WO2009083061A1 - Antriebsmodul - Google Patents
Antriebsmodul Download PDFInfo
- Publication number
- WO2009083061A1 WO2009083061A1 PCT/EP2008/009330 EP2008009330W WO2009083061A1 WO 2009083061 A1 WO2009083061 A1 WO 2009083061A1 EP 2008009330 W EP2008009330 W EP 2008009330W WO 2009083061 A1 WO2009083061 A1 WO 2009083061A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- drive module
- drive
- module according
- coupling
- Prior art date
Links
- 230000008878 coupling Effects 0.000 claims abstract description 56
- 238000010168 coupling process Methods 0.000 claims abstract description 56
- 238000005859 coupling reaction Methods 0.000 claims abstract description 56
- 238000002485 combustion reaction Methods 0.000 claims abstract description 41
- 230000005540 biological transmission Effects 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 3
- 230000001276 controlling effect Effects 0.000 description 5
- 238000013016 damping Methods 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/38—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
- B60K6/387—Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/40—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/40—Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18063—Creeping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/0021—Generation or control of line pressure
- F16H61/0025—Supply of control fluid; Pumps therefore
- F16H61/0028—Supply of control fluid; Pumps therefore using a single pump driven by different power sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/36—Temperature of vehicle components or parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/441—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/443—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/445—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/48—Drive Train control parameters related to transmissions
- B60L2240/486—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/50—Drive Train control parameters related to clutches
- B60L2240/507—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/26—Transition between different drive modes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the invention relates to a drive module according to the preamble of claim 1.
- the invention is in particular the object of providing a drive module, which can be used advantageously in a modular module system and in particular can be advantageously integrated into existing transmission concepts. It is achieved according to the invention by the features of claim 1. Further embodiments will be apparent from the dependent claims and the dependent claims.
- the invention relates to a drive module, in particular for a motor vehicle, with a hybrid drive unit and a clutch unit, which is provided to couple the hybrid drive unit with an internal combustion engine and decouple. It is proposed that the coupling unit is provided as a starting clutch.
- the term "provided” should be understood to mean in particular specially designed, equipped and / or programmed.
- a starting clutch should be understood to mean, in particular, a clutch which is intended for starting up with the internal combustion engine and is designed accordingly and / or which, in particular, carries out a test test holds in which by means of the coupling unit on a flat road within 5 min uniformly distributed at least three times, preferably at least five times under full load is approached, and / or which is intended to overcome in a continuous slip operation to overcome a speed difference of a minimum engine speed and required speed for a crawl at a vehicle speed of 3 to 5 km / h to be operated.
- gear units in particular existing standard gearboxes, can advantageously be combined with the drive module without a specially designed startup clutch unit and an advantageous use of the drive module in a modular module system can be achieved.
- the various for controlling Kupp ⁇ is provided development units of various drive modules.
- a gear unit is intended in this context
- a unit can be understood that is intended to realize different gear ratios in the drive, which is preferably at least partially automated depending on various operating parameters, such as depending on a vehicle speed, a requested power, a driver parameter, a road gradient, etc., is selected.
- the transmission unit can have different gear ratios by different, selectable, acting gear pairings and / or the gear unit can have a continuously variable transmission unit, by means of gear ratios are continuously adjustable, such as a translation unit with conical disk pairs and a belt and / or Toroidusionn arranged with an intermediate swiveling roller body etc.
- the gear unit comprises a Ge ⁇ gear unit housing and the drive modules are intended to be used in the gear unit housing and / or the module modular system combines a cooling unit environmentally, which is intended to be used in a Geretegephaseuseein ⁇ unit of the gear unit.
- the gear ⁇ housing unit is preferably from a Triebkopfge- A "drive head housing" is to be understood as meaning, in particular, a housing which is arranged on the drive side for further transmission means, in particular different gear pairings, planetary gears, etc.
- the drive module comprises a control unit which is provided to close the clutch unit in at least one start-up mode, whereby the clutch unit and the control unit can be advantageously matched to one another.
- a separate control unit is additionally or alternatively used, such as particularly preferably a control unit of a transmission, such as a control unit for controlling a lockup clutch, etc., whereby additional components, installation space, assembly costs and costs can be saved ,
- a "control ⁇ unit" in particular a one ⁇ unit with a computing unit, a memory unit and a program stored in the memory unit operating program is to be ver ⁇ stood in this context.
- a "starting mode" in the ⁇ sem context a mode for an acceleration ⁇ gungsvorgang starting from a speed below a speed of 10 km / h and in particular below 5 km / h and in particular an acceleration process, starting be understood by a speed equal to zero, in which by means of the coupling unit to overcome a speed difference.
- the clutch unit can be used particularly flexibly, in particular both in a start-up mode, if a present temperature is outside a range advantageous for the hybrid drive unit, in particular if a cooling water temperature is less than or equal to 60 ° C., advantageously less than or equal to 30 ° C., and particularly preferably less than or equal to 0 ° C.
- a "pure engine start-up mode" is to be understood in particular as a mode in which a drive torque for driving the motor vehicle is supplied solely by the internal combustion engine.
- control unit is provided to close the coupling unit in a combination mode.
- a mode to, a "combination" mode into ⁇ special be understood, in which both the hybrid drive unit as well as the internal combustion engine is used for starting and especially at least 50%, preferably at least 80% of a maximum power of the Hybridan ⁇ drive unit and a designated internal combustion engine for Starting is required.
- a creep mode should be understood to mean, in particular, a mode, in which the motor vehicle is operated at a very low speed, as would be required in particular at a speed between 0 km / h and 5 km / h and in particular in the case of an internal combustion engine drive a slip within the coupling unit.
- closure of the clutch can be largely avoided at very low speeds, and the motor vehicle can advantageously be driven directly by the hybrid drive unit without an intermediate clutch.
- the coupling unit is arranged in the axial direction at least partially overlapping the hybrid drive unit, i. at least partially radially outside of the hybrid drive unit, or particularly advantageously at least partially radially within the hybrid drive unit.
- the coupling unit can be formed by various clutches that appear appropriate to the person skilled in the art, but advantageously by a friction clutch and particularly advantageously by a wet friction clutch.
- a "Reibkupp ⁇ lung" in particular a clutch having at least two to di ⁇ rect coupling provided friction linings to be understood, wherein, in a wet friction clutch, the friction linings with a liquid, in particular with oil, can be sprayed and / or the friction linings partially within With a wet friction clutch, an advantageous cooling can be achieved and the clutch unit can be structurally designed in a simple and space-saving manner as a start-up clutch can be.
- the control and regulation unit for controlling the coupling unit of the hybrid drive unit is integrated in an advantageous manner in the control and regulation unit of the transmission.
- the control and regulating unit of a coupling unit is used, which is already used in a further drive module.
- the torque converter lockup clutch of a hydraulic torque converter can be exemplified. This makes it possible to dispense with elements such as a separate and / or additional control and regulating unit for controlling the coupling unit of the hybrid drive unit.
- the drive module has at least one torsional vibration damper, which is arranged on the drive side to the coupling unit and / or a Torsionsschwin- vibration damper, which is arranged on the output side to the hybrid drive unit, whereby torsional vibrations are advantageously damped and comfort is increased can.
- the drive module comprises at least one pump, whereby this can be advantageously designed to Hyb ⁇ ridantriebsaku and / or in particular the clutch ⁇ unit.
- the pump is arranged on the drive side to the coupling unit, in particular it can be easily ensured that the pump can be operated via the internal combustion engine and used for a supply of the coupling unit.
- the drive module an electric machine for driving the pump, a favorable medium flow, insbeson ⁇ particular a coolant flow and / or a pressure medium flow to Operation of the coupling unit, regardless of the internal combustion engine and independently of the hybrid drive unit can be achieved.
- the electric machine for driving the pump in the axial direction is at least partially arranged overlapping to the hybrid drive unit, and in particular at least partially disposed radially within the hybrid drive unit, which in turn can be saved space.
- the drive module comprises a freewheel unit, which is arranged in the force flow between the electric machine and the pump
- the pump can advantageously be either electrically and / or mechanically, i. in particular due to a movement of the motor vehicle and / or by the internal combustion engine to be driven.
- the freewheel unit has at least two freewheels, it can be easily achieved structurally that the electric machine, despite the pump being activated, assumes a speed of zero, whereby unwanted drag losses of the electric machine during operation can be avoided.
- the drive module has a cooling unit, it can also be advantageously designed for the components of the drive module.
- the cooling unit is at least partially integrated into the hybrid drive unit, so that in particular with an exchange of the drive module vorzugs ⁇ example, a correspondingly adapted cooling unit can be easily replaced with.
- to be "integrated" is understood to ⁇ particular, that the cooling unit and the hybrid drive unit being ⁇ leads at least partially in one piece and / or at least present as mounting assembly and are mounted in a common assembly step, and in particular are used together in a housing.
- Another part of the cooling unit may advantageously be integrated in the drive head housing, whereby components can be saved.
