WO2009079861A1 - 一种以羟基乙腈为原料制备亚氨基二乙酸的方法 - Google Patents

一种以羟基乙腈为原料制备亚氨基二乙酸的方法 Download PDF

Info

Publication number
WO2009079861A1
WO2009079861A1 PCT/CN2007/003773 CN2007003773W WO2009079861A1 WO 2009079861 A1 WO2009079861 A1 WO 2009079861A1 CN 2007003773 W CN2007003773 W CN 2007003773W WO 2009079861 A1 WO2009079861 A1 WO 2009079861A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
ammonium
hydroxyacetonitrile
solution
iminodiacetic acid
Prior art date
Application number
PCT/CN2007/003773
Other languages
English (en)
French (fr)
Other versions
WO2009079861A8 (zh
Inventor
Xing Li
Yingwu Yin
Yulai Guo
Jinping Tian
Huijuan Yan
Yina Sha
Original Assignee
Beijing Unis Insight Chemical Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Unis Insight Chemical Technology Co., Ltd. filed Critical Beijing Unis Insight Chemical Technology Co., Ltd.
Priority to PCT/CN2007/003773 priority Critical patent/WO2009079861A1/zh
Publication of WO2009079861A1 publication Critical patent/WO2009079861A1/zh
Publication of WO2009079861A8 publication Critical patent/WO2009079861A8/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/12Formation of amino and carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/10Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • C07C229/16Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of hydrocarbon radicals substituted by amino or carboxyl groups, e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids

