理の後、搬送手段14は配向手段12から中間点143を経由して焼結手段13まで充填焼成容器を搬送する。焼結手段13は、充填焼成容器内の合金粉末を配向させた状態のままで(圧力等の負荷をかけることなく)950~1050℃に加熱することにより、合金粉末を焼結させる。これにより、NdFeB焼結磁石が得られる。
 この装置では流れ作業により多数の磁石が順次製造される。そのため、配向手段12である充填焼成容器内の合金粉末に対して配向処理が行われている時に、充填手段11において他の充填焼成容器に合金粉末を充填する工程や、焼結手段13において他の充填焼成容器内の合金粉末を焼結する工程が並行して行われる。
 次に、図2を用いて、本実施例の焼結磁石製造装置10と比較例について空芯コイルから漏洩する磁界の影響を説明する。空芯コイルから漏洩する磁界は、空芯コイルの軸の延長線上で最も強くなり、軸の周囲ではでは比較的弱い。そのため、充填焼成容器内の合金粉末に影響を与えるほどの強い漏洩磁界が存在する範囲(以後、「磁界漏洩範囲51」とする)は、図2に示すように、空芯コイルの軸方向に長軸を持つ楕円形に近い形状になる。そのため、充填手段11と焼結手段13を結ぶ線上に空芯コイルの軸が向くように配向手段12を配置する(比較例1:図2(a))と、充填手段11や焼結手段13が磁界漏洩範囲51内に含まれてしまい、それら充填手段11や焼結手段13で並行して作業が行われている他の充填焼成容器が磁化したり、その容器内の合金粉末の配向が乱れるといった悪影響が生じる。一方、そのような悪影響を防ぐために充填手段11及び焼結手段13と配向手段12の距離を長くする(比較例2:図2(b))と、装置が大型化して設置スペースの確保や無酸素・不活性ガス雰囲気を生成するためのコストが増大するという問題が生じる。
 それに対して本実施例の焼結磁石製造装置10では、空芯コイル121の軸は充填手段11と焼結手段13を結ぶ直線と直交しており、この軸の延長上には充填手段11も焼結手段13も存在しない(図2(c))。その結果、充填手段11及び焼結手段13は磁界漏洩範囲51から外れるため合金粉末の配向への影響が生じず、また、装置を大型化する必要も生じない。
 本発明に係る焼結磁石製造装置の第2実施例20を図3に示す。焼結磁石製造装置20は充填手段21、外容器収容手段26、配向手段22、焼結手段23及び搬送手段24を有する。これら各手段は密閉容器25に収容されている。充填手段21、焼結手段23及び密閉容器25は第1実施例のものと同様である。以下、外容器収容手段26、搬送手段24及び配向手段22について説明する。
 外容器収容手段26は充填焼成容器52を外容器53に収容する操作を行うものであり、充填焼成容器昇降機261と、ガイド262と、外容器ホルダ263とを有する。ここで外容器53は、充填焼成容器52を複数個積み重ねて収容する容器である。充填焼成容器昇降機261は、充填手段21から充填済みの充填焼成容器52が1個搬送される毎に、充填焼成容器52を容器1個分だけ降下させて充填焼成容器52を順次受けいれ、積み重ねる。その際、積み重ねられた充填焼成容器52の側方をガイド262が保持する。そして、充填焼成容器52が所定の個数だけ積み重ねられた後、充填焼成容器昇降機261は積み重ねられた充填焼成容器52を上昇させる。それと共に、外容器53の下方に設けられた開口部が充填焼成容器52の直上に来るように外容器ホルダ263が外容器53を横方向に移動させた後、外容器53を降下させる。これら充填焼成容器昇降機261及び外容器ホルダ263の動作により、積み重ねられた充填焼成容器52は外容器53に収容される。
