WO2009080166A1 - Batterie mit mehreren paralell und/oder seriell miteinander verschalteten einzelzellen und einer wärmeleitplatte zum temperieren der batterie - Google Patents

Batterie mit mehreren paralell und/oder seriell miteinander verschalteten einzelzellen und einer wärmeleitplatte zum temperieren der batterie Download PDF

Info

Publication number
WO2009080166A1
WO2009080166A1 PCT/EP2008/009852 EP2008009852W WO2009080166A1 WO 2009080166 A1 WO2009080166 A1 WO 2009080166A1 EP 2008009852 W EP2008009852 W EP 2008009852W WO 2009080166 A1 WO2009080166 A1 WO 2009080166A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
battery
individual cells
conducting plate
cover
Prior art date
Application number
PCT/EP2008/009852
Other languages
English (en)
French (fr)
Inventor
Jens Meintschel
Dirk Schröter
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2009080166A1 publication Critical patent/WO2009080166A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery having a plurality of parallel and / or serially interconnected individual cells and a heat conducting plate for tempering the battery.
  • a battery which has a plurality of parallel and / or serially interconnected single cells, which are mounted on a heat conducting plate and conductively connected with this heat.
  • a condensation section of a heat pipe is arranged in the heat conducting.
  • the heat pipe is out of the heat conducting, in particular out of a battery case out. This is the location of the
  • each individual cell usually has a deliberately formed weakening on the cell bottom the wall thickness (a so-called rupture disk area) as a predetermined breaking point in order to perform at a pressure increase in the single cell, for example by overcharging and / or short circuit, a defined pressure reduction.
  • a so-called rupture disk area a so-called rupture disk area
  • burst hole a hole formed in the heat conduction in the landing of each individual cell. These holes have a smaller diameter compared to a single cell bottom.
  • the disadvantage here is that is reduced by the holes of the effective heat conduction cross section of the heat conduction.
  • the invention has for its object to provide a battery with a heat conducting, which is simple and inexpensive.
  • the battery according to the invention comprises a, in particular bottom-side arranged heat conduction plate for controlling the temperature of the battery and a plurality of parallel and / or serially interconnected individual cells, the heat conductively connected to the heat conducting plate.
  • the heat conducting plate has within this a channel structure, which is traversed by a heat conducting medium in order to cool the battery efficiently.
  • the individual cells have in the longitudinal direction of a heat-conductive sheath, preferably made of aluminum, and are with the longitudinal axes parallel to each other on the heat conducting plate, which in each case has a Aufsetz Scheme holes.
  • a cover is arranged between the heat conducting plate and individual cells.
  • the cover is preferably formed of a heat-conducting material.
  • the material of the cover has a preferably low mechanical resistance, at least in the rupture disk region. Due to this characteristic, the cover tears in the event of an individual cell explosion, for example due to overcharging and / or short circuit, preferably in the area provided for this purpose.
  • the mechanical resistance of the cover is taken into account in the design of the so-called rupture disk area.
  • the cover is electrically insulated.
  • leakage currents between the individual cell, whose positive pole is arranged on the outer wall, and heat conducting plate, which is arranged on the mass prevented.
  • a short circuit of further interconnected individual cells can be caused via their individual cell bottoms.
  • the battery is connected with their interconnected individual cells of a housing.
  • the housing includes side walls as well as a bottom which forms the heat conducting plate.
  • the housing has on the outside a surface structure, in particular a groove-shaped surface structure, whereby the resulting heat during charging and discharging of the battery can be dissipated.
  • the battery is protected by the housing from the weather and mechanical effects from the outside.
  • heat-conducting rods preferably of aluminum, are arranged in the interstices of the individual cells.
  • the arrangement of the thermal conductors, the resulting heat of the individual cells is passed directly over the cover to the heat conduction.
  • the housing, the spaces between the heat conducting plate and individual cells and the spaces between the individual cells with a, in particular electrically insulating and preferably heat conductive potting compound and / or an electrical insulating and preferably heat-conductive foam provided.
  • the potting compound and / or foam completely fill the battery case.
  • the battery according to the invention in particular a vehicle battery, is preferably used in a vehicle with hybrid drive and / or in a vehicle powered by fuel cells, in particular in a motor vehicle for transporting persons.
  • Fig. 1 shows schematically a perspective view of a
  • FIG. 3 shows schematically in a sectional view a battery according to the prior art
  • 4 shows schematically a sectional view of a battery according to the prior art
  • FIG. 5 schematically shows a sectional view of the bottom region of a single cell of the battery according to the invention with cover of a heat conducting plate
  • FIG. 6 is a sectional view of the bottom portion of a single cell of the battery according to the invention with a possible embodiment of a cover,
  • Fig. 7 is a sectional view of the bottom portion of a single cell of the battery according to the invention with a further possible embodiment of a cover, and
  • Fig. 8 is a sectional view of the bottom portion of a single cell of the battery according to the invention with a possible embodiment of the cover with inserts.
  • FIG. 1 shows a perspective view of a battery 1 according to the prior art.
  • the battery 1 has a plurality of parallel and / or serially interconnected individual cells 2, in particular lithium-ion battery cells, which are arranged in a housing 3, for example, formed from a Hüllblech.
  • the housing 3 has an outer, in particular groove-shaped surface structure.
  • poles 5 are formed in the longitudinal direction upwards.
  • the interconnected individual cells 2 are provided with a sheath 6, for example made of aluminum, for targeted heat dissipation.
  • the sheath 6 is formed, for example, as a circular cylinder.
  • the heat-conducting plate 7 has a channel structure, which is flowed through by means of a heat-conducting medium, with connections 8 for supplying and removing the heat-conducting medium.
  • thermally conductive rods 10 are arranged, which are also used for heat dissipation of heat and connected to the heat conducting plate 7.
