WO2009081748A1 - 放射測温方法及び放射測温システム - Google Patents

放射測温方法及び放射測温システム Download PDF

Info

Publication number
WO2009081748A1
WO2009081748A1 PCT/JP2008/072518 JP2008072518W WO2009081748A1 WO 2009081748 A1 WO2009081748 A1 WO 2009081748A1 JP 2008072518 W JP2008072518 W JP 2008072518W WO 2009081748 A1 WO2009081748 A1 WO 2009081748A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
substrate
temperature
radiation
polarized
Prior art date
Application number
PCT/JP2008/072518
Other languages
English (en)
French (fr)
Inventor
Tohru Iuchi
Kensuke Hiraka
Original Assignee
Toyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo University filed Critical Toyo University
Priority to JP2009547030A priority Critical patent/JPWO2009081748A1/ja
Priority to US12/808,754 priority patent/US20100292950A1/en
Publication of WO2009081748A1 publication Critical patent/WO2009081748A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • G01J5/0007Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter of wafers or semiconductor substrates, e.g. using Rapid Thermal Processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/59Radiation pyrometry, e.g. infrared or optical thermometry using polarisation; Details thereof

Definitions

  • the present invention relates to a radiation temperature measurement method and a radiation temperature measurement system, and more particularly to a radiation temperature measurement method in which temperature measurement of a thin film on a substrate is performed in a non-contact manner and a radiation temperature measurement system for performing the method.
  • the present invention implements a radiation temperature measurement method and method for performing in-situ temperature measurement on a surface of a thin film formed on a substrate in a semiconductor manufacturing process, for example, in a non-contact state.
  • the present invention relates to an effective technique applied to a radiation temperature measurement system.
  • a film forming technique for forming a thin film such as an insulating thin film or a conductive thin film on the surface of a wafer is important in determining the performance of a semiconductor device.
  • the film forming temperature (process temperature) of the thin film greatly affects the physical properties of the thin film.
  • thermocouple thermometer brings a thermocouple into contact with a thin film whose temperature is to be measured, and converts thermal energy into an electrical signal. The temperature can be measured from this electrical signal.
  • a contact temperature measuring method it is necessary to install a thermometer in the film forming system, and contamination that greatly affects the physical properties of the thin film and the performance of the semiconductor device is likely to occur.
  • the non-contact temperature measurement method measures the thermal radiation (electromagnetic wave including light) of a thin film during film formation or after film formation using a radiometer, and measures the temperature of the thin film based on this measurement result. Since the radiometer can be installed outside the film forming process system, the non-contact temperature measurement method can prevent the occurrence of contamination due to the temperature measurement.
  • the above-mentioned non-contact temperature measurement method can prevent the occurrence of contamination, and thus is particularly effective for measuring the film formation temperature of a thin film, for example, in a silicon semiconductor manufacturing process that requires fine processing.
  • the emissivity of the substrate surface varies depending on the thickness and material of the thin film to be formed, it is difficult to accurately measure the temperature of the thin film. For this reason, since an error occurs in the actual film forming temperature of the thin film, it is dangerous to change the physical properties of the thin film or to deteriorate the performance of the semiconductor device.
  • the present invention has been made to solve the above problems. Accordingly, the present invention is to provide a radiation temperature measurement method and a radiation temperature measurement system capable of accurately measuring the temperature of a thin film on a substrate in a non-contact state.
  • a first feature of an embodiment of the present invention is that in a radiation temperature measuring method, a step of forming a thin film on a substrate to form a substrate with a thin film, and a polarized radiance emitted from the thin film Measuring a component in an angle range where the emissivity does not change with the direction of measurement as an angle from the substrate surface normal, and calculating a temperature of the substrate with a thin film based on a measurement result of the polarized radiance component .
  • the step of measuring the polarized radiance component is parallel to the radiation plane including the normal of the surface of the thin film and the measurement direction of the measured polarized radiance component.
  • a step of measuring a p-wave polarized radiance component is preferable.
  • the step of measuring the polarized radiance component is a step of measuring the polarized radiance component emitted from the thin film in a wavelength range where the substrate is an opaque body. Is preferred.
  • the step of forming the thin film-attached substrate is a step of forming a silicon oxide thin film on the substrate to form the thin film-attached substrate, and measuring a p-wave polarized radiance component.
  • the p-wave polarized radiance component radiated from the substrate with the silicon oxide thin film is measured within an angle range of 53 ° to 57 ° centered at 55 ° with respect to the normal line perpendicular to the surface of the substrate with the thin film. It is preferable that it is a process to perform.
  • the step of forming the thin film-attached substrate is a step of forming a silicon nitride thin film on the substrate to form the thin film-attached substrate, and measuring a p-wave polarized radiance component.
  • the step is a step of measuring the p-wave polarized radiance component radiated from the silicon nitride thin film within an angle range of 61 degrees to 65 degrees with the center being 63 degrees with respect to the normal of the substrate surface with the thin film. Is preferred.
  • the step of forming the thin film-attached substrate is a step of forming a silicon oxynitride thin film on the substrate to form the thin film-attached substrate.
  • the p-wave polarized radiance component radiated from the silicon oxynitride thin film is measured within an angular range of 55 degrees to 59 degrees with the center being 57 degrees with respect to the normal line of the substrate surface with the thin film. It is preferable that it is a process.
  • a step of forming a thin film on the substrate to form a substrate with a thin film, and a first polarized radiance component radiated from the substrate with the thin film The background radiation is absorbed and shielded on the incident axis that is mirror-symmetrical with respect to the normal direction perpendicular to the surface of the thin film substrate, with respect to the radiation direction within the angular range where the emissivity of the light does not change, and constant radiance
  • a step of measuring the temperature of the pseudo black body, the first polarized radiance component and the pseudo black body are radiated on the incident axis and reflected on the surface of the thin film, and the radiation direction Calculating the temperature of the thin film based on the step of measuring the second polarized radiance component toward the first, the measurement result of the first polarized radiance component and the second polarized radiance component, and the measurement result of the temperature of the pseudo black body
  • the surface of the thin film contact is brought into contact with the surface of the thin film of the substrate with the thin film, and the radiance emitted from the back surface facing the surface of the thin film contact is measured. It is preferable to further comprise a step of measuring and a step of measuring the surface temperature of the thin film based on the measured radiance.
  • the thin film attached The direction of measuring the polarized radiance component or the first polarized radiance component radiated from the substrate is measured within an angle range where the emissivity does not change with the angle from the substrate surface normal, and the substrate with a thin film is based on the measurement result Whether or not the calculation result of the temperature of the thin film-attached substrate in the second step is within an allowable range with respect to the measurement result of the surface temperature of the thin film in the first step. If it is within the allowable range, it is preferable to use the second step for measuring the temperature of the substrate with a thin film.
  • a radiation temperature measurement system that measures a polarized radiance component radiated from a thin film-coated substrate having a thin film formed on the substrate within an angular range where the emissivity does not change. And a calculation unit that calculates the temperature of the substrate with a thin film based on the polarized radiance component measured by the radiometer.
  • the substrate is disposed between the chamber in which the substrate is disposed, the heat generation source for heating the substrate, the substrate with a thin film, and the radiometer, It is preferable to further comprise a polarizing element that extracts a polarized radiance component from the radiation.
  • a fourth feature of the embodiment of the present invention is that in the radiation temperature measurement system, the thin film is in a radial direction within an angular range where the emissivity of the first polarized radiance component radiated from the thin film-coated substrate does not change.
  • a pseudo black body that is arranged on an incident axis that is mirror-symmetrical about the normal line normal to the surface of the attached substrate, absorbs and shields background radiation, and emits a constant radiance, and the temperature of the pseudo black body
  • a thermometer that measures the first polarized radiance component and the second polarized radiance component that is radiated on the incident axis from the pseudo-blackbody and reflected on the surface of the thin film and that travels in the radiation direction
  • an arithmetic unit for calculating the temperature of the thin film based on the measurement result of the first polarized radiance component and the second polarized radiance component and the temperature of the pseudo black body measured by the thermometer.
  • a contact sensor having a thin film contactor brought into contact with a surface of a thin film of a substrate with a thin film, and radiation from a back surface facing the surface of the thin film contactor of the contact sensor It is preferable to further include a radiance measurement sensor that measures the radiance to be output and outputs the measurement result to the arithmetic unit.
  • the present invention it is possible to provide a radiation temperature measurement method and a radiation temperature measurement system that can accurately measure the temperature of a thin film on a substrate in a non-contact state.
  • FIG. 1 is a basic configuration diagram for explaining a first basic principle of a radiation temperature measurement method and a radiation temperature measurement system according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating a relationship between the p-wave polarized emissivity and the radiation angle according to the first embodiment.
  • FIG. 3 is a diagram illustrating the relationship between the s-wave polarized emissivity and the radiation angle according to the first embodiment.
  • FIG. 4 is a basic configuration diagram for explaining a second basic principle of the radiation temperature measurement method and the radiation temperature measurement system according to the first embodiment.
  • FIG. 5 is a schematic diagram illustrating a specific configuration of the radiation temperature measuring system according to the first embodiment.
  • FIG. 6 is a diagram illustrating a flow of calculating the temperature of the thin film in the radiation temperature measuring system according to the first embodiment.
  • FIG. 7 is a schematic view showing a specific configuration of a radiation temperature measuring system according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic diagram illustrating a specific configuration of a hybrid surface temperature measurement system incorporated in the radiation temperature measurement system according to the third embodiment.
  • the first basic principle of the radiation temperature measurement method and the radiation temperature measurement system according to the first embodiment of the present invention is as follows.
  • a first basic configuration for realizing the radiation temperature measurement method and the radiation temperature measurement system includes a substrate 1, a thin film 2 formed on the surface of the substrate 1, and a radiometer 4 disposed on the radiation direction E a of the polarized radiation luminance component emitted from the thin film 2 in the small angular range around angle angle ⁇ eic emissivity does not change, the thin film on the radial direction E a 2 and a polarization element 3 that is disposed between the radiometer 4 and transmits the polarization component of light of thermal radiation.
  • the substrate 1 is, for example, a silicon (Si) substrate that is frequently used in the field of semiconductor technology.
  • the substrate 1 may be in any state of a wafer used for pre-processing of a semiconductor manufacturing process and a chip used for post-processing.
  • the thin film 2 is a silicon-based insulating thin film, specifically, a silicon oxide (SiO 2 ) film.
  • the method for forming the silicon oxide film such as a thermal oxidation method or a CVD method, is not limited. Further, whether the thin film 2 is being formed or not is not limited.
