WO2009070976A1 - Système de production d'électricité par pile à combustible et procédé de production d'électricité correspondant - Google Patents

Système de production d'électricité par pile à combustible et procédé de production d'électricité correspondant Download PDF

Info

Publication number
WO2009070976A1
WO2009070976A1 PCT/CN2008/001877 CN2008001877W WO2009070976A1 WO 2009070976 A1 WO2009070976 A1 WO 2009070976A1 CN 2008001877 W CN2008001877 W CN 2008001877W WO 2009070976 A1 WO2009070976 A1 WO 2009070976A1
Authority
WO
WIPO (PCT)
Prior art keywords
reforming
fuel cell
power generation
outlet gas
anode outlet
Prior art date
Application number
PCT/CN2008/001877
Other languages
English (en)
French (fr)
Inventor
Qingquan Su
Original Assignee
University Of Science And Technology Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Science And Technology Beijing filed Critical University Of Science And Technology Beijing
Publication of WO2009070976A1 publication Critical patent/WO2009070976A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a fuel cell power generation system and method, and more particularly to a proton exchange membrane fuel cell power generation system and method using hydrocarbon as a raw material. Background technique
  • Hydrogen-fueled fuel cell power generation systems are clean and efficient, and have been one of the research hotspots in the field of distributed energy since the 1990s. Hydrogen is a secondary energy source that is converted from a variety of primary sources. Therefore, for fossil fuel-based fuel cell power plants, it is important to convert fossil fuels into hydrogen source systems that meet the requirements of fuel cell power generation.
  • the industrial technology for hydrogen reforming of natural gas is very mature. Hydrogen production from natural gas reform is considered to be the most economically viable option for a considerable period of time in the future.
  • Catalyst is one of the important factors affecting system cost and life in the process of natural gas steam reforming. Due to the high activity at the required operating temperature and the difficulty of sintering carbon deposits, the hydrogen source system of the PEFC cogeneration plant usually uses a Ru-based catalyst as the reforming catalyst. However, due to the scarcity of resources of metal Ru, the market price is expensive and fluctuating greatly, which leads to the problem of high cost and high risk of reforming hydrogen production.
  • Ni-based catalyst is the most commonly used steam reforming catalyst in the industry. Compared with the Ru-based catalyst, it has the advantages of abundant resources and low cost, but also has the disadvantages of low activity and easy sintering of carbon deposits. In order to replace the Ru-based catalyst with a Ni-based catalyst as a steam reforming catalyst, it is generally attempted to improve the resistance to sintering and carbon deposition by improving the chemical composition or preparation method of the Ni-based catalyst, such as Mat sumura Yasuyuki et al. Sumura Yasuyuki, Nakamor i Toshie. Steam reforming of methane over nickel catalys t at low react ion temperature. Appl ied Catalys is A: General , 2004, 258: 107-114) , by using different carriers to improve the performance of Ni-based catalysts .
  • the present invention proposes a fuel cell power generation system and method using hydrocarbon as a raw material. Summary of the invention
  • the temperature makes it possible to use an inexpensive Ni-based catalyst as a catalyst for the reforming reaction, and to lower the requirements for high-temperature corrosion resistance of the reactor structural material, thereby being more suitable for practical use.
  • Another object of the present invention is to omit the reforming water supply device and the heat of vaporization thereof specifically for introducing the water required for the reforming reaction into the reforming reactor, thereby achieving the object of simplifying the system and improving the hydrogen production efficiency of reforming.
  • a fuel cell power generation system for generating electricity using a hydrocarbon as a raw material according to the present invention comprising a raw material supply device, a reforming hydrogen production device, and a fuel cell, further comprising an anode outlet gas circulation device for using the fuel cell
  • the anode outlet gas is circulated to the inlet of the reforming hydrogen plant.
  • the reforming hydrogen production unit may include only a reforming reactor and a combustion apparatus according to the requirements of the connected fuel cell for reforming hydrogen, and may also include a reforming reactor, a combustion apparatus, and a CO shift reactor, and may further include
  • the reforming reactor is combined with a combustion unit, a CO shift reactor, and a CO removal reactor.
  • the anode outlet gas circulation device comprises an anode outlet gas storage tank, a gas pressure boosting device, and a flow meter.
  • the fuel cell power generation system described above wherein the reforming reactor of the reforming hydrogen production unit employs a Ni-based reforming catalyst.
  • the foregoing fuel cell power generation system further comprises a de-sparing device disposed before the reforming hydrogen generating device for removing sulfur in the raw material.
  • the fuel cell power generation system described above further includes a reforming water supply device for introducing water required for the reforming reaction to the reforming hydrogen generator.
  • a reforming water supply device for introducing water required for the reforming reaction to the reforming hydrogen generator.
  • the anode outlet gas of the fuel cell is circulated to the inlet of the reforming hydrogen plant.
  • the anode outlet gas is branched, and the branched anode outlet gas enters a combustion device for combustion, and is used for supplying the reforming hydrogen generator with heat required for the hydrocarbon reforming reaction.
  • the molar percentages of CH 4 , H 2 and C0 2 of the anode outlet gas are 10 - 35%, 10 ⁇ 35 ° /, respectively.
  • the ratio of the molar flow rate of CH 4 in the anode outlet gas to the molar flow rate of carbon in the raw material hydrocarbon is 0. 5 - 3.