- 1 is a schematically illustrated modular module system with a gear unit and two alternative drive modules
- Fig. 5 shows the transmission unit with an alternate on ⁇ operating module with one to Figures 1 to 4 diffe ⁇ anti-cross pump assembly
- FIG. 6 shows the gear unit with an alternative drive module with a torsion damping unit differing from FIG. 5
- FIG. Fig. 7 shows the transmission unit with an alternative drive module with a different from Figure 6 freewheeling unit and
- FIG. 8 shows the gear unit with an alternative drive module with a torsional vibration damper unit differing from FIG.
- Figure 1 shows a schematically illustrated modular module system for a motor vehicle with a gear unit 30 and two alternative drive modules, wherein a drive module outside a drive head housing 26 of the gear unit 30 in the disassembled state and a drive module within the drive head housing 26 is shown in the assembled state.
- the drive head housing 26 is bell-shaped and is arranged on the drive side to a main transmission housing 52 of the transmission unit 30.
- the power housing 26 and the main gearbox 52 are formed by separate components, but these could also be at least partially made in one piece.
- the engine head housing may also be formed of several separate components ⁇ ren.
- the drive module shown outside the drive head housing 26 in a disassembled prior to ⁇ is intended for mounting in the engine head housing 26 of the gear unit 30 and has, starting from an input shaft 32a 'to which an internal combustion engine is coupled and via which a drive torque introduced in the operation in the gear unit 30 is a torsional vibration damper 16a 'with an outer vibration damper 34a' and an inner vibration damper 36a 'on.
- the torsional vibration damper 16a ' closes in the force flow of the internal combustion engine to the transmission unit 30, a second portion of the input shaft 32a' on to which an electrical ⁇ specific 22a ', and a pump 20a' via a Freilaufein- unit 24a 'are coupled to a freewheel 38a'.
- the electric machine 22a ' is formed by an inner rotor. Due to the freewheel 38a 'can always by means of the pump 20a' independent of an engine speed, an advantageous oil flow rate can be achieved, ie the pump 20a 'can be operated in particular when the engine is stationary by means of the electric machine 22a'. Further, the second part of the input shaft 32a 'is connected to a first coupling part 40a' of a clutch unit 12a 'formed by a wet friction clutch which serves as a starting clutch. A second coupling part 42a 'can be connected via a coupling point 44a' to an input shaft 46 of the gear unit 30.
- the pump 20a ' is intended to build up an oil pressure, by means of which the wet friction clutch can be closed and also to build up an oil volume flow, by means of which components, in particular the clutch unit, can be cooled.
- the module has a modular system and control unit 14a, which is provided for at ⁇ control of the clutch unit 12a ', and this closes during a start-up mode.
- the drive unit shown within the drive head housing 26 in the assembled state, has, starting from a one ⁇ input shaft 32a to which an internal combustion engine is coupled and a drive torque is introduced into the transmission unit 30 which, in operation, a torsional vibration damper 16a with an outer damper 34 and an inner - vibration damper 36a on.
- the electric machine 22a is formed by an inner rotor.
- the second part of the input shaft 32a is connected to a first coupling part 40a of a coupling unit 12a of the drive module formed by a single wet friction clutch.
- a second coupling part 42a is coupled to a hybrid drive unit 10a arranged on the output side for the coupling unit 12a, namely with a rotor 48a of an electrical machine formed by an internal rotor.
- the rotor 48a interacts with a stator 50a arranged radially outside and is connected to the input shaft 46 of the transmission unit 30 via a coupling point 44a.
- the coupling unit 12a is arranged in the axial direction overlapping with the hybrid drive unit 10a, namely, the coupling unit 12a is arranged completely in an axial region spanned by the rotor 48a radially inside the rotor 48a of the hybrid drive unit 10a.
- a cooling unit 28 formed by cooling channels is integrated, which forms together with the stator 50a, a Montageein ⁇ comprehensive and is intended, together with the Hyb ⁇ ridantriebsillon 10a in the drive head housing 26 of the gear ⁇ unit 30 to be used.
- the freewheel 38a which is arranged in the power flow between the electric machine 22a and the pump 20a, can always by means of the pump 20a, the drive side to the coupling unit 12a, ie in the power flow of Brennkraftma ⁇ machine to drive the motor vehicle before the Kupplungsein ⁇ unit 12a, regardless of a Brennkraftma ⁇ machine speed and regardless of a drive speed of the hybrid drive unit 10a, an advantageous oil flow and oil pressure can be achieved, ie the pump 20a can be operated in particular ⁇ stand with the internal combustion engine by means of the electric ⁇ cal machine 22a.
- the drive module has the control and regulation unit 14a, which is provided to close the coupling unit 12a in certain start-up modes.
- the control and regulation unit 14a is provided for controlling the various coupling units 12a ', 12a of the alternative drive modules shown in FIG. 1, is accommodated in the transmission unit 30 and is designed in one piece with a control unit of the transmission unit 30.
- the coupling unit 12a In a normal operating mode, which is present when a coolant temperature is above a lower limit, in particular above O 0 C, the battery has a sufficient state of charge and an average torque is required for Anfah ⁇ ren starting from a vehicle speed zero, the coupling unit 12a remains open and the motor vehicle is accelerated solely by a signal supplied from the hybrid drive ⁇ unit 10a torque up to a certain speed limit, the coupling unit 12a ge ⁇ closed by the control and regulation unit 14 from and the internal combustion engine is switched on.
- the internal combustion engine can advantageously be started by means of a torque applied by the hybrid drive unit 10a.
- the Internal combustion engine are also preferably started by a so-called direct start, ie without additional electric motor, only by targeted injection in a cylinder at a certain piston position and ignition.
- the internal combustion engine could also be started by an additional starting device in the form of an electric motor, not shown in more detail, such as a starter with pinion or a belt-driven starter.
- a pure internal combustion engine starting mode takes place, in which the clutch unit 12a is closed by the control and regulation unit 14a and the motor vehicle is driven solely by a drive torque of the internal combustion engine.
- the internal combustion engine can in turn be started by a direct start, the internal combustion engine can be started by the hybrid drive unit and / or the internal combustion engine can be started by another electric motor which is not shown in more detail.
- the coupling unit 12a is closed by the control and Rege ⁇ averaging unit 14a in a combination mode in which an increased torque during start-up is required and both torque sources, ie, the internal combustion engine and the hybrid drive unit will be used 10a for starting of affyge ⁇ speed zero ,
- the Hybridantriebsein ⁇ unit 10 In overrun mode and in a state of charge of the battery under ⁇ half a maximum state of charge, the Hybridantriebsein ⁇ unit 10 is operated as a generator.
- the coupling unit 12a is usually opened in order to increase the generator power of the hybrid drive unit 10.
- the clutch unit 12a may also be closed by the control and regulation unit 14a in a coasting operation in order to use the internal combustion engine as a so-called engine brake.
- the torsional vibration damper 16a arranged on the drive side in a power flow from the internal combustion engine to the clutch unit 12a and to the hybrid drive unit 10a serves, in particular, for component protection. Due to the torsional vibration damper 16a following components in the power flow can be cost-effective and easily dimensioned.
- FIGS. 2 to 8 show alternative drive modules with the gear unit 30. Essentially the same components, features and functions are in principle ⁇ Lich with the same reference numerals. Under ⁇ for decision of the alternative drive modules with the letters a to h are added to the reference numerals of the exemplary embodiments in Figures 1 to. 8 The following description is limited substantially to the lower ⁇ differences to the drive modules in Figure 1, with regard to the same components, features and functions, reference is made to the description of the embodiment in FIGS. 1 In particular, it should be noted that the drive module shown in Figure 1 in a disassembled state with the on ⁇ operating modules in the figures 2 to 8 can be combined in a modular system ⁇ system. FIG.
- the torsional vibration damper unit comprises a torsional vibration damper 16b which is arranged on the drive side to form a clutch unit 12b and which has exclusively an external vibration damper 34b. Furthermore, the torsional vibration damper unit comprises a torsional vibration damper 18b arranged on the output side to form a hybrid drive unit 10b.
- the clutch unit 12b is configured separately from the hybrid drive unit 10b, ie, the clutch unit 12b is separate from the rotor 48b.
- FIG. 3 shows the gear unit 30 with an alternatively ⁇ ven drive module having a differing to the drive module in Figure 2 freewheeling unit 24c.
- the freewheel unit 24c has two freewheels 54c, 56c.
- the drive module has a pump 20c with a coupling point 58c arranged in the radial direction between the freewheels 54c, 56c.
- the radially outer freewheel 54c is locked in the direction of a force flow from an electric machine 22c radially inward in Rich ⁇ tion of the coupling point 58c of the pump 20c and is unlocked in an opposite direction.
- the radially inner freewheel 56c is locked in the direction of a power flow of a hybrid drive unit 10c and an internal combustion engine radially outward in the direction of the coupling point 58c and is unlocked in an opposite direction.
- the pump 20c may thus be driven by the internal combustion engine and / or from the Hyb ⁇ ridantriebsaku 10c without the e- lectrical machine 22c by a torque of the Brennkraft- machine and / or the hybrid drive unit 10c is driven, whereby unwanted drag losses can be avoided. Further, the pump 20c may be driven by the electric machine 22c without operating the internal combustion engine and / or the hybrid drive unit 10c.