  • the substrate 1 on which the thin film 2 is formed may be expressed as a substrate with a thin film.
  • the angle ⁇ eic at which the emissivity does not change is defined by a surface normal line N L perpendicular to the surface of the thin film 2 or the substrate with the thin film and a radiation direction E A inclined from the surface normal line N L toward the surface side of the thin film 2. Is an angle.
  • a virtual plane perpendicular to the surface of the thin film 2 and including the surface normal N L and the radiation direction E A is defined as a radiation surface S E. Details of the angle ⁇ eic at which the emissivity does not change will be described later.
  • the polarizing element 3 inputs light (mainly visible light and infrared rays) emitted by thermal radiation from the surface of the thin film 2, extracts a polarized radiance component therefrom, and outputs the polarized radiance component to the radiometer 4. .
  • the polarizing element 3 extracts a p-wave (parallel polarized wave) polarized radiance component.
  • the p-wave polarized radiance component is a polarized radiance component whose electric field component is parallel to the radiation surface S E.
  • the p-wave polarized radiance component is a polarized radiance component in which the vibration plane of the electric field coincides with the radiation plane S E.
  • the radiometer 4 inputs the p-wave polarized radiance component extracted through the polarizing element 3, generates an electrical signal according to this input, and outputs it. That is, various optical sensors and photoelectric conversion elements can be used for the radiometer 4.
  • the radiometer 4 is set such that the wavelength region in which the substrate 1 becomes an opaque body is the light receiving wavelength region at the film forming temperature of the thin film 2, for example, a temperature of 800 K or higher.
  • this wavelength region is a short wavelength region of 0.9 ⁇ m or less corresponding to energy larger than the band gap energy.
  • the wavelength region where the substrate 1 becomes an opaque body shifts to the longer wavelength side as the temperature rises.
  • FIG. 2 shows the relationship between the p-wave polarized emissivity and the radiation angle in the thin film 2 at a wavelength of 0.9 ⁇ m.
  • the data here are actually measured values based on experiments conducted by the inventor.
  • the vertical axis represents the p-wave polarization emissivity ⁇ p
  • the horizontal axis represents the radiation angle ⁇ .
  • a silicon substrate was used for the substrate 1 of the measurement sample, and a silicon oxide film was used for the thin film 2.
  • five types of measurement samples having different thicknesses d of the thin film 2 formed on the surface of the substrate 1 were prepared.
  • the thickness d of each thin film 2 is 0 nm (the thin film 2 is not formed and the surface of the substrate 1 is exposed), 350 nm, 550 nm, 750 nm, and 950 nm.
  • the p-wave polarized emissivity is constant regardless of the film thickness d of the thin film 2.
  • the curve at each film thickness d showing the p-wave polarization emissivity within the angle range of 0 to 90 degrees of the thin film 2 converges to one point within the angle range of 53 to 57 degrees ( Or convergence). This is caused by the Brewster angle between the thin film 2 and the atmosphere (or vacuum).
  • Example 1 the angle range of 53 degrees to 57 degrees is an angle ⁇ eic range in which the emissivity of the p-wave polarized radiance component does not change. According to the results of further experiments conducted by the present inventor, it has been confirmed that the p-wave polarized emissivity does not change within an angular range of 53 degrees to 57 degrees even with a temperature change.
  • FIG. 3 shows an experimental relationship between the s-wave (senkrecht polarized wave) polarization emissivity and the radiation angle in the thin film 2.
  • the s-wave polarized radiance component is a polarized radiance component whose electric field component is perpendicular to the radiation plane S E.
  • the vertical axis represents the s-wave polarized emissivity
  • the horizontal axis represents the radiation angle ⁇ .
  • the output signal L 1 of the radiometer 4 that detects the p-wave polarized radiance component within the angle ⁇ eic range where the emissivity does not change is expressed by the following equation (1).
  • ⁇ p ( ⁇ eic) is a p-wave polarized emissivity at an angle (for example, 55 degrees) at which the emissivity does not change.
  • L ⁇ , b (T 1 ) is the blackbody spectral radiance of the thin film 2 at the temperature T 1 , and there is a Planck between the temperature T 1 and the blackbody spectral radiance L ⁇ , b (T 1 ). There is a one-to-one correspondence relationship based on the black body radiation law.
  • Equation (2) If the p-wave polarized emissivity ⁇ p ( ⁇ eic) is constant, the output signal L 1 of equation (1) is divided by the known p-wave polarized emissivity ⁇ p ( ⁇ eic), thereby obtaining equation (2) ).
  • This right side of the equation (2) represents black body spectral radiance of temperatures T 1 L lambda, b and (T 1), if inverse operation equation (2), accurately calculated the temperature T 1 of the film 2 can do.
  • the second basic configuration for realizing the radiation temperature measuring method and the radiation temperature measuring system according to the first embodiment is the same as that of the first basic configuration shown in FIG. with respect to the radial direction E a within the angular ⁇ eic range emissivity of polarized radiation luminance component emitted from the thin film 2 does not change, mainly a vertical surface normal N L on the surface or surfaces of the film substrate with the thin film 2
  • a pseudo black body 5 that is disposed on an incident axis IA that is mirror-symmetrical and absorbs and shields background radiation, and a temperature meter 6 that measures the temperature of the pseudo black body 5 are provided.
  • the incident axis I A is an optical axis that is mirror-symmetric about the surface normal N L with respect to the radiation direction E A
  • the angle ⁇ eic ′ formed by the surface normal N L and the incident axis I A is Similar to the radiation direction E A , it is within the range of 53 to 57 degrees.
  • the angle between the radiation direction E A and the incident axis I A via the surface normal N L is equivalent to 2 ⁇ eic.
  • the pseudo black body 5 absorbs substantially all of the background radiation on the incident axis I A and the background radiation existing around the pseudo black body 5 and its surroundings.
  • heat treatment is performed when the thin film 2 is formed, and heat radiation from a surrounding heat generation source such as a lamp that performs the heat treatment is used as background radiation (disturbance light) as the thin film 2.
  • background radiation disurbance light
  • the pseudo black body 5 is reflected on the surface of the thin film 2 through the incident axis I A and shields the background radiation received by the radiometer 4 through the radiation direction E A and from the pseudo black body 5.
  • a certain radiance corresponding to the temperature is emitted. That is, the pseudo-blackbody 5 is completely absorbed across the heat radiation and the like using light or electromagnetic radiation incident on any wavelength from the outside on the least incident axis I A, itself emits a constant radiance.
  • the pseudo black body 5 for example, an alumina (Al 2 O 3 ) ceramic black body, a heat-resistant semiconductor such as SiC, an artificial graphite black body, or the like can be used practically.
  • the temperature meter 6 is used to generate a reference for measuring the temperature of the thin film 2 by measuring the temperature of the pseudo black body 5 and using the radiance from the pseudo black body 5 as a known reference light source.
  • a thermometer different from the radiometer 4 a thermocouple thermometer, a fluorescence thermometer, or the like can be used practically.
  • the radiometer 4 outputs an output signal L 2 represented by the following equation (3) instead of the output of the output signal L 1 represented by the above equation (1).
  • ⁇ p ( ⁇ eic) ⁇ L ⁇ , b (T 1 ) of the first term on the right side is radiated from the thin film 2 based on the p-wave polarized emissivity at an angle (for example, 55 degrees) at which the emissivity from the thin film 2 does not change.
  • the right side of the equation (4) represents the black body spectral radiance L ⁇ , b (T 1 ) at the temperature T 1
  • the influence of the background radiation is eliminated, and the thin film
  • the temperature T 1 of 2 can be calculated.
  • the second basic principle by using a condition in which the emissivity of the p-wave polarized radiance component is constant regardless of the film thickness d of the thin film 2, the variation in emissivity and the influence of background radiation are obtained.
  • the radiation temperature measuring system 10 has a radiation direction E A within an angle ⁇ eic range in which the emissivity of the first polarized radiance component emitted from the thin film 2 on the substrate 1 does not change.
  • a pseudo black body 5 that is disposed on an incident axis IA that is mirror-symmetrical about a surface normal N L perpendicular to the surface of the thin film 2, absorbs and shields background radiation, and a temperature T 2 of the pseudo black body 5.
  • a temperature measuring gauge 6 for measuring the radiation meter for measuring the second polarized radiance component reflected by the radiated surface of the thin film 2 on the incident axis I a from the first polarized radiation luminance component and a pseudo-blackbody 5 4 and an arithmetic unit 15 for calculating the temperature T 1 of the thin film 2 based on the measurement results of the first and second polarized radiance components and the temperature T 2 measured by the thermometer 6. I have.
  • the radiation temperature measurement system 10 is formed on the substrate 1, a chamber 11 in which the substrate 1 is disposed and an atmospheric system or a vacuum system can be generated, a heat generation source 13 that heats the substrate 1, and the substrate 1.
  • a polarizing element 3 that is disposed between the thin film 2 and the radiometer 4 and extracts a polarization luminance component from the thermal radiation of the thin film 2, and a display unit 16 that displays the temperature T 1 of the thin film 2 calculated by the arithmetic unit 15. And.
  • the substrate 1 is detachably supported by a support 12.
  • the heat generation source 13 is located at a position facing the front surface (upper side in FIG. 5) of the substrate 1 supported by a support 12 such as quartz and on the back surface (lower side in FIG. 5). It is arrange
  • an infrared lamp such as a halogen lamp is used as the heat generation source 13.
  • the chamber 11 from the film 2 A transmissive window 110 that transmits the radiated light is disposed. Further, in the vicinity of the transmission window 110 at the outer periphery of the chamber 11, the polarizing element 3 on radially E A, each of the radiometer 4 is disposed. The radiometer 4 is connected to the arithmetic unit 15, and the output signal of the radiometer 4 is output to the arithmetic unit 15.
  • a pseudo black body 5 is disposed in the chamber 11 on the incident axis I A that is mirror-symmetric with respect to the radiation direction E A.
  • the pseudo black body 5 is attached in the chamber 11 via a support member 51.
  • the transmission window 111 for transmitting the heat radiation from the pseudo blackbody 5 is disposed in the chamber 11.
  • a temperature meter 6 is disposed on the incident axis I A in the vicinity of the transmission window 111 in the outer periphery of the chamber 11.
  • the temperature meter 6 is connected to the arithmetic unit 15, and the output signal of the temperature meter 6 is output to the arithmetic unit 15.
  • arithmetic processing shown in FIG. 6 is executed, based on the output signal L 3 of the output signals L 2 and the temperature measuring gauge 6 of radiometer 4, the temperature T 1 of the film 2 is calculated.
  • This arithmetic processing is executed according to the following steps.
  • An output signal L 2 is output from the radiometer 4 of the radiation temperature measuring system 10 to the arithmetic unit 15 (step S1: hereinafter “step” is omitted), while an output signal L 3 is output from the temperature meter 6 to the arithmetic unit 15. (S2).
  • the output order of the output signal L 2 and the output signal L 3 may be either one first and the other after, or both.
  • the output signal L 2 is radiated from the thin film 2 and extracted (polarized) by the polarizing element 3, and the p-wave polarized radiance component (first polarized radiance component) is radiated from the pseudo black body 5 and reflected on the surface of the thin film 2.
  • Output signal L 3 is, temperature information (in this case, thermal radiation luminance component) measured by the temperature measuring gauge 6 on the radiation entrance axis I A from the pseudo-blackbody 5 receives an electrical signal by the temperature measuring gauge 6 Converted to.
  • the output signal L 2 of the radiometer 4 the emissivity of the p-wave light radiance component is set (S3).
  • the output signal L 3 temperature measured six, emissivity is set (S4).
  • the arithmetic signal L 4 is generated based on the output signal L 3 of the temperature meter 6 and the set emissivity (S5).
  • the calculation signal L 4 is a component reflected by the thin film 2 and detected by the radiometer 4 in the blackbody spectral radiance of the pseudo blackbody 5 at the temperature T 2 shown in the second term on the right side of the above-described equation (3). It is a signal to show. Further, the calculation unit 15 generates the calculation signal L 5 based on the output signal L 2 of the radiometer 4, the set emissivity, and the calculation signal L 4 (S6).