  • the molar flow rate of hydrogen in the anode outlet gas and the raw material hydrocarbon The ratio of the molar flow rate of the water in the anode outlet gas to the molar flow rate of the carbon in the raw material hydrocarbon is 1. 5 ⁇ 4. 0.
  • the fuel cell power generation method includes the step of mixing the raw material hydrocarbon and the anode outlet gas and introducing the raw material hydrocarbon into the desulfurization unit for desulfurization before the reforming hydrogen production reaction step.
  • the fuel cell power generation method described above wherein the reforming reaction employs a Ni-based reforming catalyst.
  • the reaction temperature of the reforming reaction is 560 to 660. C.
  • a fuel cell power generation method for generating electricity using hydrocarbon as a raw material includes the following steps:
  • the reforming hydrogen production unit is introduced to perform a hydrocarbon reforming hydrogen production reaction to prepare reformed hydrogen gas;
  • the anode outlet gas of the fuel cell is circulated to the inlet of the reforming hydrogen plant.
  • the reforming hydrogen production reaction may include only a reforming reaction step, a reforming reaction step and a CO shift reaction step, and may further comprise a reforming reaction step, CO according to the requirements of the connected fuel cell for reforming hydrogen.
  • the reaction step and the CO removal reaction step are carried out.
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the anode outlet gas is split, and the split anode outlet gas is introduced into a combustion device for combustion, and is used for supplying the reforming hydrogen generator with heat required for the hydrocarbon reforming reaction. .
  • the anode outlet gas contains 10 to 351 ⁇ 2 C, 10 to 35% H 2 and 15 to 30% C0 2 .
  • the ratio of the molar flow rate of the carbon to the molar flow of the carbon in the raw material hydrocarbon is 0. 2 ⁇ 3. 0 2 ⁇ 3. 0 ⁇
  • the ratio of the molar flow of the hydrogen in the anode outlet gas to the molar flow of carbon in the raw material hydrocarbon is 0. 2 ⁇ 3. 0.
  • the fuel cell power generation method described above further comprises: a step of desulfurizing the raw material hydrocarbon and the anode outlet gas before the reforming reaction step.
  • the fuel cell power generation method described above wherein the reforming reaction employs a N i reforming catalyst.
  • the reaction temperature of the reforming reaction is 560 to 660 °C.
  • the raw material hydrocarbons in the above various technical solutions of the present invention are selected from the following materials: fossil fuels such as methane, natural gas, liquefied petroleum gas, kerosene, diesel, methanol, GTL, and DME, and are also selected from biogas, garbage gasification. Gas and biomass such as ethanol.
  • the fuel cell includes a proton exchange membrane fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), and a solid oxide fuel cell (S0FC).
  • the Ni-based reforming catalyst of the present invention is a reforming catalyst whose active component contains a metal Ni, and the auxiliary agent, carrier and form thereof are not particularly limited, and the auxiliary agent may include Ce0 2 , La 2 03, 20, and the like.
  • the carrier includes Al 2 03, Zr0 2 , S i0 2 , Ti0 2 and the like, and the form thereof includes a spherical shape, a cylindrical shape, a granular shape, a honeycomb shape, and the like.
  • An aspect of the present invention which inhibits sintering and product formation of a reforming catalyst by circulating ( 3 , 4 and (0 2) in the anode outlet gas to reduce a reforming reaction temperature required for a raw hydrocarbon to reach a predetermined conversion rate. Carbon, in turn, to extend the service life of the reforming catalyst, especially the inexpensive Ni-based reforming catalyst, and to extend the service life of the reforming reactor structural material;
  • the carbon deposition in the reforming catalyst is inhibited by circulating H 2 in the anode outlet gas, thereby achieving the effect of prolonging the service life of the reforming catalyst, particularly the inexpensive Ni-based reforming catalyst;
  • the water vapor generated by the fuel cell reaction is effectively utilized in the reforming reaction of the raw material hydrocarbon, thereby reducing or even completely eliminating the reforming reaction.
  • the evaporation heat of the reformed water is required to further improve the efficiency of reforming hydrogen production.
  • the fuel cell power generation system and method of the special structure of the present invention have many advantages and practical values as described above, and thus are more suitable for practical use.
  • FIG. 1 and 2 are flow charts of a proton exchange membrane fuel cell power generation system of the present invention
  • Figs. 3 and 4 are flow charts of a proton exchange membrane fuel cell power generation system including a desulfurization apparatus of the present invention
  • Figure 5 is a flow chart of a conventional proton exchange membrane fuel cell power generation system.
  • Anode outlet gas circulation device 10 Combustion device 11 : raw materials
  • FIG. 1 is a flow chart showing an embodiment of a proton exchange membrane fuel cell power generation system of the present invention.
  • the shield exchange membrane fuel cell power generation system uses natural gas as a raw material for power generation, and includes a reforming hydrogen production unit 1 composed of a reforming reactor la and a combustion device 10, a CO shift reactor 2, and a CO removal reactor 3, and proton exchange.
  • the membrane fuel cell 4 compared with the conventional proton exchange membrane fuel cell power generation system shown in Fig. 5, the fuel cell power generation system of the present invention further comprises an anode composed of a circulating gas storage tank 5, a supercharging device 6, and a flow meter 8a.