- the radially outer freewheel 54c is locked and the pump 20c is acted upon by the rotational speed of the electric machine 22c. Since the rotational speed of the electric machine 22c and the pump 20c is greater than the rotational speed of the hybrid drive unit 10c and the internal combustion engine, the radially inner freewheel 56c is unlocked, so that the pump 20c is operated exclusively via the electric machine 22c.
- the radially inner freewheel 56 c is locked and the pump 20 c is exclusively from the hybrid drive unit 10 c and / or from the Internal combustion engine driven.
- freewheel units in particular freewheel units with switchable freewheels, whereby the electrical machine 22c are preferably used as a generator could ⁇ te.
- the drive module has a torsional vibration damper unit corresponding to the exemplary embodiment in FIG. 2 and an embodiment according to FIG. For example, in Figure 3 corresponding freewheeling unit 24d. Furthermore, the drive module has an electric machine 22d for driving a pump 2Od, wherein the electric machine 22d is arranged in the axial direction overlapping to a hybrid drive unit 10d, namely the electric machine 22d is at least partially or in particular completely in one of the hybrid drive unit 10d clamped axial region radially disposed within the hybrid drive unit 10d.
- FIG. 5 shows the gear unit 30 with an alternative drive module with a pump arrangement that differs from the exemplary embodiments in FIGS. 1 to 4.
- the drive module has a pump 2Oe, which is arranged on the output side to a hybrid drive unit 10e.
- a freewheel unit 24e of the drive module in FIG. 5 corresponds to a freewheel unit 24a of the drive module in FIG. 1, and a torsional vibration damper unit of the drive module in FIG. 5 corresponds to the torsional vibration damper unit in FIG.
- Figures 6, 7 and 8 show the drive modules with the drive module in Figure 5 corresponding pump arrangement where ⁇ at the drive module in Figure 6 is a the drive module corresponding in Figure 1 torsion vibration damping and the drive module in figure 1 corresponding Freilaufein ⁇ integrated 24f, the drive module a the drive module in figure 1 corresponding torsion vibration damping and the drive module 3 corresponding freewheel ⁇ unit 24g and the drive module has a ⁇ the on ⁇ drive module 2 corresponding torsion vibration damping and the drive module correspond in figure 3 shows in figure 7 in figure Figure 8 de freewheel unit 24h.
- the rotor 48a-48h of the hybrid drive unit 10a-10h and / or the electric machine 22a-22h may also be designed as an external rotor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
Die Erfindung geht aus von einem Antriebsmodul, insbesondere für ein Kraftfahrzeug, mit einer Hybridantriebseinheit (10a-10h) und einer Kupplungseinheit (12a-12h), die dazu vorgesehen ist, die Hybridantriebseinheit (10a-10h) mit einer Brennkraftmaschine zu koppeln und zu entkoppeln. Es wird vorgeschlagen, dass die Kupplungseinheit (12a-12h) als Anfahrkupplung vorgesehen ist.
Description
Daimler AG
Antriebsmodul
Die Erfindung betrifft ein Antriebsmodul nach dem Oberbegriff des Anspruchs 1.
Aus der DE 10 2005 024 359 Al ist bereits ein Antriebsmodul für ein Kraftfahrzeug mit einer Hybridantriebseinheit und einer Kupplungseinheit bekannt, die dazu vorgesehen ist, die Hybridantriebseinheit mit einer Brennkraftmaschine zu koppeln und zu entkoppeln.
Der Erfindung liegt insbesondere die Aufgabe zugrunde, ein Antriebsmodul bereitzustellen, das vorteilhaft in einem Modulbaukastensystem eingesetzt werden kann und insbesondere vorteilhaft in bestehende Getriebekonzepte integriert werden kann. Sie wird gemäß der Erfindung durch die Merkmale des Anspruchs 1 gelöst. Weitere Ausgestaltungen ergeben sich aus den Unteransprüchen und den Nebenansprüchen.
Die Erfindung geht aus von einem Antriebsmodul, insbesondere für ein Kraftfahrzeug, mit einer Hybridantriebseinheit und einer Kupplungseinheit, die dazu vorgesehen ist, die Hybridantriebseinheit mit einer Brennkraftmaschine zu koppeln und zu entkoppeln.
Es wird vorgeschlagen, dass die Kupplungseinheit als Anfahrkupplung vorgesehen ist. Dabei soll unter „vorgesehen" insbesondere speziell ausgelegt, ausgestattet und/oder programmiert verstanden werden. Ferner soll unter einer „Anfahrkupplung" insbesondere eine Kupplung verstanden werden, die zum Anfahren mit der Brennkraftmaschine vorgesehen ist und entsprechend ausgelegt ist und/oder die insbesondere einem Prüftest stand hält, bei dem mittels der Kupplungseinheit auf einer ebenen Fahrbahn innerhalb von 5 min gleichmäßig verteilt mindestens drei mal vorzugsweise mindestens fünf mal unter Volllast angefahren wird, und/oder die dazu vorgesehen ist, in einem Dauerschlupfbetrieb zur Überwindung einer Drehzahldifferenz einer minimalen Brennkraftmaschinendrehzahl und einer erforderlichen Drehzahl für eine Kriechfahrt bei einer Fahrzeuggeschwindigkeit von 3 bis 5 km/h betrieben zu werden.
Durch eine entsprechende Ausgestaltung können vorteilhaft Getriebeeinheiten, insbesondere bestehende Standardgetriebe, ohne eine speziell ausgebildete Anfahrkupplungseinheit mit dem Antriebsmodul kombiniert werden und es kann ein vorteilhafter Einsatz des Antriebsmoduls in einem Modulbaukastensystem erreicht werden. Besonders vorteilhaft kann ein Modulbau¬ kastensystem mit einer Getriebeeinheit, einem erfindungsgemä¬ ßen Antriebsmodul und wenigstens einem alternativ einsetzba¬ ren Antriebsmodul, insbesondere mit einer alternativen Hyb¬ ridantriebseinheit und/oder ohne Hybridantriebseinheit, er¬ reicht werden. Es können kostengünstig verschiedene Alterna¬ tiven mit einer Getriebeeinheit erreicht werden, und zwar insbesondere, wenn das Modulbaukastensystem eine Steuerein¬ heit aufweist, wie insbesondere eine Steuereinheit zur Steue¬ rung einer Wandlerüberbrückungskupplung oder einer reinen An¬ fahrkupplung, die zur Ansteuerung von verschiedenen Kupp¬ lungseinheiten verschiedener Antriebsmodule vorgesehen ist. Unter einer „Getriebeeinheit" soll in diesem Zusammenhang
insbesondere eine Einheit verstanden werden, die dazu vorgesehen ist, verschiedene Übersetzungsverhältnisse beim Antrieb zu realisieren, die vorzugsweise zumindest teilautomatisiert abhängig von verschiedenen Betriebsparametern, wie insbesondere abhängig von einer Fahrzeuggeschwindigkeit, einer angeforderten Leistung, einem Fahrerparameter, einer Fahrbahnsteigung usw., gewählt wird. Dabei kann die Getriebeeinheit verschiedene Übersetzungsstufen durch verschiedene, wählbare, wirkende Zahnradpaarungen aufweisen und/oder die Getriebeeinheit kann eine stufenlos verstellbare Übersetzungseinheit aufweisen, mittels der Übersetzungsverhältnisse stufenlos einstellbar sind, wie beispielsweise eine Übersetzungseinheit mit Kegelscheibenpaaren und einem Umschlingungsband und/oder Toroidscheiben mit einem dazwischen angeordneten verschwenkbaren Rollkörper usw.
Soll ein Modulbaukastensystem mit verschiedenen Antriebsmodulen geschaffen werden, die Hybridantriebseinheiten mit unterschiedlichen Leistungen aufweisen, kann dies besonders kostengünstig erreicht werden, wenn für zwei verschiedene Hybridantriebseinheiten entsprechende Wicklungsträger eingesetzt werden und eine Leistungsdifferenz durch unterschiedliche Wicklungen, insbesondere durch unterschiedliche Wicklungszah¬ len, realisiert werden.
Ferner kann eine besonders vorteilhafte Handhabung des Modul¬ baukastensystems erreicht und erforderliche Modifikationen können reduziert werden, wenn die Getriebeeinheit eine Ge¬ triebegehäuseeinheit aufweist und die Antriebsmodule dazu vorgesehen sind, in der Getriebegehäuseeinheit eingesetzt zu werden und/oder das Modulbaukastensystem eine Kühleinheit um- fasst, die dazu vorgesehen ist, in einer Getriebegehäuseein¬ heit der Getriebeeinheit eingesetzt zu werden. Die Getriebe¬ gehäuseeinheit wird dabei vorzugsweise von einem Triebkopfge-
häuse gebildet, wobei unter einem „Triebkopfgehäuse" insbesondere ein Gehäuse verstanden werden soll, das antriebssei- tig zu weiteren Übersetzungsmitteln, wie insbesondere verschiedener Zahnradpaarungen, Planetengetrieben usw., der Getriebeeinheit angeordnet ist. Unter dem, dass „eine erste Einheit zu einer zweiten Einheit antriebsseitig angeordnet ist", soll insbesondere verstanden werden, dass die erste Einheit entlang eines Kraftflusses zum Antrieb eines Kraftfahrzeugs und zur Fortbewegung desselben, vor der zweiten Einheit angeordnet ist. Demgegenüber soll unter dem, dass „eine erste Einheit abtriebsseitig zu einer zweiten Einheit angeordnet ist" verstanden werden, dass die erste Einheit entlang eines Kraftflusses zum Antrieb des Kraftfahrzeugs hinter der zweiten Einheit angeordnet ist.