  • the calculation signal L 5 is a signal indicating the blackbody spectral radiance at the temperature T 1 of the thin film 2 shown in the above-described equation (4).
  • the operation signal and L 5 is output to the display unit 16 from the arithmetic unit 15 as the temperature converted output signal T 1 (S7).
  • Display unit 16 displays or digitally display the temperature conversion output signal T 1 in an analog manner.
  • the display unit 16 for example, a temperature indicator, a display connected to a personal computer, a printer that directly prints out a numerical value of temperature, and the like can be practically used.
  • the film thickness d of the thin film 2 on the substrate 1 and the film thickness 2 of the thin film 2 are obtained by using a condition in which the emissivity does not change. Regardless of the deposition temperature, the temperature T 1 of the thin film 2 can be accurately measured in a non-contact state.
  • the pseudo black body 5 is provided on the incident axis I A that is mirror-symmetrical with respect to the radiation direction E A. Since the background radiation can be absorbed and the background radiation to the radiometer 4 can be shielded, the temperature T 1 of the thin film 2 can be measured more accurately in a non-contact state.
  • the temperature T 2 of the pseudo black body 5 is measured, and the measurement result is used as a reference of the polarized radiance component measured by the radiometer 4. Since it is used, the influence of background radiation can be avoided and the temperature T 1 of the thin film 2 can be measured more accurately in a non-contact state.
  • Example 2 of the present invention describes a modification of the substrate with a thin film used in the radiation temperature measurement method and the radiation temperature measurement system 10 according to Example 1 described above.
  • the present invention is not limited to this. Even in silicon-based insulating thin films such as silicon nitride thin films and oxynitride thin films, there is a certain angular range of emissivity. Therefore, these thin films are referred to as the thin film 2 in Example 2, and the radiation temperature measurement system 10 and the radiation temperature measurement. The temperature of the thin film 2 can be measured in the method.
  • the p-wave polarized luminance component radiated from the surface is centered at 63 degrees with respect to the normal to the substrate surface with the thin film, and within an angular range of 61 degrees to 65 degrees. Measured. In the case of a silicon oxynitride thin film, the p-wave polarized luminance component radiated from the surface is measured within an angle range of 55 degrees to 59 degrees with the center being 57 degrees with respect to the normal of the substrate surface with the thin film. Is done.
  • the same operational effects as those obtained in the radiation temperature measurement system 10 and the radiation temperature measurement method according to the first embodiment can be achieved.
  • Example 3 of the present invention is an example in which the hybrid surface temperature measurement system is further provided in the radiation temperature measurement system 10 and the radiation temperature measurement method according to Example 1 or Example 2 described above, and the hybrid temperature measurement method is further combined.
  • the hybrid surface temperature measurement system is further provided in the radiation temperature measurement system 10 and the radiation temperature measurement method according to Example 1 or Example 2 described above, and the hybrid temperature measurement method is further combined.
  • the radiation temperature measurement system 10 according to the third embodiment further includes a hybrid surface temperature measurement system 30 in addition to the radiation temperature measurement system 10 according to the first embodiment shown in FIG. 5 described above.
  • the hybrid surface temperature measurement system 30 includes a contact sensor 31, a radiance measurement sensor 32, and a drive control unit 33.
  • the contact sensor 31 of the hybrid surface temperature measurement system 30 includes a thin film contact (tip of the contact sensor) 311 that makes the surface contact the surface of the thin film 2 of the substrate with a thin film at an appropriate pressure, and a thin film contact.
  • a support 312 that supports 311 and does not thermally affect the thin film contact 311 and excellent heat insulation, and radiation radiated from the back of the thin film contact 311 that is spaced apart from the back of the thin film contact 311
  • a transmission body 313 that propagates the brightness with the propagation loss as small as possible.
  • the contact sensor 31 is provided with a cable 314 for connection to the radiance measurement sensor 32.
  • the thin film contact 311 is made of a material that can realize a rapid thermal equilibrium state when being brought into contact with the thin film 2 to be measured, and here is made of a thin film or a very thin metal plate.
  • the thin film contact 311 is formed of a rectangular thin film or plate having a width of 3 mm-7 mm and a length of 15 mm-20 mm, for example, and realizes a rapid thermal equilibrium between the front and back surfaces. It is formed to a thickness of 3 ⁇ m-30 ⁇ m. By setting the thickness of the thin film contactor 311 to be thin, a rapid thermal equilibrium state can be realized, and for example, high-speed temperature measurement within 1 second can be realized.
  • a base metal such as hastelloy, aluminum, stainless steel, inconel, titanium, tungsten, or an alloy thereof, or a noble metal such as gold, platinum, or iridium can be used.
  • Thin film silicon can be used for the thin film contact 311. Silicon is the same material when a silicon substrate is used as the substrate 1, and the same material is included when a silicon oxide film is used as the thin film 2, so that it is ideal as a material for the thin film contact 311.
  • the material used for the thin film contact 311 is selected mainly from the viewpoint of the temperature range to be measured and the manufacturing cost.
  • the thin film contact 311 of the contact sensor 31 is brought into contact with (pressed on) the surface of the thin film 2 with an appropriate pressure in order to reduce the thermal contact resistance and increase the temperature measurement accuracy.
  • This pressure is, for example, 5 ⁇ 10 3 Pa or more.
  • two quartz plates can be used for the support 312.
  • the two quartz plates are arranged to face each other with the transmission body 313 as the center, one end of the thin film contact 311 is connected to one of the quartz plates, and the other end of the thin film contact 311 is connected to the other of the quartz plates.
  • the support 312 other ceramics having excellent heat insulation can be used.
  • the transmission body 313 has an elongated cylindrical shape, and propagates the radiance emitted from the back surface of the thin film contact 311 to the cable 314 with a small propagation loss within a narrow range.
  • a sapphire rod having a diameter of 1.1 mm to 1.5 mm can be used.
  • a quartz rod, a calcium fluoride (CaF 2 ) rod, a barium fluoride (BaF 2 ) rod, or the like may be used for the transmission body 313.
  • One end face of the transmission body 313 is opposed to the back surface of the thin film contact 311, and the other end of the transmission body 313 is connected to the cable 314.
  • a gap of 1 mm is provided between the end face of one end of the transmission body 313 and the back face of the thin film contact 311.
  • an optical fiber is used for the cable 314.
  • the radiance emitted from the back surface of the thin film contact 311 of the contact sensor 31 is input to the radiance measurement sensor 32 through each of the transmission body 313 and the cable 314.
  • the radiance measurement sensor 32 is reflected by the first measurement sensor 323 that transmits the radiance through the first mirror 322 and the half mirror 321, and transmits the second filter (long-pass filter).
  • a second measurement sensor 326 that inputs radiance through 325.
  • an Si sensor having sensitivity in a high temperature range is used for the first measurement sensor 323, and an InGaAs sensor having sensitivity in a low temperature range is used for the second measurement sensor 326. That is, in the third embodiment, the radiance measurement sensor 32 uses a compound sensor (compound sensor) including a plurality of types of first measurement sensors 323 and second measurement sensors 326.
  • the drive control unit 33 includes a drive system (not shown) and a control system that controls the drive system, both of which are disposed outside the chamber 11.
  • the drive system of the drive control unit 33 is connected to a contact sensor 31 disposed in the chamber 11.
  • the drive control unit 33 brings the thin film contact 311 of the contact sensor 31 into contact with (presses on) the surface of the thin film 2 of the substrate with a thin film during temperature measurement. Further, the drive control unit 33 retracts the thin film contact 311 of the contact sensor 31 from the surface of the thin film 2 of the substrate with a thin film when temperature measurement is not performed.
  • the contact sensor 31 of the hybrid surface temperature measurement system 30 brings the thin film contact 311 into contact with the surface of the thin film 2 of the substrate with thin film, and transmits the radiance emitted from the back surface of the thin film contact 311. It outputs to the radiance measurement sensor 32 through each of the body 313 and the cable 314. In the radiance measurement sensor 32, the radiance input through the cable 314 is input to the first measurement sensor 323 and the second measurement sensor 326, and an electrical signal is generated according to the input radiance. This electrical signal is output to the arithmetic unit 15, and the surface temperature of the thin film 2 is obtained.
  • the hybrid surface temperature measurement system 30 it is not necessary to weld a thermocouple to the thin film 2 to be measured for temperature or to attach black body tape or black body paint, and the contact sensor 31 is brought into contact with the surface of the thin film 2.
  • the simple operation method the surface temperature of the thin film 2 can be measured accurately and immediately. Therefore, in the semiconductor manufacturing process, power can be exerted in measuring the temperature of the wafer and the thin film formed on the surface thereof.
  • the surface temperature of the thin film 2 of the substrate with the thin film disposed in the chamber 11 of the radiation temperature measurement system 10 is measured using the hybrid surface temperature measurement system 30 in an off-line manner.
  • the contact sensor 31 is moved in the chamber 11 by the drive control unit 33, and the surface of the thin film contact 311 of the contact sensor 31 contacts the surface of the thin film 2 of the substrate with a thin film.
  • the thin film contact 311 is in a thermal equilibrium state by contact with the thin film 2, and radiance is radiated from the back surface of the thin film contact 311.
  • This radiance is output to the radiance measurement sensor 32 through the transmission body 313 of the contact sensor 31 and the cable 314.
  • the radiance measurement sensor 32 measures the surface temperature of the thin film 2 based on the incident radiance and outputs the measurement result to the arithmetic unit 15.
  • the surface temperature of the thin film 2 is calculated based on the measurement result from the radiance measurement sensor 32, and the calculation result is displayed on the display unit 16 as the surface temperature of the thin film 2.
  • the temperature of the thin film 2 of the thin film-attached substrate is measured using the radiation temperature measuring method of the first embodiment, and the temperature of the thin film 2 is finally displayed on the display unit 16.
  • the temperature of the thin film 2 obtained by the radiation temperature measurement method according to the first embodiment is within an allowable range with respect to the surface temperature of the thin film 2 obtained by the hybrid surface temperature measurement system 30. Is done.
  • the temperature of the thin film 2 obtained by the radiation temperature measurement method matches the surface temperature of the thin film 2 obtained by the hybrid surface temperature measurement system 30 within an allowable range. The accuracy of the temperature measurement is demonstrated.
  • the temperature of the thin film 2 of the substrate with a thin film is measured at any time in-line using the radiation temperature measurement system 10 and the radiation temperature measurement method.
  • the hybrid surface temperature measurement system 30 is used for calibration, and the radiation temperature measurement system 10 and the radiation temperature measurement system are activated. It can be used to measure the reference temperature when raising or measuring the temperature of a new material. And based on this reference temperature, since the radiation temperature measurement system 10 can be operated and the radiation temperature measurement method can be implemented, the accuracy of temperature measurement can be improved.
  • the temperature measurement using the hybrid surface temperature measurement system 30 is first performed, but first the temperature measurement using the radiation temperature measurement method according to the first embodiment. May be implemented.
  • the present invention is not limited to a silicon substrate, and can be widely applied to a substrate on which a thin film is formed in a general semiconductor manufacturing process including a compound semiconductor.
  • the angle ⁇ eic which is an emissivity-invariant condition, generally differs depending on the type of semiconductor.
  • the present invention can be widely used in a radiation temperature measurement method and a radiation temperature measurement system that can accurately measure the temperature of a thin film on a substrate in a non-contact state.

