WO2009103466A1 - Batterie mit einer in einem batteriegehäuse angeordneten wärmeleitplatte zum temperieren der batterie und verfahren zur herstellung einer batterie - Google Patents

Batterie mit einer in einem batteriegehäuse angeordneten wärmeleitplatte zum temperieren der batterie und verfahren zur herstellung einer batterie Download PDF

Info

Publication number
WO2009103466A1
WO2009103466A1 PCT/EP2009/001052 EP2009001052W WO2009103466A1 WO 2009103466 A1 WO2009103466 A1 WO 2009103466A1 EP 2009001052 W EP2009001052 W EP 2009001052W WO 2009103466 A1 WO2009103466 A1 WO 2009103466A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
conducting plate
heat conducting
heat
encapsulated electronic
Prior art date
Application number
PCT/EP2009/001052
Other languages
English (en)
French (fr)
Inventor
Jens Meintschel
Dirk Schröter
Original Assignee
Daimelr Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimelr Ag filed Critical Daimelr Ag
Publication of WO2009103466A1 publication Critical patent/WO2009103466A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Battery with a arranged in a battery housing heat conducting plate for temperature control of the battery and method for producing a battery
  • the invention relates to a battery having a heat conducting plate arranged in a battery housing for tempering the battery according to the preamble of claim 1 and a method for producing a battery according to the preamble of claim 13.
  • batteries especially high-performance batteries for mild hybrid drives, cooled to dissipate heat loss.
  • the cooling is often, especially for reasons of space, realized by the vehicle air conditioning.
  • a refrigerant of the vehicle air conditioner is passed through a cooling plate provided with cooling channels (also called heat conduction plate or evaporator plate) and outputs a stored cold to this.
  • a connection of the cooling plate to individual cells of the battery is z. B. over heat conducting foil or potting compound.
  • a battery housing due to design often can not run completely tight, it may be due to outside air pressure fluctuations and an expansion of the air inside the housing in temperature fluctuations to an exchange of air with the Environment come. Especially on cold components of the battery cooling can form condensation. This can lead to short circuits and electrochemical corrosion.
  • the invention is therefore based on the object to provide an improved battery with a arranged in a battery housing heat conducting plate for temperature control of the battery and a method for producing a battery, which overcome in particular the disadvantages listed in the prior art.
  • the object is achieved by the features specified in claim 1.
  • the object is achieved by the features specified in claim 13.
  • the battery according to the invention with a arranged in a battery housing heat conduction plate for temperature control of the battery a plurality of electrically parallel and / or serially interconnected single cells heat conductively connected to the heat conducting plate and attached thereto.
  • the battery is characterized in that at least one electronic component is designed as an encapsulated electronic component, which is fastened to the heat-conducting plate inside the housing.
  • the encapsulated electronic assembly is arranged on the underside and / or underside on the heat conduction plate, wherein at an upper side of the heat conduction plate arranged encapsulated electronic assembly and underside of the heat conducting arranged single cells, the encapsulated electronic assembly in terms of length and / or width extent at least is equal to or smaller than the heat conducting plate.
  • the encapsulated electronic component is at least as large or smaller than a cell assembly of the individual cells in terms of height and / or width extension. From the optional arrangement of the encapsulated electronic assembly results in a simple adaptation of an external shape of the battery to its installation location.
  • the components arranged in the housing interior of the battery which comprise at least the individual cells, the heat-conducting plate and at least one encapsulated electronic component, are at least partially or substantially completely provided with a common protective layer, which is provided in the method for producing the battery the final assembly of the battery is applied in particular by means of a dipping process and / or spraying process.
  • the protective layer is preferably formed from an electrically insulating and / or thermally conductive material, in particular from a lacquer and / or silicone.
  • the protective layer can be applied in very thin layers, resulting in a low material and cost. Furthermore, thereby possible with a thermal expansion of the protective layer associated risks of damage to the inside of the housing arranged components and thus technical failures of the battery can be avoided.
  • the application of the protective layer as Paint and / or silicone layer before the final assembly of the battery in addition to ensuring that all arranged in the battery case components are protected against moisture ingress and electrically isolated from each other in a simple manner.
  • the protective layer is thermally conductive, so that a heat generated by those in the battery housing components generated heat is effectively dissipated.
  • the battery housing is formed from a lower housing part and an upper housing part fastened thereto, wherein the heat-conducting plate and / or the encapsulated electronic modules are detachably fastened in the housing interior during the final assembly of the battery.
  • the battery housing is provided with recesses through which connection elements of the heat-conducting plate and / or the encapsulated electronic module, in particular a high-voltage plug and / or cooling channel connections protrude outwards. This makes it possible to connect the battery in a simple manner electrically and with a cooling medium circuit.
  • Fig. 2 shows schematically the components of the battery according to Figure 1 in mounted
  • FIG. 3 shows schematically components of the battery according to Figure 1 in mounted
  • Fig. 4 shows schematically an exploded view of a battery with in
  • FIG. 5 schematically shows an exploded view of the battery according to FIG. 4 in a second view
  • FIG. 6 shows a schematic representation of a sectional view of a heat conducting plate arranged in a battery housing and components of the battery attached thereto
  • Fig. 7 schematically shows a plan view of the arranged in the battery case
  • Fig. 8 shows schematically a battery from a first perspective
  • FIG. 9 shows schematically the battery according to FIG. 8 from a second perspective.
  • FIG. 1 shows an exploded view of components of a battery B for arrangement inside the housing.
  • the components are, in particular, individual cells 1, a heat-conducting plate 2 and at least one encapsulated electronic structural unit 3, 4.
  • a plurality of individual cells 1 are arranged on the heat-conducting plate 2 provided on the head side for cooling and form a cell composite.
  • the heat conducting plate 2 is alternatively arranged on the bottom side of the individual cells 1 or a further heat conducting plate 2 on the bottom side of the individual cells 1.
  • the individual cells 1 can be used as round cells, flat cells or in other cell forms, eg. B. polygonal or oval, executed. Due to the illustrated honeycomb formation of Einzellen 1 a base of the battery B is used space-optimized.
  • each individual cell 1 shown in detail in Figure 6 in holes 2.1, which are arranged in the heat conduction plate 2 as through holes introduced and protrude into the heat conduction plate 2 into or through it.
  • the individual cells 1 are electrically connected in parallel and / or in series depending on a desired battery voltage and power.
  • the cell connectors 6 are connected with fastening means 7 with the poles P of the individual cells 1, wherein the fastening means 7 are formed for example as screws, rivets or clamping connections.
  • the poles P of the individual cells 1 preferably each have an opening O corresponding to the fastening means 7, so that the individual cells 1 are fixed to the heat-conducting plate 2 by means of the fastening means 7 and the cell connectors 6.
  • the use of screws as fastening means 7 may be mentioned, in which the openings O are designed as internal threads corresponding to the screws.