  • the reforming reactor la is filled with a Ni-based reforming catalyst, which is a catalyst described in the background art, which belongs to the prior art, and therefore will not be described again; the reaction material at the outlet of the reforming reactor enters the CO shift reactor. 2, the CO content in the outlet reaction material of the shift reaction reactor 2 is greatly reduced; then the CO0 shift reactor 2 outlet reaction material enters C0 to remove the reactor 3, the reaction is removed by C0, the reactor is removed, and the reaction material of the outlet is reformed.
  • the C0 content in the hydrogen gas is lowered to the extent that the proton exchange membrane fuel cell 4 is required for the fuel gas; then the reforming hydrogen gas enters the anode 4a of the proton exchange membrane fuel cell 4, and the air entering the cathode 4b reacts with the battery to generate electricity.
  • the anode 4a discharges an anode outlet gas containing H 2 , CH 4 , C0 2 and water vapor.
  • a part of the anode outlet gas is branched and introduced into the combustion apparatus 10 for combustion, and the reforming hydrogen generator 1 is supplied with reforming heat of the raw material.
  • the raw material is mixed with the anode outlet gas which is recycled to the inlet of the reforming hydrogen generator, and then enters the reforming reactor la to carry out a reforming reaction. Since the water vapor in the anode gas is utilized, the present embodiment does not need to provide a reforming water supply device, thereby simplifying the system configuration and omitting the heat of evaporation required for reforming water.
  • FIG. 1 is a flow chart showing another preferred embodiment of the proton exchange membrane fuel cell power generation system of the present invention.
  • the proton exchange membrane fuel cell power generation system in the embodiment further includes a water supply
  • the apparatus 15 is for supplying the reforming hydrogen generator 1 with water required for the reforming reaction, and the supply apparatus 15 includes a reforming water storage tank 12, a water pump 13, and a reforming water vaporizer 14. In this way, it is possible to ensure that the reforming hydrogen generator 1 can have a stable water supply when the water vapor content of the circulating anode gas fluctuates or the water vapor content is low.
  • FIGS. 3 and 4 are flow charts of the proton exchange membrane fuel cell power generation system of the present invention corresponding to the desulfurization apparatus of Figs. 1 and 1.
  • the present invention can add a desulfurization device 16 before reforming the hydrogen production unit 1.
  • the inexpensive Ni-based catalyst can be used and the hydrogen production efficiency can be improved, thereby reducing the proton exchange membrane fuel cell power generation system. Cost and increase its energy efficiency. experimental method
  • the invention provides a fuel cell power generation method, which is implemented by the above fuel cell power generation system.
  • the method comprises the following steps: mixing a raw material hydrocarbon with an anode outlet gas, and introducing a reforming hydrogen production unit to perform hydrocarbon production. Reforming a hydrogen production reaction to prepare reformed hydrogen; introducing the reformed hydrogen gas into a fuel cell for power generation, the step of which can adopt an existing fuel cell power generation method; and circulating the anode outlet gas of the fuel cell to the inlet of the reforming hydrogen production unit .
  • the method performs a reforming reaction by circulating the anode outlet gas of the fuel cell to the inlet of the reforming hydrogen generator, mixing with the raw material, and the reforming reaction process in the present embodiment because the anode outlet gas of the fuel cell contains water vapor.
  • the reaction data of this example such as the space velocity, the water break ratio, and the conversion rate of the reforming reaction, are all calculated based on the raw materials.
  • natural gas is used as a raw material
  • a reforming hydrogen production unit adopts a spherical commercial Ni-based reforming catalyst (Ni-Ti0 2 /Al 2 O 3 , NiO 18%), and the fuel cell uses a proton exchange membrane fuel cell.
  • the ratio of the molar flow rate of the anode outlet gas circulating to the inlet of the reforming hydrogen plant to the molar flow rate of carbon in the feedstock is defined as the recycle flow ratio.
  • the controlled circulation flow ratio is 4. 0 ⁇ 10. 0, and a part of the anode outlet gas is branched to the combustion device for combustion to provide heat for the reforming reaction of the raw material.
  • the anode outlet gas contains 10 to 35% by mole of CH 4 , 10 to 35% of H 2 , 10 to 30% of CO 2 and water vapor, so that it is recycled to the anode outlet gas at the inlet of the reforming hydrogen plant.
  • the ratio of the molar flow rate of 4 to the molar flow rate of carbon in the raw material, that is, the cycle carbon to carbon ratio is 0.5 - 3.
  • the ratio of the molar flow rate of hydrogen in the anode outlet gas to the molar flow rate of carbon in the raw material, that is, the cyclic hydrogen to carbon ratio is 0. 5 - 3. 5, recycling to the inlet of the reforming hydrogen plant 5 ⁇ 4.
  • the ratio of the ratio of the molar flow rate of the water in the anode outlet gas to the molar flow of the carbon in the raw material, that is, the ratio of circulating water to carbon is 1. 5 ⁇ 4. 0.
  • the CH 4 , 11 2 and C0 2 contents of the anode outlet gas can be adjusted by controlling the reforming reaction temperature and the hydrogen utilization rate of the fuel cell anode reaction, and the water vapor content can be adjusted by the operating temperature of the fuel cell.
  • the temperature of the reforming reaction is preferably in the range of 560 to 660 ° C, and the space velocity of the raw material is preferably in the range of 200 to 800 / h.
  • the present invention also proposes a fuel cell power generation method using a hydrocarbon as a raw material, which is realized by the power generation system of the above embodiment of the present invention.
