WO2009071048A2 - Hydraulikanordnung zur steuerung eines kegelscheiben-umschlingungsgetriebes - Google Patents

Hydraulikanordnung zur steuerung eines kegelscheiben-umschlingungsgetriebes Download PDF

Info

Publication number
WO2009071048A2
WO2009071048A2 PCT/DE2008/001899 DE2008001899W WO2009071048A2 WO 2009071048 A2 WO2009071048 A2 WO 2009071048A2 DE 2008001899 W DE2008001899 W DE 2008001899W WO 2009071048 A2 WO2009071048 A2 WO 2009071048A2
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
radiator return
return line
hydraulic arrangement
Prior art date
Application number
PCT/DE2008/001899
Other languages
English (en)
French (fr)
Other versions
WO2009071048A3 (de
Inventor
Jochen Pfister
Eric MÜLLER
Roshan Willeke
Original Assignee
Luk Lamellen Und Kupplungsbau Beteiligungs Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luk Lamellen Und Kupplungsbau Beteiligungs Kg filed Critical Luk Lamellen Und Kupplungsbau Beteiligungs Kg
Priority to JP2010536316A priority Critical patent/JP5559059B2/ja
Priority to EP20080856465 priority patent/EP2220405B1/de
Priority to DE200811003693 priority patent/DE112008003693A5/de
Priority to CN2008801191973A priority patent/CN101889157B/zh
Publication of WO2009071048A2 publication Critical patent/WO2009071048A2/de
Publication of WO2009071048A3 publication Critical patent/WO2009071048A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0435Pressure control for supplying lubricant; Circuits or valves therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0487Friction gearings
    • F16H57/0489Friction gearings with endless flexible members, e.g. belt CVTs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86879Reciprocating valve unit