In einer weiteren Ausgestaltung wird vorgeschlagen, dass das Antriebsmodul eine Steuereinheit umfasst, die dazu vorgesehen ist, die Kupplungseinheit bei wenigstens einem Anfahrmodus zu schließen, wodurch die Kupplungseinheit und die Steuereinheit vorteilhaft aufeinander abgestimmt werden können. Grundsätzlich ist auch denkbar, dass zusätzlich oder alternativ eine separate Steuereinheit genutzt wird, wie insbesondere besonders bevorzugt eine Steuereinheit eines Getriebes, wie eine Steuereinheit zur Steuerung einer Wandlerüberbrückungskupp- lung usw., wodurch zusätzliche Bauteile, Bauraum, Montageauf- wand und Kosten gespart werden können. Unter einer „Steuer¬ einheit" soll in diesem Zusammenhang insbesondere eine Ein¬ heit mit einer Recheneinheit, einer Speichereinheit und einem in der Speichereinheit gespeicherten Betriebsprogramm ver¬ standen werden. Ferner soll unter einem „Anfahrmodus" in die¬ sem Zusammenhang insbesondere ein Modus für einen Beschleuni¬ gungsvorgang ausgehend von einer Geschwindigkeit unterhalb einer Geschwindigkeit von 10 km/h und insbesondere unterhalb 5 km/h und insbesondere ein Beschleunigungsvorgang ausgehend
von einer Geschwindigkeit gleich Null verstanden werden, bei dem mittels der Kupplungseinheit eine Drehzahldifferenz zu überwinden ist.
Ist die Steuereinheit dazu vorgesehen, die Kupplungseinheit bei einem reinen Brennkraftmaschinenanfahrmodus zu schließen, kann die Kupplungseinheit besonders flexibel eingesetzt werden, und zwar insbesondere sowohl bei einem Anfahrmodus, wenn eine vorliegende Temperatur noch außerhalb eines für die Hybridantriebseinheit vorteilhaften Bereichs liegt, wie insbesondere wenn eine Kühlwassertemperatur kleiner gleich 600C, vorteilhaft kleiner gleich 300C und besonders bevorzugt kleiner gleich 00C ist. Unter einem „reinen Brennkraftmaschinenanfahrmodus" soll dabei insbesondere ein Modus verstanden werden, bei dem ein Antriebsmoment zum Antrieb des Kraftfahrzeugs allein von der Brennkraftmaschine geliefert wird.
Ferner wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, die Kupplungseinheit bei einem Kombinationsmodus zu schließen. Dabei soll unter einem „Kombinationsmodus" ins¬ besondere ein Modus verstanden werden, bei dem sowohl die Hybridantriebseinheit als auch die Brennkraftmaschine zum Anfahren genutzt wird und insbesondere mindestens 50%, vorzugsweise mindestens 80% einer maximalen Leistung der Hybridan¬ triebseinheit und einer vorgesehenen Brennkraftmaschine zum Anfahren gefordert wird.
In einer weiteren Ausgestaltung der Erfindung wird vorge¬ schlagen, dass die Hybridantriebseinheit abtriebsseitig zur Kupplungseinheit angeordnet ist, d.h. in einem Kraftfluss zum Antrieb des Kraftfahrzeugs nach der Kupplungseinheit, wodurch eine vorteilhaft kompakte Bauweise und insbesondere eine vor¬ teilhafter Kriechmodus erreicht werden kann. Dabei soll unter einem Kriechmodus insbesondere ein Modus verstanden werden,
bei dem das Kraftfahrzeug mit einer sehr kleinen Geschwindigkeit betrieben wird, wie insbesondere bei einer Geschwindigkeit zwischen 0 km/h und 5 km/h und insbesondere bei der bei einem Brennkraftmaschinenantrieb ein Schlupf innerhalb der Kupplungseinheit erforderlich wäre. Bei einer zur Kupplungseinheit abtriebsseitig angeordneten Hybridantriebseinheit kann ein Schließen der Kupplung bei sehr kleinen Geschwindigkeiten zumindest weitgehend vermieden werden und das Kraftfahrzeug kann vorteilhaft ohne zwischengeschaltete Kupplung direkt von der Hybridantriebseinheit angetrieben werden.
Ferner kann Bauraum eingespart werden, wenn die Kupplungseinheit in axialer Richtung zumindest teilweise überlappend zur Hybridantriebseinheit angeordnet ist, d.h. zumindest teilweise radial außerhalb der Hybridantriebseinheit oder besonders vorteilhaft zumindest teilweise radial innerhalb der Hybridantriebseinheit .
Die Kupplungseinheit kann von verschiedenen, dem Fachmann als sinnvoll erscheinenden Kupplungen gebildet sein, vorteilhaft jedoch von einer Reibkupplung und besonders vorteilhaft von einer nassen Reibkupplung. Dabei soll unter einer „Reibkupp¬ lung" insbesondere eine Kupplung mit zumindest zwei zur di¬ rekten Kopplung vorgesehenen Reibbelägen verstanden werden, wobei bei einer nassen Reibkupplung die Reibbeläge mit einer Flüssigkeit, wie insbesondere mit Öl, bespritzt werden und/oder die Reibbeläge teilweise innerhalb der Flüssigkeit oder vollständig innerhalb der Flüssigkeit angeordnet sind. Mit einer nassen Reibkupplung kann eine vorteilhafte Kühlung erreicht und die Kupplungseinheit kann konstruktiv einfach und Platz sparend als Anfahrkupplung ausgelegt werden. Insbesondere kann konstruktiv einfach erreicht werden, dass die Kupplungseinheit zumindest teilweise radial innerhalb der Hybridantriebseinheit angeordnet werden kann.
Die Steuer- und Regelungseinheit zur Ansteuerung der Kupplungseinheit der Hybridantriebseinheit ist in vorteilhafter Weise in die Steuer- und Regelungseinheit des Getriebes integriert. In besonders vorteilhafter Ausgestaltung wird die Steuer- und Regelungseinheit einer Kupplungseinheit verwendet, die bei einem weiteren Antriebsmodul bereits zum Einsatz kommt. Als Kupplungseinheit eines weiteren Antriebsmoduls kann beispielhaft die Wandlerüberbrückungskupplung eines hydraulischen Drehmomentwandlers genannt werden. Dadurch ist es möglich, auf Elemente wie eine separate und/oder zusätzliche Steuer- und Regelungseinheit zur Ansteuerung der Kupplungseinheit der Hybridantriebseinheit zu verzichten.
In einer weiteren Ausgestaltung der Erfindung wird vorgeschlagen, dass das Antriebsmodul wenigstens einen Torsions- schwingungsdämpfer aufweist, der antriebsseitig zur Kupplungseinheit angeordnet ist und/oder einen Torsionsschwin- gungsdämpfer aufweist, der abtriebsseitig zur Hybridantriebseinheit angeordnet ist, wodurch Torsionsschwingungen vorteilhaft gedämpft und der Komfort gesteigert werden kann.
Ferner wird vorgeschlagen, dass das Antriebsmodul wenigstens eine Pumpe aufweist, wodurch diese vorteilhaft auf die Hyb¬ ridantriebseinheit und/oder insbesondere auf die Kupplungs¬ einheit ausgelegt werden kann.
Ist die Pumpe antriebsseitig zur Kupplungseinheit angeordnet, kann insbesondere einfach sichergestellt werden kann, dass die Pumpe über die Brennkraftmaschine betrieben und für eine Versorgung der Kupplungseinheit genutzt werden kann.
Weist das Antriebsmodul eine elektrische Maschine zum Antrieb der Pumpe auf, kann ein vorteilhafter Mediumstrom, insbeson¬ dere ein Kühlmittelstrom und/oder ein Druckmittelstrom zur
Betätigung der Kupplungseinheit, unabhängig von der Brennkraftmaschine und unabhängig von der Hybridantriebseinheit erreicht werden.
Dabei wird vorgeschlagen, dass die elektrische Maschine zum Antrieb der Pumpe in axialer Richtung zumindest teilweise überlappend zur Hybridantriebseinheit angeordnet ist, und insbesondere zumindest teilweise radial innerhalb der Hybridantriebseinheit angeordnet ist, wodurch wiederum Bauraum eingespart werden kann.
Umfasst das Antriebsmodul eine Freilaufeinheit, die im Kraft- fluss zwischen der elektrischen Maschine und der Pumpe angeordnet ist, kann die Pumpe vorteilhaft wahlweise elektrisch und/oder mechanisch, d.h. insbesondere bedingt durch eine Bewegung des Kraftfahrzeugs und/oder durch die Brennkraftmaschine, angetrieben werden.