  • electronic components for cell voltage monitoring and / or for battery control are designed as encapsulated electronic units 3 and 4, respectively.
  • These encapsulated electronic units 3, 4 may be arranged on the upper and / or lower side of the heat conducting plate 2.
  • spacers 8 with bores 8.1 arranged therein are provided for fastening the one encapsulated electronic component 3 to an upper side OS of the heat-conducting plate 2.
  • flag-like protrusions 3.1 are also formed with holes 3.2, through the fastener 9, z.
  • screws, rivets or clamping connections, in the bores 8.1 of the spacer elements 8 are guided.
  • the arranged in the spacer elements 8 holes 8.1 correspond in shape and size with the fasteners 9, so that, for example, a screw as a fastener 9 engages in a running as an internal thread bore 8.1.
  • the height extent of the spacer elements 8 is greater than the height of the projecting over the surface OS of the heat plate 2 Pole P 1 of the cell connector 6 and the fastening means 7 is formed so that the encapsulated electronic module 3 with sufficient distance to the poles P of the individual cells 1 and . Is fixed to the Zellverbindem 6 on the upper side OS of the heat conducting plate 2.
  • the encapsulated electronic module 3 in terms of length and / or width is at least equal to or smaller than the heat conducting 2, so that a compact Construction of the battery B is achieved.
  • the heat conduction plate 2 For attachment of the other encapsulated electronic module 4 laterally below the heat conduction plate 2, the heat conduction plate 2 is formed in their length greater than the attached cell composite, so that arranged on a supernatant of the heat conduction plate 2 more holes 2.3 for mounting the encapsulated electronic unit 4 are. At the same distance as the holes 2.3 holes 4.1 are also arranged in the encapsulated electronic module 4, which in turn correspond in shape and size with the fasteners 10 used, so that a secure attachment of the encapsulated electronic unit 4 to the heat conducting 2 is possible.
  • the encapsulated electronic assembly 4 preferably corresponds to the dimensions of the cell assembly or is smaller than this in terms of their length and width dimension, in turn, to achieve a compact design of the battery B.
  • the heat-conducting plate 2 is recessed in the region of the supernatant at two corners such that a first pole P1 and a last pole P2 of the cell assembly can be electrically connected to the encapsulated electronic assembly 4 by means of angled cell connectors 11.
  • the encapsulated electronic assemblies 3, 4 in other arrangements on the heat conduction plate 2 can be fastened.
  • the encapsulated electronic assemblies 3, 4 in particular opposite to each other at the end faces, the longitudinal sides and / or be attached to the top and bottom of the cell assembly to the heat conduction plate 2 and / or to the individual cells 1 of the cell network.
  • one or more connecting elements are arranged on the encapsulated electronic components 3, 4, which serve to supply the cell assembly with electrical energy, remove it from the cell assembly and / or control supply and / or removal of the energy.
  • a high-voltage plug 5 is arranged on the encapsulated electronic component 4 as a possible connection element. This is so electrically connected to the encapsulated electronic module 4 that the cell assembly or the battery B controlled electrical energy can be supplied or removed.
  • cooling duct connections 2.5 for flowing through the heat-conducting plate 2 with a cooling medium are arranged on a side opposite the high-voltage plug 5 on the heat-conducting plate 2 as further connection elements, cooling channels (not shown) being provided in the heat-conducting plate 2 for guiding the cooling medium.
  • the cooling medium may in particular be a refrigerant of a vehicle air conditioning system, the heat conducting plate 2 being connectable by means of the cooling channel connections 2.5 to a refrigerant circuit of the vehicle air conditioning system and thus being able to absorb an emitted heat of the individual cells 1 and the encapsulated electronic assemblies 3, 4.
  • the heat conducting plate 2 may alternatively or additionally be connected to a separate cooling circuit, not shown.
  • FIG. 2 and FIG. 3 show the components of the battery B according to FIG. 1 in the assembled state from two different perspectives.
  • Figure 4 and Figure 5 show exploded views of the battery B with arranged inside the housing components of the battery B in two views.
  • the battery housing 12 is preferably formed from an upper housing part 12.1 and a lower housing part 12.2.
  • the assembled components are in the process for producing the battery B before attachment in the battery case 12 initially provided with a common protection layer S shown in more detail at least partially or as shown, substantially completely.
  • This protective layer S is in particular made of an electrically insulating and / or thermally conductive material, for example of a lacquer and / or of silicone, and is applied in an injection process and / or a dipping process to all components which are arranged inside the housing.
  • the protective layer S preferably also surrounds their electrical connections, so that they are effectively protected against ingress of moisture.
  • the heat conducting plate 2 and the components arranged thereon are fastened in the battery housing 12, wherein the attachment in the embodiment shown is effected in particular in the housing lower part 12.2.
  • both the heat conducting plate 2 and the lower housing part 12.2 bores 2.4, 12.21, so that by means of fastening means 13, a fixation of the heat conducting plate 2 and the components arranged thereon is made possible.
  • the fastening means 13 are preferably screws, so that a detachable connection is achieved and a disassembly of the battery B is made possible in their individual components.
  • Fixing means 7, 9, 10 and 13 for fixing the single cells 1, the encapsulated electronic assemblies 3, 4 and the heat conducting 2 in the battery housing 12 made equal, so that a high degree of common parts is achieved, resulting in a low cost leads. Furthermore, the fastening means 7, 9, 10 and 13 are advantageously designed such that a releasable attachment is formed, so that in case of failure of the battery B only defective components are replaced, whereby a costly replacement of the entire battery B is omitted.
  • connection elements for a lead out of the connection elements, in particular of the high-voltage connector 5 and the cooling channel connections 2.5 12.22, 12.23 are arranged on the lower housing part to these corresponding recesses.
  • a non-illustrated seal which z. B. is formed from a sealant or a rubber seal, applied, so that a sealed version of the battery case 12 is achieved and penetration of foreign substances into the battery case 12 and leakage of substances from the battery case 12 is avoided.
  • the sectional illustration of the heat-conducting plate 2 fastened in the battery housing 12 and the components fastened thereto clarify, in particular, the arrangement of the protective layer S applied to the components and the passage of the poles P through the holes 2.1 of the heat-conducting plate 2 and the attachment thereto.
  • the protective layer S comprises all arranged in the battery case 12 components and is introduced by the dipping and / or injection process in all hard to reach spaces between the individual components. This results in a comprehensive isolation of the components and penetration of foreign substances into the components is effectively avoided.
  • FIG. 7 shows a top view of the heat-conducting plate 2 according to FIG. 6 arranged in the battery housing 12.
  • Figures 8 and 9 show the fully assembled battery B from two different perspectives.
  • a seal between in the final assembly of the battery B on the Lower housing part 12.2 mounted upper housing part 12.1 and the lower housing part 12.2 is preferably arranged a seal, not shown.
  • This seal may for example be designed as an adhesive, which also serves to attach the upper housing part 12.1 to the lower housing part 12.2.
  • the upper housing part 12.1 may also be secured by means of a detachable connection, for example a screw on the lower housing part 12.2, in which case preferably a reusable seal between the upper housing part 12.1 and the lower housing part 12.2 is arranged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