  • the heat-conducting connection of the individual cells 2 to the heat-conducting rods 10 is realized by means of a potting compound 11 and / or a foam.
  • the potting compound 11 and / or the foam fill the gaps 9 and the housing 3 completely.
  • the potting compound 11 and / or the foam preferably have an electrically insulating and heat-conducting property.
  • polyurethane foams, epoxy resins and / or silicones are filled into the intermediate spaces 9 as potting compound 11.
  • FIG. 2 shows a plan view of the battery 1 shown in Figure 1 according to the prior art.
  • the individual cells 2 are arranged offset in the housing 3 such that the rectangular base of the housing 3 optimally is used.
  • the base area forms the heat-conducting plate 7 with channel structure and connections 8 shown in FIG. 3 for a heat-conducting medium.
  • the battery 1 illustrated in FIG. 2 comprises, for example, five rows of individual cells 2 which are arranged with their longitudinal axes parallel to one another. In this case, the first, third and fifth rows each have five individual cells 2.
  • the second and fourth rows each have four single cells 2.
  • the interstices 9 of the individual cells 2 are equally formed and their distances from the bathleitstäben 10.
  • the cherriesleitstäbe 10 are arranged so that a single cell 2 more heat conduction rods 10 are associated hexagonally.
  • the outer individual cells 2 arranged towards the housing 3 are comprised of fewer heat-conducting rods 10, since these individual cells 2 are cooled by the housing 3 itself by the formed surface structure.
  • Each individual cell 2 is associated with at least three thermal conductivities 10 with regard to the arrangement.
  • the gaps 9 and the housing 3 are completely filled with the heat conductive and electrically insulating potting compound 11 and / or foam.
  • FIG. 3 shows a battery 1 in a sectional illustration according to the prior art.
  • a series of five parallel and / or serially interconnected single cells 2 is shown.
  • the individual cells 2 have poles 5 directed upwards with respect to their longitudinal axes.
  • Each individual cell 2 has at its bottom a deliberately formed weakening of the wall thickness, the so-called rupture disk region 12, as a defined break point.
  • the defined break point serves for a defined pressure reduction at a pressure increase in the single cell 2, for example by overcharging and / or short circuit.
  • the single cells 2 are placed on the heat conducting plate 7 for efficient heat conduction.
  • the heat-conducting plate 7 has in the respective contact area of the individual cells 2 so-called burst bores 13.
  • the diameter of the bursting holes 13 is formed smaller than the diameter of the individual cells 2.
  • the bursting holes 13 are filled with rubber stopper not shown in order to prevent leakage of the filled potting compound 11 and / or the foam. After curing of the mass 11, the rubber stopper is removed.
  • FIG. 4 shows another possible exemplary embodiment according to the prior art for avoiding the leakage of the potting compound 11 and / or the foam.
  • an insert 14 for preventing the leakage of the potting compound 11 and / or the foam is arranged. This measure proves to be very complex and not very reliable.
  • FIG. 5 shows a sectional illustration of a bottom region of a single cell 2 of a battery 1 according to the invention.
  • the illustrated individual cell 2 has the bursting-disk region 12 on its cell bottom.
  • the single cell 2 is placed on the heat-conducting plate 7, which in the mounting region of the single cell 2, the bursting hole thirteenth having. As a result, a defined pressure reduction in explosion of the single cell 2 can be realized.
  • the battery 1 has a cover 15 of the heat-conducting plate 7, the cover 15 being arranged between the individual cell 2 and the heat-conducting plate 7.
  • the cover 15 completely covers the surface of the heat-conducting plate 7 directed in the direction of the individual cells 2 and is preferably designed as a foil which has a heat-conducting property. Due to the arrangement of the cover 15, the effective heat conduction cross section is advantageously increased, since by complete coverage of the bursting holes 13 in this area via the cover 15, the heat can be dissipated.
  • the cover 15 is firmly bonded to the heat-conducting plate 7, in particular glued.
  • the cover 15 has a self-adhesive layer on the underside. The gluing of the cover 15 takes place before the insertion of the individual cells 2, the heat conducting rods 10 and before the casting process.
  • cover 15 formed as a self-adhesive film is a cup-like design.
  • the cover 15 is arranged in the mounting region of the single cell 2 between the hexagonally arranged sauceleitstäben 10. As a result, no gluing is required.
  • this has a low mechanical resistance, at least in the bursting disk region 12.
  • the mechanical resistance of the cover 15 is in interpretation of the Bursting disk area 12 is taken into account in the cell bottom and ensures a defined pressure reduction.
  • the cover 15 additionally has an electrically insulating property. As a result, a painting of the skilletleitstäbe 10, which are placed on the cover 15, not necessary.
  • cover 15 during the casting process.
  • potting compound 11 and / or foam in the interstices 9 of the single cells 2 and in the interstices 9 of the Einzellzellen 2 and the housing 3 is filled.
  • the cover 15 leakage of the mass 11 is prevented.
  • the potting compound 11 and / or the foam preferably have an electrically insulating and heat-conducting property.
  • polyurethane foams, epoxy resins and / or silicones are filled into the intermediate spaces 9 as potting compound 11.
  • 2 heat conduction rods 10 can be used for efficient heat conduction in the interstices 9 of the individual cells.
  • the heat-conducting connection of the individual cells 2 to the heat-conducting rods 10 is realized by means of the potting compound 11 and / or the foam.
  • FIG. 1 Another possible embodiment of the battery 1 according to the invention with heat-conducting plate 7 is shown in FIG.
  • FIG. 7 shows a further embodiment of the battery 1 according to the invention with cover of the heat-conducting plate 7.
  • the cover 15 additionally has a low mechanical resistance.
  • the cover 15 in the embodiment of Figure 7, at least in the region of the bursting bore 13 has a smaller thickness than in the area outside the burst hole 13. The thickness of the cover 15 is taken into account in the design of the rupture disk region 12.
  • FIG. 8 shows a bottom region of a single cell 2 of the battery 1 according to the invention, which has the cover 15 of the heat-conducting plate 7 with burst bores 13.
  • insert pieces 14 are preferably additionally arranged for setting a predeterminable minimum distance between single cell 2 and covered heat-conducting plate 7 in order to increase the electrical insulation.
  • These inserts 14 are preferably attached to the cell bottom, for example glued.
  • the inserts 14 are formed of plastic. Daimler AG