Definitions

  • the invention relates to a hydraulic system for controlling a conical-pulley transmission, with a pump which sucks a working fluid from a working fluid tank or via a radiator return valve from a radiator return line.
  • the object of the invention is to provide a hydraulic arrangement for controlling a conical-pulley, with a pump which sucks a working fluid from a working fluid tank or a radiator return valve from a radiator return line, through which the suction of the pump can be improved.
  • the object is achieved in a hydraulic arrangement for controlling a conical-pulley, with a pump which sucks a working fluid from a working fluid tank or a radiator return valve from a radiator return line, characterized in that the radiator return valve is designed as a minimum pressure valve, which is a connection between the Radiator return line and a Pumpenansaug réelle closed by the radiator return valve, as long as a predetermined minimum pressure in the radiator return line is exceeded, and the connection between the radiator return line and the pump intake line through the radiator return valve opens as soon as the predetermined minimum pressure in the radiator return line is exceeded.
  • the radiator return valve thus acts as an absolute pressure valve and not as a differential pressure valve. As a result, undesired suction of air from the radiator return line can be prevented in a simple manner.
  • the back pressure of the controller can be lowered.
  • the predetermined minimum pressure in the radiator return line is preferably about 1.8 bar.
  • radiator return valve comprises a valve piston having an active surface, which is biased in a closed position of the valve piston against a sealing edge. In the closed position, the connection between the radiator return line and the pump suction line is closed by the valve piston.
  • valve piston is biased by a closing spring in its closed position is.
  • the closing spring is preferably designed as a compression spring which acts on one end of the valve piston with a biasing force.
  • a further preferred embodiment of the hydraulic arrangement is characterized in that the active surface is designed as a conical seat surface.
  • the conical seat ensures a very good seal with the pump.
  • a further preferred embodiment of the hydraulic arrangement is characterized in that the valve piston has a return pressure effective area, which is acted upon counter to a force acting on the valve piston biasing force with the pressure from the radiator return line.
  • the return pressure acting surface is directly or indirectly in communication with the working fluid in the radiator return line.
  • a further preferred embodiment of the hydraulic arrangement is characterized in that the return pressure effective area has a partial surface which is directly connected to the radiator return line.
  • the radiator return line is connected to the radiator return valve so that the pressure from the radiator return line acts directly on the partial surface of the return pressure effective area.
  • a further preferred embodiment of the hydraulic arrangement is characterized in that the partial surface is formed radially on the outside of the active surface.
  • the partial surface is preferably provided radially outside a valve housing sealing edge against which the conical seat surface comes to rest in the closed position of the valve piston.
  • a further preferred embodiment of the hydraulic arrangement is characterized in that the return pressure effective area has a further partial area, which communicates via an orifice with the radiator return line. About the diaphragm, the pressure from the radiator return line acts only indirectly on the further partial surface of the return pressure effective area.
  • Another preferred embodiment of the hydraulic arrangement is characterized in that the aperture has a diameter of about 0.75 millimeters. This value has proved to be particularly advantageous in the context of the present invention.
  • a further preferred embodiment of the hydraulic arrangement is characterized in that the valve piston has a suction pressure effective area which coincides with the pressure in the pump suction line is acted upon.
  • the suction pressure effective area is preferably provided on the end of the valve piston facing away from the closing spring.
  • FIG. 1 shows a hydraulic circuit diagram of a hydraulic system for controlling a
  • Figure 2 shows an enlarged detail of Figure 1 with an inventive
  • the hydraulic arrangement 1 shows a partially illustrated circuit diagram of a hydraulic arrangement 1.
  • the hydraulic arrangement 1 is used to control a conical-pulley belt transmission, which is indicated by the reference numeral 3 in FIG.
  • the conical-pulley 3 can be part of a drive train of a motor vehicle 5, which is indicated by the reference numeral 5.
  • the hydraulic arrangement 1 has a hydraulic energy source 7, for example a mechanically or electrically driven hydraulic pump for conveying a hydraulic medium.
  • To drive the hydraulic power source 7 may be assigned to a non-illustrated internal combustion engine of the motor vehicle 5.
  • the hydraulic power source 7 serves to supply the hydraulic system 1 with hydraulic energy.
  • the hydraulic energy source 7 is followed by a first valve assembly 9, which is associated with a torque sensor 11.
  • the first valve assembly 1 and the torque sensor 11 are used to provide and / or controlling a contact pressure for the transmission of torque between conical disks and a corresponding Umschlingungsorgan the conical-pulley 3, in particular depending on the applied to the conical disk-Umschlingungsgetriebe 3 torques.
  • Downstream of the torque sensor 11 is associated with a radiator return 31 via a cooler, not shown.
  • the torque sensor 11 can raise or lower a system pressure 45 supplied by the hydraulic energy source by means of a suitable control edge and depending on the applied torques.
  • the hydraulic energy source 7 is also followed by a second valve assembly 13.
  • the second valve assembly 13 is assigned by means of reference numeral 15 indicated conical disks and is used to adjust the conical disks 15, that is, to set the transmission ratio of the conical-pulley belt 3.
  • the hydraulic power source 7 is further downstream of a third valve assembly 17, which is assigned to drive a forward clutch 19 and a reverse clutch 21.
  • the hydraulic power source 7 is also followed by a hydraulic parking lock unlocking assembly 23.
  • the parking lock unlocking 23 of the hydraulic assembly 1 is associated with a direction indicated by the reference numeral 25 mechanical parking brake 25.
  • the assignment can be done by means of suitable mechanical aids, such as a lever.
  • the mechanical parking brake 25 of the motor vehicle 5 can be inserted, so manufactured and released again.
  • the hydraulic energy source 7 also serves to supply a fourth valve arrangement 27.
  • the fourth valve arrangement 27 serves to provide a cooling oil volume flow likewise provided by means of the hydraulic energy source 7.
  • the fourth valve arrangement 27 is associated with a cooling circuit indicated by the reference numeral 29, in particular the radiator return 31, an active hydronic cooling 33, a jet pump 35 and a centrifugal oil hood 37.
  • the hydraulic energy source 7 is downstream of a branch 39 associated with a pilot pressure control valve 41.
  • the pilot pressure control valve 41 controls downstream a pilot pressure 43, for example of about 5 bar, while the hydraulic energy source 7 provides a higher system pressure 45.
  • the pilot pressure is used in a known manner by means of suitable proportional valves, such as electrically controllable proportional valves, for controlling the switching components of the hydraulic assembly 1.
  • suitable proportional valves such as electrically controllable proportional valves, for controlling the switching components of the hydraulic assembly 1.
  • a fifth valve assembly 47 is provided for adjusting and distributing the hydraulic energy supplied by the hydraulic power source 7.
  • the fifth valve arrangement 47 ensures a priority supply of the torque sensor 11 and the second valve arrangement 13, for example when starting the engine of the motor vehicle 5. For adjusting or regulating the system pressure 45 in front of the torque sensor 11, this has not shown pressure control valves.
  • the first valve arrangement 9 Upstream of the moment sensor 11, the first valve arrangement 9 has a system pressure valve 49.
  • the system pressure valve 49 is connected downstream of the fifth valve arrangement 47 and allows a corresponding volume flow to pass through for the moment sensor 11, wherein the system pressure 45 downstream can be adjusted to a minimum system pressure, for example 6 bar.
  • the system pressure valve 49 is additionally assigned upstream of the second valve arrangement 13 via an OR element 63.
  • the second valve arrangement 13 has a seventh valve 51, connected downstream of the hydraulic energy source 7, with a seventh control piston 53.
  • the seventh control piston 53 is associated downstream with an eighth valve 55 for driving.
  • the eighth valve 55 can be a control valve, for example an electrically controllable proportional valve.
  • the seventh valve 51 has a first tide or lamella 57 and a second trough o the lamella 59, which are respectively assigned to corresponding adjusting members of the conical disks 15.
  • the hydraulic energy source 7 can optionally be assigned to the first flood or lamella 57 or the second tide or lamella 59 either continuously, that is to say in a flowing manner.
  • the respective non-hydraulic energy source 7 associated flood or lamella can be assigned according to a tank 61. In a middle position, both floods or fins 57 and 59 can be separated from the hydraulic power source 7 and switched to the tank 61.
  • the seventh valve 51 of the second valve assembly 13 can thus be set in the floods or fins 57 and 59 for adjusting the conical disks 15, a desired pressure ratio.
  • the floods or fins 57 and 59 are also assigned via the OR member 63 of the system pressure valve 49 this.
  • the minimum system pressure regulated by means of the system pressure valve 49 can be adjusted to a desired extent in adjusting movements made by means of the seventh valve 51, ie be raised, for example.
  • the fourth valve arrangement 27 has a cooling oil control valve 67 controlled by means of a fourth valve 65.
  • the cooling oil control valve 67 is connected downstream of the fifth valve arrangement 47 and is supplied via this by means of the hydraulic power source 7 with hydraulic energy.
  • the fourth valve arrangement 27 also has a return valve 69, which is assigned directly upstream of the hydraulic energy source 7 or a pump injector or a throttle rear diaphragm 70 of the hydraulic energy source 7.
  • the Return valve 69 is downstream of a flood or louver of the return valve 69 connected through the centrifugal oil hood 37 and directs with increasing volume flows a partial flow directly into the Pumpeninjektor 70.
  • the cooling oil control valve 67 serves to maintain and Einregel a desired cooling oil flow to the components to be cooled 31, 33, 35 and 37.
  • the third valve arrangement 17 has a first valve 71 with a first control piston 73.
  • a first control piston 73 For controlling the first control piston 73, this is assigned downstream of a third valve 75, for example a control valve, for example an electrically controllable proportional valve.
  • the first control piston 73 of the first valve 71 can assume substantially three switching positions for actuating the forward clutch 19 and the reverse clutch 21.
  • a first flood or louver 77 of the first valve 71 is assigned by means of the first control piston 73 of the hydraulic power source 7, wherein the assignment to the hydraulic energy source 7 via a fifth valve 79.
  • the fifth valve 79 can be actuated by means of a sixth valve 81, for example a control valve, for example an electrically controllable proportional valve, and serves to provide or control and / or regulate one for closing the optional downstream clutches 19 and 21. If a torque to be transmitted is present, For example, the pressure may be up to 20 bar.
  • the fifth valve 79 can additionally be used, for example in the case of a fault, preferably in the event of a power failure, to depressurize the downstream first valve 71, that is to separate the hydraulic energy source 7 from the first valve 71.
  • both the inlet of the first valve 71 and the hydraulic energy source 7 can be switched to the tank 61 for this purpose.
  • a second switching position which corresponds to a, seen in alignment of Figure 1
  • displacement of the first control piston 73 of the first valve 71 to the right the connection to the upstream fifth valve 79 can be interrupted.
  • the first control piston 73 of the first valve 71 by means of the first control piston 73 of the first valve 71, the first flow or fin 77 can be switched to the tank 61, so that the reverse clutch is depressurized.
  • the forward clutch 19 can be switched to the tank 61 via a second flood or lamella 83 of the first valve 71.
  • a third switching position which, as seen in alignment of Figure 1, corresponds to a further shift to the right of the first control piston 71, the second flood or fin 83 the fifth valve 79 and the first flood or lamella 77 are assigned to the tank 61.
  • this third shift position which corresponds to an engaged forward gear of the motor vehicle 5, so the forward clutch 19 is pressurized and the reverse clutch 21 is depressurized.
  • the parking lock unlocking arrangement 23 has a two-part parking lock cylinder 85.
  • the parking lock cylinder 85 can be biased by means of a, not shown in Figure 1 return spring of the parking brake 25, in alignment of Figure 1, to the left. Contrary to this bias, the parking lock cylinder 85 can be moved to release the parking brake 25, in alignment of Figure 1, to the right.
  • an end face 87 of the parking lock cylinder 85 is connected downstream of a second valve 89 of the parking lock unlocking arrangement 23.
  • the second valve 89 of the parking lock unlocking arrangement 23 is connected downstream of the hydraulic power source 7, wherein the end face 87 of the parking lock cylinder 85 the system pressure 45 of the hydraulic power source 7 by means of a second control piston 91 of the second valve 89 is directly attributable.
  • the control of the second control piston 91 can be effected by means of the fourth valve 65 of the fourth valve arrangement 27, wherein the second control piston 91 is assigned downstream of the fourth valve 65.
  • the cooling oil control valve 67 and the second valve 89 are thus equally driven by the fourth valve 65, wherein, for example, the parking brake 25 can be solved with simultaneous switching on the cooling oil flow rate and vice versa.
  • the pump 7 is connected via a further Pumpenansaug réelle 102 with the radiator return valve 69 in conjunction.
  • a pump injector 70 is arranged with a diaphragm or throttle.
  • the further pump suction line 102 opens into the pump suction line 101.
  • the radiator return valve 69 is designed as a minimum pressure valve 105.
  • the minimum pressure valve 105 includes a valve housing 108 in which a valve piston 110 is reciprocably received.
  • the valve piston 110 has an intake pressure effective area 111 on an end face which delimits an intake pressure chamber 114 in the valve housing 108.
  • the further pump suction line 102 opens, so that the suction pressure effective area 111 is acted upon by the suction pressure which prevails in the further pump suction line 102.
  • the suction pressure effective surface 111 transitions radially outward into an active surface 112, which in the present example is designed as a conical seat surface.
  • the valve piston 110 is in its closed position, in which the conical seat surface 112 bears against a sealing edge of the valve housing 108.
  • a connection between the radiator return line 31 and the suction pressure chamber 114 and the further pump suction line 102 is interrupted or blocked or closed by the valve piston 110.
  • the valve piston 110 is biased by a closing spring 115 which acts on the end of the valve piston 110 facing away from the Ansaugtigwirk Structure 111, in its closed position.
  • a partial surface 116 of a return pressure effective area is provided on the valve piston 110.
  • the partial surface 116 of the return pressure effective area is formed by a region of the conical seat surface 112 which is arranged radially outside the sealing edge provided on the valve housing 108.
  • the partial surface 116 of the return pressure effective area is acted upon directly via the radiator return line 31 to the return pressure, which prevails in the radiator return line 31.
  • the return pressure effective area comprises, in addition to the partial surface 116, a further partial surface 117, which is provided on a shoulder 118 of the valve piston 110.
  • the further partial surface 117, as well as the partial surface 116, faces away from the closing spring 115.
  • the further partial surface 117 is connected via a radiator return connection line 120, in which a throttle 121 is provided, only indirectly, that is, via the throttle 121, with the radiator return line 31 in connection.
  • the valve piston 110 closes the path or the connection from the radiator return line 31 to the pump suction line 102 through the conical seat 112.
  • the conical seat 112 effects a very good seal with the pump 7 In the closed position of the valve piston 110, the pump 7 sucks the working medium only from the tank 100.
  • valve piston 110 moves in the direction of the closing spring 115, that is to the left in FIG. 2, and an opening cross section is released in the region of the conical seat 112 , so that working medium, in particular oil, flows from the cooler return line 31 through the further pump suction line 102 via the pump injector 70 to the pump 7.
  • the associated (not shown) position of the valve piston 110 is also referred to as open position.
  • an intake pressure which acts on the suction pressure effective area 111 of the valve piston 110, builds up in the pump intake line 102 on the pump injector 70.
  • this intake pressure causes the valve piston 110 to move further in the direction of the closing spring 115, that is, to the left in FIG. 2, against a corresponding stop.
  • the stop can be realized in that the closing spring 115 goes to block.
  • the minimum pressure valve 105 prevents, in particular, the pump 7 sucking in air from the cooler return line 31 at low pressure in the cooler return line 31, which would considerably impair the function of the pump 7. By the minimum pressure valve 105 ensures that there is always a minimum pressure. The minimum pressure valve 105 opens only when this minimum pressure is exceeded.
  • Parking lock unlocking arrangement 83 second flood mechanical parking lock 85 parking lock cylinder fourth valve assembly 87 front side
  • Branch 102 pump suction line
  • Pilot pressure control valve 105 Minimum pressure valve