Weist die Freilaufeinheit wenigstens zwei Freiläufe auf, kann konstruktiv einfach erreicht werden, dass die elektrische Maschine trotz aktivierter Pumpe eine Drehzahl von Null annimmt, wodurch unerwünschte Schleppverluste der elektrischen Maschine im Betrieb vermieden werden können.
Weist das Antriebsmodul eine Kühleinheit auf, kann auch diese vorteilhaft auf die Komponenten des Antriebsmoduls ausgelegt werden. Vorzugsweise ist dabei die Kühleinheit zumindest teilweise in die Hybridantriebseinheit integriert, so dass insbesondere bei einem Austausch des Antriebsmoduls vorzugs¬ weise eine entsprechend angepasste Kühleinheit einfach mit ausgetauscht werden kann. Dabei soll unter „integriert" ins¬ besondere verstanden werden, dass die Kühleinheit und die Hybridantriebseinheit zumindest teilweise einstückig ausge¬ führt sind und/oder zumindest als Montagebaugruppe vorliegen
und in einem gemeinsamen Montageschritt montiert werden, und zwar insbesondere gemeinsam in ein Gehäuse eingesetzt werden. Ein anderer Teil der Kühleinheit kann vorteilhaft in das Triebkopfgehäuse integriert sein, wodurch Bauteile eingespart werden können.
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.
Dabei zeigen:
Fig. 1 ein schematisch dargestelltes Modulbaukastensystem mit einer Getriebeeinheit und zwei alternativen Antriebsmodulen,
Fig. 2 die Getriebeeinheit mit einem alternativen Antriebsmodul mit einer zu Figur 1 differierenden Torsionsschwingungsdämpfereinheit,
Fig. 3 die Getriebeeinheit mit einem alternativen Antriebsmodul mit einer zu Figur 2 differierenden Frei¬ laufeinheit,
Fig. 4 die Getriebeeinheit mit einem alternativen Antriebsmodul mit einer zu Figur 3 differierenden Torsionsschwindungsdämpfereinheit ,
Fig. 5 die Getriebeeinheit mit einem alternativen An¬ triebsmodul mit einer zu den Figuren 1 bis 4 diffe¬ rierenden Pumpenanordnung,
Fig. 6 die Getriebeeinheit mit einem alternativen Antriebsmodul mit einer zu Figur 5 differierenden Tor- sionsschwindungsdämpfereinheit,
Fig. 7 die Getriebeeinheit mit einem alternativen Antriebsmodul mit einer zu Figur 6 differierenden Freilaufeinheit und
Fig. 8 die Getriebeeinheit mit einem alternativen Antriebsmodul mit einer zu Figur 7 differierenden Tor- sionsschwingungsdämpfereinheit .
Figur 1 zeigt ein schematisch dargestelltes Modulbaukastensystem für ein Kraftfahrzeug mit einer Getriebeeinheit 30 und zwei alternativen Antriebsmodulen, wobei ein Antriebsmodul außerhalb eines Triebkopfgehäuses 26 der Getriebeeinheit 30 in demontierten Zustand und ein Antriebsmodul innerhalb des Triebkopfgehäuses 26 in montiertem Zustand dargestellt ist. Das Triebkopfgehäuse 26 ist glockenförmig ausgebildet und ist antriebsseitig zu einem Hauptgetriebegehäuse 52 der Getriebeeinheit 30 angeordnet. Das Triebkopfgehäuse 26 und das Hauptgetriebegehäuse 52 werden von getrennten Bauteilen gebildet, diese könnten jedoch auch zumindest teilweise einstückig ausgeführt sein. Das Triebkopfgehäuse kann ebenfalls von mehre¬ ren getrennten Bauteilen gebildet werden.
Das außerhalb des Triebkopfgehäuses 26 in demontiertem Zu¬ stand dargestellte Antriebsmodul ist zur Montage in das Triebkopfgehäuse 26 der Getriebeeinheit 30 vorgesehen und weist ausgehend von einer Eingangswelle 32a' , an die eine Brennkraftmaschine gekoppelt wird und über die im Betrieb ein Antriebsmoment in die Getriebeeinheit 30 eingeleitete wird, einen Torsionsschwingungsdämpfer 16a' mit einem Außenschwin- gungsdämpfer 34a' und einem Innenschwingungsdämpfer 36a' auf. An den Torsionsschwingungsdämpfer 16a' schließt sich im Kraftfluss der Brennkraftmaschine zur Getriebeeinheit 30 ein zweiter Teil der Eingangswelle 32a' an, mit dem eine elektri¬ sche Maschine 22a' und eine Pumpe 20a' über eine Freilaufein-
heit 24a' mit einem Freilauf 38a' gekoppelt sind. Die elektrische Maschine 22a' ist von einem Innenläufer gebildet. Bedingt durch den Freilauf 38a' kann stets mittels der Pumpe 20a' unabhängig von einer Brennkraftmaschinendrehzahl ein vorteilhafter Ölvolumenstrom erreicht werden, d.h. die Pumpe 20a' kann insbesondere bei stehender Brennkraftmaschine mittels der elektrischen Maschine 22a' betrieben werden. Ferner ist der zweite Teil der Eingangswelle 32a' mit einem ersten Kupplungsteil 40a' einer von einer nassen Reibkupplung gebildeten Kupplungseinheit 12a' verbunden, die als Anfahrkupplung dient. Ein zweiter Kupplungsteil 42a' ist über eine Koppelstelle 44a' mit einer Eingangswelle 46 der Getriebeeinheit 30 verbindbar. Die Pumpe 20a' ist dabei dazu vorgesehen, einen Öldruck aufzubauen, mittels dem die nasse Reibkupplung geschlossen werden kann und zudem einen Ölvolumenstrom aufzubauen, mittels dem Bauteile, wie insbesondere die Kupplungseinheit, gekühlt werden können. Das Modulbaukastensystem weist eine Steuer- und Regelungseinheit 14a auf, die zur An¬ steuerung der Kupplungseinheit 12a' vorgesehen ist und diese während eines Anfahrmodus schließt.
Das innerhalb des Triebkopfgehäuses 26, in montiertem Zustand dargestellte Antriebsmodul weist ausgehend von einer Ein¬ gangswelle 32a, an die eine Brennkraftmaschine gekoppelt wird und über die im Betrieb ein Antriebsmoment in die Getriebeeinheit 30 eingeleitet wird, einen Torsionsschwingungsdämpfer 16a mit einem Außenschwingungsdämpfer 34a und einem Innen- schwingungsdämpfer 36a auf. An den Torsionsschwingungsdämpfer 16a schließt sich im Kraftfluss der Brennkraftmaschine zur Getriebeeinheit 30 ein zweiter Teil der Eingangswelle 32a an, mit dem eine elektrische Maschine 22a und eine Pumpe 20a über eine Freilaufeinheit 24a mit einem Freilauf 38a gekoppelt sind. Die elektrische Maschine 22a ist von einem Innenläufer gebildet. Ferner ist der zweite Teil der Eingangswelle 32a
mit einem ersten Kupplungsteil 40a einer von einer einzelnen nassen Reibkupplung gebildeten Kupplungseinheit 12a des Antriebsmoduls verbunden. Ein zweiter Kupplungsteil 42a ist mit einer abtriebsseitig zur Kupplungseinheit 12a angeordneter Hybridantriebseinheit 10a gekoppelt, und zwar mit einem Läufer 48a einer von einem Innenläufer gebildeten elektrischen Maschine. Der Läufer 48a wirkt im Betrieb mit einem radial außerhalb angeordneten Stator 50a zusammen und ist über eine Koppelstelle 44a mit der Eingangswelle 46 der Getriebeeinheit 30 verbunden. Die Kupplungseinheit 12a ist in axialer Richtung überlappend zur Hybridantriebseinheit 10a angeordnet, und zwar ist die Kupplungseinheit 12a vollständig in einem von dem Läufer 48a aufgespannten Axialbereich radial innerhalb des Läufers 48a der Hybridantriebseinheit 10a angeordnet. In dem radial außerhalb des Läufers 48a angeordneten Stator 50a der elektrische Maschine bzw. der Hybridantriebseinheit 10a ist eine von Kühlkanälen gebildete Kühleinheit 28 integriert, die gemeinsam mit dem Stator 50a eine Montageein¬ heit bildet und dazu vorgesehen ist, gemeinsam mit der Hyb¬ ridantriebseinheit 10a in das Triebkopfgehäuse 26 der Getrie¬ beeinheit 30 eingesetzt zu werden.
Bedingt durch den Freilauf 38a, der im Kraftfluss zwischen der elektrische Maschine 22a und der Pumpe 20a angeordnet ist, kann stets mittels der Pumpe 20a, die antriebsseitig zur Kupplungseinheit 12a, d.h. im Kraftfluss der Brennkraftma¬ schine zum Antrieb des Kraftfahrzeugs vor der Kupplungsein¬ heit 12a angeordnet ist, unabhängig von einer Brennkraftma¬ schinendrehzahl und unabhängig von einer Antriebsdrehzahl der Hybridantriebseinheit 10a ein vorteilhafter Ölvolumenstrom und Öldruck erreicht werden, d.h. die Pumpe 20a kann insbe¬ sondere bei stehender Brennkraftmaschine mittels der elektri¬ sche Maschine 22a betrieben werden.