Die Erfindung betrifft eine Batterie (B) mit einer in einem Batteriegehäuse (12) angeordneten Wärmeleitplatte (2) zum Temperieren der Batterie (B), wobei mehrere elektrisch parallel und/oder seriell miteinander verschaltete Einzelzellen (1) Wärme leitend mit der Wärmeleitplatte (2) verbunden sowie an dieser befestigt sind. Dabei ist zumindest ein elektronisches Bauelement als eine gekapselte elektronische Baueinheit (3, 4) ausgebildet, die im Gehäuseinneren an der Wärmeleitplatte (2) befestigt ist. Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung einer Batterie (B).

Description

Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie und Verfahren zur Herstellung einer Batterie
Die Erfindung betrifft eine Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie gemäß dem Oberbegriff des Anspruchs 1 und ein Verfahren zur Herstellung einer Batterie gemäß dem Oberbegriff des Anspruchs 13.
Üblicherweise werden Batterien, insbesondere Hochleistungsbatterien für Mild-Hybrid- Antriebe, gekühlt, um eine entstehende Verlustwärme abzuführen. Die Kühlung wird häufig, insbesondere aus Bauraumgründen, durch die Fahrzeugklimaanlage realisiert. Dabei wird ein Kältemittel der Fahrzeugklimaanlage durch eine mit Kühlkanälen versehene Kühlplatte (auch Wärmeleitplatte oder Verdampferplatte genannt) geleitet und gibt eine gespeicherte Kälte an diese ab. Eine Anbindung der Kühlplatte an Einzelzellen der Batterie erfolgt z. B. über Wärmeleitfolie oder Vergussmasse.
Aus der P810645/DE/1 (Amtl. Az. 10 2007 063 178.4) ist eine Batterie mit einem Batteriegehäuse und einer Wärmeleitplatte zum Temperieren der Batterie bekannt, wobei die Batterie mehrere parallel und/oder seriell miteinander verschaltete Einzelzellen aufweist, die Wärme leitend mit der Wärmeleitplatte verbunden sind, wobei die Wärmeleitplatte im Bereich der Pole der Einzelzellen Bohrungen und/oder Einschnitte aufweist, in oder durch welche die Pole hinein- bzw. hindurchragen. Die Einzelzellen sind über die zugehörigen Pole mittels einer vorgespannten Verbindung von in oder auf den Polen form- und kraftschlüssig angeordneten Befestigungsmitteln jeweils an der Wärmeleitplatte befestigt.
Da sich ein Batteriegehäuse konstruktionsbedingt häufig nicht vollständig dicht ausführen lässt, kann es durch Außenluftdruckschwankungen und eine Ausdehnung der Luft im Gehäuseinneren bei Temperaturschwankungen zu einem Luftaustausch mit der Umgebung kommen. Besonders an kalten Bauteilen der Batteriekühlung kann sich dabei Kondenswasser bilden. Dieses kann zu Kurzschlüssen und zu elektrochemischer Korrosion führen.
Deshalb ist aus der P810645/DE/1 (Amtl. Az. 10 2007 063 178.4) weiterhin bekannt, innerhalb des Gehäuses in dem Zwischenraum zwischen der Wärmeleitplatte und den Einzelzellen sowie zwischen den Einzelzellen eine elektrisch isolierende und wärmeleitfähige Vergussmasse und/oder einen elektrisch isolierenden sowie wärmeleitfähigen Schaum anzuordnen. Nachteilig ist jedoch, dass eine Wärmeausdehnung der Vergussmasse oder des Schaumes zu mechanischen Beschädigungen der empfindlichen Einbauteile der Batterie führen kann.
Weiterhin ist eine Abschirmung sämtlicher korrosionsgefährdeter Einbauteile der Batterie mittels Vergussmasse oder elektrisch isolierendem sowie wärmeleitfähigem Schaum nur mit einem relativ großen Aufwand umsetzbar. Außerdem entstehen durch eine große erforderliche Menge der einzusetzenden Vergussmasse oder des Schaumes hohe Kosten. Ventingkanäle, welche einer Abführung eines entstehenden Gases bei platzenden Einzelzellen dienen, sind nur schwer darzustellen. Derartige Teilvergüsse des Moduls eines Batteriemanagement-Systems und des Zellblocks vor der Montage der Batterie haben zudem den Nachteil, dass die elektrischen Verbindungen zwischen den Teilen weiterhin ungeschützt sind.
Der Erfindung liegt daher die Aufgabe zugrunde, eine verbesserte Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie und ein Verfahren zur Herstellung einer Batterie anzugeben, welche insbesondere die im Stand der Technik aufgeführten Nachteile überwinden.
Hinsichtlich der Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie wird die Aufgabe erfindungsgemäß durch die im Anspruch 1 angegebenen Merkmale gelöst. Hinsichtlich des Verfahrens zur Herstellung einer Batterie wird die Aufgabe erfindungsgemäß durch die im Anspruch 13 angegebenen Merkmale gelöst.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche. Bei der erfindungsgemäßen Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie sind mehrere elektrisch parallel und/oder seriell miteinander verschaltete Einzelzellen Wärme leitend mit der Wärmeleitplatte verbunden sowie an dieser befestigt. Die Batterie zeichnet sich erfindungsgemäß dadurch aus, dass zumindest ein elektronisches Bauelement als eine gekapselte elektronische Baueinheit ausgebildet ist, die im Gehäuseinneren an der Wärmeleitplatte befestigt ist. Durch die Befestigung der des elektronischen Bauelementes in dem Batteriegehäuse wird in vorteilhafter Weise eine Handhabbarkeit der Batterie und ein Einbau dieser, beispielsweise in einem Fahrzeug, ist vereinfacht.
In einer Weiterbildung der Erfindung ist die gekapselte elektronische Baueinheit ober- und/oder unterseitig an der Wärmeleitplatte angeordnet, wobei bei einer oberseitig der Wärmeleitplatte angeordneten gekapselten elektronischen Baueinheit und unterseitig der Wärmeleitplatte angeordneten Einzelzellen die gekapselte elektronische Baueinheit hinsichtlich der Längen- und/oder Breitenausdehnung zumindest gleich groß oder kleiner als die Wärmeleitplatte ist. Bei einer unterseitigen Anordnung der gekapselten elektronischen Baueinheit und unterseitig der Wärmleitplatte angeordneten Einzelzellen ist die gekapselte elektronische Baueinheit hinsichtlich der Höhen- und/oder Breitenausdehnung zumindest gleich groß oder kleiner als ein Zellverbund der Einzelzellen ausgebildet. Aus der wahlweisen Anordnung der gekapselten elektronischen Baueinheit resultiert eine einfache Anpassung einer Außenform der Batterie an ihren Einbauort.