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

Die Erfindung betrifft eine Hydraulikanordnung zur Steuerung eines Kegelscheiben-Umschlingungsgetriebes, mit einer Pumpe, die ein Arbeitsmedium aus einem Arbeitsmediumtank oder über ein Kühlerrücklaufventil aus einer Kühlerrücklaufleitung ansaugt. Die Erfindung zeichnet sich dadurch aus, dass das Kühlerrücklaufventil als Mindestdruckventil ausgeführt ist, das eine Verbindung zwischen der Kühlerrücklaufleitung und einer Pumpenansaugleitung durch das Kühlerrücklaufventil geschlossen hält, solange ein vorgegebener Mindestdruck in der Kühlerrücklaufleitung unterschritten wird, und das die Verbindung zwischen der Kühlerrücklaufleitung und der Pumpenansaugleitung durch das Kühlerrücklaufventil öffnet, sobald der vorgegebene Mindestdruck in der Kühlerrücklaufleitung überschritten wird.

Description

Hydraulikanordnung zur Steuerung eines Keqelscheiben-Umschlinqunqsgetriebes
Die Erfindung betrifft eine Hydraulikanordnung zur Steuerung eines Kegelscheiben-Umschlin- gungsgetriebes, mit einer Pumpe, die ein Arbeitsmedium aus einem Arbeitsmediumtank oder über ein Kühlerrücklaufventil aus einer Kühlerrücklaufleitung ansaugt.
Aufgabe der Erfindung ist es, eine Hydraulikanordnung zur Steuerung eines Kegelscheiben- Umschlingungsgetriebes, mit einer Pumpe, die ein Arbeitsmedium aus einem Arbeitsmediumtank oder über ein Kühlerrücklaufventil aus einer Kühlerrücklaufleitung ansaugt, zu schaffen, durch die das Ansaugverhalten der Pumpe verbessert werden kann.
Die Aufgabe ist bei einer Hydraulikanordnung zur Steuerung eines Kegelscheiben-Umschlin- gungsgetriebes, mit einer Pumpe, die ein Arbeitsmedium aus einem Arbeitsmediumtank oder über ein Kühlerrücklaufventil aus einer Kühlerrücklaufleitung ansaugt, dadurch gelöst, dass das Kühlerrücklaufventil als Mindestdruckventil ausgeführt ist, das eine Verbindung zwischen der Kühlerrücklaufleitung und einer Pumpenansaugleitung durch das Kühlerrücklaufventil geschlossen hält, solange ein vorgegebener Mindestdruck in der Kühlerrücklaufleitung unterschritten wird, und das die Verbindung zwischen der Kühlerrücklaufleitung und der Pumpenansaugleitung durch das Kühlerrücklaufventil öffnet, sobald der vorgegebene Mindestdruck in der Kühlerrücklaufleitung überschritten wird. Das Kühlerrücklaufventil wirkt somit als Absolutdruckventil und nicht als Differenzdruckventil. Dadurch kann auf einfache Art und Weise ein unerwünschtes Ansaugen von Luft aus der Kühlerrücklaufleitung verhindert werden. Darüber hinaus kann der Rückstaudruck der Steuerung gesenkt werden. Der vorgegebene Mindestdruck in der Kühlerrücklaufleitung beträgt vorzugsweise etwa 1,8 bar.
Ein bevorzugtes Ausführungsbeispiel der Hydraulikanordnung ist dadurch gekennzeichnet, dass das Kühlerrücklaufventil einen Ventilkolben mit einer Wirkfläche umfasst, die in einer Schließstellung des Ventilkolbens gegen eine Dichtkante vorgespannt ist. In der Schließstellung ist die Verbindung zwischen der Kühlerrücklaufleitung und der Pumpenansaugleitung durch den Ventilkolben verschlossen.
Ein weiteres bevorzugtes Ausführungsbeispiel der Hydraulikanordnung ist dadurch gekennzeichnet, dass der Ventilkolben durch eine Schließfeder in seine Schließstellung vorgespannt ist. Die Schließfeder ist vorzugsweise als Druckfeder ausgeführt, die ein Ende des Ventilkolbens mit einer Vorspannkraft beaufschlagt.
Ein weiteres bevorzugtes Ausführungsbeispiel der Hydraulikanordnung ist dadurch gekennzeichnet, dass die Wirkfläche als Kegelsitzfläche ausgeführt ist. Der Kegelsitz bewirkt eine sehr gute Abdichtung zur Pumpe.
Ein weiteres bevorzugtes Ausführungsbeispiel der Hydraulikanordnung ist dadurch gekennzeichnet, dass der Ventilkolben eine Rücklaufdruckwirkfläche aufweist, die entgegen einer auf den Ventilkolben wirkenden Vorspannkraft mit dem Druck aus der Kühlerrücklaufleitung beaufschlagt ist. Die Rücklaufdruckwirkfläche steht direkt oder indirekt mit dem Arbeitsmedium in der Kühlerrücklaufleitung in Verbindung.
Ein weiteres bevorzugtes Ausführungsbeispiel der Hydraulikanordnung ist dadurch gekennzeichnet, dass die Rücklaufdruckwirkfläche eine Teilfläche aufweist, die direkt mit der Kühlerrücklaufleitung in Verbindung steht. Vorzugsweise ist die Kühlerrücklaufleitung so an das Kühlerrücklaufventil angeschlossen, dass der Druck aus der Kühlerrücklaufleitung direkt auf die Teilfläche der Rücklaufdruckwirkfläche wirkt.
Ein weiteres bevorzugtes Ausführungsbeispiel der Hydraulikanordnung ist dadurch gekennzeichnet, dass die Teilfläche radial außen an der Wirkfläche ausgebildet ist. Die Teilfläche ist vorzugsweise radial außerhalb einer Ventilgehäusedichtkante vorgesehen, an welcher die Kegelsitzfläche in der Schließstellung des Ventilkolbens zur Anlage kommt.
Ein weiteres bevorzugtes Ausführungsbeispiel der Hydraulikanordnung ist dadurch gekennzeichnet, dass die Rücklaufdruckwirkfläche eine weitere Teilfläche aufweist, die über eine Blende mit der Kühlerrücklaufleitung in Verbindung steht. Über die Blende wirkt der Druck aus der Kühlerrücklaufleitung nur indirekt auf die weitere Teilfläche der Rücklaufdruckwirkfläche.
Ein weiteres bevorzugtes Ausführungsbeispiel der Hydraulikanordnung ist dadurch gekennzeichnet, dass die Blende einen Durchmesser von etwa 0,75 Millimeter aufweist. Dieser Wert hat sich im Rahmen der vorliegenden Erfindung als besonders vorteilhaft erwiesen.
Ein weiteres bevorzugtes Ausführungsbeispiel der Hydraulikanordnung ist dadurch gekennzeichnet, dass der Ventilkolben eine Ansaugdruckwirkfläche aufweist, die mit dem Druck in der Pumpenansaugleitung beaufschlagt ist. Die Ansaugdruckwirkfläche ist vorzugsweise an dem der Schließfeder abgewandten Ende des Ventilkolbens vorgesehen.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung ein Ausführungsbeispiel im Einzelnen beschrieben ist. Es zeigen:
Figur 1 einen Hydraulikschaltplan einer Hydraulikanordnung zur Steuerung eines
Kegelscheiben-Umschlingungsgetriebes und
Figur 2 einen vergrößerten Ausschnitt aus Figur 1 mit einem erfindungsgemäßen
Kü hlerrücklaufventil .