Zwischen der Brennkraftmaschine und der Hybridantriebseinheit 10a ist ausschließlich eine eine Drehzahldifferenz überbrückende Kupplung angeordnet, und zwar die Kupplungseinheit 12a, die dazu vorgesehen ist, die Hybridantriebseinheit 10a mit der Brennkraftmaschine zu koppeln und zu entkoppeln und die zudem als Anfahrkupplung vorgesehen bzw. als Anfahrkupplung ausgelegt ist. Das Antriebsmodul weist hierfür die Steuer- und Regelungseinheit 14a auf, die dazu vorgesehen ist, die Kupplungseinheit 12a bei bestimmten Anfahrmodi zu schließen. Die Steuer- und Regelungseinheit 14a ist zur Ansteuerung der verschiedenen Kupplungseinheiten 12a' , 12a der in Figur 1 gezeigten alternativen Antriebsmodule vorgesehen, ist in der Getriebeeinheit 30 untergebracht und ist einstückig mit einer Steuer- und Regelungseinheit der Getriebeeinheit 30 ausgeführt.
In einem Normalbetriebsmodus, der vorliegt, wenn eine Kühlmitteltemperatur oberhalb einem unteren Grenzwert liegt, wie insbesondere oberhalb O0C, die Batterie einen ausreichenden Ladezustand aufweist und ein mittleres Drehmoment zum Anfah¬ ren ausgehend von einer Fahrzeuggeschwindigkeit Null angefordert wird, bleibt die Kupplungseinheit 12a geöffnet und das Kraftfahrzeug wird allein durch ein von der Hybridantriebs¬ einheit 10a geliefertes Drehmoment bis zu einem bestimmten Geschwindigkeitsgrenzwert beschleunigt, ab dem dann von der Steuer- und Regelungseinheit 14a die Kupplungseinheit 12a ge¬ schlossen und die Brennkraftmaschine zugeschaltet wird. Dabei kann die Brennkraftmaschine vorteilhaft mittels eines von der Hybridantriebseinheit 10a aufgebrachten Drehmoments gestartet werden. Vorzugsweise findet dabei eine kurzzeitige Drehmo¬ menterhöhung statt, so dass ein von der Brennkraftmaschine bedingtes kurzes Bremsmoment zumindest weitgehend ausgegli¬ chen und ein für einen Fahrer ruckfreies Starten der Brenn¬ kraftmaschine erreicht werden kann. Alternativ könnte die
Brennkraftmaschine auch vorzugsweise durch einen so genannten Direktstart gestartet werden, d.h. ohne zusätzlichen Elektromotor, nur durch gezieltes Einspritzen in einem Zylinder bei einer bestimmten Kolbenstellung und Zünden. Alternativ könnte die Brennkraftmaschine aber auch durch eine zusätzliche Startvorrichtung in Form eines nicht näher dargestellten E- lektromotors, wie einem Anlasser mit Ritzel oder einem riemengetriebenen Starter, gestartet werden.
Liegt die Kühlmitteltemperatur und/oder der Ladezustand der Batterie unterhalb des unteren Grenzwerts, findet ein reiner Brennkraftmaschinenanfahrmodus statt, bei dem die Kupplungseinheit 12a von der Steuer- und Regelungseinheit 14a geschlossen wird und das Kraftfahrzeug allein durch ein Antriebsmoment der Brennkraftmaschine angetrieben wird. Dabei kann die Brennkraftmaschine wiederum durch einen Direktstart gestartet werden, die Brennkraftmaschine kann von der Hybridantriebseinheit gestartet werden und/oder die Brennkraftmaschine kann durch einen weiteren nicht näher dargstellten E- lektromotor gestartet werden.
Zudem wird die Kupplungseinheit 12a von der Steuer- und Rege¬ lungseinheit 14a in einem Kombinationsmodus geschlossen, in dem ein erhöhtes Drehmoment beim Anfahren gefordert wird und beide Drehmomentquellen, d.h. die Brennkraftmaschine und die Hybridantriebseinheit 10a zum Anfahren von einer Fahrzeugge¬ schwindigkeit Null genutzt werden sollen.
Im Schubbetrieb und bei einem Ladezustand der Batterie unter¬ halb eines maximalen Ladezustands wird die Hybridantriebsein¬ heit 10 generatorisch betrieben. Dazu ist üblicher Weise die Kupplungseinheit 12a geöffnet, um die Generatorleistung der Hybridantriebseinheit 10 zu erhöhen.
Alternativ kann die Kupplungseinheit 12a von der Steuer- und Regelungseinheit 14a in einem Schubbetrieb auch geschlossen werden, um die Brennkraftmaschine als so genannte Motorbremse zu nutzen.
Der in einem Kraftfluss von der Brennkraftmaschine antriebs- seitig zur Kupplungseinheit 12a und zur Hybridantriebseinheit 10a angeordnete Torsionsschwingungsdämpfer 16a dient insbesondere zum Bauteileschutz. Bedingt durch den Torsionsschwingungsdämpfer 16a können die im Kraftfluss nachfolgenden Bauteile kostengünstig und leicht dimensioniert werden.
Um die Kupplungseinheit 12a an verschiedene Leistungen unterschiedlicher Brennkraftmaschinen und/oder unterschiedlicher Hybridantriebseinheiten anzupassen, können unterschiedliche Kupplungseinheiten vorgehalten werden, die unterschiedliche große Lamellenpaare und/oder unterschiedliche Anzahlen von Lamellenpaare aufweisen.
In den Figuren 2 bis 8 sind alternative Antriebsmodule mit der Getriebeeinheit 30 dargestellt. Im Wesentlichen gleich bleibende Bauteile, Merkmale und Funktionen sind grundsätz¬ lich mit den gleichen Bezugszeichen beziffert. Zur Unter¬ scheidung der alternativen Antriebsmodule sind jedoch den Bezugszeichen der Ausführungsbeispiele in den Figuren 1 bis 8 die Buchstaben a bis h hinzugefügt. Die nachfolgende Beschreibung beschränkt sich im Wesentlichen auf die Unter¬ schiede zu den Antriebsmodulen in Figur 1, wobei bezüglich gleich bleibender Bauteile, Merkmale und Funktionen auf die Beschreibung des Ausführungsbeispiels in Figuren 1 verwiesen wird. Insbesondere ist zu bemerken, dass das in Figur 1 in demontiertem Zustand dargestellte Antriebsmodul mit den An¬ triebsmodulen in den Figuren 2 bis 8 in einem Modulbaukasten¬ system kombiniert werden kann.
Die Figur 2 zeigt die Getriebeeinheit 30 mit einem alternativen Antriebsmodul mit einer zu dem Antriebsmodul in Figur 1 differierenden Torsionsschwingungsdämpfereinheit . Die Torsi- onsschwindungsdämpfereinheit umfasst einen antriebsseitig zu einer Kupplungseinheit 12b angeordneten Torsionsschwingungs- dämpfer 16b, der ausschließlich einen Außenschwingungsdämpfer 34b aufweist. Ferner umfasst die Torsionsschwingungsdämpfer- einheit einen abtriebsseitig zu einer Hybridantriebseinheit 10b angeordneten Torsionsschwingungsdämpfer 18b. Mittels des Torsionsschwingungsdämpfers 18b können von der Hybridantriebseinheit 10b ausgehende Schwingungen vorteilhaft gedämpft und/oder im Antriebsstrang auftretende Resonanzen in ihrer Drehzahl verschoben und somit der Komfort gesteigert werden. Ferner ist die Kupplungseinheit 12b getrennt zur Hybridantriebseinheit 10b ausgeführt, d.h. die Kupplungseinheit 12b ist getrennt vom Läufer 48b ausgeführt.
Die Figur 3 zeigt die Getriebeeinheit 30 mit einem alternati¬ ven Antriebsmodul mit einer zu dem Antriebsmodul in Figur 2 differierenden Freilaufeinheit 24c. Die Freilaufeinheit 24c weist zwei Freiläufe 54c, 56c auf. Das Antriebsmodul weist eine Pumpe 20c mit einer in radialer Richtung zwischen den Freiläufen 54c, 56c angeordneten Koppelstelle 58c auf. Der radial äußere Freilauf 54c ist in Richtung eines Kraftflusses von einer elektrische Maschine 22c radial nach innen in Rich¬ tung der Koppelstelle 58c der Pumpe 20c gesperrt und ist in eine entgegen gesetzte Richtung entsperrt. Der radial innere Freilauf 56c ist in Richtung eines Kraftflusses von einer Hybridantriebseinheit 10c und einer Brennkraftmaschine radial nach außen in Richtung der Koppelstelle 58c gesperrt und ist in eine entgegen gesetzte Richtung entsperrt. Die Pumpe 20c kann damit von der Brennkraftmaschine und/oder von der Hyb¬ ridantriebseinheit 10c angetrieben werden, ohne dass die e- lektrische Maschine 22c durch ein Drehmoment der Brennkraft-
maschine und/oder der Hybridantriebseinheit 10c angetrieben wird, wodurch unerwünschte Schleppverluste vermieden werden können. Ferner kann die Pumpe 20c von der elektrischen Maschine 22c angetrieben werden, ohne dass die Brennkraftmaschine und/oder die Hybridantriebseinheit 10c betrieben werden.