  • the embodiment comprises the following steps: a mixing reforming water, natural gas and anode outlet gas, introducing into a reforming hydrogen production unit for reforming hydrogen production reaction to prepare reforming hydrogen; b introducing reformed hydrogen into the fuel cell for power generation; c Circulate the anode outlet gas of the fuel cell to the inlet of the reforming hydrogen plant.
  • the above step b is basically the same as the conventional fuel cell power generation method, and therefore will not be described again.
  • the method circulates the anode outlet gas to the inlet of the reforming hydrogen production unit via a circulation device, mixes with the raw material, and removes the bowl before the mixed gas enters the reforming hydrogen production unit.
  • the controlled circulation flow ratio is 1. 5 ⁇ 8. 0, and a part of the anode outlet gas is branched to the combustion device for combustion to provide heat for the reforming reaction of the raw material.
  • the anode exit gas comprises 10 mole percent to 35% CH 4, 10 ⁇ 35% of H 2, 10 ⁇ 30% of C0 2 and water vapor, such that the ratio of carbon-carbon cycle 0.2 ⁇ 3.0, cycle
  • the hydrogen to carbon ratio is 0.2 to 3. 0.
  • the CH 4 and (0 2 content of the anode outlet gas can be adjusted by controlling the reforming reaction temperature and the hydrogen utilization rate of the fuel cell anode reaction, and the water vapor content can be adjusted by the operating temperature of the fuel cell.
  • the range of 560 ⁇ 660 °C is suitable, and the space velocity of raw materials is preferably in the range of 200 ⁇ 800 / h.
  • the method further comprises the steps of: mixing the raw material with the anode outlet gas and introducing the raw material into the desulfurization device for desulfurization before the reforming hydrogen production reaction step.
  • the specific process parameters can be accomplished using prior art techniques.
  • the steam reforming process of the main component CH 4 of natural gas of the present invention comprises the CH 4 steam reforming reaction of the reaction formula (1) and the CO shift reaction of the reaction formula (2):
  • the anode outlet gas circulation device and the reforming hydrogen production device and their connecting lines are preliminarily filled with a certain composition (CH 4: 10 - 35%, H 2 : 10 to 35%). , C0 2 : 10 ⁇ 30%) of gas to shorten the time required for the system to reach steady state.
  • a certain composition CH 4: 10 - 35%, H 2 : 10 to 35%).
  • C0 2 10 ⁇ 30%
  • the reforming water flow rate is set to 0, that is, there is no special reforming water supply step, the raw material CH 4 space velocity is 400 / h, and the proton exchange membrane fuel cell operating temperature is 75 .
  • Table 1 The experimental results when the conversion ratio of the raw material CH 4 was 90% are shown in Table 1.
  • Ratio to temperature ratio ( % ) ( % ) ( ) ( % )
  • Table 2 shows the experimental results when the raw material CH 4 space velocity is 400 / h, the proton exchange membrane fuel cell operating temperature is 75, the water-carbon ratio is 3.0, and the raw material CH 4 conversion rate is 90%.
  • the water-to-carbon ratio in Table 1 is the sum of the molar flow rate of the reformed water supplied from the reforming water supply device and the molar flow rate of the water vapor in the recycle gas divided by the molar flow rate of carbon in the raw material.
  • Table 2 The water-to-carbon ratio in Table 1 is the sum of the molar flow rate of the reformed water supplied from the reforming water supply device and the molar flow rate of the water vapor in the recycle gas divided by the molar flow rate of carbon in the raw material.
  • the cyclic flow ratio of Experiment No. 1 in Table 2 is 0, that is, the experiment is a comparative test of the present invention.
  • the fuel cell power generation system and method of the present invention can greatly reduce the reforming required for the raw hydrocarbon ((3 ⁇ 4) to achieve a certain conversion rate (90%)). temperature reflex.
  • the fuel cell power generation system generates electricity by using hydrocarbon as a raw material, and includes a raw material supply device, a reforming hydrogen production device, and a fuel cell, and further includes an anode outlet gas circulation device for circulating the anode outlet gas of the fuel cell to the heavy The hydrogen plant inlet.