Definitions

  • the present invention relates to a process for preparing iminodiacetic acid and a salt thereof using hydroxyacetonitrile as a raw material, and more particularly to a process for synthesizing and separating iminodiacetic acid by one-step acid hydrolysis using hydroxyacetonitrile as a raw material.
  • the chloroacetic acid process is mature, but the process is long, the product purity is low, the cost is high, and the "three wastes" are serious. It is a phase-out process.
  • the diethanolamine method is a new technology developed in the 1990s. It is based on diethanolamine as the main raw material. It is oxidized in the presence of high temperature (170 °C), high pressure (0.8 Mp) and Cu-Ni alloy catalyst and sodium hydroxide. Hydrogen forms sodium iminodiacetic acid. This method has high requirements for equipment and catalysts, and has potential safety hazards.
  • the raw material diethanolamine is affected by the price of crude oil, resulting in high production cost. At the same time, there are economic, technical and environmental factors such as three wastes and catalyst deactivation. The process competition Not strong.
  • the hydrocyanic acid method is a generally preferred method at home and abroad.
  • U.S. Patent No. 5,187,301 the preparation of iminodiacetic acid by a hydroxyacetonitrile batch process, followed by hydrolysis, acidification, crystallization, separation, and preparation of iminodiacetic acid.
  • the method has been widely used or favored by relevant manufacturers. However, this method has poor selectivity, severe decomposition and polymerization, easy to produce tar, complicated post-treatment, too many solid-liquid separations, and a small amount of hydrogen in solid-liquid separation.
  • the method is characterized by: ammoniation, acid hydrolysis "one-pot boiling", directly obtaining the salt of iminodiacetic acid without separation, and adjusting the difference in acidity and product solubility, the difference in solubility between the product and the ammonium salt by-product to obtain the imino group II Acetic acid product, the invention has the advantages of simple reaction and separation process, high yield, elimination of use of caustic soda, secondary production of ammonium chloride, no three-waste discharge, low production cost, high utilization rate of raw materials, etc. Clean and environmentally friendly preparation process.
  • the method of the present invention can be represented by the following reaction formula:
  • the present invention provides a novel method for directly producing iminodiacetic acid from hydroxyacetonitrile.
  • the method comprises the following steps:
  • the acid hydrolyzate is post-treated in the presence of excess acid to obtain iminodiethyl
  • An inorganic acid salt of an acid, or iminodiacetic acid for example, cooled, crystallized, and separated to obtain a crude mixture of an inorganic acid salt and an ammonium salt of iminodiacetic acid, which can be recrystallized to obtain an iminodiacetic acid inorganic acid salt.
  • the acid solution or the above crude product for example, ammonia water
  • the molar ratio of hydroxyacetonitrile to ammonia is 1:0.1 ⁇ 1, preferably 1:0.3-0.8; the molar ratio of hydroxyacetonitrile to ammonium salt catalyst is 1:0.01 ⁇ 0.5, preferably 1:0.1-0.4;
  • the molar ratio of acetonitrile to inorganic acid is from 1:1 to 2.5, preferably from 1:1.4.
  • the ammonium salt catalyst may be an inorganic acid ammonium salt selected from ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium nitrate or ammonium phosphate, or an organic acid ammonium salt selected from ammonium acetate or ammonium citrate; It is selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid or phosphoric acid.
  • the ammonium salt catalyst may be the same as or different from the ammonium salt formed by the reaction, and by-produced ammonium chloride may be a preferred catalyst.
  • the analytical content of the iminodiacetic acid product prepared by the method of the invention can reach above 98.5%, which fully meets the requirements for the use of the glyphosate, and the yield of the hydroxyacetonitrile can reach more than 80%.
  • the invention adopts the method of directly synthesizing iminodiacetonitrile and directly adding acid hydrolysis, the reaction condition is mild, the steps of separating and adding liquid alkali are reduced, the investment is reduced and the raw material cost is reduced, and the reaction has high selectivity and light color. It can effectively prevent side reactions such as polymerization and decomposition, and requires no special equipment, which can greatly save investment, simplify operation and reduce costs.
  • the mother liquor can be recycled by the effective separation of ammonium chloride, which fundamentally solves the problem that the hydroxyacetonitrile process is difficult to handle and utilize due to waste water.
  • the ammonium chloride produced can be sold as a commodity or as a synthetic hydrochloric acid and ammonia and other ammonium salts. Raw materials.
  • the method of the present invention uses hydroxyacetonitrile as a raw material to prepare iminodiacetic acid by one-step acid hydrolysis, thereby fundamentally overcoming the deficiencies of the raw alkali process, and the raw materials used are easy to prepare, safe, and easy to transport. With storage.
  • the application of the invention is not limited to one-pot boiling method, using iminodiacetonitrile and its synthetic mother liquor
  • the synthesis of iminodiacetic acid and the comprehensive utilization of the three wastes are a modification of the process of the present invention.
  • the amination solution of step 1) of the present invention may be replaced with an iminodiacetonitrile solution or other methods of synthesizing iminodiacetonitrile and its synthetic mother liquor.
  • the obtained crude product was recrystallized from 485 g of water to obtain 94.5 g (0.55 mol) of pure iminodiacetic acid salt of 98.3%, yield of 25%.
  • the obtained mother liquid was adjusted to pH 2 with ammonia, and the solid was precipitated.
  • 149 g (1.1 mol) of iminodiacetic acid having a content of 98.2% was obtained by filtration, and the yield was 48%, and the total yield was 73. %.
  • the crystallization mother liquor is concentrated and cooled to remove ammonium chloride, and is left to be applied in the next batch.
  • the obtained crude product was recrystallized from 570 g of water to obtain 111.9 g (0.65 mol) of pure iminodiacetic acid hydrochloride as a 98% yield of 29.5%.
  • the obtained mother liquid was adjusted to pH 2 with ammonia, and the solid was precipitated.
  • 169 g (1.25 mol) of iminodiacetic acid having a content of 98.4% was obtained by filtration, and the yield was 57%, and the total yield was 86.5%. .
  • the crystallization mother liquor is concentrated and cooled to remove ammonium chloride, it is left to be applied in the next batch.
  • the obtained iminodiacetonitrile was mixed with 230 g of water, and (30%) 205 g (1.54 mol) of caustic soda was added dropwise with stirring.
  • the temperature was controlled at 50-60 ° C during the process, and 50-60 ° after the completion of the dropwise addition.
  • C heat preservation 4 small timely vacuum removal of ammonia produced by alkaline hydrolysis), cooling crystallization, suction filtration to obtain 50.7% of iminodiacetic acid disodium salt 174.68 g (0.49 mol), the mother liquor dehydration under reduced pressure, the content is 35% of iminodiacetic acid disodium salt 83.18 g (0.16 mol).
  • the two batches of the solid obtained above were combined and dissolved in 200 g of water, and then the pH was adjusted to 2 with hydrochloric acid, and the iminodiacetic acid was precipitated, and 74.4 g (0.55 mol) of iminodiacetic acid having a content of 98% was obtained by suction filtration. After the mother liquor was dehydrated to obtain 7.68 g (0.05 mol) of iminodiacetic acid, the content was 95%, and the total yield of iminodiacetic acid relative to hydroxyacetonitrile was 55%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Cephalosporin Compounds (AREA)