In einer weiteren Ausgestaltung der Batterie sind die im Gehäuseinneren der Batterie angeordneten Komponenten, welche zumindest die Einzelzellen, die Wärmeleitplatte und zumindest eine gekapselte elektronische Baueinheit umfassen, mit einer gemeinsamen Schutzschicht zumindest teilweise oder weitgehend vollständig versehen, welche in dem Verfahren zur Herstellung der Batterie vor der Endmontage der Batterie insbesondere mittels eines Tauchvorganges und/oder Spritzvorganges aufgebracht wird. Die Schutzschicht ist dabei vorzugsweise aus einem elektrisch isolierenden und/oder wärmeleitfähigen Material, insbesondere aus einem Lack und/oder aus Silikon gebildet.
Daraus ergibt sich der Vorteil, dass die Schutzschicht in sehr dünnen Schichten aufbringbar ist, woraus ein geringer Material- und Kostenaufwand resultiert. Weiterhin werden dadurch mögliche mit einer Wärmeausdehnung der Schutzschicht verbundene Gefahren einer Beschädigung der im Gehäuseinneren angeordneten Komponenten und somit technische Ausfälle der Batterie vermieden. Das Aufbringen der Schutzschicht als Lack- und/oder Silikonschicht vor der Endmontage der Batterie führt zusätzlich dazu, dass alle in dem Batteriegehäuse angeordneten Bauteile sicher gegen Feuchtigkeitseintritt geschützt und in einfacher Art und Weise elektrisch voneinander isoliert sind.
In einer Weiterbildung der Erfindung ist die Schutzschicht wärmeleitfähig ausgebildet, so dass eine von denen in dem Batteriegehäuse angeordneten Komponenten erzeugte Verlustwärme effektiv abführbar ist.
Ferner ist das Batteriegehäuse aus einem Gehäuseunterteil und einem auf diesem befestigten Gehäuseoberteil gebildet, wobei die Wärmeleitplatte und/oder die gekapselten elektronischen Baueinheiten bei der Endmontage der Batterie lösbar im Gehäuseinneren befestigt sind. Daraus ergibt sich in vorteilhafter Weise eine einfache Montage der Batterie und zusätzlich ist bei einem Defekt der Batterie ein'Austausch einzelner Bauteile möglich, wodurch ein kostenintensiver Ersatz der gesamten Batterie entfällt.
Weiterhin ist das Batteriegehäuse mit Aussparungen versehen, durch welche Anschlusselemente der Wärmeleitplatte und/oder der gekapselten elektronischen Baueinheit, insbesondere ein Hochvolt-Stecker und/oder Kühlkanalanschlüsse nach außen ragen. Dadurch besteht die Möglichkeit, die Batterie in einfacher Art und Weise elektrisch und mit einem Kühlmedium-Kreislauf zu verbinden.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand von Zeichnungen näher erläutert.
Dabei zeigen:
Fig. 1 schematisch eine Explosionsdarstellung von Komponenten einer Batterie zur Anordnung im Gehäuseinneren,
Fig. 2 schematisch die Komponenten der Batterie gemäß Figur 1 in montiertem
Zustand aus einer ersten Perspektive, Fig. 3 schematisch Komponenten der Batterie gemäß Figur 1 in montiertem
Zustand aus einer zweiten Perspektive,
Fig. 4 schematisch eine Explosionsdarstellung einer Batterie mit im
Gehäuseinneren angeordneten Komponenten in einer ersten Ansicht,
Fig. 5 schematisch eine Explosionsdarstellung der Batterie gemäß Figur 4 in einer zweiten Ansicht,
Fig. 6 schematisch eine Schnittdarstellung von einer in einem Batteriegehäuse angeordneten Wärmleitplatte und daran befestigter Komponenten der Batterie,
Fig. 7 schematisch eine Draufsicht der in dem Batteriegehäuse angeordneten
Wärmeleitplatte gemäß Figur 6,
Fig. 8 schematisch eine Batterie aus einer ersten Perspektive, und
Fig. 9 schematisch die Batterie gemäß Figur 8 aus einer zweiten Perspektive.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
Figur 1 zeigt eine Explosionsdarstellung von Komponenten einer Batterie B zur Anordnung im Gehäuseinneren. Bei den Komponenten handelt es sich insbesondere um Einzelzellen 1 , eine Wärmeleitplatte 2 und zumindest eine gekapselte elektronische Baueinheit 3, 4.
Dabei sind mehrere Einzelzellen 1 an der kopfseitig zur Kühlung vorgesehenen Wärmeleitplatte 2 angeordnet und bilden einen Zellverbund. In einer nicht näher dargestellten Weiterbildung der Erfindung ist die Wärmeleitplatte 2 alternativ bodenseitig an den Einzelzellen 1 oder eine weitere Wärmeleitplatte 2 zusätzlich bodenseitig an den Einzelzellen 1 angeordnet. Die Einzelzellen 1 können dabei als Rundzellen, Flachzellen oder in weiteren Zellformen, z. B. vieleckig oder oval, ausgeführt sein. Durch die dargestellte wabenförmige Ausbildung der Einzellen 1 ist eine Grundfläche der Batterie B bauraumoptimiert genutzt.
Zu einer Wärme leitenden Verbindung sind die in Figur 6 näher dargestellten Pole P einer jeden Einzelzelle 1 in Bohrungen 2.1 , die in der Wärmeleitplatte 2 als Durchgangslöcher angeordnet sind, eingeführt und ragen in die Wärmeleitplatte 2 hinein bzw. durch diese hindurch. Anhand von Zellverbindern 6 sind die Einzelzellen 1 je nach einer gewünschten Batteriespannung und -leistung parallel und/oder seriell elektrisch verschaltet.
Die Zellverbinder 6 sind dabei mit Befestigungsmitteln 7 mit den Polen P der Einzelzellen 1 verbunden, wobei die Befestigungsmittel 7 beispielsweise als Schrauben, Nieten oder Klemmverbindungen ausgebildet sind. Die Pole P der Einzelzellen 1 weisen vorzugsweise jeweils eine zu den Befestigungsmitteln 7 korrespondierende Öffnung O auf, so dass die Einzelzellen 1 mittels der Befestigungsmittel 7 und den Zellverbindern 6 an der Wärmeleitplatte 2 fixiert sind. Als ein Beispiel sei die Verwendung von Schrauben als Befestigungsmittel 7 genannt, bei welcher die Öffnungen O als zu den Schrauben korrespondierendes Innengewinde ausgeführt sind.