Abstract

 放射測温方法及び放射測温システム(10)において、基板(1)上に薄膜(2)を形成し、この薄膜(2)から放射される偏光放射輝度成分を放射率が変化しない角度θeic範囲内において測定し、この偏光放射輝度成分の測定結果に基づき薄膜(2)の温度を演算する。偏光放射輝度成分は偏光素子(3)により偏光されたp波偏光放射輝度成分であり、このp波偏光放射輝度成分は放射計(4)により測定される。放射計(4)に対して鏡面対称となる位置には擬似黒体(5)が配設され、放射計(4)への背景放射が遮蔽される。更に、擬似黒体(5)の温度が測定され、この測定された温度は薄膜(2) の温度の演算に参酌される。

Description

放射測温方法及び放射測温システム
 本発明は、放射測温方法及び放射測温システムに関し、特に基板上の薄膜の温度計測を非接触において行う放射測温方法及びその方法を実施するための放射測温システムに関する。特に、本発明は、例えば半導体製造プロセスにおいて基板上に成膜される薄膜の表面のその場における温度測定(in-situ temperature measurement)を非接触状態により行う放射測温方法及びその方法を実施するための放射測温システムに適用して有効な技術に関する。
 半導体製造プロセスにおいて、ウエーハの表面上に絶縁性薄膜、導電性薄膜等の薄膜を成膜する成膜技術は半導体デバイスの性能を決定する上で重要である。特に、薄膜の成膜温度(プロセス温度)は薄膜の物性を大きく左右する。
 半導体製造プロセス中の温度の計測方法は、熱電対温度計等を利用する接触測温方法や放射温度計等を利用する非接触測温方法等、多く存在する。例えば、熱電対温度計は、温度の測定対象となる薄膜に熱電対を接触させ、熱エネルギを電気信号に変換する。この電気信号から温度を計測することができる。このような接触測温方法においては、温度計を成膜系内に設置する必要があり、薄膜の物性や半導体デバイスの性能を大きく左右する汚染(contamination)が発生し易い。
 一方、非接触測温方法は、成膜中や成膜後の薄膜の熱放射(光を含む電磁波)を放射計を用いて測定し、この測定結果に基づき薄膜の温度を計測する。成膜生成プロセス系外に放射計を設置することができるので、非接触測温方法においては温度測定に起因する汚染の発生を防止することができる。
 なお、温度測定技術において、ハイブリッド型表面温度計に関しては下記特許文献1に、非接触温度計に関しては下記特許文献2及び特許文献3に開示がなされている。
特開2007-218591号公報 特開平10-9958号公報 特開平10-281878号公報
 前述の非接触測温方法においては、汚染の発生を防止することができるので、特に微細加工が要求される例えばシリコン半導体製造プロセスの薄膜の成膜温度の測定には有効である。しかしながら、成膜される薄膜の膜厚や材質により基板表面の放射率が変化するので、薄膜の温度測定を正確に行うことが難しい。このため、薄膜の実際の成膜温度に誤差が生じるので、薄膜の物性を変化させ、或いは半導体デバイスの性能を劣化することが危ぶまれる。
 本発明は上記課題を解決するためになされたものである。従って、本発明は、基板上の薄膜の温度を非接触状態において正確に測定することができる放射測温方法及び放射測温システムを提供することである。
 上記課題解決するために、本発明の実施例に係る第1の特徴は、放射測温方法において、基板上に薄膜を形成し薄膜付基板を形成する工程と、薄膜から放射される偏光放射輝度成分を、測定する方向を基板面法線からの角度として放射率が変化しない角度範囲内において測定する工程と、偏光放射輝度成分の測定結果に基づき薄膜付基板の温度を演算する工程とを備える。
 第1の特徴に係る放射測温方法において、偏光放射輝度成分を測定する工程は、薄膜の表面の法線と測定される偏光放射輝度成分の測定方向とを含む放射面内に対して平行なp波偏光放射輝度成分を測定する工程であることが好ましい。また、第1の特徴に係る放射測温方法において、偏光放射輝度成分を測定する工程は、基板が不透明体となる波長域において、薄膜から放射される偏光放射輝度成分を測定する工程であることが好ましい。
 第1の特徴に係る放射測温方法において、薄膜付基板を形成する工程は、基板上にシリコン酸化薄膜を形成し、薄膜付基板を形成する工程であり、p波偏光放射輝度成分を測定する工程は、シリコン酸化薄膜付基板から放射されるp波偏光放射輝度成分を、薄膜付基板の表面に垂直な法線に対して55度を中心にして53度から57度の角度範囲内において測定する工程であることが好ましい。第1の特徴に係る放射測温方法において、薄膜付基板を形成する工程は、基板上にシリコン窒化薄膜を形成し、薄膜付基板を形成する工程であり、p波偏光放射輝度成分を測定する工程は、シリコン窒化薄膜から放射されるp波偏光放射輝度成分を、薄膜付基板面の法線に対して中心を63度とし、61度から65度の角度範囲内において測定する工程であることが好ましい。第1の特徴に係る放射測温方法において、薄膜付基板を形成する工程は、基板上にシリコンオキシナイトライド薄膜を形成し、薄膜付基板を形成する工程であり、p波偏光放射輝度成分を測定する工程は、シリコンオキシナイトライド薄膜から放射されるp波偏光放射輝度成分を、薄膜付基板面の法線に対して中心を57度とし、55度から59度の角度範囲内において測定する工程であることが好ましい。
 本発明の実施例に係る第2の特徴は、放射測温方法において、基板上に薄膜を形成し、薄膜付基板を形成する工程と、薄膜付基板から放射される第1の偏光放射輝度成分の放射率が変化しない角度範囲内の放射方向に対して、薄膜付基板の表面に垂直な法線を軸にして鏡面対称となる入射軸上に背景放射を吸収遮蔽し、かつ一定の放射輝度を放射する擬似黒体を配設し、この擬似黒体の温度を測定する工程と、第1の偏光放射輝度成分及び擬似黒体から入射軸上に放射され薄膜の表面で反射され、放射方向へ向かう第2の偏光放射輝度成分を測定する工程と、第1の偏光放射輝度成分及び第2の偏光放射輝度成分の測定結果と擬似黒体の温度の測定結果とに基づき薄膜の温度を演算する工程とを備える。
 第1の特徴又は第2の特徴に係る放射測温方法において、薄膜付基板の薄膜の表面に薄膜接触子の表面を接触させ、薄膜接触子の表面と対向する裏面から放射される放射輝度を計測する工程と、この計測された放射輝度に基づき薄膜の表面温度を測定する工程とを更に備えることが好ましい。また、第1の特徴又は第2の特徴に係る放射測温方法において、薄膜付基板の表面温度を薄膜接触子の裏面から放射される放射輝度に基づき測定する第1の工程の後に、薄膜付基板から放射される偏光放射輝度成分又は第1の偏光放射輝度成分を測定する方向を基板面法線からの角度として放射率が変化しない角度範囲内において測定し、この測定結果に基づき薄膜付基板の温度を演算する第2の工程を行い、第1の工程の薄膜の表面温度の測定結果に対して、第2の工程の薄膜付基板の温度の演算結果が許容範囲内であるか否かを判定し、許容範囲内であれば、薄膜付基板の温度の測定に第2の工程を使用することが好ましい。
 本発明の実施例に係る第3の特徴は、放射測温システムにおいて、基板上に薄膜を形成した薄膜付基板から放射される偏光放射輝度成分を放射率が変化しない角度範囲内において測定する放射計と、放射計により測定された偏光放射輝度成分に基づき薄膜付基板の温度を演算する演算ユニットとを備える。
 第3の特徴に係る放射測温システムにおいて、基板を内部に配設するチャンバと、基板を加熱する熱発生源と、薄膜付基板と放射計との間に配設され、薄膜付基板の熱放射から偏光放射輝度成分を抽出する偏光素子とを更に備えることが好ましい。
 本発明の実施例に係る第4の特徴は、放射測温システムにおいて、薄膜付基板から放射される第1の偏光放射輝度成分の放射率が変化しない角度範囲内の放射方向に対して、薄膜付基板の表面に垂直な法線を軸にして鏡面対称となる入射軸上に配設され、背景放射を吸収遮蔽し、かつ一定の放射輝度を放射する擬似黒体と、擬似黒体の温度を測定する温度測定計と、第1の偏光放射輝度成分及び擬似黒体から入射軸上に放射され薄膜の表面で反射され、前記放射方向へ向かう第2の偏光放射輝度成分を測定する放射計と、第1の偏光放射輝度成分及び第2の偏光放射輝度成分の測定結果と温度測定計により測定された擬似黒体の温度とに基づき薄膜の温度を演算する演算ユニットとを備える。
 第3の特徴又は第4の特徴に係る放射測温システムにおいて、薄膜付基板の薄膜の表面に接触させる薄膜接触子を有する接触センサと、接触センサの薄膜接触子の表面に対向する裏面から放射される放射輝度を計測し、この計測結果を演算ユニットに出力する放射輝度計測センサとを更に備えることが好ましい。
 本発明によれば、基板上の薄膜の温度を非接触状態において正確に測定することができる放射測温方法及び放射測温システムを提供することができる。
図1は本発明の実施例1に係る放射測温方法及び放射測温システムの第1の基本原理を説明するための基本構成図である。 図2は実施例1に係るp波偏光放射率と放射角度との関係を示す図である。 図3は実施例1に係るs波偏光放射率と放射角度との関係を示す図である。 図4は実施例1に係る放射測温方法及び放射測温システムの第2の基本原理を説明するための基本構成図である。 図5は実施例1に係る放射測温システムの具体的構成を示す概略図である。 図6は実施例1に係る放射測温システムにおいて薄膜の温度を演算するフローを示す図である。 図7は本発明の実施例3に係る放射測温システムの具体的構成を示す概略図である。 図8は実施例3に係る放射測温システムに組み込まれるハイブリッド表面温度計測システムの具体的構成を示す概略図である。