Figur 1 zeigt einen teilweise dargestellten Schaltplan einer Hydraulikanordnung 1. Die Hydraulikanordnung 1 dient zur Steuerung eines Kegelscheiben-Umschlingungsgetriebes, das mit der Bezugsziffer 3 in Figur 1 angedeutet ist. Das Kegelscheiben-Umschlingungsgetriebe 3 kann Teil eines Triebstrangs eines Kraftfahrzeuges 5 sein, das mit der Bezugsziffer 5 angedeutet ist. Die Hydraulikanordnung 1 weist eine hydraulische Energiequelle 7, beispielsweise eine mechanisch oder elektrisch angetriebene Hydraulikpumpe zur Förderung eines Hydraulikmediums auf. Zum Antrieb kann die hydraulische Energiequelle 7 einem nicht näher dargestellten Verbrennungsmotor des Kraftfahrzeuges 5 zugeordnet sein. Die hydraulische Energiequelle 7 dient zur Versorgung der Hydraulikanordnung 1 mit hydraulischer Energie.
Der hydraulischen Energiequelle 7 ist eine erste Ventilanordnung 9 nachgeschaltet, die einem Momentenfühler 11 zugeordnet ist. Die erste Ventilanordnung 1 und der Momentenfühler 11 dienen zum Bereitstellen und/oder Steuern eines Anpressdrucks zur Übertragung von Drehmomenten zwischen Kegelscheiben und einem entsprechenden Umschlingungsorgan des Kegelscheiben-Umschlingungsgetriebes 3, insbesondere in Abhängigkeit der an dem Kegel- scheiben-Umschlingungsgetriebe 3 anliegenden Drehmomente. Stromabwärts ist der Momentenfühler 11 über einen nicht dargestellten Kühler einem Kühlerrücklauf 31 zugeordnet. Der Momentenfühler 11 kann mittels einer geeigneten Steuerkante und abhängig von den anliegenden Drehmomenten einen von der hydraulischen Energiequelle gelieferten Systemdruck 45 erhöhen oder absenken. - A -
Der hydraulischen Energiequelle 7 ist außerdem eine zweite Ventilanordnung 13 nachgeschaltet. Die zweite Ventilanordnung 13 ist mittels Bezugszeichen 15 angedeuteten Kegelscheiben zugeordnet und dient zur Verstellung der Kegelscheiben 15, also zum Einstellen des Übersetzungsverhältnisses des Kegelscheiben-Umschlingungsgetriebes 3.
Der hydraulischen Energiequelle 7 ist ferner eine dritte Ventilanordnung 17 nachgeschaltet, die zur Ansteuerung einer Vorwärtskupplung 19 und einer Rückwärtskupplung 21 zugeordnet ist.
Der hydraulischen Energiequelle 7 ist außerdem eine hydraulische Parksperren-Entriegelungsanordnung 23 nachgeschaltet. Die Parksperren-Entriegelungsanordnung 23 der Hydraulikanordnung 1 ist einer mittels des Bezugszeichens 25 angedeuteten mechanischen Parksperre 25 zugeordnet. Die Zuordnung kann mittels geeigneter mechanischer Hilfsmittel, beispielsweise eines Hebels, erfolgen. Mittels der Parksperren-Entriegelungsanordnung 23 kann die mechanische Parksperre 25 des Kraftfahrzeuges 5 eingelegt, also hergestellt und wieder gelöst werden.
Die hydraulische Energiequelle 7 dient außerdem zur Versorgung einer vierten Ventilanordnung 27. Die vierte Ventilanordnung 27 dient zum Bereitstellen eines ebenfalls mittels der hydraulischen Energiequelle 7 bereitgestellten Kühlölvolumenstroms. Hierzu ist die vierte Ventilanordnung 27 einem mittels des Bezugszeichens 29 angedeuteten Kühlkreislauf, insbesondere dem Kühlerrücklauf 31, einer aktiven Hydronic-Kühlung 33, einer Strahlpumpe 35 sowie einer Fliehölhaube 37 zugeordnet.
Die hydraulische Energiequelle 7 ist stromabwärts über einen Abzweig 39 einem Vorsteuer- druckregelventil 41 zugeordnet. Das Vorsteuerdruckregelventil 41 regelt stromabwärts einen Vorsteuerdruck 43, beispielsweise von circa 5 bar, während die hydraulische Energiequelle 7 einen höheren Systemdruck 45 bereitstellt. Der Vorsteuerdruck dient auf bekannte Art und Weise mittels geeigneten Proportionalventilen, beispielsweise elektrisch ansteuerbaren Proportionalventilen, zur Steuerung der Schaltkomponenten der Hydraulikanordnung 1. Zum Einstellen und Verteilen der von der hydraulischen Energiequelle 7 gelieferten hydraulischen Energie ist eine fünfte Ventilanordnung 47 vorgesehen. Die fünfte Ventilanordnung 47 stellt eine vorrangige Versorgung des Momentenfühlers 11 und der zweiten Ventilanordnung 13 sicher, beispielsweise beim Anlassen des Motors des Kraftfahrzeuges 5. Zur Einstellung beziehungsweise Regelung des Systemdrucks 45 vor dem Momentenfühler 11 , weist dieser nicht dargestellte Druckregelventile auf. Dem Momentenfühler 11 vorgeschaltet weist die erste Ventilanordnung 9 ein Systemdruckventil 49 auf. Das Systemdruckventil 49 ist der fünften Ventilanordnung 47 nachgeschaltet und lässt einen entsprechenden Volumenstrom für den Momentenfühler 11 passieren, wobei der Systemdruck 45 stromabwärts auf einen Mindestsystemdruck, beispielsweise von 6 bar, eingeregelt werden kann. Zur Einstellung des Anpressdrucks durch kurzfristiges zusätzliches Anheben des Systemdrucks 45 ist das Systemdruckventil 49 über ein Oderglied 63 stromaufwärts zusätzlich der zweiten Ventilanordnung 13 zugeordnet.
Die zweite Ventilanordnung 13 weist ein der hydraulischen Energiequelle 7 nachgeschaltetes siebtes Ventil 51 mit einem siebten Steuerkolben 53 auf. Der siebte Steuerkolben 53 ist stromabwärts einem achten Ventil 55 zur Ansteuerung zugeordnet. Bei dem achten Ventil 55 kann es sich um ein Steuerventil, beispielsweise um ein elektrisch ansteuerbares Proportionalventil handeln. Das siebte Ventil 51 weist eine erste Flut oder Lamelle 57 sowie eine zweite Flut o- der Lamelle 59 auf, die jeweils entsprechenden Verstellorganen der Kegelscheiben 15 zugewiesen sind. Mittels des siebten Steuerkolbens 53 des siebten Ventils 51 kann die hydraulische Energiequelle 7 wahlweise kontinuierlich, also fließend übergehend der ersten Flut oder Lamelle 57 oder der zweiten Flut oder Lamelle 59 zugeordnet werden. Die jeweils nicht der hydraulischen Energiequelle 7 zugeordnete Flut oder Lamelle kann entsprechend einem Tank 61 zugeordnet werden. In einer Mittenstellung können beide Fluten oder Lamellen 57 und 59 von der hydraulischen Energiequelle 7 abgetrennt und auf den Tank 61 geschaltet werden. Mittels des siebten Ventils 51 der zweiten Ventilanordnung 13 kann also in den Fluten oder Lamellen 57 und 59 zum Verstellen der Kegelscheiben 15 ein gewünschtes Druckverhältnis eingestellt werden. Die Fluten oder Lamellen 57 und 59 sind außerdem über das Oder-Glied 63 des Systemdruckventils 49 diesem zugeordnet. Über die Zuordnung kann der mittels des Systemdruckventils 49 eingeregelte Mindestsystemdruck in einem gewünschten Maß bei mittels des siebten Ventils 51 vorgenommenen Verstellbewegungen diesem angepasst werden, also beispielsweise angehoben werden.