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Die Erfindung betrifft eine Batterie (1) mit einem Gehäuse (3), insbesondere eine Batterie (1) für ein Fahrzeug mit Hybridantrieb oder ein mit Brennstoffzellen betriebenes Fahrzeug. Die Batterie (1) umfasst eine bodenseitig angeordnete Wärmeleitplatte (7) zum Temperieren der Batterie (1), wobei die Batterie (1) mehrere parallel und/oder seriell miteinander verschaltete Einzelzellen (2) aufweist. Die Einzelzellen (2) sind Wärme leitend mit der Wärmeleitplatte (7) verbunden, wobei die Einzelzellen (2) in Längsrichtung eine Wärme leitfähige Ummantelung (6) aufweisen. Die Einzelzellen (2) sind auf die Wärmeleitplatte (7) mit den Längsachsen parallel zueinander aufgesetzt, wobei die Wärmeleitplatte (7) jeweils in einem Aufsetzbereich der Einzelzellen (2) Bohrungen (13) aufweist. Zwischen Einzelzellen (2) und Wärmeleitplatte (7) ist eine Wärme leitende Abdeckung (15) angeordnet, welche die Wärmeleitplatte (7) in Richtung der Einzelzellen (2) vollständig abdeckt.

Description

Daimler AG
Batterie mit mehreren parallel und/oder seriell miteinander verschalteten Einzelzellen und einer Wärmeleitplatte zum
Temperieren der Batterie
Die Erfindung betrifft eine Batterie mit mehreren parallel und/oder seriell miteinander verschalteten Einzelzellen und einer Wärmeleitplatte zum Temperieren der Batterie.
Aus der DE 197 24 020 Al ist eine Batterie bekannt, welche mehrere parallel und/oder seriell miteinander verschaltete Einzelzellen aufweist, welche auf einer Wärmeleitplatte aufgesetzt und mit dieser Wärme leitend verbunden sind. In der Wärmeleitplatte ist ein Kondensationsabschnitt eines Wärmerohres angeordnet. Das Wärmerohr ist aus der Wärmeleitplatte, insbesondere aus einem Batteriegehäuse heraus geführt. Dadurch befindet sich der
Kondensationsabschnitt außerhalb der Wärmeleitplatte. Die entstehende Wärme bei Laden und Entladen der Einzelzellen wird mittels der Wärmeleitplatte und deren angeschlossenen Kreislauf abgeführt.
Insbesondere bei Lithium-Ionen-Batterien können eine Überladung und/oder ein Kurzschluss zu einer Explosion der Einzelzelle führen. Deshalb weist üblicherweise jede Einzelzelle am Zellboden eine gezielt ausgebildete Schwächung der Wandstärke (einen so genannten Berstscheibenbereich) als eine Sollbruchstelle auf, um bei einer Druckerhöhung in der Einzelzelle, beispielsweise durch Überladung und/oder Kurzschluss, einen definierten Druckabbau vorzunehmen. Für eine Sicherstellung des Druckabbaus sind in der Wärmeleitplatte im Aufsetzbereich einer jeden Einzelzelle Bohrungen (so genannte Berstbohrung) ausgebildet. Diese Bohrungen weisen einen geringeren Durchmesser gegenüber einem Einzelzellenboden auf. Nachteilig dabei ist, dass durch die Bohrungen der wirksame Wärmeleitungsquerschnitt der Wärmeleitplatte verringert ist.
Der Erfindung liegt die Aufgabe zugrunde, eine Batterie mit einer Wärmeleitplatte anzugeben, welche einfach und kostengünstig aufgebaut ist.
Die erfindungsgemäße Batterie umfasst eine, insbesondere bodenseitig angeordnete Wärmeleitplatte zum Temperieren der Batterie sowie mehrere parallel und/oder seriell miteinander verschaltete Einzelzellen, die Wärme leitend mit der Wärmeleitplatte verbunden sind. Die Wärmeleitplatte weist innerhalb dieser eine Kanalstruktur auf, welche mit einem Wärmeleitmedium durchströmt ist, um die Batterie effizient zu kühlen. Die Einzelzellen weisen in Längsrichtung eine Wärme leitfähige Ummantelung, vorzugsweise aus Aluminium bestehend, auf und sind mit den Längsachsen parallel zueinander auf die Wärmeleitplatte, welche jeweils in einem Aufsetzbereich Bohrungen aufweist, aufgesetzt. Um einen wirksamen Wärmeleitungsquerschnitt der Wärmeleitpatte mit Bohrungen zum Temperieren der Batterie sicherzustellen, ist zwischen Wärmeleitplatte und Einzelzellen eine Abdeckung angeordnet. Dabei deckt diese die Wärmeleitplatte in Richtung der Einzelzellen vollständig ab. Mittels dieser vollständigen Abdeckung ist eine Einstellung eines Wärmeleitspaltes zwischen Einzelzellenboden und Wärmeleitplatte realisiert. Für eine effiziente Abführung der Wärme ist die Abdeckung vorzugsweise aus einem Wärme leitenden Material gebildet.
Für die Sicherstellung des definierten Druckabbaus durch den so genannten Berstscheibenbereich weist das Material der Abdeckung zumindest im Berstscheibenbereich einen bevorzugt geringen mechanischen Widerstand auf. Durch diese Eigenschaft reißt die Abdeckung bei Explosion einer Einzelzelle, beispielsweise durch Überladung und/oder Kurzschluss, vorzugsweise in dem dafür vorgesehenen Bereich auf. Dabei wird der mechanische Widerstand der Abdeckung bei der Auslegung des so genannten Berstscheibenbereichs berücksichtigt .
Des Weiteren erweist sich als vorteilhaft, dass die Abdeckung elektrisch isoliert ist. Dadurch werden Kriechströme zwischen Einzelzelle, deren Pluspol auf der Außenwand angeordnet ist, und Wärmeleitplatte, welche auf der Masse angeordnet ist, verhindert. Darüber hinaus kann bei Öffnen einer Einzelzelle, bei welchem Elektrolyten und/oder andere Substanzen auslaufen können, ein Kurzschluss weiterer verschalteter Einzelzellen über deren Einzelzellenböden verursacht werden. Durch die elektrische Isolierung mittels der Abdeckung ist ein solcher Kurzschluss vermieden.
Zusätzlich sind für eine Einstellung eines vorgebbaren Mindestabstandes für eine ausreichende elektrische Isolation vorzugsweise zwischen Einzelzelle und Abdeckung Einlegestücke angeordnet. Diese Einlegestücke sind bevorzugt am Einzellenboden befestigt, beispielsweise geklebt. Des Weiteren sind die Einlegestücke aus Kunststoff gebildet. Vorzugsweise ist die Batterie mit deren verschalteten Einzelzellen von einem Gehäuse umfasst. Das Gehäuse umfasst Seitenwände sowie einen Boden, welcher die Wärmeleitplatte bildet. In einer besonders vorteilhaften Ausgestaltung der erfindungsgemäßen Batterie weist das Gehäuse nach außen eine Oberflächenstruktur, insbesondere eine rillenförmige Oberflächenstruktur, auf, wodurch die entstehende Wärme bei Laden und Entladen der Batterie abführbar ist. Darüber hinaus ist die Batterie durch das Gehäuse vor Witterungseinflüssen und mechanischen Einwirkungen von außen geschützt.