 次に、図面を参照して、本発明の実施例を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、現実のものとは異なる。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。
 また、以下に示す実施例はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は各構成部品の配置等を下記のものに特定するものでない。この発明の技術的思想は、請求の範囲において、種々の変更を加えることができる。
 本発明は、本発明者等の基礎研究によって発見された事実、すなわち基板上の薄膜から発せられる熱放射において偏光を利用して放射率が変化しない条件(放射率不変条件:emissivity invariant condition)が存在する事実に基づきなされたものである。
[第1の基本原理]
 本発明の実施例1に係る放射測温方法並びに放射測温システムの第1の基本原理は以下の通りである。
 図1に示すように、実施例1に係る放射測温方法及び放射測温システムを実現する第1の基本構成は、基板1と、この基板1の表面上に成膜される薄膜2と、薄膜2から放射される偏光放射輝度成分を放射率が変化しない角度θeicを中心角として微小な角度範囲内の放射方向EA上に配設された放射計4と、放射方向EA上において薄膜2と放射計4との間に配設され熱放射の光の偏光成分を透過させる偏光素子3とを備えている。
 基板1は、例えば半導体技術分野において多用されているシリコン(Si)基板である。この基板1は、半導体製造プロセスの前処理に使用されるウエーハ(wafer)、後処理に使用されるチップ(chip)のいずれの状態であってもよい。薄膜2は、実施例1において、シリコン系絶縁性薄膜、具体的にはシリコン酸化(SiO2)膜である。ここで、熱酸化法、CVD法等、シリコン酸化膜の成膜方法は限定されない。また、薄膜2の成膜中であるか、成膜後であるかは限定されるものではない。また、実施例1においては、薄膜2が成膜された基板1を薄膜付基板と表現する場合がある。
 放射率が変化しない角度θeicとは、薄膜2或いは薄膜付基板の表面に垂直な面法線NLと、この面法線NLから薄膜2の表面側に傾けた放射方向EAとがなす角度である。また、ここで、薄膜2の表面に垂直であって、面法線NL及び放射方向EAを含む仮想面を放射面SEと定義する。放射率が変化しない角度θeicの詳細は後述する。
 偏光素子3は、薄膜2の表面からの熱放射により放射される光(主として可視光線及び赤外線)を入力し、それから偏光放射輝度成分を抽出し、この偏光放射輝度成分を放射計4に出力する。ここで、偏光素子3はp波(parallel polarized wave)偏光放射輝度成分を抽出する。p波偏光放射輝度成分とは、放射面SEに対して電界成分が平行な偏光放射輝度成分である。換言すれば、p波偏光放射輝度成分とは、放射面SEに電場の振動面を一致させた偏光放射輝度成分である。
 放射計4は、偏光素子3を経て抽出されたp波偏光放射輝度成分を入力し、この入力に応じて電気信号を生成しそして出力する。つまり、放射計4には種々の光センサ、光電変換素子を使用することができる。実施例1において、放射計4は、薄膜2の成膜温度例えば800K以上の温度において、基板1が不透明体となる波長域を受光波長領域として設定されている。この波長域は例えばシリコン半導体の場合、バンドギャップエネルギより大きなエネルギに相当する0.9μm以下の短波長域である。また、温度が上昇するにつれて基板1が不透明体となる波長域は長波長側にシフトすることが知られている。
 図2は、薄膜2において波長0.9μmにおけるp波偏光放射率と放射角度との関係を示す。ここでのデータは、本発明者が実施した実験に基づく実測値である。図2中、縦軸はp波偏光放射率εpであり、横軸は放射角度θである。測定サンプルの基板1にはシリコン基板が使用され、薄膜2にはシリコン酸化膜が使用された。そして、基板1の表面上に成膜された薄膜2の膜厚dが異なる5種類の測定サンプルが準備された。それぞれの薄膜2の膜厚dは、0nm(薄膜2が成膜されておらず、基板1の表面が露出されている状態)、350nm、550nm、750nm、950nmである。
 図2に示すように、面法線NLに対して55度(詳細には55.2度)に測定誤差のマージン±2度を加えた角度範囲内つまり53度から57度の角度範囲内において、薄膜2の膜厚dに関係なく、p波偏光放射率が一定になる。換言すれば、薄膜2の0度から90度までの角度範囲内のp波偏光放射率を示すそれぞれの膜厚dにおける曲線が、53度から57度の角度範囲内において、1点に収斂(又は収束:focus)される。これは、薄膜2と大気(又は真空)との間のブリュースタ角(Brewster angle)により生じる。実施例1において、この53度から57度の角度範囲内が、p波偏光放射輝度成分の放射率が変化しない角度θeic範囲内である。本発明者が実施した更なる実験の結果によれば、温度変化によってもp波偏光放射率は53度から57度の角度範囲内において変化しないことが確認されている。
 すなわち、基板1上に成膜される薄膜2内において多重反射する光の挙動を利用し、薄膜2の膜厚dに関係なく、p波偏光放射率が一定になる条件を使用することにより、放射率の変動を回避することができ、正確に放射温度を測定することができる放射測温方法並びに放射測温システムを構築することができる。
 図3は、薄膜2においてs波(senkrecht polarized wave)偏光放射率と放射角度との実験的関係を示す。s波偏光放射輝度成分とは、放射面SEに対して電界成分が垂直な偏光放射輝度成分である。図3中、縦軸はs波偏光放射率であり、横軸は放射角度θである。図3に示すように、薄膜2の膜厚dに関係なく、s波偏光放射率が一定になる現象は存在しなかった。
 次に、放射計4のp波偏光放射輝度成分の検出結果に基づく、薄膜2の温度の演算方法について、図1を参照しながら説明する。
 放射率が変化しない角度θeic範囲内においてp波偏光放射輝度成分を検出する放射計4の出力信号L1は次式(1)により表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、εp(θeic)は放射率が変化しない角度(例えば55度)におけるp波偏光放射率である。Lλ、b(T1)は薄膜2の温度T1の黒体分光放射輝度であり、温度T1と黒体分光放射輝度Lλ、b(T1)との間にはプランク(Planck)の黒体放射法則に基づく一対一の対応関係がある。
 p波偏光放射率εp(θeic)が一定であれば、式(1)の出力信号L1を既知のp波偏光放射率εp(θeic)で割ることにより、式(1)は次式(2)に書き直すことができる。
Figure JPOXMLDOC01-appb-M000002
 この式(2)の右辺は温度T1の黒体分光放射輝度Lλ、b(T1)を表しているので、式(2)を逆算すれば、薄膜2の温度T1を正確に演算することができる。
[第2の基本原理]
 本発明の実施例1に係る放射測温方法並びに放射測温システムを例えば半導体製造プロセスに実際に応用する場合には、付帯的な基本構成が更に必要となる。この付帯的な基本構成を備えた第2の基本原理は以下の通りである。
 図4に示すように、実施例1に係る放射測温方法及び放射測温システムを実現する第2の基本構成は、前述の図1に示す第1の基本構成に加えて、基板1上の薄膜2から放射される偏光放射輝度成分の放射率が変化しない角度θeic範囲内の放射方向EAに対して、薄膜2の表面或いは薄膜付基板の表面に垂直な面法線NLを中心に鏡面対称となる入射軸IA上に配設され、背景放射を吸収遮蔽する擬似黒体5と、擬似黒体5の温度を測定する温度測定計6とを備えている。
 ここで、入射軸IAは放射方向EAに対して面法線NLを中心に鏡面対称となる光軸であるので、面法線NLと入射軸IAとのなす角度θeic‘は放射方向EAと同様に53度から57度の範囲内である。また、放射面SEにおいて、放射方向EAと面法線NLを介して入射軸IAとのなす角度は2θeicに等価である。
 擬似黒体5は、入射軸IA上の背景放射、擬似黒体5とその周辺に存在する背景放射を実質的にすべて吸収する。例えば実際の半導体製造プロセスにおいては、薄膜2を成膜する際に加熱処理が行われ、この加熱処理を行うランプ等の周囲の熱発生源からの熱放射が背景放射(外乱光)として薄膜2の表面に反射して放射計4に受光される。薄膜2からの放射輝度成分に比べて背景放射の放射輝度成分は遙かに大きいので、大きな測温誤差が発生する。
 つまり、擬似黒体5は、入射軸IA上を通り薄膜2の表面において反射され、放射方向EA上を通って放射計4に受光される背景放射を遮蔽するとともに擬似黒体5からはその温度に対応する一定の放射輝度を放射する。すなわち、擬似黒体5は、少なくとも入射軸IA上において外部から入射される光や電磁波による熱放射等をあらゆる波長に渡って完全に吸収し、みずからは、一定の放射輝度を放射する。擬似黒体5には、例えばアルミナ(Al2O3)セラミックス系黒体、SiCなどの耐熱半導体、人造黒鉛系黒体等を実用的に使用することができる。