Die vierte Ventilanordnung 27 weist ein mittels eines vierten Ventils 65 angesteuertes Kühl- ölregelventil 67 auf. Das Kühlölregelventil 67 ist der fünften Ventilanordnung 47 nachgeschaltet und wird über dieses mittels der hydraulischen Energiequelle 7 mit hydraulischer Energie versorgt. Die vierte Ventilanordnung 27 weist außerdem ein Rückführventil 69 auf, das stromaufwärts direkt der hydraulischen Energiequelle 7 beziehungsweise einem Pumpeninjektor oder einer Drosselhinterblende 70 der hydraulischen Energiequelle 7 zugeordnet ist. Das Rückführventil 69 ist stromabwärts über eine Flut oder Lamelle des Rückführventils 69 durchgeschaltet der Fliehölhaube 37 zugeordnet und leitet bei ansteigenden Volumenströmen einen Teilstrom direkt in den Pumpeninjektor 70. Das Kühlölregelventil 67 dient zum Aufrechterhalten und Einregeln eines gewünschten Kühlölvolumenstroms zu den zu kühlenden Komponenten 31, 33, 35 und 37.
Die dritte Ventilanordnung 17 weist ein erstes Ventil 71 mit einem ersten Steuerkolben 73 auf. Zur Ansteuerung des ersten Steuerkolbens 73 ist dieser stromabwärts einem dritten Ventil 75 zugeordnet, beispielsweise einem Steuerventil, beispielsweise einem elektrisch ansteuerbaren Proportionalventil. Der erste Steuerkolben 73 des ersten Ventils 71 kann zur Ansteuerung der Vorwärtskupplung 19 und der Rückwärtskupplung 21 im Wesentlichen drei Schaltstellungen einnehmen. In einer ersten Schaltstellung, die in Figur 1 gezeigt ist, bei der die Rückwärtskupplung 21 mit Druck beaufschlagt ist, ist eine erste Flut oder Lamelle 77 des ersten Ventils 71 mittels des ersten Steuerkolbens 73 der hydraulischen Energiequelle 7 zugeordnet, wobei die Zuordnung zur hydraulischen Energiequelle 7 über ein fünftes Ventil 79 erfolgt. Das fünfte Ventil 79 ist mittels eines sechsten Ventils 81, beispielsweise ein Steuerventil, beispielsweise ein elektrisch ansteuerbares Proportionalventil, ansteuerbar und dient zum Bereitstellen beziehungsweise Steuern und/oder Regeln eines zum Schließen der wahlweise nachgeschalteten Kupplungen 19 und 21. Falls ein zu übertragendes Drehmoment ansteht, kann der Druck beispielsweise bis zu 20 bar betragen. Vorteilhaft kann das fünfte Ventil 79 zusätzlich dazu verwendet werden, beispielsweise bei einer Störung, vorzugsweise bei einem Stromausfall, das nachgeschaltete erste Ventil 71 drucklos zu schalten, also die hydraulische Energiequelle 7 von dem ersten Ventil 71 abzutrennen. Vorzugsweise können dazu sowohl der Zulauf des ersten Ventils 71 als auch die hydraulische Energiequelle 7 auf den Tank 61 geschaltet werden.
In einer zweiten Schaltstellung, die einer, in Ausrichtung der Figur 1 gesehen, Verlagerung des ersten Steuerkolbens 73 des ersten Ventils 71 nach rechts entspricht, kann die Verbindung zu dem vorgeschalteten fünften Ventil 79 unterbrochen werden. Gleichzeitig kann mittels des ersten Steuerkolbens 73 des ersten Ventils 71 die erste Flut oder Lamelle 77 auf den Tank 61 geschaltet werden, so dass die Rückwärtsfahrkupplung drucklos ist. Außerdem kann in dieser Schaltstellung auch die Vorwärtskupplung 19 über eine zweite Flut oder Lamelle 83 des ersten Ventils 71 auf den Tank 61 geschaltet werden. In einer dritten Schaltstellung, die, in Ausrichtung der Figur 1 gesehen, einer weiteren Verlagerung nach rechts des ersten Steuerkolbens 71 entspricht, kann die zweite Flut oder Lamelle 83 dem fünften Ventil 79 und die erste Flut oder Lamelle 77 dem Tank 61 zugeordnet werden. In dieser dritten Schaltstellung, die einem eingelegten Vorwärtsgang des Kraftfahrzeuges 5 entspricht, ist also die Vorwärtskupplung 19 mit Druck beaufschlagt und die Rückwärtskupplung 21 drucklos geschaltet.
Die Parksperren-Entriegelungsanordnung 23 weist einen zweigeteilten Parksperrzylinder 85 auf. Der Parksperrzylinder 85 kann mittels einer, in Figur 1 nicht näher dargestellten Rückstellfeder der Parksperre 25, in Ausrichtung der Figur 1 gesehen, nach links vorgespannt sein. Entgegen dieser Vorspannung kann der Parksperrzylinder 85 zum Lösen der Parksperre 25, in Ausrichtung der Figur 1 gesehen, nach rechts verlagert werden. Zum Aufbringen der entsprechenden hydraulischen Kraft ist eine Stirnseite 87 des Parksperrzylinders 85 einem zweiten Ventil 89 der Parksperren-Entriegelungsanordnung 23 nachgeschaltet. Es ist denkbar, zur Erhöhung des Systemdrucks 45 während des Entriegeins der Parksperre 25 zeitgleich das siebte Ventil 51 der zweiten Ventilanordnung 13 in eine beliebige Verstellrichtung zu betätigen, wobei über das nachgeschaltete Oderglied und das Systemdruckventil 49 der Systemdruck 45 erhöht wird, zum Beispiel auf bis zu 50 bar.
Das zweite Ventil 89 der Parksperren-Entriegelungsanordnung 23 ist der hydraulischen Energiequelle 7 nachgeschaltet, wobei die Stirnseite 87 des Parksperrzylinders 85 dem Systemdruck 45 der hydraulischen Energiequelle 7 mittels eines zweiten Steuerkolbens 91 des zweiten Ventils 89 direkt zuordenbar ist. Die Ansteuerung des zweiten Steuerkolbens 91 kann mittels des vierten Ventils 65 der vierten Ventilanordnung 27 erfolgen, wobei der zweite Steuerkolben 91 stromabwärts dem vierten Ventil 65 zugeordnet ist. Das Kühlölregelventil 67 und das zweite Ventil 89 werden also gleichermaßen von dem vierten Ventil 65 angesteuert, wobei beispielsweise die Parksperre 25 bei gleichzeitigem Einschalten des Kühlölvolumenstroms gelöst werden kann und umgekehrt. Es ist jedoch auch denkbar, die Steuerflächen und/oder Wirkungsrichtungen der Ventile 67 und 89 unterschiedlich auszulegen, beispielsweise so, dass zunächst die Parksperre 25 entriegelt und bei einer weiteren Druckerhöhung des vierten Ventils 65 auch der Schieber des Kühlölregelventils 67 zur Aktivierung der Kühlung betätigt wird. Bei dieser Auslegung ist also ein Lösen der Parksperre 25 ohne eine gleichzeitige zwangsweise Aktivierung der Kühlung möglich. In Figur 2 ist der Ausschnitt mit dem Rückführventil 69, das auch als Kühlerrücklaufventil 69 bezeichnet wird, vergrößert dargestellt. In der vergrößerten Darstellung sieht man, dass die Pumpe 7 das Arbeitsmedium aus einem Tank 100 ansaugt. Zu diesem Zweck steht die Pumpe 7 über eine Pumpenansaugleitung 101 mit dem Tank 100 in Verbindung. Darüber hinaus steht die Pumpe 7 über eine weitere Pumpenansaugleitung 102 mit dem Kühlerrücklaufventil 69 in Verbindung. In der weiteren Pumpenansaugleitung 102 ist ein Pumpeninjektor 70 mit einer Blende oder Drossel angeordnet. Die weitere Pumpenansaugleitung 102 mündet in die Pumpenansaugleitung 101.