Description

一种以羟基乙腈为原料制备亚氨基二乙酸的方法
技术领域
本发明涉及一种以羟基乙腈为原料制备亚氨基二乙酸及其盐的方 法, 具体地说, 涉及以羟基乙腈为原料通过酸解一步法合成并分离亚 氨基二乙酸的方法。
背景技术
国内工业化生产亚氨基二乙酸方法主要有氰氢酸法、 氯乙酸法和 二乙醇胺法三种。 氯乙酸法工艺成熟, 但流程长、 产品纯度低、 成本 高、 "三废"严重, 已是淘汰工艺。 二乙醇胺法是国外 90年代开发的新 技术, 该法以二乙醇胺为主要原料, 在高温( 170°C )、 高压(0.8Mp ) 及 Cu-Ni合金催化剂和氢氧化钠的存在下, 氧化脱氢, 生成亚氨基二 乙酸钠。 此法对设备、 催化剂要求高, 存在安全隐患, 且原料二乙醇 胺因受原油价格影响导致生产成本偏高, 同时存在三废和催化剂失活 等经济、 技术、 环境因素的制约, 该工艺的竟争力不强。
氢氰酸法是国内外普遍看好的方法, 美国专利 USP5,187,301才艮道 了用羟基乙腈间歇法制备亚氨基二乙腈, 然后用氢氧化钠水解, 酸化, 结晶, 分离, 制备亚氨基二乙酸的方法, 目前已广泛被相关厂家看好 或采用, 但此方法反应选择性差, 过程中分解聚合严重, 易产生焦油, 后处理复杂, 固液分离次数太多, 同时存在固液分离时存在少量氢氰 酸及氨逸出的安全环保问题, 氨基乙腈和亚氨基二乙腈产生的废水难 以处理, 必须借助高投资和高耗能的焚烧装置处理; 氨回收率低, 投 资大, 氨水浓度低, 使用价值差; 亚氨基二乙酸对羟基乙腈的收率只 有 60%左右。 针对上述缺陷, 发明人经过长期研究和探索, 发明了以羟基乙腈 为原料通过酸解一步法制备亚氨基二乙酸的方法, 从根本上克服原碱 法工艺的不足, 达到了清洁生产和资源综合利用的目的。
发明内容
本发明的目的是提供一种以羟基乙腈为原料制备亚氨基二乙酸的 方法。 该方法的特点是: 氨化、 酸解 "一锅煮" , 不经分离直接得到 亚氨基二乙酸的盐, 再通过调整酸度和产品溶解度的差异, 产品与铵 盐副产物的溶解差异获得亚氨基二乙酸产品, 本发明具有反应及分离 过程简单, 收率高, 省去了烧碱的使用, 可以副产氯化铵, 无三废排 放, 生产成本低, 原料利用率高等多方面的优势, 是一种清洁环保的 制备工艺。
在具体实施方案中, 例如采用盐酸作为酸解原料时, 本发明方法 可用下述反应式表示:
2HOCH2CN + NH3 ^ NH(CH2CN)2 + 2H20
NH(CH2CN)2 + 3HCI+4H20—— ^NH(CH2COOH)2HCI + 2NH4CI
NH(CH2COOH)2HCI + NH3—— NH(CH2COOH)2+NH4CI . 具体地说, 本发明提供了一种以羟基乙腈为原料直接生产亚氨基 二乙酸的新方法, 该方法包括如下步骤:
1 )在加热条件下, 例如 60-180Ό , 优选为 80-150°C , 向羟基乙腈 溶液, 优选为羟基乙腈和铵盐催化剂混合物中, 滴加氨水或通入氨气, 反应得到氨化液, 为亚氨基二乙腈溶液。
2 )向优选不经冷却结晶的氨化液直接滴加过量的无机酸,在 0-180 °C , 优选 60-150°C下反应, 反应得到酸解液, 为亚氨基二乙酸无机酸 盐和铵盐混合液。
3 )优选在过量酸存在下, 将酸解液进行后处理, 得到亚氨基二乙 酸的无机酸盐, 或者亚氨基二乙酸, 例如, 进行冷却、 结晶、 分离, 得到亚氨基二乙酸的无机酸盐与铵盐混合物粗品, 经重结晶即可的得 到亚氨基二乙酸无机酸盐的纯品, 也可将酸解液或上述粗品 (例如采 用氨水)调节 pH值到 2左右, 获得亚氨基二乙酸的纯品。