 温度測定計6は、擬似黒体5の温度を測定し、擬似黒体5からの放射輝度を既知の基準光源として、薄膜2の温度測定を実現するためのレファレンスの生成に使用される。温度測定計6には、例えば放射計4とは別の放射計や熱電対温度計、蛍光温度計等を実用的に使用することができる。
 次に、放射計4のp波偏光放射輝度成分の検出結果に基づく、薄膜2の温度の演算方法について、図4を参照しながら説明する。
 放射率が変化しない角度θeic範囲内において放射計4は、前述の式(1)に示す出力信号L1の出力に代えて、次式(3)により表される出力信号L2を出力する。
Figure JPOXMLDOC01-appb-M000003
 ここで、右辺第一項のεp(θeic)・Lλ、b(T1)は、薄膜2からの放射率が変化しない角度(例えば55度)におけるp波偏光放射率に基づく薄膜2から放射される温度T1の分光放射輝度である。右辺第二項の{1-εp(θeic)・Lλ、b(T2)}は、擬似黒体5から放射される黒体分光輝度Lλ、b(T2)のうち、薄膜2の表面で反射して1-εp(θeic)の割合で放射計4で検出される放射輝度成分である。
 式(3)において、右辺第一項のp波偏光放射率εp(θeic)は一定であり、右辺第二項のp波偏光放射率{1-εp(θeic)}は一定である。更に、擬似黒体5の温度T2は温度測定計6によって計測されているので、結局{1-εp(θeic)・Lλ、b(T2)}は既知である。従って、式(3)は次式(4)に書き直すことができる。
Figure JPOXMLDOC01-appb-M000004
 この式(4)の右辺は温度T1の黒体分光放射輝度Lλ、b(T1)を表しているので、式(4)の左辺を演算すれば、背景放射の影響を取り除き、薄膜2の温度T1を演算することができる。そして、この第2の基本原理に基づき、薄膜2の膜厚dに関係なく、p波偏光放射輝度成分の放射率が一定になる条件を使用することにより、放射率の変動並びに背景放射の影響を回避することができ、正確に放射温度を測定することができる放射測温方法並びに放射測温システムを構築することができる。
[放射測温システムの構成及び放射測温方法]
 次に、本発明の実施例1に係る放射測温システムの具体的な構成を説明する。図5に示すように、放射測温システム10は、基板1上の薄膜2から放射される第1の偏光放射輝度成分の放射率が変化しない角度θeic範囲内の放射方向EAに対して、薄膜2の表面に垂直な面法線NLを中心に鏡面対称となる入射軸IA上に配設され、背景放射を吸収し遮蔽する擬似黒体5と、擬似黒体5の温度T2を測定する温度測定計6と、第1の偏光放射輝度成分及び擬似黒体5から入射軸IA上に放射され薄膜2の表面で反射された第2の偏光放射輝度成分を測定する放射計4と、第1の偏光放射輝度成分及び第2の偏光放射輝度成分の測定結果と温度測定計6により測定された温度T2とに基づき薄膜2の温度T1を演算する演算ユニット15とを備えている。
 更に、放射測温システム10は、基板1を内部に配設し大気系又は真空系を生成することができるチャンバ11と、基板1を加熱する熱発生源13と、基板1上に形成される薄膜2と放射計4との間に配設され、薄膜2の熱放射から偏光輝度成分を抽出する偏光素子3と、演算ユニット15により演算された薄膜2の温度T1を表示する表示ユニット16とを備えている。
 チャンバ11内部において、基板1は支持体12に着脱自在に支持されている。熱発生源13は、チャンバ11内部において、石英等の支持体12により支持された基板1の表面(図5中、上側)に対向する箇所と基板1の裏面(図5中、下側)に対向する箇所とに少なくとも配設されている。実施例1において、熱発生源13にはハロゲンランプ等の赤外線ランプが使用されている。
 基板1上の薄膜2から放射される第1の偏光放射輝度成分(p波偏光放射輝度成分)の放射率が変化しない角度θeic範囲内の放射方向EA上において、チャンバ11には薄膜2からの放射光を透過する透過窓110が配設されている。更に、チャンバ11の外周囲において透過窓110の近傍には、放射方向EA上に偏光素子3、放射計4のそれぞれが配設されている。放射計4は演算ユニット15に接続されており、放射計4の出力信号は演算ユニット15に出力される。
 放射方向EA上に対して鏡面対称となる入射軸IA上において、チャンバ11内には擬似黒体5が配設されている。擬似黒体5は支持部材51を介してチャンバ11内に取り付けられている。また、入射軸IA上において、チャンバ11には擬似黒体5からの熱放射を透過する透過窓111が配設されている。更に、チャンバ11の外周囲において透過窓111の近傍には入射軸IA上に温度測定計6が配設されている。温度測定計6は演算ユニット15に接続されており、温度測定計6の出力信号は演算ユニット15に出力される。
 演算ユニット15においては、図6に示す演算処理が実行され、放射計4の出力信号L2と温度測定計6の出力信号L3とに基づき、薄膜2の温度T1が算出される。この演算処理は以下のステップに従って実行される。
 放射測温システム10の放射計4から出力信号L2が演算ユニット15に出力され(ステップS1:以下「ステップ」は省略する。)、一方、温度測定計6から出力信号L3が演算ユニット15に出力される(S2)。出力信号L2、出力信号L3のそれぞれの出力順は、いずれか一方が最初でいずれか他方が後であっても、双方同時であってもよい。出力信号L2は、薄膜2から放射され偏光素子3により抽出(偏光)されたp波偏光放射輝度成分(第1の偏光放射輝度成分)及び擬似黒体5から放射され薄膜2の表面において反射され偏光素子3により抽出されたp波偏光放射輝度成分(第2の偏光放射輝度成分)を、放射率が変化しない角度θeic範囲内の放射方向EA上において放射計4により受光し、この放射計4により電気信号に変換されものである。出力信号L3は、擬似黒体5から放射され入射軸IA上において温度測定計6により測定された温度情報(ここでは、熱放射輝度成分)を受光し、この温度測定計6により電気信号に変換されたものである。
 演算ユニット15においては、放射計4の出力信号L2に対して、p波偏光放射輝度成分の放射率が設定される(S3)。この放射率は、角度θeic範囲内の放射方向EA上に放射計4を配設しているので、一定である。同様に、演算ユニット15においては、温度測定計6の出力信号L3に対して、放射率が設定される(S4)。
 演算ユニット15において、温度測定計6の出力信号L3と設定された放射率とに基づき、演算信号L4が生成される(S5)。演算信号L4は、前述の式(3)の右辺第二項に示す擬似黒体5の温度T2の黒体分光放射輝度のうち薄膜2で反射され、放射計4で検出される成分を示す信号である。更に、演算ユニット15において、放射計4の出力信号L2と設定された放射率と演算信号L4とに基づき、演算信号L5が生成される(S6)。演算信号L5は、前述の式(4)に示す薄膜2の温度T1の黒体分光放射輝度を示す信号である。この演算信号L5は温度変換出力信号Tとして演算ユニット15から表示ユニット16に出力される(S7)。
 表示ユニット16は温度変換出力信号T1をアナログ的に表示又はデジタル的に表示する。表示ユニット16には、例えば温度表示計、パーソナルコンピュータに連結されたディスプレイ、直接温度の数値をプリントアウトするプリンタ等を実用的に使用することができる。
 以上説明したように、実施例1に係る放射測温システム10及び放射測温方法においては、放射率が変化しない条件を利用することにより、基板1上の薄膜2の膜厚dや薄膜2の成膜温度に関係なく、薄膜2の温度T1を非接触状態において正確に測定することができる。
 更に、実施例1に係る放射測温システム10及び放射測温方法においては、放射方向EAに対して鏡面対称となる入射軸IA上に擬似黒体5を備え、この擬似黒体5により背景放射を吸収し、放射計4への背景放射を遮蔽することができるので、薄膜2の温度T1を非接触状態においてより一層正確に測定することができる。
 更に、実施例1に係る放射測温システム10及び放射測温方法においては、擬似黒体5の温度T2を測定し、この測定結果を放射計4により測定された偏光放射輝度成分のレファレンスとして使用しているので、背景放射の影響を回避し、薄膜2の温度T1を非接触状態においてより一層正確に測定することができる。
 本発明の実施例2は、前述の実施例1に係る放射測温方法及び放射測温システム10において使用される薄膜付基板の変形例を説明するものである。
 前述の実施例1においては、基板1上の薄膜2にシリコン酸化膜を使用した例を説明したが、それに限定されるものではない。シリコン窒化薄膜やオキシナイトライド薄膜等のシリコン系絶縁性薄膜においても放射率が一定の角度範囲が存在するので、これらの薄膜を実施例2における薄膜2とし、放射測温システム10及び放射測温方法においてこの薄膜2の温度を測定することができる。
 具体的には、シリコン窒化薄膜の場合、その表面から放射されるp波偏光輝度成分は、薄膜付基板面の法線に対して中心を63度とし、61度から65度の角度範囲内において測定される。また、シリコンオキシナイトライド薄膜の場合、その表面から放射されるp波偏光輝度成分は、薄膜付基板面の法線に対して中心を57度とし、55度から59度の角度範囲内において測定される。
 実施例2に係る放射測温システム10及び放射測温方法においては、実施例1に係る放射測温システム10及び放射測温方法において得られる作用効果と同様の作用効果を奏することができる。