Für eine effiziente Wärmeableitung der Einzelzellen, welche beispielsweise eine zulässige maximale Temperatur von insbesondere 50°Celsius aufweisen können, sind in den Zwischenräumen der Einzelzellen Wärmeleitstäbe, bevorzugt aus Aluminium, angeordnet. Durch die Anordnung der Wärmeleitstäbe wird die entstehende Wärme der Einzelzellen direkt über die Abdeckung zur Wärmeleitplatte geführt. Vorzugsweise ist auf eine Lackierung der Wärmeleitstäbe durch Einsatz der Abdeckung zwischen Wärmeleitplatte und Einzelzellen verzichtbar .
Um eine elektrische Isolation der in dem Batteriegehäuse angeordneten Bauteile sicherzustellen, sind in einer weiteren Ausgestaltung der Erfindung das Gehäuse, die Zwischenräume zwischen Wärmeleitplatte und Einzelzellen sowie die Zwischenräume zwischen den Einzelzellen mit einer, insbesondere elektrisch isolierenden und bevorzugt Wärme leitfähigen Vergussmasse und/oder einem elektrisch isolierenden und bevorzugt Wärme leitfähigen Schaum versehen. Dabei füllen die Vergussmasse und/oder der Schaum das Batteriegehäuse vollständig aus. Hierbei erweist sich die angeordnete Abdeckung der Wärmeleitplatte als besonders vorteilhaft, da diese bei Ausfüllen des Batteriegehäuses ein Auslaufen der Vergussmasse und/oder des Schaums und ein Eindringen dieser in die Bohrungen des Berstscheibenbereichs verhindert. Nach Aushärten der Masse verbleibt die Abdeckung im Gehäuse. Mit Hilfe der Abdeckung ist ein Einsatz von weiteren Hilfsmitteln zum Vermeiden des Auslaufens beim Vergussprozess verzichtbar. Hierdurch werden die oben genannten Zwischenräume innerhalb des Batteriegehäuses effizient zur Wärmeleitung genutzt, wobei gleichzeitig die Stabilität des gesamten Batteriegehäuses erhöht ist.
Die erfindungsgemäße Batterie, insbesondere eine Fahrzeugbatterie, ist bevorzugt in einem Fahrzeug mit Hybridantrieb und/oder in einem mit Brennstoffzellen betriebenen Fahrzeug, insbesondere in einem Kraftfahrzeug zur Personenbeförderung, einsetzbar.
Ausführungsbeispiele der Erfindung werden anhand von Zeichnungen näher erläutert.
Dabei zeigen:
Fig. 1 schematisch eine perspektivische Ansicht einer
Batterie mit Gehäuse und Wärmeleitplatte nach dem Stand der Technik,
Fig. 2 schematisch eine Batterie in Draufsicht nach dem Stand der Technik,
Fig. 3 schematisch in einer Schnittdarstellung eine Batterie nach dem Stand der Technik, Fig. 4 schematisch eine Schnittdarstellung eine Batterie nach dem Stand der Technik,
Fig. 5 schematisch eine Schnittdarstellung des Bodenbereichs einer Einzelzelle der erfindungsgemäßen Batterie mit Abdeckung einer Wärmeleitplatte,
Fig. 6 eine Schnittdarstellung des Bodenbereichs einer Einzelzelle der erfindungsgemäßen Batterie mit einer möglichen Ausführungsform einer Abdeckung,
Fig. 7 eine Schnittdarstellung des Bodenbereichs einer Einzelzelle der erfindungsgemäßen Batterie mit einer weiteren möglichen Ausführungsform einer Abdeckung, und
Fig. 8 eine Schnittdarstellung des Bodenbereichs einer Einzelzelle der erfindungsgemäßen Batterie mit einer möglichen Ausführungsform der Abdeckung mit Einlegestücken.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
Figur 1 zeigt eine perspektivische Ansicht einer Batterie 1 nach dem Stand der Technik. Die Batterie 1 weist mehrere parallel und/oder seriell miteinander verschaltete Einzelzellen 2, insbesondere Lithium-Ionen-Batteriezellen auf, welche in einem Gehäuse 3, beispielsweise aus einem Hüllblech gebildet, angeordnet sind. Das Gehäuse 3 weist eine äußere, insbesondere rillenförmige Oberflächenstruktur auf. An den Einzelzellen 2 sind in Längsrichtung nach oben Pole 5 ausgebildet. Die verschalteten Einzelzellen 2 sind mit einer Ummantelung 6, beispielsweise aus Aluminium, zur gezielten Wärmeableitung versehen. Die Ummantelung 6 ist beispielsweise als ein Kreiszylinder ausgebildet.
Darüber hinaus ist die Einzelzelle 2 mit Ummantelung 6 auf eine Wärmeleitplatte 7, welche gleichzeitig den Boden des Gehäuses 3 bildet, aufgesetzt. Die Wärmeleitplatte 7 weist eine Kanalstruktur, welche mittels eines Wärmeleitmediums durchströmt ist, mit Anschlüssen 8 zum Zu- und Abführen des Wärmeleitmediums auf.
In den Zwischenräumen 9 der miteinander verschalteten Einzelzellen 2 sind darüber hinaus Wärmeleitstäbe 10 angeordnet, die ebenfalls zur Wärmeableitung von Wärme eingesetzt und mit der Wärmeleitplatte 7 verbunden sind. Die Wärme leitende Anbindung der Einzelzellen 2 an die Wärmeleitstäbe 10 wird mittels einer Vergussmasse 11 und/oder eines Schaums realisiert. Dabei füllen die Vergussmasse 11 und/oder der Schaum die Zwischenräume 9 sowie das Gehäuse 3 vollständig aus. Die Vergussmasse 11 und/oder der Schaum weisen bevorzugt eine elektrisch isolierende sowie Wärme leitende Eigenschaft auf. Als Vergussmasse 11 sind beispielsweise Polyurethan-Schäume, Epoxidharze und/oder Silikone in die Zwischenräume 9 eingefüllt.
Figur 2 zeigt eine Draufsicht der in Figur 1 gezeigten Batterie 1 nach dem Stand der Technik. Dabei sind die Einzelzellen 2 in dem Gehäuse 3 derart versetzt angeordnet, dass die rechteckige Grundfläche des Gehäuses 3 optimal genutzt ist. Die Grundfläche bildet dabei die in Figur 3 dargestellte Wärmeleitplatte 7 mit Kanalstruktur und Anschlüssen 8 für ein Wärmeleitmedium. Die in Figur 2 dargestellte Batterie 1 umfasst beispielsweise fünf Reihen von Einzelzellen 2, die mit ihren Längsachsen parallel zueinander angeordnet sind. Dabei weisen die erste, dritte und fünfte Reihe jeweils fünf Einzelzellen 2 auf. Die zweite und vierte Reihe weisen jeweils vier Einzelzellen 2 auf. Die Zwischenräume 9 der Einzelzellen 2 sind gleichermaßen ausgebildet sowie deren Abstände zu den Wärmeleitstäben 10. Die Wärmeleitstäbe 10 sind so angeordnet, dass einer Einzelzelle 2 mehrere Wärmeleitstäbe 10 hexagonal zugeordnet sind. Die äußeren, zum Gehäuse 3 hin angeordneten Einzelzellen 2 sind von weniger Wärmeleitstäben 10 umfasst, da diese Einzelzellen 2 vom Gehäuse 3 selbst durch die ausgebildeten Oberflächenstruktur gekühlt werden. Jeder Einzelzelle 2 sind hinsichtlich der Anordnung mindestens drei Wärmeleitstäbe 10 zugeordnet. Die Zwischenräume 9 sowie das Gehäuse 3 sind mit der Wärme leitfähigen sowie elektrisch isolierenden Vergussmasse 11 und/oder Schaum vollständig ausgefüllt .