In einem Betriebsmodus, in dem eine Drehzahl der elektrischen Maschine 22c größer ist als eine Drehzahl der Hybridantriebseinheit 10c und größer ist als eine Drehzahl der Brennkraftmaschine, ist der radial äußere Freilauf 54c gesperrt und die Pumpe 20c wird mit der Drehzahl der elektrischen Maschine 22c beaufschlagt. Da die Drehzahl der elektrischen Maschine 22c bzw. der Pumpe 20c größer ist als die Drehzahl der Hybridantriebseinheit 10c und der Brennkraftmaschine, ist der radial innere Freilauf 56c entsperrt, weshalb die Pumpe 20c ausschließlich über die elektrische Maschine 22c betrieben wird.
In einem Betriebsmodus, in dem die Drehzahl der Hybridantriebseinheit 10c und/oder die Drehzahl der Brennkraftmaschine größer ist als die Drehzahl der elektrischen Maschine 22c, ist der radial innere Freilauf 56c gesperrt und die Pumpe 20c wird ausschließlich von der Hybridantriebseinheit 10c und/oder von der Brennkraftmaschine angetrieben. Alternativ sind auch andere, dem Fachmann als sinnvoll erscheinende Freilaufeinheiten denkbar, insbesondere auch Freilaufeinheiten mit schaltbaren Freiläufen, wodurch auch die elektrische Maschine 22c vorzugsweise als Generator genutzt werden könn¬ te.
Die Figur 4 zeigt die Getriebeeinheit 30 mit einem alternati¬ ven, besonders bevorzugten Antriebsmodul. Das Antriebsmodul weist eine dem Ausführungsbeispiel in Figur 2 entsprechende Torsionsschwingungsdämpfereinheit und eine dem Ausführungs-
beispiel in Figur 3 entsprechende Freilaufeinheit 24d auf. Ferner weist das Antriebsmodul eine elektrische Maschine 22d zum Antrieb einer Pumpe 2Od auf, wobei die elektrische Maschine 22d in axialer Richtung überschneidend zu einer Hybridantriebseinheit 10d angeordnet ist, und zwar ist die e- lektrische Maschine 22d zumindest teilweise oder insbesondere vollständig in einem von der Hybridantriebseinheit 10d aufgespannten Axialbereich radial innerhalb der Hybridantriebseinheit 10d angeordnet.
Die Figur 5 zeigt die Getriebeeinheit 30 mit einem alternativen Antriebsmodul mit einer zu den Ausführungsbeispielen in den Figuren 1 bis 4 differierenden Pumpenanordnung. Das Antriebsmodul weist eine Pumpe 2Oe auf, die abtriebsseitig zu einer Hybridantriebseinheit 10e angeordnet ist. Eine Freilaufeinheit 24e des Antriebsmoduls in Figur 5 entspricht einer Freilaufeinheit 24a des Antriebsmoduls in Figur 1 und eine Torsionsschwingungsdämpfereinheit des Antriebsmoduls in Figur 5 entspricht der Torsionsschwingungsdämpfereinheit in Figur 2.
Die Figuren 6, 7 und 8 zeigen Antriebsmodule mit einer dem Antriebsmodul in Figur 5 entsprechenden Pumpenanordnung, wo¬ bei das Antriebsmodul in Figur 6 eine dem Antriebsmodul in Figur 1 entsprechende Torsionsschwingungsdämpfereinheit und eine dem Antriebsmodul in Figur 1 entsprechende Freilaufein¬ heit 24f, das Antriebsmodul in Figur 7 eine dem Antriebsmodul in Figur 1 entsprechende Torsionsschwingungsdämpfereinheit und eine dem Antriebsmodul in Figur 3 entsprechende Freilauf¬ einheit 24g und das Antriebsmodul in Figur 8 eine dem An¬ triebsmodul in Figur 2 entsprechende Torsionsschwingungsdämp- fereinheit und eine dem Antriebsmodul in Figur 3 entsprechen¬ de Freilaufeinheit 24h aufweist.
Alternativ kann der Läufer 48a - 48h der Hybridantriebseinheit 10a - 10h und/oder die elektrische Maschine 22a - 22h auch als Außenläufer ausgebildet sein.
Claims
1. Antriebsmodul, insbesondere für ein Kraftfahrzeug, mit einer Hybridantriebseinheit (10a - 10h) und einer Kupplungseinheit (12a - 12h), die dazu vorgesehen ist, die Hybridantriebseinheit (10a - 10h) mit einer Brennkraftmaschine zu koppeln und zu entkoppeln, dadurch gekennzeichnet, dass die Kupplungseinheit (12a - 12h) als Anfahrkupplung vorgesehen ist.
2. Antriebsmodul nach Anspruch 1, gekennzeichnet durch eine Steuereinheit (14a - 14h), die dazu vorgesehen ist, die Kupplungseinheit (12a - 12h) bei wenigstens einem Anfahrmodus zu schließen.
3. Antriebsmodul nach Anspruch 2, dadurch gekennzeichnet, dass die Steuereinheit (14a - 14h) dazu vorgesehen ist, die Kupplungseinheit (12a - 12h) bei einem reinen Brennkraftmaschinenanfahrmodus zu schließen.
4. Antriebsmodul nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Steuereinheit (14a - 14h) dazu vorgesehen ist, die Kupplungseinheit (12a - 12h) bei einem Kombinationsmodus zu schließen.
5. Antriebsmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hybridantriebseinheit (10a - 10h) abtriebsseitig zur Kupplungseinheit (12a - 12h) angeordnet ist.
6. Antriebsmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kupplungseinheit (12a - 12h) in axialer Richtung zumindest teilweise überlappend zur Hybridantriebseinheit (10a - 10h) angeordnet ist.
7. Antriebsmodul nach Anspruch 6, dadurch gekennzeichnet, dass die Kupplungseinheit (12a - 12h) zumindest teilweise radial innerhalb der Hybridantriebseinheit (10a - 10h) angeordnet ist.
8. Antriebsmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kupplungseinheit (12a - 12h) von einer nassen Reibkupplung gebildet ist.
9. Antriebsmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kupplungseinheit (12a - 12h) zumindest teilweise ölbefüllt ist.
10. Antriebsmodul nach einem der vorhergehenden Ansprüche, gekennzeichnet durch wenigstens einen Torsionsschwingungsdämpfer (16a - 16h) , der antriebsseitig zur Kupplungseinheit (12a - 12h) angeordnet ist.
11. Antriebsmodul nach einem der vorhergehenden Ansprüche, gekennzeichnet durch wenigstens einen Torsionsschwingungsdämpfer (18b; 18c; 18e; 18h) , der abtriebsseitig zur Hybridantriebseinheit (10b; 10c; 10e; 10h) angeordnet ist.
12. Antriebsmodul nach einem der vorhergehenden Ansprüche, gekennzeichnet durch wenigstens eine Pumpe (20a - 20h) .
13. Antriebsmodul nach Anspruch 12, dadurch gekennzeichnet, dass die Pumpe (20a - 2Od) antriebsseitig zur Kupplungseinheit (12a - 12d) angeordnet ist.
14. Antriebsmodul nach Anspruch 12 oder 13, gekennzeichnet durch eine elektrische Maschine (22a - 22h) zum Antrieb der Pumpe (20a - 20h) .
15. Antriebsmodul nach Anspruch 14, dadurch gekennzeichnet, dass die elektrische Maschine (22d) zum Antrieb der Pumpe (2Od) in axialer Richtung zumindest teilweise überlappend zur Hybridantriebseinheit (1Od) angeordnet ist.
16. Antriebsmodul nach Anspruch 15, dadurch gekennzeichnet, dass die elektrische Maschine (22d) zum Antrieb der Pumpe (2Od) zumindest teilweise radial innerhalb der Hybridantriebseinheit (1Od) angeordnet ist.
17. Antriebsmodul nach Anspruch 14 bis 16, gekennzeichnet durch eine Freilaufeinheit (24a - 24h) , die im Kraftfluss zwischen der elektrische Maschine (22a - 22h) und der Pumpe (20a - 20h) angeordnet ist.
18. Antriebsmodul nach Anspruch 17, dadurch gekennzeichnet, dass die Freilaufeinheit (24c; 24d; 24g; 24h) wenigstens zwei Freiläufe (54c, 56c; 54d, 56d; 54g, 56g; 54h, 56h) aufweist .
19. Antriebsmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kupplungseinheit (12a - 12h) und/oder die Hybridantriebseinheit (10a - 10h) dazu vorgesehen sind, in einem Triebkopfgehäuse (26a - 26h) integriert zu werden.