Bei der Batterie B kann es sich beispielsweise um eine Lithium-Ionen-Hochvolt-Batterie handeln. Diese Batterien B benötigen eine spezielle Elektronik, welche eine Zellspannung der Einzelzellen 1 überwacht und korrigiert und ein Batteriemanagementsystem, welches insbesondere eine Leistungsaufnahme und -abgäbe der Batterie B steuert (= Batteriesteuerung). Im dargestellten Ausführungsbeispiel der Erfindung sind elektronische Bauelemente zur Zellspannungsüberwachung und/oder zur Batteriesteuerung als gekapselte elektronische Baueinheiten 3 bzw. 4 ausgebildet.
Diese gekapselten elektronischen Baueinheiten 3, 4 können ober- und/oder unterseitig an der Wärmeleitplatte 2 angeordnet sein. Im dargestellten Ausführungsbeispiel der Erfindung sind zu einer Befestigung der einen gekapselten elektronischen Baueinheit 3 an einer Oberseite OS der Wärmeleitplatte 2 Distanzelemente 8 mit darin angeordneten Bohrungen 8.1 vorgesehen. An der gekapselten elektronischen Baueinheit 3 sind fahnenartige Ausbuchtungen 3.1 ebenfalls mit Bohrungen 3.2 ausgebildet, durch die Befestigungsmittel 9, z. B. Schrauben, Nieten oder Klemmverbindungen, in die Bohrungen 8.1 der Distanzelemente 8 geführt sind. Die in den Distanzelementen 8 angeordneten Bohrungen 8.1 korrespondieren in Form und Größe mit den Befestigungsmitteln 9, so dass beispielsweise eine Schraube als Befestigungsmittel 9 in eine als Innengewinde ausgeführte Bohrung 8.1 greift. Die Höhenausdehnung der Distanzelemente 8 ist dabei größer als die Höhe der über die Oberfläche OS der Wärmleitplatte 2 ragenden Pole P1 der Zellverbinder 6 und der Befestigungsmittel 7 ausgebildet, so dass die gekapselte elektronische Baueinheit 3 mit ausreichendem Abstand zu den Polen P der Einzelzellen 1 bzw. zu den Zellverbindem 6 an der Oberseite OS der Wärmeleitplatte 2 fixiert ist.
Bei der gezeigten oberseitigen Anordnung der gekapselten elektronischen Baueinheit 3 an der Wärmeleitplatte 2 und unterhalb der Wärmeleitplatte 2 angeordneter Einzelzellen 1 ist die gekapselte elektronische Baueinheit 3 hinsichtlich der Längen- und/oder Breitenausdehnung zumindest gleich groß oder kleiner als die Wärmeleitplatte 2, so dass eine kompakte Bauweise der Batterie B erreicht wird.
Zu einer Befestigung der anderen gekapselten elektronischen Baueinheit 4 seitlich unterhalb an der Wärmeleitplatte 2 ist die Wärmeleitplatte 2 in ihrer Längenausdehnung größer als der an ihr befestigte Zellverbund ausgebildet, so dass an einem Überstand der Wärmeleitplatte 2 weitere Bohrungen 2.3 zur Befestigung der gekapselten elektronischen Baueinheit 4 angeordnet sind. In gleichem Abstand wie die Bohrungen 2.3 sind in der gekapselten elektronischen Baueinheit 4 ebenfalls Bohrungen 4.1 angeordnet, die wiederum in ihrer Form und Größe mit den verwendeten Befestigungsmitteln 10 korrespondieren, so dass eine sichere Befestigung der gekapselten elektronischen Baueinheit 4 an der Wärmeleitplatte 2 möglich ist.
Die gekapselte elektronische Baueinheit 4 entspricht vorzugsweise bezüglich ihrer Längen- und Breitenausdehnung den Abmessungen des Zellverbundes oder ist kleiner als dieser, um wiederum eine kompakte Bauform der Batterie B zu erreichen.
Weiterhin ist die Wärmeleitplatte 2 im Bereich des Überstandes an zwei Ecken derart ausgespart, dass ein erster Pol P1 und ein letzter Pol P2 des Zellverbundes mittels abgewinkelter Zellverbinder 11 elektrisch mit der gekapselten elektronischen Baueinheit 4 verbindbar sind. In nicht näher dargestellten Ausführungen der Erfindung sind die gekapselten elektronischen Baueinheiten 3, 4 auch in anderen Anordnungen an der Wärmeleitplatte 2 befestigbar. Dabei können die gekapselten elektronischen Baueinheiten 3, 4 insbesondere sich gegenüberliegend an den Stirnseiten, den Längsseiten und/oder an der Ober- und Unterseite des Zellverbundes an der Wärmeleitplatte 2 und/oder an den Einzelzellen 1 des Zellverbundes befestigt sein.
In Weiterbildungen der Erfindung sind an den gekapselten elektronischen Baueinheiten 3, 4 ein oder mehrere Anschlusselemente angeordnet, die zu einer Versorgung des Zellverbundes mit elektrischer Energie, einer Entnahme dieser aus dem Zellverbund und/oder einer Steuerung einer Versorgung und/oder Entnahme der Energie dienen.
In der vorliegenden Ausführung der Erfindung ist an der gekapselten elektronischen Baueinheit 4 als ein mögliches Anschlusselement ein Hochvolt-Stecker 5 angeordnet. Dieser ist derart elektrisch mit der gekapselten elektronischen Baueinheit 4 verschaltet, dass dem Zellverbund bzw. der Batterie B gesteuert elektrische Energie zuführbar oder entnehmbar ist.
Zusätzlich sind an einer dem Hochvolt-Stecker 5 gegenüberliegenden Seite an der Wärmeleitplatte 2 als weitere Anschlusselemente Kühlkanalanschlüsse 2.5 zur Durchströmung der Wärmeleitplatte 2 mit einem nicht näher dargestellten Kühlmedium angeordnet, wobei in der Wärmeleitplatte 2 nicht näher dargestellte Kühlkanäle zur Führung des Kühlmediums vorgesehen sind. Bei dem Kühlmedium kann es sich insbesondere um ein Kältemittel einer Fahrzeugklimaanlage handeln, wobei die Wärmeleitplatte 2 mittels der Kühlkanalanschlüsse 2.5 mit einem Kältemittelkreislauf der Fahrzeugklimaanlage verbindbar ist und somit eine abgegebene Wärme der Einzelzellen 1 und der gekapselten elektronischen Baueinheiten 3, 4 aufnehmen kann. Weiterhin kann die Wärmeleitplatte 2 alternativ oder zusätzlich an einen nicht näher dargestellten separaten Kühlkreislauf angeschlossen sein.
Figur 2 und Figur 3 stellen die Komponenten der Batterie B gemäß Figur 1 in montiertem Zustand aus zwei verschiedenen Perspektiven dar. Figur 4 und Figur 5 zeigen Explosionsdarstellungen der Batterie B mit im Gehäuseinneren angeordneten Komponenten der Batterie B in zwei Ansichten. Das Batteriegehäuse 12 ist dabei vorzugsweise aus einem Gehäuseoberteil 12.1 und einem Gehäuseunterteil 12.2 gebildet.