 搬送手段24は、充填焼成容器52及び外容器53を充填手段21から外容器収容手段26を経て焼結手段23まで横方向に搬送する主搬送手段241を有する。それと共に、外容器収容手段26と焼結手段23の間に設けられ、充填焼成容器52が収容された外容器53を主搬送手段241と配向手段22の間で上下方向に搬送する副搬送手段242と、を有する。主搬送手段241には実施例1と同様に非金属の部品から成るベルトコンベアを用いることができる。副搬送手段242には充填焼成容器昇降機261と同様の昇降機を用いることができる。
 配向手段22は副搬送手段242の直上に設けられ、上下方向を軸(図中の一点鎖線)とする空芯コイル221を有する。空芯コイル221の空芯内には前述のように副搬送手段242により外容器53が搬入/搬出される。なお、図3には密閉容器25の内部にコイルを配置する例を示したが、実施例1と同様に密閉容器の該当部分にコイルを巻くこともできる。
 本実施例の焼結磁石製造装置20の動作を説明する。充填手段21は第1実施例と同様に、給粉手段により合金粉末を秤量のうえ充填焼成容器52に給粉し、ならし手段、振動手段及びタッピング手段により合金粉末を3.5~4.0g/cm3の高密度に充填する。搬送手段24は、こうして合金粉末が高密度充填された充填焼成容器52を順次、外容器収容手段26に搬送し、外容器収容手段26は上述のように充填焼成容器52を外容器53に収容する。次に、搬送手段24は主搬送手段241及び副搬送手段242により外容器53を配向手段22の空芯コイル内に搬送する。そして、配向手段22は、充填焼成容器52内の合金粉末に3~8Tのパルス磁界を上下方向に印加することにより、合金粉末を配向させる。その後、搬送手段24は外容器53を焼結手段23に搬送し、焼結手段23は合金粉末を配向させた状態のままで950~1050℃に加熱することにより、合金粉末を焼結させる。これにより、NdFeB焼結磁石が得られる。
 本実施例の焼結磁石製造装置20では、配向手段22が搬送手段24の上方に設けられているため、設置面積を更に削減することができる。また、この装置は複数個の充填焼成容器52に対して同時に配向処理を行うため、配向手段22以外の領域に磁界の影響を与えることを一層抑制することができる。
 なお、ここでは複数個の充填焼成容器52を同時に配向処理するために外容器収容手段26を用いる例を示したが、充填焼成容器52に対して1個ずつ配向処理を行う場合にも、設置面積を更に削減するという上記効果を得るために、本実施例の上下方向に移動する副搬送手段242を好適に用いることができる。
 本発明の焼結磁石製造装置の第3実施例30を図4に示す。本実施例の焼結磁石製造装置30は、第1実施例と同様の充填手段31、焼結手段33及び雰囲気保持容器35を有する。配向手段32は第2実施例と同様の構成を有する。但し、配向手段32は、コイルの軸(図中の一点鎖線)が充填手段31と焼結手段33を結ぶ直線と平行な方向を向き且つその直線からずれるように配置されている。このように配向手段32を配置することにより、充填手段31及び焼結手段33の位置は配向手段32の磁界漏洩範囲51から外れる。搬送手段34は充填焼成容器を充填手段31から配向手段32を経て焼結手段33まで、配向手段32の位置に合わせて非直線状に搬送する。本実施例の焼結磁石製造装置30の動作は、搬送手段34の上記動作を除いて、第1実施例の焼結磁石製造装置10の動作と同様である。