20. Antriebsmodul nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Kühleinheit (28a - 28h) .
21. Antriebsmodul nach Anspruch 20, dadurch gekennzeichnet, dass die Kühleinheit (28a - 28h) zumindest teilweise in die Hybridantriebseinheit (10a - 10h) integriert ist.
22. Modulbaukastensystem mit einer Getriebeeinheit (30), einem Antriebsmodul nach einem der vorhergehenden Ansprüche und wenigstens einem alternativ einsetzbaren Antriebsmodul .
23. Modulbaukastensystem nach Anspruch 22, gekennzeichnet durch eine Steuereinheit (14a - 14h), die zur Ansteuerung von verschiedenen Kupplungseinheiten (12a'; 12a - 12h) verschiedener Antriebsmodule vorgesehen ist.
24. Modulbaukastensystem nach Anspruch 22 oder 23, gekennzeichnet durch eine Steuereinheit (14a - 14h), die in der Getriebeeinheit (30) untergebracht ist.
25. Modulbaukastensystem nach Anspruch 22 oder 23, dadurch gekennzeichnet, dass die Getriebeeinheit (30) eine Getriebegehäuseeinheit aufweist und die Antriebsmodule dazu vorgesehen sind, in der Getriebegehäuseeinheit eingesetzt zu werden.
26. Modulbaukastensystem nach einem der Ansprüche 22 bis 25, gekennzeichnet durch eine Kühleinheit (28a - 28h), die dazu vorgesehen ist, in einer Getriebegehäuseeinheit der Getriebeeinheit (30) eingesetzt zu werden.
27. Verfahren mit einem Antriebsmodul nach dem Oberbegriff des Patentanspruchs 1 und insbesondere nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Kupplungseinheit (12a - 12h) als Anfahrkupplung genutzt wird.
28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, dass die Kupplungseinheit (12a - 12h) bei einem reinen Brennkraftmaschinenanfahrmodus geschlossen wird.
29. Verfahren nach Anspruch 27 oder 28, dadurch gekennzeichnet, dass die Kupplungseinheit (12a - 12h) bei einem Kombinationsmodus geschlossen wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007062237.8 | 2007-12-21 | ||
DE102007062237A DE102007062237A1 (de) | 2007-12-21 | 2007-12-21 | Antriebsmodul |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009083061A1 true WO2009083061A1 (de) | 2009-07-09 |
Family
ID=40266112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/009330 WO2009083061A1 (de) | 2007-12-21 | 2008-11-06 | Antriebsmodul |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102007062237A1 (de) |
WO (1) | WO2009083061A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009046369A1 (de) * | 2009-11-04 | 2011-05-05 | Zf Friedrichshafen Ag | Einrichtung zur Verhinderung der Rückförderung von Öl durch die Konstantpumpe des Getriebes bei Parallelhybridfahrzeugen |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011102798A1 (de) * | 2010-06-23 | 2011-12-29 | Schaeffler Technologies Gmbh & Co. Kg | Pumpenanordnung |
AU2011299058B2 (en) * | 2010-09-10 | 2015-04-23 | Allison Transmission, Inc. | Hybrid system |
DE102010055536A1 (de) | 2010-12-22 | 2012-06-28 | Daimler Ag | Antriebsstrang für ein Kraftfahrzeug |
US9446763B2 (en) | 2010-12-23 | 2016-09-20 | Magna Powertrain Inc. | Controlled gerotor actuated pre-trans parallel hybrid |
JP5761365B2 (ja) * | 2011-10-27 | 2015-08-12 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
ITRM20120250A1 (it) * | 2012-05-29 | 2013-11-30 | Aeroconsult Int Srl | Veicolo elettrico - ibrido a trazione posteriore |
DE102020108232A1 (de) | 2020-03-25 | 2021-09-30 | Schaeffler Technologies AG & Co. KG | Antriebseinheit und Antriebsanordnung |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19838853A1 (de) * | 1997-08-29 | 1999-03-04 | Aisin Aw Co | Hybridantriebsvorrichtung für ein Fahrzeug |
US6336889B1 (en) * | 1998-01-16 | 2002-01-08 | Toyota Jidosha Kabushiki Kaisha | Drive control system for hybrid vehicles |
DE10154147C1 (de) * | 2001-11-03 | 2003-07-24 | Daimler Chrysler Ag | Hybridantrieb |
DE10316422A1 (de) * | 2002-04-10 | 2003-12-11 | Luk Lamellen & Kupplungsbau | Verfahren, Vorrichtung und deren Verwendung zum Betrieb eines Kraftfahrzeuges |
DE102005024359A1 (de) * | 2005-05-27 | 2006-11-30 | Bayerische Motoren Werke Ag | Hybridantriebseinrichtung für ein Kraftfahrzeug |
DE102006016133A1 (de) * | 2006-04-06 | 2007-10-11 | Robert Bosch Gmbh | Betriebsarten- und Momentenkoordination bei Hybrid-Kraftfahrzeugantrieben |
-
2007
- 2007-12-21 DE DE102007062237A patent/DE102007062237A1/de not_active Withdrawn
-
2008
- 2008-11-06 WO PCT/EP2008/009330 patent/WO2009083061A1/de active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19838853A1 (de) * | 1997-08-29 | 1999-03-04 | Aisin Aw Co | Hybridantriebsvorrichtung für ein Fahrzeug |
US6336889B1 (en) * | 1998-01-16 | 2002-01-08 | Toyota Jidosha Kabushiki Kaisha | Drive control system for hybrid vehicles |
DE10154147C1 (de) * | 2001-11-03 | 2003-07-24 | Daimler Chrysler Ag | Hybridantrieb |
DE10316422A1 (de) * | 2002-04-10 | 2003-12-11 | Luk Lamellen & Kupplungsbau | Verfahren, Vorrichtung und deren Verwendung zum Betrieb eines Kraftfahrzeuges |
DE102005024359A1 (de) * | 2005-05-27 | 2006-11-30 | Bayerische Motoren Werke Ag | Hybridantriebseinrichtung für ein Kraftfahrzeug |
DE102006016133A1 (de) * | 2006-04-06 | 2007-10-11 | Robert Bosch Gmbh | Betriebsarten- und Momentenkoordination bei Hybrid-Kraftfahrzeugantrieben |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009046369A1 (de) * | 2009-11-04 | 2011-05-05 | Zf Friedrichshafen Ag | Einrichtung zur Verhinderung der Rückförderung von Öl durch die Konstantpumpe des Getriebes bei Parallelhybridfahrzeugen |
Also Published As
Publication number | Publication date |
---|---|
DE102007062237A1 (de) | 2009-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102017110134B4 (de) | Hydrokinetische Drehmomentwandlerbaugruppe | |
EP3810448B1 (de) | Antriebseinheit für einen antriebsstrang eines elektrisch antreibbaren kraftfahrzeugs sowie damit ausgestattete antriebsanordnung | |
WO2009083061A1 (de) | Antriebsmodul | |
DE10158536B4 (de) | Kraftfahrzeugantrieb | |
DE112013000259B4 (de) | Hybridantriebsvorrichtung | |
DE60014291T2 (de) | Motor-/Generatorgerät für ein Kraftfahrzeug | |
DE102010001259B4 (de) | Getriebeölpumpe für ein Automatgetriebe | |
EP1916421B1 (de) | Pumpenantriebsanordnung | |
WO2008017439A9 (de) | Nebenaggregatantrieb für ein kraftfahrzeug | |
DE102019115217A1 (de) | Kraftmaschinenkupplungen mit Drehmomentwandler-Durchführungsaktivierung für Fahrzeugantriebsstränge | |
EP1181447A1 (de) | Antriebssystem für ein kraftfahrzeug | |
DE10246839A1 (de) | Hybridfahrzeugantriebsstrang | |
AT512443B1 (de) | Antriebstrang | |
EP2061669A2 (de) | Nebenaggregatantrieb für ein kraftfahrzeug | |
WO2007068319A1 (de) | Hydrauliksystem an kraftfahrzeugen | |
EP2616713B1 (de) | Getriebe für ein kraftfahrzeug | |
WO2018192892A1 (de) | Hybridantriebsstrang für ein hybridfahrzeug | |
DE102006030041A1 (de) | Pumpenvorrichtung eines Fahrzeuggetriebes | |
DE102013222984A1 (de) | Getriebevorrichtung mit einem eine Pumpeneinrichtung umfassenden Hydrauliksystem | |
WO2009098020A2 (de) | Antriebsmodul | |
DE102009015553A1 (de) | Anstriebsstrang mit einem direkt an den Maschinenabtrieb angebauten Dämpfer und Verfahren zum Montieren desselben | |
DE3819986A1 (de) | Regelbarer antrieb und verfahren zu seiner steuerung | |
EP2464891B1 (de) | Getriebeanordnung für ein fahrzeug | |
DE102018127710A1 (de) | Elektrische Antriebseinheit sowie Antriebsanordnung für eine elektrische Antriebseinheit | |
DE102017211711A1 (de) | Hybridantriebsstrang für ein Kraftfahrzeug |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08866498 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08866498 Country of ref document: EP Kind code of ref document: A1 |