Gemäß einem wesentlichen Aspekt der Erfindung ist das Kühlerrücklaufventil 69 als Mindest- druckventil 105 ausgeführt. Das Mindestdruckventil 105 umfasst ein Ventilgehäuse 108, in dem ein Ventilkolben 110 hin und her bewegbar aufgenommen ist. Der Ventilkolben 110 weist an einer Stirnseite eine Ansaugdruckwirkfläche 111 auf, die einen Ansaugdruckraum 114 in dem Ventilgehäuse 108 begrenzt. In dem Ansaugdruckraum 114 mündet die weitere Pumpenansaugleitung 102, so dass die Ansaugdruckwirkfläche 111 mit dem Ansaugdruck beaufschlagt ist, der in der weiteren Pumpenansaugleitung 102 herrscht.
Die Ansaugdruckwirkfläche 111 geht radial außen in eine Wirkfläche 112 über, die im vorliegenden Beispiel als Kegelsitzfläche ausgeführt ist. In Figur 2 befindet sich der Ventilkolben 110 in seiner Schließstellung, in der die Kegelsitzfläche 112 an einer Dichtkante des Ventilgehäuses 108 anliegt. In der dargestellten Schließstellung des Ventilkolbens 110 ist eine Verbindung zwischen der Kühlerrücklaufleitung 31 und dem Ansaugdruckraum 114 beziehungsweise der weiteren Pumpenansaugleitung 102 durch den Ventilkolben 110 unterbrochen beziehungsweise gesperrt oder geschlossen. Der Ventilkolben 110 ist durch eine Schließfeder 115, die an dem der Ansaugdruckwirkfläche 111 abgewandten Ende des Ventilkolbens 110 angreift, in seine Schließstellung vorgespannt.
An dem Ventilkolben 110 ist des Weiteren eine Teilfläche 116 einer Rücklaufdruckwirkfläche vorgesehen. Im vorliegenden Beispiel wird die Teilfläche 116 der Rücklaufdruckwirkfläche von einem Bereich der Kegelsitzfläche 112 gebildet, der radial außerhalb der an dem Ventilgehäuse 108 vorgesehenen Dichtkante angeordnet ist. Die Teilfläche 116 der Rücklaufdruckwirkfläche ist über die Kühlerrücklaufleitung 31 direkt mit dem Rücklaufdruck beaufschlagt, der in der Kühlerrücklaufleitung 31 herrscht. Die Rücklaufdruckwirkfläche umfasst zusätzlich zu der Teilfläche 116 eine weitere Teilfläche 117, die an einem Absatz 118 des Ventilkolbens 110 vorgesehen ist. Die weitere Teilfläche 117 ist, ebenso wie die Teilfläche 116, von der Schließfeder 115 abgewandt. Die weitere Teilfläche 117 steht über eine Kühlerrücklaufverbindungsleitung 120, in der eine Drossel 121 vorgesehen ist, nur indirekt, das heißt über die Drossel 121, mit der Kühlerrücklaufleitung 31 in Verbindung.
Im Ausgangszustand, in welchem der Druck in der Kühlerrücklaufleitung 31 null bar beziehungsweise Umgebungsdruck beträgt, verschließt der Ventilkolben 110 den Weg beziehungsweise die Verbindung von der Kühlerrücklaufleitung 31 zu der Pumpenansaugleitung 102 durch den Kegelsitz 112. Der Kegelsitz 112 bewirkt eine sehr gute Abdichtung zur Pumpe 7. In der Schließstellung des Ventilkolbens 110 saugt die Pumpe 7 das Arbeitsmedium nur aus dem Tank 100 an.
Wenn der Druck in der Kühlerrücklaufleitung 31 ansteigt, dann ergibt sich an der Rücklaufdruckwirkfläche, welche die beiden Teilflächen 116, 177 umfasst, eine Kraft, die gegen die Federkraft der Schließfeder 115 wirkt. Die Aufteilung der Rücklaufdruckwirkfläche in die beiden Teilflächen 116, 117, von denen eine direkt und die andere indirekt mit dem Kühlerrücklaufdruck beaufschlagt ist, sorgt für die notwendige Dämpfung des Mindestdruckventils 105.
Wenn der auf die Rückrücklaufdruckfläche 116, 117 wirkende Druck einen vorgegebenen Mindestdruck von beispielsweise 1 ,8 bar übersteigt, dann bewegt sich der Ventilkolben 110 in Richtung Schließfeder 115, das heißt in Figur 2 nach links, und im Bereich des Kegelsitzes 112 wird ein Öffnungsquerschnitt freigegeben, so dass Arbeitsmedium, insbesondere Öl, von der Kühlerrücklaufleitung 31 durch die weitere Pumpenansaugleitung 102 über den Pumpeninjektor 70 zur Pumpe 7 strömt. Die zugehörige (nicht dargestellte) Stellung des Ventilkolbens 110 wird auch als Öffnungsstellung bezeichnet.
Durch den Volumenstrom in der Öffnungsstellung des Ventilkolbens 110 baut sich in der Pumpenansaugleitung 102 an dem Pumpeninjektor 70 ein Ansaugdruck auf, der auf die An- saugdruckwirkfläche 111 des Ventilkolbens 110 wirkt. Dieser Ansaugdruck führt bei höheren Volumenströmen beziehungsweise Drücken in dem Ansaugdruckraum 114 dazu, dass sich der Ventilkolben 110 weiter in Richtung Schließfeder 115, das heißt in Figur 2 nach links, gegen einen entsprechenden Anschlag bewegt. Der Anschlag kann dadurch realisiert sein, dass die Schließfeder 115 auf Block geht. Ein wesentlicher Vorteil der erfindungsgemäßen Lösung besteht in der einfacheren Bauweise des Kühlerrücklaufventils 69 und darin, dass der Rückstaudruck niedriger gehalten wird, da das Kühlerrücklaufventil 69 als Absolutdruckventil wirkt. Die Absenkung dieses Drucks ergibt wiederum eine Wirkungsgradverbesserung des Gesamtgetriebes. Durch das Mindestdruck- ventil 105 wird insbesondere verhindert, dass die Pumpe 7 bei geringem Druck in der Kühlerrücklaufleitung 31 Luft aus der Kühlerrücklaufleitung 31 ansaugt, was die Funktion der Pumpe 7 erheblich beeinträchtigen würde. Durch das Mindestdruckventil 105 wird sichergestellt, dass immer ein Mindestdruck vorhanden ist. Das Mindestdruckventil 105 öffnet erst, wenn dieser Mindestdruck überschritten wird.
Bezugszeichenliste
Hydraulikanordnung 63 Oder-Glied
Kegelscheiben-Umschlingungsgetriebe 65 viertes Ventil
Kraftfahrzeug 67 Kühlölregelventil hydraulische Energiequelle 69 Rückführventil erste Ventilanordnung 70 Pumpeninjektor
Momentenfühler 71 erstes Ventil zweite Ventilanordnung 73 erster Steuerkolben
Kegelscheiben 75 drittes Ventil dritte Ventilanordnung 77 erste Flut
Vorwärtskupplung 79 fünftes Ventil
Rückwärtskupplung 81 sechstes Ventil
Parksperren-Entriegelungsanordnung 83 zweite Flut mechanischen Parksperre 85 Parksperrzylinder vierte Ventilanordnung 87 Stirnseite
Kühlkreislauf 89 zweites Ventil
Kühlerrücklauf 91 zweiter Steuerkolben aktive Hydronic-Kühlung 93 erster Teilzylinder
Strahlpumpe .100 Tank
Fliehölhaube 101 Pumpenansaugleitung
Abzweig 102 Pumpenansaugleitung
Vorsteuerdruckregelventil 105 Mindestdruckventil
Vorsteuerdruck 108 Ventilgehäuse
Systemdruck 110 Ventilkolben fünfte Ventilanordnung 111 Ansaugdruckwirkfläche
Systemdruckventil 112 Wirkfläche siebtes Ventil 114 Ansaugdruckraum siebter Steuerkolben 115 Schließfeder achtes Ventil 116 Teilfläche erste Flut 117 Teilfläche zweite Flut 118 Absatz
Tank 120 Kühlerrücklaufverbindungsleitung
121 Drossel