Die montierten Komponenten werden in dem Verfahren zur Herstellung der Batterie B vor einer Befestigung in dem Batteriegehäuse 12 zunächst mit einer in Figur 7 näher dargestellten gemeinsamen Schutzschicht S zumindest teilweise oder, wie dargestellt, weitgehend vollständig versehen. Diese Schutzschicht S ist insbesondere aus einem elektrisch isolierenden und/oder wärmeleitfähigen Material, beispielsweise aus einem Lack und/oder aus Silikon, gebildet und wird in einem Spritzvorgang und/oder einem Tauchvorgang auf alle Komponenten, welche im Gehäuseinneren angeordnet sind, aufgebracht. Die Schutzschicht S umgibt dabei neben allen Komponenten vorzugsweise ebenfalls deren elektrische Verbindungen, so dass diese wirkungsvoll vor einem Feuchtigkeitseintritt geschützt sind.
Durch die Weiterbildung der Erfindung mit einer wärmeleitfähigen und/oder elektrisch isolierenden Schutzschicht S wird ein effektiver Wärmetransport erzielt. Zusätzliche Maßnahmen zur elektrischen Isolation der Komponenten und ihrer elektrischen Verbindungen können eingespart werden.
Bei einer Endmontage der Batterie B werden die Wärmeleitplatte 2 und die daran angeordneten Komponenten in dem Batteriegehäuse 12 befestigt, wobei die Befestigung in dem gezeigten Ausführungsbeispiel insbesondere in dem Gehäuseunterteil 12.2 erfolgt. Dazu weisen sowohl die Wärmeleitplatte 2 als auch das Gehäuseunterteil 12.2 Bohrungen 2.4, 12.21 auf, so dass mittels Befestigungsmitteln 13 eine Fixierung der Wärmeleitplatte 2 und der daran angeordneten Komponenten ermöglicht wird. Bei den Befestigungsmitteln 13 handelt es sich vorzugsweise um Schrauben, so dass eine lösbare Verbindung erzielt und eine Demontage der Batterie B in ihre einzelnen Bauelemente ermöglicht wird.
In einer vorteilhaften Ausgestaltung der Erfindung sind die
Befestigungsmittel 7, 9, 10 und 13 zur Befestigung der Einzelzellen 1 , der gekapselten elektronischen Baueinheiten 3, 4 und der Wärmeleitplatte 2 in dem Batteriegehäuse 12 gleich ausgeführt, so dass ein hoher Gleichteileeinsatz erreicht wird, was zu einem geringen Kostenaufwand führt. Weiterhin sind die Befestigungsmittel 7, 9, 10 und 13 in vorteilhafter Weise derart ausgebildet, dass eine lösbare Befestigung entsteht, so dass bei einem Defekt der Batterie B nur defekte Komponenten ausgetauscht werden, wodurch ein kostenintensiver Austausch der gesamten Batterie B entfällt.
Zu einer Herausführung der Anschlusselemente, insbesondere des Hochvolt-Steckers 5 und der Kühlkanalanschlüsse 2.5 sind an dem Gehäuseunterteil 12.2 zu diesen korrespondierende Aussparungen 12.22, 12.23 angeordnet. Auf eine Kante der Aussparungen 12.22, 12.23 wird in einer Endmontage der Batterie B vorzugsweise eine nicht näher dargestellte Dichtung, welche z. B. aus einer Dichtmasse oder einer Gummidichtung gebildet ist, aufgebracht, so dass eine dichte Ausführung des Batteriegehäuses 12 erreicht und ein Eindringen von Fremdstoffen in das Batteriegehäuse 12 und ein Austreten von Stoffen aus dem Batteriegehäuse 12 vermieden wird.
Die in Figur 6 gezeigte Schnittdarstellung der in dem Batteriegehäuse 12 befestigten Wärmleitplatte 2 und den daran befestigten Komponenten verdeutlicht insbesondere die Anordnung der auf die Komponenten umfassend aufgebrachten Schutzschicht S und die Durchführung der Pole P durch die Bohrungen 2.1 der Wärmeleitplatte 2 sowie die Befestigung an dieser. Dabei umfasst die Schutzschicht S alle in dem Batteriegehäuse 12 angeordneten Komponenten und ist anhand des Tauch- und/oder Spritzvorganges in alle schwer erreichbaren Räume zwischen den einzelnen Komponenten einbringbar. Dadurch entsteht eine umfassende Isolation der Komponenten und ein Eindringen von Fremdstoffen in die Komponenten wird wirkungsvoll vermieden.
Bei einem Austausch defekter Komponenten besteht die Möglichkeit, durch einen erneuten Tauch- und/oder Spritzvorgang zumindest partiell eine Schutzschicht S auf die erneuerte Komponente aufzubringen, so dass in einfacher und kostengünstiger Art und Weise ein umfassender Schutz herstellbar ist.
Figur 7 stellt eine Draufsicht der in dem Batteriegehäuse 12 angeordneten Wärmeleitplatte 2 gemäß Figur 6 dar.
Die Figuren 8 und 9 zeigen die fertig montierte Batterie B aus zwei verschiedenen Perspektiven. Zwischen dem bei der Endmontage der Batterie B auf das Gehäuseunterteil 12.2 aufgesetzten Gehäuseoberteil 12.1 und dem Gehäuseunterteil 12.2 ist vorzugsweise eine nicht näher dargestellte Dichtung angeordnet. Diese Dichtung kann beispielsweise als Klebstoff ausgeführt sein, der gleichzeitig zu einer Befestigung des Gehäuseoberteiles 12.1 an dem Gehäuseunterteil 12.2 dient. In einer nicht näher dargestellten Weiterbildung der Erfindung kann das Gehäuseoberteil 12.1 auch mittels einer lösbaren Verbindung, beispielsweise einer Schraubverbindung an dem Gehäuseunterteil 12.2 befestigt sein, wobei in diesem Fall vorzugsweise eine wieder verwendbare Dichtung zwischen dem Gehäuseoberteil 12.1 und dem Gehäuseunterteil 12.2 angeordnet wird.
Bezugszeichenliste
1 Einzelzelle
2 Wärmeleitplatte
2.1 bis 2.4 Bohrung
2.5 Kühlkanalanschlüsse
3 Gekapselte elektronische Baueinheit
3.1 Fahnenartige Ausbuchtung
3.2 Bohrung
4 Gekapselte elektronische Baueinheit
5 Hochvolt-Stecker
6 Zellverbinder
7 Befestigungsmittel
8 Distanzelement
8.1 Bohrung
9 Befestigungsmittel
10 Befestigungsmittel
11 Abgewinkelter Zellverbinder
12 Batteriegehäuse
12.1 Gehäuseoberteil
12.2 Gehäuseunterteil
12.21 Bohrung
12.22 Erste Aussparung
12.23 Zweite Aussparung
13 Befestigungsmittel B Batterie
OS Oberseite
O Öffnung
P Pol
P1 erster Pol
P2 letzter Pol
S Schutzschicht