  • the power generation system can extend the reforming catalyst by circulating the anode outlet gas (3 ⁇ 4 and co 2 , reducing the reforming reaction temperature required for the hydrocarbon to reach a certain conversion rate, suppressing the sintering and carbon deposition of the reforming catalyst, In particular, the effect of the service life of an inexpensive Ni-based reforming catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

燃料电池发电系统及方法 技术领域
本发明涉及燃料电池发电系统及方法, 特别是涉及一种以碳氢化合物 为原料的质子交换膜燃料电池发电系统及方法。 背景技术
以氢气为燃料的燃料电池发电系统具有清洁高效的特征, 因而自上世 纪九十年代以来一直是分布式能源领域的研究热点之一。 氢气是一种二次 能源, 由各种一次能源转换而来。 因此, 对于以化石燃料为原料的燃料电 池电站来说, 将化石燃料转化为满足燃料电池发电要求的氢气的氢源系统 技术十分重要。 在诸多氢气制造途径之中, 由于天然气等碳氢化合物价格 较低, 天然气重整制氢的工业技术已十分成熟, 天然气重整制氢被认为是 今后相当一段时间里最为经济可行的选择。 可是, 100 kW级以下的中小型 燃料电池电站尤其是质子交换膜燃料电池(PEFC ) 热电联产电站的氢源系 统, 由于在制氢效率、 重整氢气中 CO含量、 可靠性与性能稳定性、 启动停 止与负荷追随特性、 紧凑性和使用寿命等方面都必须满足新的更为苛刻的 要求, 是一个与传统的工业重整制氢技术不同的新领域。
在天然气水蒸气重整制氢过程中, 催化剂是影响系统造价和寿命的重 要因素之一。 由于在所需工作温度下具有活性高、 不易烧结积碳等优 点, PEFC热电联产电站的氢源系统通常采用 Ru系催化剂作为重整催化剂。 可是, 由于金属 Ru的资源稀少, 市场价格昂贵且波动极大, 导致了重整制 氢成本高、 风险大的问题。
Ni系催化剂是工业上最常用的水蒸气重整催化剂,与 Ru系催化剂相比 具有资源丰富、 价格低廉的优点,但也有活性较低、 易烧结积碳的缺点。 要 以 Ni 系催化剂取代 Ru 系催化剂作为水蒸气重整催化剂, 通常是尝试通过 改善 Ni系催化剂的化学组成或制备方法等来提高其抗烧结抗积碳性能的途 径, 如 Mat sumura Yasuyuki 等 (Mat sumura Yasuyuki , Nakamor i Toshie. Steam reforming of methane over nickel catalys t at low react ion temperature. Appl ied Catalys i s A: General , 2004, 258: 107-114) , 通过采用不同的载体来提高 Ni系催化剂的性能。
为了充分利用现有廉价、 成熟的工业 Ni系催化剂, 并进一步提高碳氢 化合物水蒸气重整制氢的效率, 本发明提出了一种以碳氢化合物为原料的 燃料电池发电系统及方法。 发明内容
为了解决现有的燃料电池发电系统及方法由于所需重整工作温度 斤 带来的课题, 以及重整制氢效率低等课题, 发明者进行了深入细致的理论 模拟和实验研究, 并得到了通过将燃料电池阳极出口气中的 CH4、 C02、 H2 和水蒸气循环至重整制氢装置入口以改变重整制氢装置入口的气体组成, 可达到降低所需重整工作温度, 同时提高重整制氢效率的效果的研究结杲。 本发明的目的是提供一种新的燃料电池发电系统及方法, 具体地说, 本发 明的一个目的是降低原料碳氢化合物进行水蒸气重整时为了达到一定的转 化率所需的重整反应温度, 从而可以采用廉价的 Ni系催化剂作为重整反应 的催化剂, 并降低对反应器结构材料耐高温耐腐蚀性的要求, 从而更加适 于实用。 本发明的另一目的是省去专门用于向重整反应器导入重整反应所 需的水的重整水供给装置及其蒸发热, 从而达到简化系统和提高重整制氢 效率的目的。
本发明的目的及解决其技术课题是采用以下技术方案来实现的。 依据 本发明提出的一种以碳氢化合物为原料进行发电的燃料电池发电系统,其 包含原料供给装置、 重整制氢装置以及燃料电池, 其还包含阳极出口气循 环装置, 用于将燃料电池的阳极出口气循环至重整制氢装置入口。 所述重 整制氢装置根据所连接燃料电池对重整氢气的要求, 可只含有重整反应器 与燃烧装置、 亦可包含重整反应器与燃烧装置和 CO变换反应器、 进而还可 包含重整反应器与燃烧装置、 CO变换反应器和 CO去除反应器。
本发明的目的及解决其技术问课题还可采用以下技术措施进一步实 现。
优选的, 前述的燃料电池发电系统, 其中所述阳极出口气循环装置包 含阳极出口气储罐、 气体增压装置和流量计。
优选的, 前述的燃料电池发电系统, 其中所述重整制氢装置的重整反 应器采用 Ni系重整催化剂。