Claims

Patentansprüche
1. Hydraulikanordnung zur Steuerung eines Kegelscheiben-Umschlingungsgetriebes (3), mit einer Pumpe (7), die ein Arbeitsmedium aus einem Arbeitsmediumtank (100) oder über ein Kühierrücklaufventil (69) aus einer Kühlerrücklaufleitung (31) ansaugt, dadurch gekennzeichnet, dass das Kühlerrücklaufventil (69) als Mindestdruckventil (105) ausgeführt ist, das eine Verbindung zwischen der Kühlerrücklaufleitung (31) und einer Pumpenansaugleitung (102) durch das Kühlerrücklaufventil (69) geschlossen hält, solange ein vorgegebener Mindestdruck in der Kühlerrücklaufleitung (31) unterschritten wird, und das die Verbindung zwischen der Kühlerrücklaufleitung (31) und der Pumpenansaugleitung (102) durch das Kühlerrücklaufventil (69) öffnet, sobald der vorgegebene Mindestdruck in der Kühlerrücklaufleitung (31) überschritten wird.
2. Hydraulikanordnung nach Anspruch 1 , dadurch gekennzeichnet, dass das Kühierrücklaufventil (69) einen Ventilkolben (110) mit einer Wirkfläche (112) umfasst, die in einer Schließstellung des Ventilkolbens (110) gegen eine Dichtkante vorgespannt ist.
3. Hydraulikanordnung nach Anspruch 2, dadurch gekennzeichnet, dass der Ventilkolben (110) durch eine Schließfeder (115) in seine Schließstellung vorgespannt ist.
4. Hydraulikanordnung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Wirkfläche (112) als Kegelsitzfläche ausgeführt ist.
5. Hydraulikanordnung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der Ventilkolben (110) eine Rücklaufdruckwirkfläche aufweist, die entgegen einer auf den Ventilkolben (110) wirkenden Vorspannkraft mit dem Druck aus der Kühlerrücklaufleitung (31 ) beaufschlagt ist.
6. Hydraulikanordnung nach Anspruch 5, dadurch gekennzeichnet, dass die Rücklaufdruckwirkfläche eine Teilfläche (116) aufweist, die direkt mit der Kühlerrücklaufleitung (31) in Verbindung steht.
7. Hydraulikanordnung nach den Ansprüchen 4 bis 6, dadurch gekennzeichnet, dass die Teilfläche (116) radial außen an der Wirkfläche (112) ausgebildet ist.
8. Hydraulikanordnung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Rück- laufdruckwirkfläche eine weitere Teilfläche (117) aufweist, die über eine Blende (121) mit der Kühlerrücklaufleitung (31) in Verbindung steht.
9. Hydraulikanordnung nach Anspruch 8, dadurch gekennzeichnet, dass die Blende (121) einen Durchmesser von etwa 0,75 Millimeter aufweist.
10. Hydraulikanordnung nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass der Ventilkolben (110) eine Ansaugdruckwirkfläche (111) aufweist, die mit dem Druck in der Pumpenansaugleitung (102) beaufschlagt ist.
PCT/DE2008/001899 2007-12-04 2008-11-17 Hydraulikanordnung zur steuerung eines kegelscheiben-umschlingungsgetriebes WO2009071048A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010536316A JP5559059B2 (ja) 2007-12-04 2008-11-17 円錐円盤巻掛け伝動装置を制御するための液圧装置
EP20080856465 EP2220405B1 (de) 2007-12-04 2008-11-17 Hydraulikanordnung zur steuerung eines kegelscheiben-umschlingungsgetriebes
DE200811003693 DE112008003693A5 (de) 2007-12-04 2008-11-17 Hydraulikanordnung zur Steuerung eines Kegelscheiben-Umschlingungsgetriebes
CN2008801191973A CN101889157B (zh) 2007-12-04 2008-11-17 用于控制锥盘-缠绕接触装置变速器的液压装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US533407P 2007-12-04 2007-12-04
US61/005,334 2007-12-04