Claims

Patentansprüche
1. Batterie (B) mit einer in einem Batteriegehäuse (12) angeordneten Wärmeleitplatte (2) zum Temperieren der Batterie (B), wobei mehrere elektrisch parallel und/oder seriell miteinander verschaltete Einzelzellen (1) Wärme leitend mit der Wärmeleitplatte (2) verbunden sowie an dieser befestigt sind, dadurch gekennzeichnet, dass zumindest ein elektronisches Bauelement als eine gekapselte elektronische Baueinheit (3, 4) ausgebildet ist, die im Gehäuseinneren an der Wärmeleitplatte (2) befestigt ist.
2. Batterie (B) nach Anspruch 1, dadurch gekennzeichnet, dass die gekapselte elektronische Baueinheit (3, 4) ober- und/oder unterseitig an der Wärmeleitplatte (2) angeordnet ist.
3. Batterie (B) nach Anspruch 2, dadurch gekennzeichnet, dass bei einer oberseitig der Wärmeleitplatte (2) angeordneten gekapselten elektronischen Baueinheit (3, 4) und unterseitig der Wärmeleitplatte (2) angeordneten Einzelzellen (1) die gekapselte elektronische Baueinheit (3,4) hinsichtlich der Längen- und/oder Breitenausdehnung zumindest gleich groß oder kleiner als die Wärmeleitplatte (2) ist.
4. Batterie (B) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass bei einer unterseitig der Wärmeleitplatte (2) angeordneten gekapselten elektronischen Baueinheit (3, 4) und unterseitig der Wärmeleitplatte (2) angeordneten Einzelzellen (1) die gekapselte elektronische Baueinheit (3,4) hinsichtlich der Höhen- und/oder Breitenausdehnung zumindest gleich groß oder kleiner als ein Zellverbund der Einzelzellen (1) ist.
5. Batterie (B) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass im Gehäuseinneren angeordnete Komponenten mit einer gemeinsamen Schutzschicht (2) versehen sind.
6. Batterie (B) nach Anspruch 5, dadurch gekennzeichnet, dass die im Gehäuseinneren angeordneten Komponenten zumindest die Einzelzellen (1), die Wärmeleitplatte (2) und zumindest eine gekapselte elektronische Baueinheit (3, 4) umfassen.
7. Batterie (B) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Schutzschicht (S) aus einem Lack und/oder Silikon gebildet ist.
8. Batterie (B) nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Schutzschicht (S) wärmeleitfähig, elektrisch isolierend und feuchtigkeitsdicht ausgebildet ist.
9. Batterie (B) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Batteriegehäuse (12) aus einem Gehäuseoberteil (12.1) und einem Gehäuseunterteil (12.2) gebildet ist.
10. Batterie (B) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Wärmeleitplatte (2) und/oder die gekapselten elektronischen Baueinheiten (3, 4) lösbar im Gehäuseinneren befestigt sind.
11. Batterie (B) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Batteriegehäuse (12) mit Aussparungen (12.22, 12.23) versehen ist, durch welche Anschlusselemente der Wärmeleitplatte (2) und/oder der gekapselten elektronischen Baueinheit (3, 4) nach außen ragen.
12. Batterie (B) nach Anspruch 11 , dadurch gekennzeichnet, dass die Anschlusselemente einen Hochvolt-Stecker (5) und/oder Kühlkanalanschlüsse (2.5) umfassen.
13. Verfahren zur Herstellung einer Batterie (B) mit einer in einem Batteriegehäuse (12) angeordneten Wärmeleitplatte (2) zum Temperieren der Batterie (B), bei dem mehrere elektrisch parallel und/oder seriell miteinander verschaltete Einzelzellen (1) Wärme leitend mit der Wärmeleitplatte (2) verbunden sowie an dieser befestigt werden, dadurch gekennzeichnet, dass vor einer Endmontage der Batterie (B) zumindest ein elektronisches Bauelement als eine gekapselte elektronische Baueinheit (3, 4) an der Wärmeleitplatte (2) befestigt wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass vor der Endmontage der Batterie (B) auf im Gehäuseinneren angeordnete Komponenten eine gemeinsame Schutzschicht (S) aufgebracht wird.
15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass die Schutzschicht (S) mittels eines Tauchvorganges und/oder eines Spritzvorganges aufgebracht wird.
16. Verfahren nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass bei der Endmontage der Batterie (B) die Wärmeleitplatte (2) und/oder die und/oder die gekapselten elektronischen Baueinheiten (3, 4)lösbar im Gehäuseinneren befestigt werden.
17. Verfahren nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass bei der Endmontage der Batterie (B) ein Gehäuseoberteil (12.1) auf einem Gehäuseunterteil (12.2) befestigt wird.
PCT/EP2009/001052 2008-02-23 2009-02-14 Batterie mit einer in einem batteriegehäuse angeordneten wärmeleitplatte zum temperieren der batterie und verfahren zur herstellung einer batterie WO2009103466A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008010808.1 2008-02-23
DE200810010808 DE102008010808A1 (de) 2008-02-23 2008-02-23 Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie und Verfahren zur Herstellung einer Baterie

Publications (1)

Publication Number Publication Date
WO2009103466A1 true WO2009103466A1 (de) 2009-08-27

Family

ID=40513421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/001052 WO2009103466A1 (de) 2008-02-23 2009-02-14 Batterie mit einer in einem batteriegehäuse angeordneten wärmeleitplatte zum temperieren der batterie und verfahren zur herstellung einer batterie

Country Status (2)

Country Link
DE (1) DE102008010808A1 (de)
WO (1) WO2009103466A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386448A (zh) * 2010-09-03 2012-03-21 日立车辆能源株式会社 车载用蓄电装置
US9419261B2 (en) 2013-04-23 2016-08-16 Samsung Sdi Co., Ltd. Battery pack