优选的, 前述的燃料电池发电系统, 其还包含脱疏装置, 设置于重整 制氢装置之前, 用于脱除原料中的硫。
优选的, 前述的燃料电池发电系统, 其还包含用于向重整制氢装置导 入重整反应所需的水的重整水供给装置。 本发明的目的及解决其技术课题还采用以下的技术方案来实现。 依据 本发明提出的一种以碳氢化合物为原料进行发电的燃料电池发电方法,其 特征在于其包含以下步骤:
将原料碳氢化合物与阳极出口气混合后, 导入重整制氢装置进行碳氢 化合物重整制氢反应以制备重整氢气;
将上述重整氢气导入燃料电池进行发电; 以及
将燃料电池的阳极出口气循环至重整制氢装置的入口。
优选的, 前述的燃料电池发电方法, 其中将所述阳极出口气分流, 被 分流的阳极出口气进入燃烧装置进行燃烧, 用于向重整制氢装置提供碳氢 化合物重整反应所需的热量。
优选的, 前述的燃料电池发电方法, 其中所述的循环至重整制氢装置 入口的阳极出口气的摩尔流量与原料碳氢化合物中碳的摩尔流量之比为
4. 0至 10. 0,阳极出口气的 CH4、 H2和 C02的摩尔百分比含量分别为 10 - 35%, 10 ~ 35°/。和 1 Q ~ 30% ,使得阳极出口气中 CH4的摩尔流量与原料碳氢化合物中 碳的摩尔流量之比为 0. 5 - 3. 5、 阳极出口气中氢气的摩尔流量与原料碳氢 化合物中碳的摩尔流量之比为 0. 5 ~ 3. 5、 阳极出口气中水蒸气的摩尔流量 与原料碳氢化合物中碳的摩尔流量之比为 1. 5 ~ 4. 0。
优选的, 前述的燃料电池发电方法, 其包含在重整制氢反应步骤之前, 将原料碳氢化合物和阳极出口气混合后导入脱硫装置进行脱硫的步驟。
优选的, 前述的燃料电池发电方法, 其中所述重整反应采用 Ni系重整 催化剂。
优选的, 前述的燃料电池发电方法, 其中所述重整反应的反应温度为 560 ~ 660。C。
本发明的目的及解决其技术课题还采用以下的技术方案来实现。 依据 本发明提出的一种以碳氢化合物为原料进行发电的燃料电池发电方法,其 包含以下步骤:
将重整水、 原料碳氢化合物和阳极出口气混合后, 导入重整制氢装 i 进行碳氢化合物的重整制氢反应以制备重整氢气;
将上述重整氢气导入燃料电池进行发电; 以及
将燃料电池的阳极出口气循环至重整制氢装置的入口。 所述重整制氢反应根据所连接燃料电池对重整氢气的要求, 可只含有 重整反应步骤、 亦可包含重整反应步骤和 CO变换反应步骤、 进而还可包含 重整反应步骤、 CO变换反应步骤和 CO去除反应步骤。
本发明的目的及解决其技术课题还可采用以下技术措施进一步实现。 优选的, 前述的燃料电池发电方法, 其中将所述阳极出口气分流,被分 流的阳极出口气导入燃烧装置进行燃烧, 用于向重整制氢装置提供碳氢化 合物重整反应所需的热量。
优选的, 前述的燃料电池发电方法, 其中所述循环至重整制氢装置入 口的阳极出口气的摩尔流量与原料碳氢化合物中碳的摩尔流量之比为
1. 5 ~ 8. 0, 阳极出口气包含摩尔百分比为 10 ~ 35½的 C 、 10 ~ 35%的 H2和 15 ~ 30%的 C02
优选的, 前述燃料电池发电方法, 其中所述循环至重整制氢装置入口 的阳极出口气中 (¾的摩尔流量与原料碳氢化合物中碳的摩尔流量之比为 0. 2 ~ 3. 0、 阳极出口气中氢气的摩尔流量与原料碳氢化合物中碳的摩尔流 量之比为 0. 2 ~ 3. 0。
优选的, 前述的燃料电池发电方法, 其还包含: 在重整反应步骤之前, 将原料碳氢化合物和阳极出口气混合后进行脱硫的步骤。
优选的, 前述的燃料电池发电方法, 其中所述重整反应采用 N i系重整 催化剂。
优选的, 前述的燃料电池发电方法, 所述重整反应的反应温度为 560 ~ 660°C。
本发明的上述各个技术方案中所述原料碳氢化合物选自于以下物质: 甲烷、 天然气、 液化石油气、 煤油、 柴油、 甲醇、 GTL以及 DME等化石燃料, 还选自于沼气、 垃圾气化气以及乙醇等生物质能等。 所述燃料电池包括质 子交换膜燃料电池(PEFC )、 磷酸燃料电池(PAFC )、 熔融碳酸盐燃料电池 ( MCFC ) 以及固体氧化物燃料电池(S0FC ) 等。
本发明所述的 Ni 系重整催化剂是其活性组分包含金属 Ni 的重整催化 剂,其助剂、 载体和形态并无特别限制, 助剂可包括 Ce02、 La203、 20 等, 其载体包括 Al203、 Zr02、 S i02以及 Ti02等, 其形态包括球状、 圆柱状等颗 粒状和蜂窝状等。 借由上述技术方案, 本发明的燃料电池发电系统及方法至少具有下列 优点:
1、 本发明的一个方面, 通过循环阳极出口气中的(¾和(02, 来降低原 料碳氢化合物达到既定的转化率所需的重整反应温度, 从而抑制重整催化 剂的烧结和积碳, 进而达到延长重整催化剂、 尤其是廉价的 Ni系重整催化 剂的使用寿命, 以及延长重整反应器结构材料使用寿命的效果;
2、 本发明的另一个方面, 通过循环阳极出口气中的 H2, 来抑制重整催 化剂的积碳, 从而达到延长重整催化剂、 尤其是廉价的 Ni系重整催化剂使 用寿命的效果;
3、 本发明的另一个方面, 通过循环阳极出口气中的水蒸气, 将燃料电 池反应所生成的水蒸气有效的利用于原料碳氢化合物的重整反应, 从而减 少乃至完全省去重整反应所需重整水的蒸发热, 进而达到提高重整制氢效 率的效果。