Claims (10)

  1.  a) 合金粉末を充填焼成容器に充填する充填手段と、
     b) 前記充填焼成容器内の合金粉末を磁界で配向させる空心コイルを有する配向手段と、
     c) 合金粉末を焼結する焼結手段と、
     d) 前記充填手段、前記配向手段、前記焼結手段の順に前記充填焼成容器を搬送する搬送手段と、
    を備え、
     e) 前記空心コイルの軸が、前記充填手段と前記焼結手段を結ぶ直線からずれるように前記配向手段が配置されている、
    ことを特徴とする焼結磁石製造装置。 
  2.  前記空心コイルの軸が前記直線とは異なる方向を向いていることを特徴とする請求項1に記載の焼結磁石製造装置。
  3.  前記空心コイルの軸が前記直線と直交していることを特徴とする請求項2に記載の焼結磁石製造装置。
  4.  前記空心コイルの軸が前記直線と平行であることを特徴とする請求項1に記載の焼結磁石製造装置。
  5.  前記搬送手段が、前記充填手段と前記焼結手段を結ぶ主搬送ライン上で前記充填焼成容器を搬送する主搬送手段と、前記主搬送ライン上の所定位置と前記配向手段を結ぶ副搬送ライン上で前記充填焼成容器を搬送する副搬送手段と、を備えることを特徴とする請求項1~4のいずれかに記載の焼結磁石製造装置。
  6.  前記副搬送ラインが、前記充填焼成容器を上下方向に移動するものであることを特徴とする請求項5に記載の焼結磁石製造装置。
  7.  前記充填手段及び前記配向手段が一の密閉容器に収容され、該密閉容器と前記焼結手段が連通していることを特徴とする請求項1~6のいずれかに記載の焼結磁石製造装置。
  8.  前記配向手段が前記密閉容器の外壁の一部にコイルを巻いたものであることを特徴とする請求項7に記載の焼結磁石製造装置。
  9.  前記配向手段が前記充填手段から充填焼成容器を複数個搬送された後、該複数個の充填焼成容器に対して同時に配向処理をすることを特徴とする請求項1~8のいずれかに記載の焼結磁石製造装置。
  10.  前記充填手段と前記配向手段の間に、複数個の充填焼成容器を外容器に収容する外容器収容手段を備えることを特徴とする請求項9に記載の焼結磁石製造装置。
PCT/JP2008/003877 2007-12-28 2008-12-22 焼結磁石製造装置 WO2009084178A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/810,620 US8657593B2 (en) 2007-12-28 2008-12-22 Sintered magnet production system
CN2008801187200A CN101884077A (zh) 2007-12-28 2008-12-22 烧结磁铁制造装置
EP08868621.7A EP2244271B1 (en) 2007-12-28 2008-12-22 Sintered magnet manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007339359A JP5308023B2 (ja) 2007-12-28 2007-12-28 焼結磁石製造装置
JP2007-339359 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084178A1 true WO2009084178A1 (ja) 2009-07-09

Family

ID=40823914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003877 WO2009084178A1 (ja) 2007-12-28 2008-12-22 焼結磁石製造装置

Country Status (6)

Country Link
US (1) US8657593B2 (ja)
EP (1) EP2244271B1 (ja)
JP (1) JP5308023B2 (ja)
CN (2) CN101884077A (ja)
TW (1) TW200929272A (ja)
WO (1) WO2009084178A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8899952B2 (en) 2009-05-22 2014-12-02 Intermetallics Co., Ltd. Sintered magnet producing apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5543630B2 (ja) * 2013-03-18 2014-07-09 インターメタリックス株式会社 焼結磁石製造装置
WO2016047593A1 (ja) * 2014-09-28 2016-03-31 Ndfeb株式会社 希土類焼結磁石の製造方法及び当該製法にて使用される製造装置
US10295260B2 (en) * 2016-10-18 2019-05-21 Saint-Gobain Ceramics & Plastics, Inc. Ceramic liner and method of forming