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008034889B4 (de) 2008-07-26 2011-06-30 Daimler AG, 70327 Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie und Verfahren zur Herstellung einer Batterie
DE102008034871A1 (de) 2008-07-26 2010-01-28 Daimler Ag Batterie, insbesondere Fahrzeugbatterie
FR2964799B1 (fr) * 2010-09-09 2013-04-05 Peugeot Citroen Automobiles Sa Batterie comprenant une plaque d'equilibrage de temperature
DE102011079394A1 (de) * 2011-07-19 2013-01-24 Siemens Aktiengesellschaft Energiespeichermodul
DE102016116972A1 (de) * 2016-09-09 2018-03-15 HELLA GmbH & Co. KGaA Zweispannungsbatterie und Montageverfahren hierfür
DE102019205388A1 (de) * 2019-04-15 2020-10-15 Robert Bosch Gmbh Batterie und Verwendung einer solchen
CN219106422U (zh) * 2022-12-23 2023-05-30 湖北亿纬动力有限公司 电池模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314008A (en) * 1980-08-22 1982-02-02 General Electric Company Thermoelectric temperature stabilized battery system
FR2830687A1 (fr) * 2001-10-04 2003-04-11 Cit Alcatel Generateur electrochimique comportant un revetement et procede de revetement
GB2387019A (en) * 2002-03-30 2003-10-01 Bosch Gmbh Robert Energy storage module and electrical device
DE10350694A1 (de) * 2002-10-31 2004-06-03 Sanyo Electric Co., Ltd., Moriguchi Batteriepackung und Verfahren zu deren Herstellung
EP1835251A1 (de) * 2006-02-22 2007-09-19 Behr GmbH & Co. KG Vorrichtung zur Kühlung elektrischer Elemente
US20070219670A1 (en) * 2006-03-20 2007-09-20 Denso Corporation Multiple power supply apparatus with improved installability

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10014848C2 (de) * 2000-03-24 2003-12-04 Audi Ag Batterieheizvorrichtung, Verfahren zur Beheizung einer Batterie in einem Kraftfahrzeug und Kraftfahrzeug mit einer Batterieheizvorrichtung
DE102007063178B4 (de) 2007-12-20 2011-01-13 Daimler Ag Batterie mit Wärmeleitplatte zum Temperieren der Batterie

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314008A (en) * 1980-08-22 1982-02-02 General Electric Company Thermoelectric temperature stabilized battery system
FR2830687A1 (fr) * 2001-10-04 2003-04-11 Cit Alcatel Generateur electrochimique comportant un revetement et procede de revetement
GB2387019A (en) * 2002-03-30 2003-10-01 Bosch Gmbh Robert Energy storage module and electrical device
DE10350694A1 (de) * 2002-10-31 2004-06-03 Sanyo Electric Co., Ltd., Moriguchi Batteriepackung und Verfahren zu deren Herstellung
EP1835251A1 (de) * 2006-02-22 2007-09-19 Behr GmbH & Co. KG Vorrichtung zur Kühlung elektrischer Elemente
US20070219670A1 (en) * 2006-03-20 2007-09-20 Denso Corporation Multiple power supply apparatus with improved installability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386448A (zh) * 2010-09-03 2012-03-21 日立车辆能源株式会社 车载用蓄电装置
JP2012074350A (ja) * 2010-09-03 2012-04-12 Hitachi Vehicle Energy Ltd 車載用蓄電装置
US8605450B2 (en) 2010-09-03 2013-12-10 Hitachi Vehicle Energy, Ltd. In-vehicle electric storage device
CN102386448B (zh) * 2010-09-03 2014-08-13 日立汽车系统株式会社 车载用蓄电装置
US9419261B2 (en) 2013-04-23 2016-08-16 Samsung Sdi Co., Ltd. Battery pack

Also Published As

Publication number Publication date
DE102008010808A1 (de) 2009-08-27

Similar Documents

Publication Publication Date Title
WO2009103466A1 (de) Batterie mit einer in einem batteriegehäuse angeordneten wärmeleitplatte zum temperieren der batterie und verfahren zur herstellung einer batterie
WO2009103522A1 (de) Batterie mit einer in einem batteriegehäuse angeordneten wärmeleitplatte zum temperieren der batterie
DE102008059967B4 (de) Batterie und Verfahren zur Herstellung einer Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte
DE102007063178B4 (de) Batterie mit Wärmeleitplatte zum Temperieren der Batterie
DE102007063195B4 (de) Batterie mit einem Gehäuse und einer Wärmeleitplatte
DE102013207534B4 (de) Batteriegehäuse und Verfahren zur Montage einer Batterie
DE102013207536B4 (de) Zellblock mit Zellfixierung für eine Batterie und Verfahren zum Bestücken eines Zellblocks
DE102007010742B4 (de) Zellverbund einer Batterie, Batterie und deren Verwendung
EP2377184B1 (de) Vorrichtung zur spannungsversorgung eines kraftfahrzeugs mit optimierter wärmeabführung
DE102008034868B4 (de) Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie
EP3739660B1 (de) Batteriemodul für ein kraftfahrzeug
EP2867933B1 (de) Energiespeichermodul aus mehreren prismatischen speicherzellen
DE102008034889B4 (de) Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie und Verfahren zur Herstellung einer Batterie
DE102008059966A1 (de) Batterie mit mehreren in einem Zellenverbund angeordneten Batteriezellen
DE102011013618A1 (de) Energiespeichervorrichtung
DE102008059947A1 (de) Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte und daran direkt montierten elektronischen Bauelementen zum Temperieren der Batterie
DE102010013025A1 (de) Batterie und Verfahren zur Herstellung einer Batterie mit einer in einem Batteriegehäuse angeordneten Kühlplatte
DE102013207535B4 (de) Polverbindungsblech für eine Batterie
EP3235049B1 (de) Batterie mit kühlplatte als montageplatte
WO2010012338A1 (de) Batterie, insbesondere fahrzeugbatterie
DE102019201986B4 (de) Batteriegehäuse zur Aufnahme wenigstens eines Zellmoduls einer Traktionsbatterie
DE102015225350A1 (de) Gehäuse zur Aufnahme eines Brennstoffzellen-, Batterie- oder Kondensatorstapels
DE102014200983B4 (de) Batteriesystem mit mehreren Batteriezellen und einem Gehäuse, Gehäusesystem für eine Batterie und Verfahren zur Montage eines Batteriesystems
DE102011103965A1 (de) Elektrochemische Batterie
DE102013020434B4 (de) Brennstoffzellenanordnung sowie Medienverteilereinheit und Gehäuse für eine Brennstoffzellenanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712741

Country of ref document: EP

Kind code of ref document: A1