综上所述, 本发明特殊结构的燃料电池发电系统及方法, 其具有上述 诸多的优点及实用价值, 从而更加适于实用。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 并可依照说明书的内容予以实施, 以下以本发明的较佳实施例 并配合附图详细说明如后。 附图说明
图 1和图 2是本发明的质子交换膜燃料电池发电系统的流程图; 图 3和图 4是本发明的含有脱硫装置的质子交换膜燃料电池发电系统 的流程图;
图 5是现有的质子交换膜燃料电池发电系统的流程图。
1: 重整制氢装置
la 重整反应器 2: CO变换反应器
3: CO去除反应器 4: 质子交换膜燃料电池
4a: 燃料电池阳极 4b: 燃料电池阴极
5: 循环气贮罐 6: 增压装置
7: 调节阀 8a、 8b: 流量计
9: 阳极出口气循环装置 10: 燃烧装置 11 : 原料
12 : 重整水贮罐 1 3: 水泵
14: 重整水气化器 15: 重整水供给装置
16: Λ装置 实现发明的最佳方式
为更进一步阐述本发明为达成发明目的所采取的技术手段及功效,以 下结合附图及较佳实施例 , 对依据本发明提出的燃料电池发电系统及其方 法具体实施方式、 结构、 特征及其功效, 详细说明如后。
图 1 是本发明的质子交换膜燃料电池发电系统一实施例的流程图。 该 盾子交换膜燃料电池发电系统采用天然气为原料进行发电,包含由重整反 应器 la与燃烧装置 10、 CO变换反应器 2、 CO去除反应器 3构成的重整制 氢装置 1以及质子交换膜燃料电池 4,与图 5所示的现有质子交换膜燃料电 池发电系统相比, 本发明的燃料电池发电系统还包含由循环气贮罐 5、增压 装置 6以及流量计 8a组成的阳极出口气循环装置 9, 用于将质子交换膜燃 料电池的阳极出口气循环至重整制氢装置 1入口。 其中, 重整反应器 la中 填充 Ni系重整催化剂, 该催化剂为背景技术中所述的催化剂, 其属于现有 技术, 故不再赘述; 重整反应器出口的反应物料进入 CO变换反应器 2,经变 换反应变换反应器 2 出口反应物料中的 CO含量大幅降低; 继而 C0变换反 应器 2出口反应物料进入 C0去除反应器 3 , 经 C0去除反应 C0去除反应器 3 出口反应物料即重整氢气中的 C0含量降低到满足质子交换膜燃料电池 4 对燃料气体要求的程度; 继而重整氢气进入质子交换膜燃料电池 4 的阳极 4a, 与进入阴极 4b的空气发生电池反应从而发电。 阳极 4a排出含有 H2、 CH4、 C02和水蒸气等的阳极出口气。 阳极出口气的一部分被分流并导入燃烧 装置 10进行燃烧, 为重整制氢装置 1提供原料的重整反应热。 原料和循环 至重整制氢装置入口的阳极出口气混合后进入重整反应器 la 进行重整反 应。 由于利用了阳极气中的水蒸气, 本实施例无需设置重整水供给装置, 从而简化系统构成并省去重整水所需的蒸发热。
图 1 是本发明的质子交换膜燃料电池发电系统另一较佳实施例的流程 图。 在本实施例中的质子交换膜燃料电池发电系统, 其还包括耄整水供给 装置 15用于向重整制氢装置 1提供进行重整反应所需要的水, 该供给装置 15包含重整水贮罐 12, 水泵 13以及重整水气化器 14。 这样, 有助于在循 环的阳极气中水蒸气含量发生波动或者水蒸气含量较低时能够保证重整制 氢装置 1能有稳定的水源供应。
图 3和图 4是本发明对应于图 1和图 1的含有脱硫装置的质子交换膜 燃料电池发电系统的流程图。 对于一些需要脱硫的原料, 本发明可以在重 整制氢装置 1之前增设脱硫装置 16。
本发明的上述的各实施例所提出的燃料电池发电系统, 由于设置了阳 极出口气循环装置, 可以使用价格低廉的 Ni 系催化剂并提高制氢效率,从 而可以降低质子交换膜燃料电池发电系统的造价并提高其能量效率。 实验方法
本发明提出一种燃料电池发电方法, 其采用上述的燃料电池发电系统 加以实现, 该方法包括以下步骤: 将原料碳氢化合物与阳极出口气混合后, 导入重整制氢装置进行碳氢化合物的重整制氢反应以制备重整氢气;将上 述重整氢气导入燃料电池进行发电, 该步骤可采用现有的燃料电池发电方 法;以及将燃料电池的阳极出口气循环至重整制氢装置入口。 本方法通过将 燃料电池的阳极出口气循环至重整制氢装置入口, 与原料混合后进行重整 反应,由于燃料电池的阳极出口气含有水蒸气, 所以在本实施例中的重整反 应过程不需要专门设计重整水的供给步骤。 本实施例的反应数据, 如空速、 水破比、 重整反应的转化率均以原料为基准进行计算。 本实施例以天然气 为原料,重整制氢装置的重整反应采用球状商业 Ni 系重整催化剂 ( Ni-Ti02/Al203, NiO 18% ), 燃料电池采用质子交换膜燃料电池。 循环至重 整制氢装置入口的阳极出口气的摩尔流量与原料中碳的摩尔流量之比定义 为循环流量比。控制循环流量比为 4. 0 ~ 10. 0, 一部分阳极出口气被分流至 燃烧装置进行燃烧, 为原料的重整反应提供热量。 阳极出口气包含摩尔百 分含量 10 ~ 35%的 CH4、 10 ~ 35%的 H2、 10 - 30%的 C02以及水蒸气, 使得循环 至重整制氢装置入口的阳极出口气中 CH4的摩尔流量与原料中碳的摩尔流 量之比即循环碳碳比为 0. 5 - 3. 5、 阳极出口气中氢气的摩尔流量与原料中 碳的摩尔流量之比即循环氢碳比为 0. 5 - 3. 5、 循环至重整制氢装置入口的 阳极出口气中水蒸气的摩尔流量与原料中碳的摩尔流量之比即循环水碳比 为 1. 5 ~ 4. 0。 该阳极出口气的 CH4、 112和 C02含量可通过控制重整反应温度 和燃料电池阳极反应的氢气利用率加以调节, 而水蒸气含量可由燃料电池 的工作温度加以调节。 重整反应的温度以 560 ~ 660°C的范围为宜, 原料空 速以 200 ~ 800/h的范围为宜。