Figur 3 zeigt eine Batterie 1 in einer Schnittdarstellung nach dem Stand der Technik. In dieser Figur ist eine Reihe von fünf parallel und/oder seriell miteinander verschalteten Einzelzellen 2 dargestellt. Die Einzelzellen 2 weisen im Bezug auf deren Längsachsen nach oben gerichtet Pole 5 auf. Jede Einzelzelle 2 weist an deren Boden eine gezielt ausgebildete Schwächung der Wandstärke, den so genannten Berstscheibenbereich 12, als eine definierte Bruchstelle auf. Die definierte Bruchstelle dient einem definierten Druckabbau bei einer Druckerhöhung in der Einzelzelle 2, beispielsweise durch Überladung und/oder Kurzschluss. Die Einzelzellen 2 sind zur effizienten Wärmeleitung auf die Wärmeleitplatte 7 aufgesetzt. Die Wärmeleitplatte 7 weist im jeweiligen Aufsetzbereich der Einzelzellen 2 so genannte Berstbohrungen 13 auf. Der Durchmesser der Berstbohrungen 13 ist gegenüber dem Durchmesser der Einzelzellen 2 geringer ausgebildet. Durch die Berstbohrungen 13 ist der wirksame Wärmeleitungsquerschnitt der Wärmeleitplatte 7 verringert.
Bei einem Vergussprozess, d. h. bei Einfüllen der Vergussmasse 11 und/oder des Schaums nach dem Stand der Technik sind die Berstbohrungen 13 mit nicht näher dargestellten Gummistopfen ausgefüllt, um ein Auslaufen der eingefüllten Vergussmasse 11 und/oder des Schaums zu vermeiden. Nach dem Aushärten der Masse 11 wird der Gummistopfen entfernt.
In Figur 4 ist ein weiteres mögliches Ausführungsbeispiel nach dem Stand der Technik zur Vermeidung des Auslaufens der Vergussmasse 11 und/oder des Schaums dargestellt. In dieser Ausführungsform ist zwischen Zellboden der Einzelzelle 2 und Wärmeleitplatte 7 (dem so genannten Vergussspalt) ein Einlegestück 14 zum Verhindern des Auslaufens der Vergussmasse 11 und/oder des Schaums angeordnet. Diese Maßnahme erweist sich als sehr aufwändig und wenig prozesssicher.
Figur 5 zeigt eine Schnittdarstellung eines Bodenbereichs einer Einzelzelle 2 einer erfindungsgemäßen Batterie 1. Die dargestellte Einzelzelle 2 weist an deren Zellenboden den Berstscheibenbereich 12 auf. Des Weiteren ist die Einzelzelle 2 auf die Wärmeleitplatte 7 aufgesetzt, welche in dem Aufsetzbereich der Einzelzelle 2 die Berstbohrung 13 aufweist. Dadurch ist ein definierter Druckabbau bei Explosion der Einzelzelle 2 realisierbar.
Die erfindungsgemäße Batterie 1 weist eine Abdeckung 15 der Wärmeleitplatte 7 auf, wobei die Abdeckung 15 zwischen Einzelzelle 2 und Wärmeleitplatte 7 angeordnet ist. Die Abdeckung 15 deckt die in Richtung der Einzelzellen 2 gerichtete Fläche der Wärmeleitplatte 7 vollständig ab und ist vorzugsweise als Folie ausgebildet, welche eine Wärme leitende Eigenschaft aufweist. Durch die Anordnung der Abdeckung 15 ist der wirksame Wärmeleitungsquerschnitt vorteilhaft vergrößert, da durch vollständige Abdeckung der Berstbohrungen 13 auch in diesem Bereich über die Abdeckung 15 die Wärme abgeleitet werden kann. Die Abdeckung 15 ist auf der Wärmeleitplatte 7 stoffschlüssig befestigt, insbesondere geklebt. Vorzugsweise weist die Abdeckung 15 an der Unterseite eine selbstklebende Schicht auf. Das Aufkleben der Abdeckung 15 erfolgt vor dem Einsetzen der Einzelzellen 2, der Wärmeleitstäbe 10 sowie vor dem Vergussprozess .
Eine Alternative zu der als selbstklebende Folie ausgebildeten Abdeckung 15 ist eine becherartige Ausführung. Dabei ist die Abdeckung 15 in den Aufsetzbereich der Einzelzelle 2 zwischen den hexagonal angeordneten Wärmeleitstäben 10 angeordnet. Dadurch ist kein Kleben erforderlich.
Für eine Sicherstellung des Aufreißens der Abdeckung 15 beim Bersten weist diese zumindest im Berstscheibenbereich 12 einen geringen mechanischen Widerstand auf. Der mechanische Widerstand der Abdeckung 15 ist bei Auslegung des Berstscheibenbereiches 12 im Zellboden berücksichtigt und stellt einen definierten Druckabbau sicher.
Um Kriechströme zwischen den Einzelzellen 2 und der abgedeckten Wärmeleitplatte 7 zu vermeiden, weist die Abdeckung 15 zusätzlich eine elektrisch isolierende Eigenschaft auf. Dadurch ist ein Lackieren der Wärmeleitstäbe 10, die auf die Abdeckung 15 aufgesetzt sind, nicht notwendig.
Als besonders vorteilhaft erweist sich die Abdeckung 15 beim Vergussprozess . Hierbei wird Vergussmasse 11 und/oder Schaum in die Zwischenräume 9 der Einzelzellen 2 sowie in die Zwischenräume 9 der Einzellzellen 2 und des Gehäuses 3 eingefüllt. Mittels der Abdeckung 15 wird ein Auslaufen der Masse 11 verhindert.
Die Vergussmasse 11 und/oder der Schaum weisen bevorzugt eine elektrisch isolierende sowie Wärme leitende Eigenschaft auf. Als Vergussmasse 11 sind beispielsweise Polyurethan-Schäume, Epoxidharze und/oder Silikone in die Zwischenräume 9 eingefüllt .
Zusätzlich sind für eine effiziente Wärmeleitung in den Zwischenräumen 9 der Einzelzellen 2 Wärmeleitstäbe 10 einsetzbar. Dabei ist die Wärme leitende Anbindung der Einzelzellen 2 an die Wärmeleitstäbe 10 mittels der Vergussmasse 11 und/oder des Schaums realisiert.
Eine weitere mögliche Ausgestaltung der erfindungsgemäßen Batterie 1 mit Wärmeleitplatte 7 ist in Figur 6 dargestellt. Gegenüber der in Figur 5 dargestellten Abdeckung 15 weist diese nach dem Ausfϋhrungsbeispiel zu Figur 6 zur Unterstützung des definierten Aufreißens der Abdeckung 15 im Bereich der Berstbohrung 13 Sollbruchstellen 16 in Form von Kerben auf.
Figur 7 zeigt eine weitere Ausführungsform der erfindungsgemäßen Batterie 1 mit Abdeckung der Wärmeleitplatte 7.
Für einen definierten Druckabbau bei Explosion der Einzelzelle 2 weist die Abdeckung 15 zusätzlich einen geringen mechanischen Widerstand auf. Hierzu weist die Abdeckung 15 im Ausführungsbeispiel nach Figur 7 zumindest im Bereich der Berstbohrung 13 eine geringere Dicke auf als im Bereich außerhalb der Berstbohrung 13. Die Dicke der Abdeckung 15 wird bei der Auslegung des Berstscheibenbereichs 12 berücksichtigt.
In Figur 8 ist ein Bodenbereich einer Einzellzelle 2 der erfindungsgemäßen Batterie 1, welche die Abdeckung 15 der Wärmeleitplatte 7 mit Berstbohrungen 13 aufweist, dargestellt. Dabei sind zusätzlich für eine Einstellung eines vorgebbaren Mindestabstandes zwischen Einzelzelle 2 und abgedeckter Wärmeleitplatte 7 zur Erhöhung der elektrischen Isolation vorzugsweise Einlegestücke 14 angeordnet. Diese Einlegestücke 14 sind bevorzugt am Zellboden befestigt, beispielsweise geklebt. Des Weiteren sind die Einlegestücke 14 aus Kunststoff gebildet. Daimler AG
Bezugszeichenliste
1 Batterie
2 Einzelzellen
3 Gehäuse
4 Kühlrippen
5 Pole
6 Ummantelung
7 Wärmeleitplatte
8 Anschluss für Wärmeleitmedium
9 Zwischenräume
10 Wärmeleitstäbe
11 Vergussmasse
12 Berstscheibenbereich
13 Berstbohrung
14 Einlegestück
15 Abdeckung
16 Sollbruchstelle