 本発明の実施例3は、前述の実施例1又は実施例2に係る放射測温システム10及び放射測温方法において、ハイブリッド表面温度測定システムを更に備え、ハイブリッド温度測定方法を更に組み合わせた例を説明するものである。
[放射測温システムの構成]
 図7に示すように、実施例3に係る放射測温システム10は、前述の図5に示す実施例1に係る放射測温システム10に加えて、更にハイブリッド表面温度測定システム30を備える。このハイブリッド表面温度測定システム30は、接触センサ31と、放射輝度計測センサ32と、駆動制御ユニット33とを備えている。
 ハイブリッド表面温度測定システム30の接触センサ31は、図8に示すように、薄膜付基板の薄膜2の表面に適度な圧力において表面を接触させる薄膜接触子(接触センサ先端)311と、薄膜接触子311を支持し薄膜接触子311に熱的に影響を及ぼさない断熱性に優れた支持体312と、薄膜接触子311の表面と対向する裏面に離間して配設されその裏面から放射される放射輝度(radiance)を伝搬損失を極力小さくして伝搬する透過体313とを備えている。更に、接触センサ31には放射輝度計測センサ32に連結するためのケーブル314が配設されている。
 薄膜接触子311は、測定対象物となる薄膜2に接触させたときに速やかな熱平衡状態を実現することができる材料により構成され、ここでは薄膜又は非常に薄い金属プレートにより構成されている。薄膜接触子311は、例えば3mm-7mmの幅寸法と15mm-20mmの長さ寸法とを有する長方形形状の薄膜又は板材により構成され、表面と裏面との間に速やかな熱平衡状態を実現するために3μm-30μmの薄さに形成されている。薄膜接触子311の厚さを薄く設定することによって、速やかな熱平衡状態を実現することができ、例えば1秒以内の高速な温度測定を実現することができる。薄膜接触子311には、ハステロイ、アルミニウム、ステンレス、インコネル、チタン、タングステン等の卑金属若しくはその合金、又は金、白金、イリジウム等の貴金属を使用することができる。また、薄膜接触子311には薄膜シリコンを使用することができる。シリコンは、基板1としてシリコン基板を用いた場合に同一材料であり、更に薄膜2としてシリコン酸化膜を用いた場合に同一材料が含まれるので、薄膜接触子311の材料として理想的である。薄膜接触子311に使用される材料は、主に測定する温度領域や製作コストの観点から選択される。
 接触センサ31の薄膜接触子311は、熱接触抵抗を小さくし、温度の測定精度を高めるために、適度な圧力を持って薄膜2の表面に接触させる(押圧させる)。この圧力は例えば5×103Pa以上である。
 支持体312には例えば2枚の石英板を使用することができる。2枚の石英板は透過体313を中心に対向して配設され、石英板の一方に薄膜接触子311の一端が連結され、石英板の他方に薄膜接触子311の他端が連結される。なお、支持体312には、他に断熱性に優れたセラミックスを使用することができる。
 実施例3において、透過体313は、細長い円柱形状を有し、薄膜接触子311の裏面から放射される放射輝度を狭い範囲内において小さな伝搬損失でケーブル314に伝搬させる。透過体313には、例えば1.1mm-1.5mmの直径を有するサファイアロッドを使用することができる。また、透過体313には石英ロッド、フッ化カルシウム(CaF2)ロッド、フッ化バリウム(BaF2)ロッド等を使用してもよい。透過体313の一端の端面は薄膜接触子311の裏面に対向させ、透過体313の他端はケーブル314に接続される。透過体313の一端の端面と薄膜接触子311の裏面との間は例えば1mmの間隙を有している。ケーブル314には例えば光ファイバが使用される。
 接触センサ31の薄膜接触子311の裏面から放射される放射輝度は透過体313、ケーブル314のそれぞれを通して放射輝度計測センサ32に入力される。放射輝度計測センサ32は、ここでは、ハーフミラー321を透過し、第1のフィルタ322を通して放射輝度を入力する第1の計測センサ323と、ハーフミラー321で反射され、第2のフィルタ(ロングパスフィルタ)325を通して放射輝度を入力する第2の計測センサ326とを備える。第1の計測センサ323には例えば高温度域に感度を有するSiセンサが使用され、第2の計測センサ326には低温度域に感度を有するInGaAsセンサが使用される。つまり、実施例3において、放射輝度計測センサ32には複数種類の第1の計測センサ323及び第2の計測センサ326を備えた複合センサ(compound sensor)が使用されている。
 駆動制御ユニット33は、図示しない駆動系とその制御を行う制御系とを備え、いずれもチャンバ11の外部に配設される。駆動制御ユニット33の駆動系はチャンバ11内に配設される接触センサ31に連結される。駆動制御ユニット33は、温度測定のときに、接触センサ31の薄膜接触子311を薄膜付基板の薄膜2の表面に接触させる(押圧させる)。また、駆動制御ユニット33は、温度測定を行わないときに、接触センサ31の薄膜接触子311を薄膜付基板の薄膜2の表面から退避させる。
 このように構成されるハイブリッド表面温度測定システム30の接触センサ31は、薄膜付基板の薄膜2の表面に薄膜接触子311を接触させ、この薄膜接触子311の裏面から放射される放射輝度を透過体313、ケーブル314のそれぞれを通して放射輝度計測センサ32に出力する。放射輝度計測センサ32においては、ケーブル314を通して入力された放射輝度が第1の計測センサ323、第2の計測センサ326に入力され、入力された放射輝度に応じて電気信号が発生する。この電気信号は演算ユニット15に出力され、薄膜2の表面温度が求められる。
 ハイブリッド表面温度測定システム30においては、温度の測定対象となる薄膜2に熱電対を溶接したり、黒体テープや黒体塗料を付着させる必要がなく、接触センサ31を薄膜2の表面に接触させるという簡易な操作手法により、薄膜2の表面温度を正確にかつ即座に測定することができる。従って、半導体製造プロセスにおいて、ウエーハやその表面に成膜された薄膜の温度測定に威力を発揮することができる。
[放射測温方法]
 前述の図7及び図8を用いて、実施例3に係る放射測温方法を説明する。まず最初に、放射測温システム10のチャンバ11内に配置された薄膜付基板の薄膜2の表面温度が、オフラインにおいて、ハイブリッド表面温度測定システム30を用いて測定される。ハイブリッド表面温度測定システム30においては、接触センサ31が駆動制御ユニット33によってチャンバ11内を移動し、接触センサ31の薄膜接触子311の表面が薄膜付基板の薄膜2の表面に接触する。薄膜接触子311は薄膜2との接触によって熱平衡状態になり、薄膜接触子311の裏面から放射輝度が放射される。この放射輝度は接触センサ31の透過体313、ケーブル314を通して放射輝度計測センサ32に出力される。放射輝度計測センサ32においては、入射される放射輝度に基づき薄膜2の表面温度を測定し、その測定結果が演算ユニット15に出力される。演算ユニット15においては、放射輝度計測センサ32からの測定結果に基づき、薄膜2の表面温度を算出し、その算出結果は表示ユニット16に薄膜2の表面温度として表示される。
 次に、同様にオフラインにおいて、前述の実施例1の放射測温方法を用いて薄膜付基板の薄膜2の温度が測定され、最終的に表示ユニット16に薄膜2の温度が表示される。
 ここで、ハイブリッド表面温度測定システム30により得られた薄膜2の表面温度に対して、実施例1に係る放射測温方法により得られた薄膜2の温度が許容範囲内であるか否かが判定される。放射測温方法により得られた薄膜2の温度が、許容範囲内において、ハイブリッド表面温度測定システム30により得られた薄膜2の表面温度と一致する場合には、放射測温方法に基づく薄膜2の温度測定の正確さが実証される。
 この実証結果を踏まえて、インラインにおいて、放射測温システム10並びに放射測温方法を用いて、薄膜付基板の薄膜2の温度が随時測定される。
 以上説明したように、実施例3に係る放射測温システム10及び放射測温方法においては、ハイブリッド表面温度測定システム30をキャリブレーション用として使用し、放射測温システム10及び放射測温システムの立ち上げや新規の材料の温度測定の際の基準温度の測定に使用することができる。そして、この基準温度に基づき、放射測温システム10を稼動し、放射測温方法を実施することができるので、温度測定の精度を向上することができる。
 なお、実施例3に係る放射測温方法においては、ハイブリッド表面温度測定システム30を用いた温度測定を最初に実施しているが、最初に実施例1に係る放射測温方法を用いた温度測定を実施してもよい。
(その他の実施例)
 上記のように、本発明を実施例1によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものでない。本発明は様々な代替の実施例及び運用技術に適用することができる。
 例えば、本発明は、シリコン基板に限定されるものではなく、化合物半導体を含め一般の半導体製造プロセス等において薄膜を成膜する基板に広く適用可能である。ただし、その場合、放射率不変条件である角度θeicは半導体の種類によって一般に異なる。
産業上の利用の可能性
 本発明は、基板上の薄膜の温度を非接触状態において正確に測定することができる放射測温方法及び放射測温システムに広く利用可能である。