上述步骤中,羟基乙腈和氨的摩尔比为 1 : 0.1〜1优选为 1 : 0.3-0.8; 羟基乙腈和铵盐催化剂的摩尔比为 1 : 0.01〜0.5, 优选为 1 : 0.1-0.4; 羟基乙腈和无机酸的摩尔比为 1 : 1〜2.5, 优选为 1 : 1.4-2。
铵盐催化剂可以是选自硫酸铵、 氯化铵、 碳酸铵、 硝酸铵或磷酸铵 等的无机酸铵盐, 也可以是选自醋酸铵或曱酸铵等的有机酸铵盐; 无 机酸可以选自硫酸、 盐酸、 硝酸或磷酸等。 视采用的铵盐催化剂与无 机酸的情况, 铵盐催化剂可与反应生成的铵盐相同或不同, 副产的氯 化铵可以作为优选的催化剂。
本发明方法制备的亚氨基二乙酸产品分析含量可达 98.5%以上, 完全符合双甘膦的使用要求, 且对羟基乙腈收率可达 80%以上。
本发明采用先合成亚氨基二乙腈后直接加酸水解的方法,反应条件 温和, 减少了分离和加液碱等步骤, 减少了投资并降低了原料成本, 该反应具有选择性高, 颜色浅的特点, 可以有效地防止聚合、 分解等 副反应发生, 无需特殊设备, 可以大大地节省投资, 简化操作, 降低 成本。 母液因氯化铵的有效分离而可以循环套用, 从根本上解决了羟 基乙腈工艺因废水难以处理和利用的问题, 生成的氯化铵可以作为商 品出售, 或者作为合成盐酸和氨及其它铵盐的原料。
综上所述, 本发明方法以羟基乙腈为原料通过酸解一步法制备亚氨 基二乙酸的方法, 从根本上克服原碱法工艺的不足, 而且所用原料制 备纯化容易, 安全性好, 易于运输与存储。
本发明的应用不仅限于一锅煮法, 采用亚氨基二乙腈及其合成母液 进行亚氨基二乙酸的合成和三废的综合利用, 是本发明方法的一种改 型形式。 因此, 在另一具体实施方案中, 本发明步骤 1 ) 的氨化液可 以采用亚氨基二乙腈溶液或者其它方法合成的亚氨基二乙腈及其合成 母液来替代。
具体实施方式
实施例 1
向 1000亳升的反应瓶中加入羟基乙腈 (50%)500克(4.39mol ) , 搅 拌下加入氯化铵 38.5克(0.72mol ) , 然后给体系加热, 当加热到 110 °C时, 开始加氨水, 控制氨水的滴加速度, 以保证反应液的 pH值在 5~8之间, 同时控制反应体系的温度在 110 ~ 130°C之间。 当加入氨水 ( 25% ) 158克(2.3mol )后, 即可停止滴加, 继续在 110-130°C保温 2 小时, 将反应液转移到 2000亳升的反应瓶中。 加入 865克( 8.53mol ) 的 36%的浓盐酸, 盐酸加完后, 在 80 ~ 150°C下保温反应 4小时, 然 后冷却降温, 温度降到 io°c时, 抽滤得到亚氨基二乙酸盐酸盐和氯化 铵的混合物 484.8克, 实物折百收率为 75%。 反应母液套用, 粗品经 重结晶可以得到合格的产品。
所得粗品用 485克水重结晶, 得到含量为 98.3%的亚氨基二乙酸盐 酸盐纯品 94.5克(0.55mol ) , 收率为 25%。 所得母液用氨调 PH值到 2, 析出固体, 搅拌 0.5小时后抽滤得到含量为 98.2%的亚氨基二乙酸 149克( l.lmol ) , 收率为 48%, 则总的收率为 73%。 结晶母液浓缩冷 却滤除氯化铵后, 留待下批套用。
实施例 2
向 1000毫升的反应瓶中加入羟基乙腈(50% ) 500克(4.39mol ) , 搅拌下加入氯化铵 38.5 克(0.72mol ) , 然后给体系加热, 当加热到 110°C时, 开始加氨水, 控制氨水的滴加速度, 以保证反应液的 pH值 在 5〜8之间 , 同时控制反应体系的温度在 110 ~ 130°C之间。 当加入氨 水(25% ) 158克(2.3mol )后, 即可停止滴加, 继续在 110-130°C保 温 2小时, 将反应液转移到 2000毫升的反应瓶中。