Claims

Daimler AGPatentansprüche
1. Batterie (1) mit einer bodenseitig angeordneten Wärmeleitplatte (7) zum Temperieren der Batterie (1), wobei die Batterie (1) mehrere parallel und/oder seriell miteinander verschaltete Einzelzellen (2) aufweist, die Wärme leitend mit der Wärmeleitplatte (7) verbunden sind, wobei die Einzelzellen (2) in Längsrichtung eine Wärme leitfähige Ummantelung (6) aufweisen, wobei die Einzelzellen (2) auf die Wärmeleitplatte (7) mit den Längsachsen parallel zueinander aufgesetzt sind, wobei die Wärmeleitplatte (7) jeweils in einem Aufsetzbereich der Einzelzellen (2) Bohrungen (13) aufweist, wobei der Durchmesser der Bohrungen (13) kleiner als der der Einzelzellenböden ausgebildet ist, dadurch gekennzeichnet, dass zwischen Einzelzellen (2) und Wärmeleitplatte (7) eine Abdeckung (15) angeordnet ist, welche die Wärmeleitplatte (7) in Richtung der Einzelzellen (2) vollständig abdeckt.
2. Batterie nach Anspruch 1 dadurch gekennzeichnet, dass die Abdeckung (15) eine Wärme leitende Eigenschaft aufweist .
3. Batterie nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Abdeckung (15) einen geringen mechanischen Widerstand aufweist .
4. Batterie nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Abdeckung (15) elektrisch isoliert.
5. Batterie nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zwischen Einzelzelle (2) und Abdeckung (15) Einlegestücke (14) angeordnet sind.
6. Batterie nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Batterie (1) von einem Gehäuse (3) mit Seitenwänden und einem Boden umgeben ist, wobei die Wärmeleitplatte (7) den Boden des Gehäuses (3) bildet.
7. Batterie nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass im jeweiligen Zwischenraum (9) der Einzelzellen (2) in Längsrichtung ableitende Wärmeleitstäbe (10) angeordnet sind.
8. Batterie nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Zwischenraum (9) zwischen Einzelzellen (2) und Abdeckung (15) mit einer Vergussmasse (11) und/oder Schaum ausgegossen ist.
9. Batterie nach Anspruch 1 bis 8, dadurch gekennzeichnet, dass das Gehäuse (3) mit einer Vergussmasse (11) und/oder Schaum ausgegossen sind.
10. Batterie nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Zwischenräume (9) zwischen den Einzelzellen (2) vollständig mit einer Vergussmasse (11) und/oder Schaum ausgefüllt sind.
11. Batterie nach Anspruch 8, 9 oder 10, dadurch gekennzeichnet, dass die Vergussmasse (11) und/oder der Schaum stark Wärme leitend sind.
12. Batterie nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass die Vergussmasse (11) und/oder der Schaum elektrisch isolieren.
13. Batterie nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Batterie (1) eine Fahrzeugbatterie, insbesondere für ein Fahrzeug mit Hybridantrieb oder ein mit Brennstoffzellen betriebenes Fahrzeug ist.
PCT/EP2008/009852 2007-12-20 2008-11-21 Batterie mit mehreren paralell und/oder seriell miteinander verschalteten einzelzellen und einer wärmeleitplatte zum temperieren der batterie WO2009080166A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710063174 DE102007063174B4 (de) 2007-12-20 2007-12-20 Batterie mit mehreren parallel und/oder seriell miteinander verschalteten Einzelzellen und einer Wärmeleitplatte zum Temperieren der Batterie und Verwendung der Batterie
DE102007063174.1 2007-12-20