Claims (13)

  1.  基板上に薄膜を形成し薄膜付基板を形成する工程と、
     前記薄膜付基板から放射される偏光放射輝度成分を測定する方向を基板面法線からの角度として放射率が変化しない角度範囲内において測定する工程と、
     前記偏光放射輝度成分の測定結果に基づき前記薄膜付基板の温度を演算する工程と、
     を備えたことを特徴とする放射測温方法。
  2.  前記偏光放射輝度成分を測定する工程は、前記薄膜付基板の表面に対する法線と前記偏光放射輝度成分の測定方向とを含む放射面内に対して平行なp波偏光放射輝度成分を測定する工程であることを特徴とする請求の範囲第1項に記載の放射測温方法。
  3.  前記偏光放射輝度成分を測定する工程は、前記基板が不透明体となる波長域において、前記薄膜付基板から放射される偏光放射輝度成分を測定する工程であることを特徴とする請求の範囲第1項に記載の放射測温方法。
  4.  前記薄膜付基板を形成する工程は、基板上にシリコン酸化薄膜を形成し、薄膜付基板を形成する工程であり、前記p波偏光放射輝度成分を測定する工程は、前記シリコン酸化薄膜から放射されるp波偏光輝度成分を、前記薄膜付基板面の法線に対して中心を55度とし、53度から57度の角度範囲内において測定する工程であることを特徴とする請求の範囲第2項に記載の放射測温方法。
  5.  前記薄膜付基板を形成する工程は、基板上にシリコン窒化薄膜を形成し、薄膜付基板を形成する工程であり、前記p波偏光放射輝度成分を測定する工程は、前記シリコン窒化薄膜付基板から放射されるp波偏光放射輝度成分を、前記薄膜付基板面の法線に対して中心を63度とし、61度から65度の角度範囲内において測定する工程であることを特徴とする請求の範囲第2項に記載の放射測温方法。
  6.  前記薄膜付基板を形成する工程は、基板上にシリコンオキシナイトライド薄膜を形成し、薄膜付基板を形成する工程であり、前記p波偏光放射輝度成分を測定する工程は、前記シリコンオキシナイトライド薄膜から放射されるp波偏光放射輝度成分を、前記薄膜付基板面の法線に対して中心を57度とし、55度から59度の角度範囲内において測定する工程であることを特徴とする請求の範囲第2項に記載の放射測温方法。
  7.  基板上に薄膜を形成し、薄膜付基板を形成する工程と、
     前記薄膜付基板から放射される第1の偏光放射輝度成分の放射率が変化しない角度範囲内の放射方向に対して、前記薄膜付基板の表面に垂直な法線を軸にして鏡面対称となる入射軸上に背景放射を吸収遮蔽し、かつ一定の放射輝度を放射する擬似黒体を配設し、この擬似黒体の温度を測定する工程と、
     前記放射軸方向上において前記第1の偏光放射輝度成分及び前記擬似黒体から前記入射軸上に放射され前記薄膜付基板の表面で反射され、前記放射方向へ向かう第2の偏光放射輝度成分を測定する工程と、
     前記第1の偏光放射輝度成分及び前記第2の偏光放射輝度成分の測定結果と前記擬似黒体の温度の測定結果とに基づき前記薄膜付基板の温度を演算する工程と、
     を備えたことを特徴とする放射測温方法。
  8.  前記薄膜付基板の前記薄膜の表面に薄膜接触子の表面を接触させ、前記薄膜接触子の表面と対向する裏面から放射される放射輝度を計測する工程と、
     この計測された前記放射輝度に基づき前記薄膜の表面温度を測定する工程と、
     を更に備えたことを特徴とする請求の範囲第1項又は第7項に記載の放射測温方法。
  9.  前記薄膜付基板の表面温度を前記薄膜接触子の裏面から放射される放射輝度に基づき測定する第1の工程の後に、前記薄膜付基板から放射される前記偏光放射輝度成分又は前記第1の偏光放射輝度成分を測定する方向を基板面法線からの角度として放射率が変化しない角度範囲内において測定し、この測定結果に基づき前記薄膜付基板の温度を演算する第2の工程を行い、
     前記第1の工程の前記薄膜の表面温度の測定結果に対して、前記第2の工程の前記薄膜付基板の温度の演算結果が許容範囲内であるか否かを判定し、
     許容範囲内であれば、前記薄膜付基板の温度の測定に前記第2の工程を使用することを特徴とする請求の範囲第8項に記載の放射測温方法。
  10.  基板上に薄膜を形成した薄膜付基板から放射される偏光放射輝度成分を放射率が変化しない角度範囲内において測定する放射計と、
     前記放射計により測定された前記偏光放射輝度成分に基づき前記薄膜付基板の温度を演算する演算ユニットと、
     を備えたことを特徴とする放射測温システム。
  11.  前記基板を内部に配設するチャンバと、
     前記基板を加熱する熱発生源と、
     前記薄膜付基板と前記放射計との間に配設され、前記薄膜付基板の熱放射から偏光放射輝度成分を抽出する偏光素子と、
     を更に備えたことを特徴とする請求の範囲第10項に記載の放射測温システム。
  12.  薄膜付基板から放射される第1の偏光放射輝度成分の放射率が変化しない角度範囲内の放射方向に対して、前記薄膜付基板の表面に垂直な法線を軸にして鏡面対称となる入射軸上に配設され、背景放射を吸収遮蔽し、かつ一定の放射輝度を放射する擬似黒体と、
     前記擬似黒体の温度を測定する温度測定計と、
     前記放射方向に配設され、前記第1の偏光放射輝度成分及び前記擬似黒体から前記入射軸上に放射され前記薄膜付基板の表面で反射され、前記放射方向へ向かう第2の偏光放射輝度成分を測定する放射計と、
     前記放射計により測定された前記第1の偏光放射輝度成分及び前記第2の偏光放射輝度成分と前記温度測定計により測定された前記擬似黒体の温度とに基づき前記薄膜付基板の温度を演算する演算ユニットと、
     を備えたことを特徴とする放射測温システム。
  13.  前記薄膜付基板の前記薄膜の表面に接触させる薄膜接触子を有する接触センサと、
     前記接触センサの前記薄膜接触子の前記表面に対向する裏面から放射される放射輝度を計測し、この計測結果を前記演算ユニットに出力する放射輝度計測センサと、
     を更に備えたことを特徴とする請求の範囲第10項又は第12項に記載の放射測温システム。
PCT/JP2008/072518 2007-12-20 2008-12-11 放射測温方法及び放射測温システム WO2009081748A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009547030A JPWO2009081748A1 (ja) 2007-12-20 2008-12-11 放射測温方法及び放射測温システム
US12/808,754 US20100292950A1 (en) 2007-12-20 2008-12-11 Radiation thermometry and radiation thermometry system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-328667 2007-12-20
JP2007328667 2007-12-20

Publications (1)

Publication Number Publication Date
WO2009081748A1 true WO2009081748A1 (ja) 2009-07-02

Family

ID=40801055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072518 WO2009081748A1 (ja) 2007-12-20 2008-12-11 放射測温方法及び放射測温システム

Country Status (3)

Country Link
US (1) US20100292950A1 (ja)
JP (1) JPWO2009081748A1 (ja)
WO (1) WO2009081748A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7350672B2 (ja) 2020-02-25 2023-09-26 株式会社チノー ミラー間の多重反射を利用した放射測温装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022372B2 (en) 2008-02-15 2011-09-20 Veeco Instruments Inc. Apparatus and method for batch non-contact material characterization
US9653340B2 (en) 2011-05-31 2017-05-16 Veeco Instruments Inc. Heated wafer carrier profiling
DE102012003255B8 (de) * 2012-02-21 2014-01-16 Testo Ag Vorrichtung zur berührungslosen Temperaturmessung und Temperaturmessverfahren
US20140035779A1 (en) * 2012-07-31 2014-02-06 Radiometrics Corporation Highly accurate calibration of microwave radiometry devices
DE102020203750A1 (de) * 2020-03-24 2021-09-30 Carl Zeiss Smt Gmbh Vorrichtung zur Erfassung einer Temperatur, Anlage zur Herstellung eines optischen Elementes und Verfahren zur Herstellung eines optischen Elementes
US20210335012A1 (en) * 2020-04-28 2021-10-28 MEGA AI Lab Co., Ltd. Temperature reference systems and methods thereof for thermal imaging
US11686683B2 (en) * 2020-04-30 2023-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for detecting contamination of thin-films
CN112880842A (zh) * 2020-12-29 2021-06-01 中国海洋大学 免天空测温的水体表面温度红外测温仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273045A (ja) * 1992-03-26 1993-10-22 Nippon Steel Corp 透明性薄膜に被覆された物体の温度測定装置
JP2002303551A (ja) * 2001-04-03 2002-10-18 Tama Tlo Kk 炉内金属材の温度測定方法および装置
WO2006124963A2 (en) * 2005-05-16 2006-11-23 Ultratech, Inc. Methods and apparatus for remote temperature measurement of a specular surface
JP2007040981A (ja) * 2005-06-23 2007-02-15 Komatsu Ltd ウエハ温度測定方法及びウエハ温度測定装置
JP2007218591A (ja) * 2006-02-14 2007-08-30 Toyo Univ ハイブリッド型表面温度計、温度分布測定装置及び測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919542A (en) * 1988-04-27 1990-04-24 Ag Processing Technologies, Inc. Emissivity correction apparatus and method
JPH07159246A (ja) * 1993-12-09 1995-06-23 Tokai Carbon Co Ltd 半導体ウエハーの温度測定方法
US5880040A (en) * 1996-04-15 1999-03-09 Macronix International Co., Ltd. Gate dielectric based on oxynitride grown in N2 O and annealed in NO

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273045A (ja) * 1992-03-26 1993-10-22 Nippon Steel Corp 透明性薄膜に被覆された物体の温度測定装置
JP2002303551A (ja) * 2001-04-03 2002-10-18 Tama Tlo Kk 炉内金属材の温度測定方法および装置
WO2006124963A2 (en) * 2005-05-16 2006-11-23 Ultratech, Inc. Methods and apparatus for remote temperature measurement of a specular surface
JP2007040981A (ja) * 2005-06-23 2007-02-15 Komatsu Ltd ウエハ温度測定方法及びウエハ温度測定装置
JP2007218591A (ja) * 2006-02-14 2007-08-30 Toyo Univ ハイブリッド型表面温度計、温度分布測定装置及び測定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Proc.33rd Optical Symposium (Japan), 03 July, 2008 (03.07.08)", article GOGAMI A. ET AL.: "Polarized Emissivity Compensated Temperature Measurement of Silicon Wafers", pages: 51 - 54 *
IUCHI T. ET AL.: "Radiation thermometry for silicon wafers by use of polarized radiances", OPTIACL ENGINEERING, vol. 45, no. 9, September 2006 (2006-09-01) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7350672B2 (ja) 2020-02-25 2023-09-26 株式会社チノー ミラー間の多重反射を利用した放射測温装置

Also Published As

Publication number Publication date
US20100292950A1 (en) 2010-11-18
JPWO2009081748A1 (ja) 2011-05-06

Similar Documents

Publication Publication Date Title
WO2009081748A1 (ja) 放射測温方法及び放射測温システム
JP6242313B2 (ja) 高温計測で用いられる接触型赤外線温度センサ、熱機器及び排気システム
WO1998038673A1 (fr) Instrument et procede de mesure de la temperature d'un substrat, procede de chauffage d'un substrat et dispositif de traitement par la chaleur
JP2001516873A (ja) 温度プローブ
KR20020077118A (ko) 박막의 막두께 모니터링 방법 및 기판 온도 측정 방법
JP5447159B2 (ja) ガスセンサ
US8011827B1 (en) Thermally compensated dual-probe fluorescence decay rate temperature sensor
JPWO2006009278A1 (ja) ステージおよびシリコンウエハ基板の温度計測法
JP2020046309A (ja) 黒体炉
Lapshinov Temperature measurement methods in microwave heating technologies
JP2007218591A (ja) ハイブリッド型表面温度計、温度分布測定装置及び測定方法
KR101459668B1 (ko) 적외선 열화상 카메라를 이용하여 측정된 반도체 소자 온도 분포의 보정 방법 및 이에 이용되는 시스템
JPH09329499A (ja) 赤外線センサ及び赤外線検出器
WO2000008428A1 (en) Apparatus and methods for measuring substrate temperature
JP2008268106A (ja) 温度情報計測方法
JP2011080790A (ja) 放射温度計用参照光源装置
JP4166400B2 (ja) 放射温度測定方法
Yamada et al. In situ Si wafer surface temperature measurement during flash lamp annealing
JPH04130746A (ja) ウエハ温度測定用の放射温度計およびウエハ温度測定方法
TW486564B (en) Temperature-detecting element
JPH07151606A (ja) 基板の温度測定装置
US7591586B2 (en) Method of temperature measurement and temperature-measuring device using the same
JPH0456145A (ja) プラズマ中の基板温度の測定装置
JP2007107939A (ja) 鋼板の温度測定方法および温度測定装置
WO2020105344A1 (ja) ガラス物品の温度測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009547030

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12808754

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08864004

Country of ref document: EP

Kind code of ref document: A1