加入 865克( 8.53mol )由上批母液和水混合吸收盐酸气配制而成的 36%的浓盐酸, 盐酸加完后, 在 80 ~ 150°C下保温反应 4小时, 然后冷 却降温, 温度降到 10°C时, 抽滤得到亚氨基二乙酸盐酸盐和氯化铵的 混合物 568.8克, 实物折百收率为 88%。 反应母液套用, 粗品进行精 制。
所得粗品用 570克水重结晶,得到含量为 98%的亚氨基二乙酸盐酸 盐纯品 111.9克(0.65mol ) , 收率为 29.5%。 所得母液用氨调 PH值到 2, 析出固体, 搅拌 0.5小时后抽滤得到含量为 98.4%的亚氨基二乙酸 169克 (1.25mol ) , 收率为 57%, 则总的收率为 86.5%。 结晶母液浓 缩冷却滤除氯化铵后, 留待下批套用。
实施例 3
向 1000毫升的反应瓶中加入羟基乙腈(50% ) 500克(4.39mol ) , 搅拌下加入氯化铵 38.5 克(0.72mol ) , 然后给体系加热, 当加热到 110°C时, 开始加氨水, 控制氨水的滴加速度, 以保证反应液的 pH值 在 5~8之间, 同时控制反应体系的温度在 110 ~ 130°C之间。 当加入氨 水(25% ) 158克(2.3mol )后, 即可停止滴加, 继续在 110-130°C保 温 2小时, 将反应液转移到 2000毫升的反应瓶中。
加入 865克( 8.53mol )由上批母液和水混合吸收盐酸气配制而成的 36%的浓盐酸, 盐酸加完后, 在 80 ~ 150°C下保温反应 4小时, 然后冷 却降温, 温度降到 10°C时, 抽滤得到亚氨基二乙酸盐酸盐和氯化铵的 混合物 568.8克, 实物折百收率为 88%。 反应母液套用, 粗品进行精 制。 所得粗品用 500克水溶解, 通入氨气或氨水调 pH为 2, 析出固体, 搅拌 0.5 小时后抽滤得到含量为 98.4%的亚氨基二乙酸 252 克 ( 1.25mol ) , 收率为 85%。 结晶母液浓缩冷却滤除氯化铵后, 留待下 批套用。
对比实施例 1
向 500毫升的反应瓶中加入羟基乙腈(50% ) 250克 (2.2mol ) , 开始加热, 当加热到 110°C时, 开始加氨水, 控制氨水的滴加速度, 以保证反应液的 pH值在 5〜8之间,当加入氨水( 25% ) 80克( 1.18mol ) 后, 停止滴加, 继续在 110-130°C保温 2小时, 冷却降温, 抽滤分离得 到含量为 95%的亚氨基二乙腈 76.76克(0.77mol ) , 收率为 70%。
将所得的亚氨基二乙腈与 230克水混合, 搅拌下滴加 (30% ) 205 克(1.54mol )烧碱液, 过程中控制温度在 50-60 °C , 滴加完毕后, 50-60 °C保温 4小 (时同时真空脱除碱解产生的氨) , 冷却结晶, 抽滤得到 含量为 50%的亚氨基二乙酸二钠盐 174.68克(0.49mol ) , 母液减压脱 水, 得到含量为 35%的亚氨基二乙酸二钠盐 83.18克(0.16mol ) 。
将以上所得的两批固体合并用 200克水溶解, 然后用盐酸调 pH 值到 2, 有亚氨基二乙酸析出, 抽滤得到含量为 98%的亚氨基二乙酸 74.4克( 0.55mol )。 母液除氯化钠后, 再次得到亚氨基二乙酸 7.68克 ( 0.05mol ) , 含量为 95%, 则亚氨基二乙酸相对于羟基乙腈的总的收 率为 55%。