Publications (1)

Publication Number Publication Date
WO2009080166A1 true WO2009080166A1 (de) 2009-07-02

Family

ID=40382939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/009852 WO2009080166A1 (de) 2007-12-20 2008-11-21 Batterie mit mehreren paralell und/oder seriell miteinander verschalteten einzelzellen und einer wärmeleitplatte zum temperieren der batterie

Country Status (2)

Country Link
DE (1) DE102007063174B4 (de)
WO (1) WO2009080166A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077245A1 (fr) * 2017-10-17 2019-04-25 Blue Solutions Module de stockage d'énergie électrique à résistance de fuite intégrée
US10483510B2 (en) 2017-05-16 2019-11-19 Shape Corp. Polarized battery tray for a vehicle
US10632857B2 (en) 2016-08-17 2020-04-28 Shape Corp. Battery support and protection structure for a vehicle
US10661646B2 (en) 2017-10-04 2020-05-26 Shape Corp. Battery tray floor assembly for electric vehicles
US10886513B2 (en) 2017-05-16 2021-01-05 Shape Corp. Vehicle battery tray having tub-based integration
CN112889176A (zh) * 2018-09-13 2021-06-01 帝威尼梅吉克股份公司 具有用作散热器的底板的电池模块
US11088412B2 (en) 2017-09-13 2021-08-10 Shape Corp. Vehicle battery tray with tubular peripheral wall
US11155150B2 (en) 2018-03-01 2021-10-26 Shape Corp. Cooling system integrated with vehicle battery tray
US11211656B2 (en) 2017-05-16 2021-12-28 Shape Corp. Vehicle battery tray with integrated battery retention and support feature
US11214137B2 (en) 2017-01-04 2022-01-04 Shape Corp. Vehicle battery tray structure with nodal modularity
US11688910B2 (en) 2018-03-15 2023-06-27 Shape Corp. Vehicle battery tray having tub-based component

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5509684B2 (ja) * 2009-06-03 2014-06-04 ソニー株式会社 電池パック
DE102009048236A1 (de) * 2009-10-05 2011-04-21 Li-Tec Battery Gmbh Elektrochemische Zelle
DE102010013012A1 (de) * 2010-03-26 2011-09-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Energiespeicher für ein Kraftfahrzeug
DE102010023940A1 (de) 2010-06-16 2011-12-22 E-Wolf Gmbh Verfahren zur Herstellung einer elektrochemischen Energiespeichereinrichtung und elektrochemische Energiespeichereinrichtung
FR2962261B1 (fr) * 2010-07-02 2013-08-02 Saft Groupe Sa Batterie de generateurs electrochimiques comprenant une mousse comme materiau de remplissage entre generateurs
DE102010046530B4 (de) * 2010-09-24 2022-11-03 Volkswagen Ag Akkumulatormodul
FR2992775B1 (fr) * 2012-07-02 2014-10-31 Valeo Equip Electr Moteur Stockeur d'energie electrique et procede de fabrication correspondant
FR3002815B1 (fr) * 2013-03-01 2015-03-06 Accumulateurs Fixes Dispositif de securite pour une batterie de generateurs electrochimiques au lithium
US9412985B2 (en) 2013-03-15 2016-08-09 Saft Safety device for a lithium electrochemical generator battery
EP2962340B1 (de) * 2013-03-01 2016-12-07 Saft Sicherheitsvorrichtung für eine batterie von elektrochemischen lithiumgeneratoren
DE102013215007A1 (de) * 2013-07-31 2015-02-05 Robert Bosch Gmbh Akkumulator mit gewickelter Elektrodenkonfiguration und optimierter Wärmeableitung
AT515312B1 (de) * 2014-01-28 2015-08-15 Avl List Gmbh Batteriemodul
DE102014106852A1 (de) 2014-05-15 2015-11-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriemodul
US20160093851A1 (en) * 2014-09-30 2016-03-31 Johnson Controls Technology Company Battery module with individually restrained battery cells
US9853263B2 (en) * 2014-11-10 2017-12-26 Ford Global Technologies, Llc Battery assembly including structural foamed materials
DE102016200082A1 (de) * 2016-01-07 2017-07-13 Robert Bosch Gmbh Verfahren zur Herstellung eines Batteriepacks und Batteriepack
EP3847712A1 (de) * 2018-09-07 2021-07-14 Covestro LLC Vorrichtung zur kühlung von batteriezellen
DE102019130378A1 (de) * 2019-11-11 2021-05-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Fügen einer elektrischen Zelle und elektrischer Speicher