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946008A (ja) 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd 永久磁石
JPH07132399A (ja) * 1993-11-09 1995-05-23 Inter Metallics Kk 圧粉成型体製造装置
WO2003092020A1 (fr) * 2002-04-24 2003-11-06 Mitsubishi Denki Kabushiki Kaisha Dispositif de formation d'un aimant permanent
JP2005226108A (ja) * 2004-02-12 2005-08-25 Mitsubishi Electric Corp リング型焼結磁石の製造方法及び製造装置
JP2006019521A (ja) 2004-07-01 2006-01-19 Inter Metallics Kk 磁気異方性希土類焼結磁石の製造方法及び製造装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2337622A1 (fr) * 1976-01-09 1977-08-05 Anvar Procede de moulage d'objets en particules agglomerees et dispositif pour la mise en oeuvre de ce procede
JPH0744121B2 (ja) * 1990-11-30 1995-05-15 インターメタリックス株式会社 永久磁石の製造方法、製造装置及び磁界中配向成形用ゴムモールド
EP0646937B1 (en) * 1990-11-30 1997-09-03 Intermetallics Co., Ltd. Method for producing a permanent magnet and an apparatus for producing a green compact
US5672363A (en) * 1990-11-30 1997-09-30 Intermetallics Co., Ltd. Production apparatus for making green compact
JPH06188136A (ja) * 1991-06-14 1994-07-08 Inter Metallics Kk 永久磁石の製造方法
CN1054458C (zh) * 1990-11-30 2000-07-12 因太金属株式会社 制造永磁铁的方法和装置及用于在磁场作用下成型的橡胶模具
JPH0696973A (ja) * 1991-11-28 1994-04-08 Inter Metallics Kk 永久磁石の製造方法
JPH07126710A (ja) * 1993-11-09 1995-05-16 Inter Metallics Kk 圧粉成型体成型方法
JPH09129463A (ja) * 1995-10-27 1997-05-16 Daido Steel Co Ltd 筒状の希土類磁石素材を製造する方法および装置
EP1512526B1 (en) * 1998-12-28 2007-11-14 Neomax Co., Ltd. Process and apparatus for supplying rare earth metal-based alloy powder
US6352598B1 (en) * 1999-05-11 2002-03-05 Sumitomo Special Metals Co., Ltd. Rare-earth alloy powder pressing apparatus and rare-earth alloy powder pressing method
JP3172521B1 (ja) * 2000-06-29 2001-06-04 住友特殊金属株式会社 希土類磁石の製造方法および粉体プレス装置
JP2005232475A (ja) * 2004-02-17 2005-09-02 Tdk Corp 希土類焼結磁石用合金粉末の成形装置およびその成形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946008A (ja) 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd 永久磁石
JPH07132399A (ja) * 1993-11-09 1995-05-23 Inter Metallics Kk 圧粉成型体製造装置
WO2003092020A1 (fr) * 2002-04-24 2003-11-06 Mitsubishi Denki Kabushiki Kaisha Dispositif de formation d'un aimant permanent
JP2005226108A (ja) * 2004-02-12 2005-08-25 Mitsubishi Electric Corp リング型焼結磁石の製造方法及び製造装置
JP2006019521A (ja) 2004-07-01 2006-01-19 Inter Metallics Kk 磁気異方性希土類焼結磁石の製造方法及び製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2244271A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8899952B2 (en) 2009-05-22 2014-12-02 Intermetallics Co., Ltd. Sintered magnet producing apparatus

Also Published As

Publication number Publication date
CN101884077A (zh) 2010-11-10
EP2244271A1 (en) 2010-10-27
JP5308023B2 (ja) 2013-10-09
TWI377584B (ja) 2012-11-21
TW200929272A (en) 2009-07-01
CN104766718A (zh) 2015-07-08
EP2244271B1 (en) 2016-04-06
EP2244271A4 (en) 2011-04-13
US20100266718A1 (en) 2010-10-21
JP2009164177A (ja) 2009-07-23
CN104766718B (zh) 2017-08-08
US8657593B2 (en) 2014-02-25

Similar Documents

Publication Publication Date Title
US20120176212A1 (en) METHOD AND SYSTEM FOR PRODUCING SINTERED NdFeB MAGNET, AND SINTERED NdFeB MAGNET PRODUCED BY THE PRODUCTION METHOD
WO2009084178A1 (ja) 焼結磁石製造装置
US20070171017A1 (en) Radially anisotropic ring magnets and method of manufacture
JP2013126281A (ja) 界磁子の製造方法及び界磁子用の端板
US8899952B2 (en) Sintered magnet producing apparatus
CN101145422B (zh) 磁路及其制造方法、制造装置
CN107636243A (zh) 包括磁性门密封件的基板载体门组件、基板载体和方法
WO2011142321A1 (ja) NdFeB系焼結磁石製造装置
JP5543630B2 (ja) 焼結磁石製造装置
WO2018088393A1 (ja) 希土類磁石の製造方法
EP2955731B1 (en) Sintered magnet production device and sintered magnet production method
US20030183622A1 (en) Raw tire preheating method and device therefor
JP2003203818A (ja) 永久磁石の製造方法およびプレス装置
JP2019197778A (ja) 希土類磁石の製造方法
WO2003056583A1 (fr) Presse et procede de production d'aimant permanent
CN218344529U (zh) 一种芯棒仓结构
JP2012212830A (ja) R−t−b系焼結磁石の製造方法及び製造装置
JPH06108111A (ja) 強磁性粉末焼結体の製造方法
JPH09293623A (ja) 磁石粉末の成形方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880118720.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08868621

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12810620

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008868621

Country of ref document: EP