Claims

权利要求书
1、 一种以羟基乙腈为原料生产亚氨基二乙酸的方法, 该方法包括如下 步骤:
1 )向羟基乙腈溶液, 或者羟基乙腈与铵盐催化剂混合物中滴加氨 水或通入氨气, 反应得到氨化液;
2 ) 向氨化液直接滴加过量的无机酸, 反应得到酸解液;
3 )将酸解液进行后处理, 得到亚氨基二乙酸的无机酸盐, 或者亚 氨基二乙酸。
2、 根据权利要求 1的方法, 该方法包括如下步骤:
1 )在加热条件下, 向羟基乙腈溶液, 或者羟基乙腈与铵盐催化剂 混合物中, 滴加氨水或通入氨气, 反应得到氨化液;
2 )向不经冷却结晶的氨化液直接滴加过量的无机酸, 在 60-150°C 下反应, 得到酸解液;
3 )在过量酸存在下, 将酸解液进行后处理, 得到亚氨基二乙酸的 无机酸盐, 或者亚氨基二乙酸。
3、 根据权利要求 2的方法, 该方法包括如下步骤:
1 )在 60-180 °C下, 羟基乙腈和铵盐催化剂混合物中, 滴加氨水或 通入氨气, 反应得到氨化液;
2 )向不经冷却结晶的氨化液直接滴加过量的无机酸, 在 60-150°C 下反应, 得到酸解液;
3 )在过量酸存在下, 将酸解液进行冷却、 结晶、 分离, 得到亚氨 基二乙酸的无机酸盐与铵盐混合物粗品, 经重结晶得到亚氨基二乙酸 无机酸盐的纯品, 或者将酸解液或上述粗品采用氨水调节 pH值到 2 左右, 获得亚氨基二乙酸的纯品。
4、 根据权利要求 1-3之任一所述的方法, 其中, 步骤 1) 中羟基乙腈 和氨的摩尔比为 1: 0.1-1, 优选为 0.3-0.8。
5、 根据权利要求 1-4之任一所述的方法, 其中, 步骤 2) 中羟基乙腈 和无机酸的摩尔比为 1: 1-2.5, 优选为 1: 1.4-2。
6、 根据权利要求 1-5之任一所述的方法, 其中, 步骤 1) 中羟基乙腈 和铵盐催化剂的摩尔比为 1: 0.01-0.5, 优选为 1: 0.1-0.4。
7、 根据权利要求 1-6之任一所述的方法, 其中, 步骤 1)中的反应 pH 值控制在 5-8。
8、 根据权利要求 1 -7之任一所述的方法, 其中, 铵盐催化剂是选自硫 酸铵、 氯化铵、 碳酸铵、 硝酸铵或磷酸铵的无机酸铵盐, 或是选自醋 酸铵或甲酸铵的有机酸铵盐, 优选为氯化铵。
9、 根据权利要求 1-8之任一所述的方法, 其中, 无机酸是选自硫酸、 盐酸、 硝酸或磷酸, 优选为盐酸。
10、 根据权利要求 1-9之任一所述的方法, 其中, 步骤 1)的氨化液可 以采用亚氨基二乙腈溶液, 或者亚氨基二乙腈与其合成母液的混合液 来替代。
PCT/CN2007/003773 2007-12-25 2007-12-25 一种以羟基乙腈为原料制备亚氨基二乙酸的方法 WO2009079861A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/003773 WO2009079861A1 (zh) 2007-12-25 2007-12-25 一种以羟基乙腈为原料制备亚氨基二乙酸的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/003773 WO2009079861A1 (zh) 2007-12-25 2007-12-25 一种以羟基乙腈为原料制备亚氨基二乙酸的方法

Publications (2)

Publication Number Publication Date
WO2009079861A1 true WO2009079861A1 (zh) 2009-07-02
WO2009079861A8 WO2009079861A8 (zh) 2009-09-24

Family

ID=40800683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003773 WO2009079861A1 (zh) 2007-12-25 2007-12-25 一种以羟基乙腈为原料制备亚氨基二乙酸的方法

Country Status (1)