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006108529A1 (de) * 2005-04-15 2006-10-19 Daimlerchrysler Ag Flüssigkeitsgekühlte batterie und verfahren zum betreiben einer solchen
EP1835251A1 (de) * 2006-02-22 2007-09-19 Behr GmbH & Co. KG Vorrichtung zur Kühlung elektrischer Elemente
WO2007118437A1 (de) * 2006-04-19 2007-10-25 Temic Automotive Electric Motors Gmbh Wärmetauscher für energiespeicher

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4013269A1 (de) * 1990-04-26 1991-10-31 Abb Patent Gmbh Hochtemperaturspeicherbatterie
DE19724020A1 (de) * 1996-06-06 1998-01-02 Furukawa Electric Co Ltd Wärmestrahlungsgerät mit Wärmerohr für Energiespeicherbatteriegeräte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006108529A1 (de) * 2005-04-15 2006-10-19 Daimlerchrysler Ag Flüssigkeitsgekühlte batterie und verfahren zum betreiben einer solchen
EP1835251A1 (de) * 2006-02-22 2007-09-19 Behr GmbH & Co. KG Vorrichtung zur Kühlung elektrischer Elemente
WO2007118437A1 (de) * 2006-04-19 2007-10-25 Temic Automotive Electric Motors Gmbh Wärmetauscher für energiespeicher

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11660950B2 (en) 2016-08-17 2023-05-30 Shape Corp. Battery support and protection structure for a vehicle
US10632857B2 (en) 2016-08-17 2020-04-28 Shape Corp. Battery support and protection structure for a vehicle
US11273697B2 (en) 2016-08-17 2022-03-15 Shape Corp. Battery support and protection structure for a vehicle
US11214137B2 (en) 2017-01-04 2022-01-04 Shape Corp. Vehicle battery tray structure with nodal modularity
US10886513B2 (en) 2017-05-16 2021-01-05 Shape Corp. Vehicle battery tray having tub-based integration
US11211656B2 (en) 2017-05-16 2021-12-28 Shape Corp. Vehicle battery tray with integrated battery retention and support feature
US10483510B2 (en) 2017-05-16 2019-11-19 Shape Corp. Polarized battery tray for a vehicle
US11691493B2 (en) 2017-05-16 2023-07-04 Shape Corp. Vehicle battery tray having tub-based component
US11088412B2 (en) 2017-09-13 2021-08-10 Shape Corp. Vehicle battery tray with tubular peripheral wall
US10960748B2 (en) 2017-10-04 2021-03-30 Shape Corp. Battery tray floor assembly for electric vehicles
US11267327B2 (en) 2017-10-04 2022-03-08 Shape Corp. Battery tray floor assembly for electric vehicles
US10661646B2 (en) 2017-10-04 2020-05-26 Shape Corp. Battery tray floor assembly for electric vehicles
US11787278B2 (en) 2017-10-04 2023-10-17 Shape Corp. Battery tray floor assembly for electric vehicles
WO2019077245A1 (fr) * 2017-10-17 2019-04-25 Blue Solutions Module de stockage d'énergie électrique à résistance de fuite intégrée
US11155150B2 (en) 2018-03-01 2021-10-26 Shape Corp. Cooling system integrated with vehicle battery tray
US11688910B2 (en) 2018-03-15 2023-06-27 Shape Corp. Vehicle battery tray having tub-based component
CN112889176A (zh) * 2018-09-13 2021-06-01 帝威尼梅吉克股份公司 具有用作散热器的底板的电池模块

Also Published As

Publication number Publication date
DE102007063174B4 (de) 2010-02-25
DE102007063174A1 (de) 2009-06-25

Similar Documents

Publication Publication Date Title
DE102007063174B4 (de) Batterie mit mehreren parallel und/oder seriell miteinander verschalteten Einzelzellen und einer Wärmeleitplatte zum Temperieren der Batterie und Verwendung der Batterie
DE102007010742B4 (de) Zellverbund einer Batterie, Batterie und deren Verwendung
EP2130416B1 (de) Leiterplattenschutz für eine batterie
EP2220719B1 (de) Batterie mit einem gehäuse und einer wärmeleitplatte
DE102008034699B4 (de) Batterie mit mehreren Batteriezellen
EP1835251B1 (de) Vorrichtung zur Kühlung elektrischer Elemente
DE102008034860B4 (de) Batterie mit einem Batteriegehäuse und einer Wärmeleitplatte zum Temperieren der Batterie
DE102007063178B4 (de) Batterie mit Wärmeleitplatte zum Temperieren der Batterie
DE102008059971A1 (de) Batterie, insbesondere Fahrzeugbatterie und Verfahren zu dessen Herstellung
DE102007010744B4 (de) Batteriezelle einer Batterie, Zellverbund aus Batteriezellen und Verwendung mehrerer Zellen
DE102007063179A1 (de) Batterie als Flachzellenverbund mit einer Wärmeleitplatte
DE102008010838A1 (de) Batterie mit einem Batteriegehäuse und einer Wärmeleitplatte zum Temperieren der Batterie
DE102008059960B4 (de) Verfahren zur Herstellung einer Batterie, nach dem Verfahren hergestellte Batterie und Batterieverbund aus zwei derartigen Batterien
DE102008034873A1 (de) Batterie, insbesondere Fahrzeugbatterie
DE102011013618A1 (de) Energiespeichervorrichtung
WO2011154193A1 (de) Batterie mit temperaturerfassung, sowie verwendung einer derartigen batterie
DE102007017018A1 (de) Überbrückung defekter Zellen bei Batterien
EP2481124A1 (de) Isolationsvorrichtung und verfahren zur herstellung einer isolationsvorrichtung
DE102008034856A1 (de) Batterie mit einem Batteriegehäuse und einer Wärmeleitplatte zum Temperieren der Batterie
WO2010012338A1 (de) Batterie, insbesondere fahrzeugbatterie
DE102011101022A1 (de) Batteriepaket, Anordnung zur Halterung und Verfahren zur Herstellung eines Batteriepakets
WO2009103466A1 (de) Batterie mit einer in einem batteriegehäuse angeordneten wärmeleitplatte zum temperieren der batterie und verfahren zur herstellung einer batterie
DE102008034870B4 (de) Batterie mit mehreren Batteriezellen und Verfahren zur Herstellung einer Batterie
DE102012224330A1 (de) Elektrische Akkumulatorvorrichtung mit elastischen Elementen
DE102016210884A1 (de) Batteriemodul einer Batterie, Batterie und Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08864410

Country of ref document: EP

Kind code of ref document: A1