Publications (2)

Publication Number Publication Date
WO2009071048A2 true WO2009071048A2 (de) 2009-06-11
WO2009071048A3 WO2009071048A3 (de) 2009-12-30

Family

ID=40352340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/001899 WO2009071048A2 (de) 2007-12-04 2008-11-17 Hydraulikanordnung zur steuerung eines kegelscheiben-umschlingungsgetriebes

Country Status (7)

Country Link
US (1) US8196401B2 (de)
EP (1) EP2220405B1 (de)
JP (1) JP5559059B2 (de)
KR (1) KR20100088672A (de)
CN (1) CN101889157B (de)
DE (2) DE102008057652A1 (de)
WO (1) WO2009071048A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102822572B (zh) * 2010-03-29 2016-03-02 舍弗勒技术股份两合公司 液压系统
DE102010028759A1 (de) * 2010-05-07 2011-11-10 Zf Friedrichshafen Ag Hydrauliksystem einer elektrohydraulischen Betätigungseinrichtung einer Parksperre einer Getriebeeinrichtung
KR101744812B1 (ko) * 2015-06-15 2017-06-20 현대자동차 주식회사 차량용 밸브
JP7381199B2 (ja) * 2018-12-14 2023-11-15 トヨタ自動車株式会社 リニアソレノイドバルブの制御装置
DE102022204110A1 (de) 2022-04-27 2023-11-02 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Überprüfung von Sensoren für mindestens ein Fahrerassistenzsystem eines Kraftfahrzeugs

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735113A (en) 1984-10-30 1988-04-05 Nissan Motor Co., Ltd. Creep torque and lock-up control for automatic transmission

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL165821C (nl) * 1976-02-09 1981-05-15 Doornes Transmissie Bv Traploos variabele overbrenging.
JPH0384271A (ja) * 1989-08-28 1991-04-09 Hitachi Constr Mach Co Ltd 圧力制御弁
JPH0483955A (ja) * 1990-07-21 1992-03-17 Nissan Motor Co Ltd 自動変速機の作動圧回路
CN2289109Y (zh) * 1996-10-16 1998-08-26 上海市劳动机械厂 热锻模自动喷水冷却阀
FR2799255B1 (fr) * 1999-10-04 2006-09-08 Luk Lamellen & Kupplungsbau Boite de vitesses ,notamment boite de vitesses automatique a dispositif de regulation du flux volumique.
DE10033201A1 (de) * 2000-07-07 2002-01-17 Zf Batavia Llc Hydraulisches System
US6520881B1 (en) * 2001-08-06 2003-02-18 General Motors Corporation Fly-by-wire electro-hydraulic control mechanism for a six speed transmission
AU2003233939A1 (en) * 2002-04-10 2003-10-27 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydraulic system and automatic gearbox
US7117881B2 (en) * 2003-02-11 2006-10-10 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Control system
CN200982471Y (zh) * 2006-12-11 2007-11-28 董汉翔 自动循环三通回流阀

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735113A (en) 1984-10-30 1988-04-05 Nissan Motor Co., Ltd. Creep torque and lock-up control for automatic transmission

Also Published As

Publication number Publication date
EP2220405B1 (de) 2012-07-11
CN101889157A (zh) 2010-11-17
DE102008057652A1 (de) 2009-06-10
CN101889157B (zh) 2013-05-22
EP2220405A2 (de) 2010-08-25
JP5559059B2 (ja) 2014-07-23
WO2009071048A3 (de) 2009-12-30
JP2011505529A (ja) 2011-02-24
DE112008003693A5 (de) 2010-11-04
US20090145292A1 (en) 2009-06-11
US8196401B2 (en) 2012-06-12
KR20100088672A (ko) 2010-08-10

Similar Documents

Publication Publication Date Title
DE19546293B4 (de) Antriebseinheit mit einem stufenlos einstellbaren Kegelscheibenumschlingungsgetriebe
DE102005006431B4 (de) Ventilsystem bzw. Verfahren zur Steuerung einer Kupplung oder eines Gangstellers eines Kraftfahrzeuges
DE4431330B4 (de) Sitzventil mit Kraftrückkopplungssteuerung
DE102005032103B4 (de) Regelventil für einen Drehmomentübertragungsmechanismus und Verfahren zum Einrücken des Drehmomentübertragungsmechanismus
WO2008101460A1 (de) Hydraulikanordnung zur steuerung eines kegelscheibenumschlingungsgetriebes
WO2003008829A1 (de) Ausrücksystem mit parksperrfunktion zum ansteuern einer kupplung
DE19721036A1 (de) Fahrzeug mit einer Druckmittelanlage
EP2220405B1 (de) Hydraulikanordnung zur steuerung eines kegelscheiben-umschlingungsgetriebes
DE19813982A1 (de) Kupplungssteuerung
DE3801845C2 (de)
DE102011079850B4 (de) Hydrauliksystem zum Betätigen wenigstens eines Schaltelementes eines Getriebes
CH628117A5 (en) Brake-valve device
DE10003136B4 (de) Hydraulikventil für einen hydraulischen Verbraucher eines Fahrzeuges und Kraftfahrzeug mit demselben
DE10309875A1 (de) Drucksteuerungsvorrichtung für einen Drehmomentübertragungsmechanismus
EP1759949B1 (de) Anhängerbremsventil
DE102015009671A1 (de) Hydraulische Steuervorrichtung zur Ansteuerung einer Doppelkupplung und Mehrfachkupplungseinrichtung mit einer solchen Steuervorrichtung
DE102005056029A1 (de) Hydrauliksystem mit wenigstens einem Hydraulikventil zum Ansteuern einer Komponente
DE102008052338B3 (de) Hydraulische Schaltung zum Zentrieren von Steuerkolben/Bypassschaltung für elektrisch-proportionale Verstellungen
EP0176679B1 (de) Hydraulische Steuereinrichtung
DE2819525A1 (de) Steuersystem
EP1369596B1 (de) Hydraulische Ventilanordnung
EP2921925B1 (de) Druckreduzierventil
DE19919160B4 (de) Variable Margin Pressure Control
DE68909233T2 (de) Steuervorrichtung zur rückstellung eines lastkolbens.
DE4426147A1 (de) Pulsweitenmoduliertes Magnetventil zum Steuern von hydrodynamischen Drehmomentwandlern automatischer Schaltgetriebe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880119197.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08856465

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 792/MUMNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107009883

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008856465

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010536316

Country of ref document: JP

REF Corresponds to

Ref document number: 112008003693

Country of ref document: DE

Date of ref document: 20101104

Kind code of ref document: P