Country Link
WO (1) WO2009079861A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232355A (zh) * 2013-04-25 2013-08-07 重庆紫光化工股份有限公司 一种环保清洁的亚氨基二乙酸生产方法
CN103265443A (zh) * 2013-06-05 2013-08-28 重庆紫光化工股份有限公司 一种工业生产高纯度亚氨基二乙酸的方法
CN104892436A (zh) * 2015-06-16 2015-09-09 重庆紫光化工股份有限公司 亚氨基二乙腈生产母液的回收再利用方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413673A2 (en) * 1989-08-14 1991-02-20 Monsanto Company Process for the preparation of iminodiacetonitrile
US5187301A (en) * 1989-10-26 1993-02-16 W. R. Grace & Co.-Conn. Preparation of iminodiacetonitrile from glycolonitrile
CN1594281A (zh) * 2004-07-05 2005-03-16 四川省天然气化工研究院 亚氨基二乙酸的制备方法
CN101092369A (zh) * 2006-06-23 2007-12-26 北京清华紫光英力化工技术有限责任公司 一种以羟基乙腈为原料制备亚氨基二乙酸的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413673A2 (en) * 1989-08-14 1991-02-20 Monsanto Company Process for the preparation of iminodiacetonitrile
US5187301A (en) * 1989-10-26 1993-02-16 W. R. Grace & Co.-Conn. Preparation of iminodiacetonitrile from glycolonitrile
CN1594281A (zh) * 2004-07-05 2005-03-16 四川省天然气化工研究院 亚氨基二乙酸的制备方法
CN101092369A (zh) * 2006-06-23 2007-12-26 北京清华紫光英力化工技术有限责任公司 一种以羟基乙腈为原料制备亚氨基二乙酸的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232355A (zh) * 2013-04-25 2013-08-07 重庆紫光化工股份有限公司 一种环保清洁的亚氨基二乙酸生产方法
CN103265443A (zh) * 2013-06-05 2013-08-28 重庆紫光化工股份有限公司 一种工业生产高纯度亚氨基二乙酸的方法
CN104892436A (zh) * 2015-06-16 2015-09-09 重庆紫光化工股份有限公司 亚氨基二乙腈生产母液的回收再利用方法及装置

Also Published As

Publication number Publication date
WO2009079861A8 (zh) 2009-09-24

Similar Documents

Publication Publication Date Title
CN1962611B (zh) 羟基乙腈法制备甘氨酸的新工艺
CN105461579B (zh) 一种亚氨基二琥珀酸及其盐的制备方法
US9056818B2 (en) Process for the preparation of derivatives of 1-(2-halobiphenyl-4-yl)-cyclopropanecarboxylic acid
CN104086461B (zh) 一水肌酸的制备方法
CN103232355B (zh) 一种环保清洁的亚氨基二乙酸生产方法
CN103319359A (zh) 一种亚氨基二乙酸的生产方法
WO2009079861A1 (zh) 一种以羟基乙腈为原料制备亚氨基二乙酸的方法
CN100558699C (zh) 一种以羟基乙腈为原料制备亚氨基二乙酸的方法
WO2011012060A1 (zh) 亚氨基二乙腈水解制备双甘膦的方法
CN104119243A (zh) 一种亚氨基二乙酸的节能清洁生产方法
CN105985251A (zh) 一种亚氨基二乙酸等氨基酸类清洁生产工艺
CN113603602B (zh) 一种高选择性制备β-氨基丙酸的方法
CN105906520A (zh) 一种左旋甲基多巴中间体的回收方法及应用
CN101591255B (zh) 一种亚氨基二乙酸的清洁生产工艺
CN113461508B (zh) 一种α-酮苯丙氨酸钙的制备方法
CN101092430A (zh) 一种以羟基乙腈为原料一锅法制备双甘膦的清洁生产方法
CN114685300A (zh) 一种邻氯苯甘氨酸的制备方法
CN112142579A (zh) 一种2-羟基-4-甲氧基二苯甲酮的制备工艺
CN108148091B (zh) 一种草铵膦的清洁制备方法
CN111689881B (zh) 一种阿佐塞米中间体的合成方法
CN101671362A (zh) 羟基乙腈连续法制备双甘膦的工艺
CN102863355B (zh) 一种n-(3-甲氧基-2-甲基苯甲酰基)-n’-叔丁基肼的提纯方法
CN109704984B (zh) 一种用于分离得到亚氨基二乙酸、硫酸铵的方法
CN102659162B (zh) 一种利用四丁基溴化铵结晶母液制备溴化钙的方法
CN102311362A (zh) 肼乙酸乙酯盐酸盐的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07855779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07855779

Country of ref document: EP

Kind code of ref document: A1