本发明还提出了一种以碳氢化合物为原料的燃料电池发电方法, 其采 用本发明上述实施例的发电系统加以实现。 本实施例包括以下步骤: a 将 重整水、 天然气和阳极出口气混合后导入重整制氢装置进行重整制氢反应 以制备重整氢气; b 将重整氢气导入燃料电池进行发电; 以及 c 将燃料电 池的阳极出口气循环至重整制氢装置入口。 上述步骤 b与现有的燃料电池 发电方法基本相同, 故不再赘述。 本方法经循环装置将阳极出口气循环至 重整制氢装置入口, 与原料进行混合, 脱碗在该混合气进入重整制氢装置 之前进行。 控制循环流量比为 1. 5 ~ 8. 0, 一部分阳极出口气被分流至燃烧 装置进行燃烧, 为原料的重整反应提供热量。 阳极出口气包含摩尔百分含 量 10 ~ 35%的 CH4、 10 ~ 35%的 H2、 10 ~ 30%的 C02以及水蒸气, 使得循环碳碳 比为 0. 2 ~ 3. 0、 循环氢碳比为 0. 2 ~ 3. 0。 该阳极出口气的 CH4、 和(02含 量可通过控制重整反应温度和燃料电池阳极反应的氢气利用率加以调节, 而水蒸气含量可由燃料电池的工作温度加以调节。重整反应的温度以 560 ~ 660°C的范围为宜, 原料空速以 200 ~ 800/h的范围为宜。
较佳的, 在上述的实施例中还可以包括: 在重整制氢反应步骤之前,将 原料与阳极出口气混合后导入脱硫装置进行脱硫的步骤。 具体的脱^ ^工艺 参数可以采用现有技术来完成。
本发明对天然气的主成分 CH4的水蒸气重整过程包括反应式( 1 )的 CH4 水蒸气重整反应和反应式( 2 ) 的 CO变换反应:
CH4 + H20 → CO + 3Η2 Δ H298° = 206 kJmol— 1 ( 1 )
CO + H20 - C02 + H2 Δ Η298° = -41 kJmol "1 ( 2 ) 原料 CH4转化率的计算式如下: 原料 CH4转化率 =1- (反应产物中(¾的流量-循环气中 C 的流量) /原料 CH4的流量 ( 3 ) CH4水蒸气重整反应为强吸热反应, 重整反应工作温度愈高, (¾转化率 就愈高。 如式( 1 )所示, 当反应产物中 C 流量大于循环阳极出口气中 CH4 流量时原料 CH4转化率小于 1 , 当反应产物中 CH4流量等于循环阳极出口气 中 CH4流量时原料 CH4转化率等于 1 , 即原料 CH4得到了 100 %的转化。 而当 反应产物中 CH4流量小于循环阳极出口气中 CH4流量时原料 C 转化率大于 1, 也就是说, 除了原料 CH4之外, 循环阳极出口气中的部分 CH4也发生了转 化, 本发明通过控制重整反应的条件, 使其不发生转化率大于 1的情况。
在本发明的燃料电池发电系统开始运行之前, 预先在阳极出口气循环 装置和重整制氢装置及其连接管路注满一定组成(CH4: 10 - 35%, H2: 10 ~ 35%, C02: 10 ~ 30% ) 的气体, 以缩短该系统的工作达到稳态所需的时间。 实施例 1
本实施例设定重整水流量为 0、 即没有专门的重整水供给步骤, 原料 CH4空速为 400/h、 质子交换膜燃料电池工作温度为 75 。 原料 CH4转化率 为 90 %时的实验结果见表 1。 表 1
重整 循环 阳极出口气组成 循环
循环 循环
序 水碳 水碳 反应 流量 CH4 H2 co2 H20 碳碳 氢碳
号 比 比 温度 比 ( % ) ( % ) ( ) ( % ) 比 比
(°C)
1 0 ― - - ― 0 0 0 3. 0 680
2 4. 0 31. 0 15. 5 15. 5 38. 0 1. 24 0. 62 1. 52 1. 52 636
3 4. 0 15. 5 31. 0 15. 5 38. 0 0. 62 1. 24 1. 52 1. 52 668
4 6. 0 31. 0 15. 5 15. 5 38. 0 1. 86 0. 93 2. 28 2. 28 600
5 6. 0 15. 5 31. 0 15. 5 38. 0 0. 93 1. 86 2. 28 2. 28 635
6 8. 0 31. 0 15. 5 15. 5 38. 0 2. 48 1. 24 3. 04 3. 04 575
7 8. 0 15. 5 31. 0 15. 5 38. 0 1. 24 2. 48 3. 04 3. 04 616 8 10. 0 31. 0 15. 5 15. 5 38. 0 3. 10 1. 55 3. 80 3. 80 559
9 10. 0 15. 5 31. 0 15. 5 38. 0 1. 55 3. 10 3. 80 3. 80 601 表 1中实验序号 1的循环流量比为 0, 即该实验为本发明的比较试验。 通过比较实验序号 2 ~ 9与比较试验的结果可见, 采用本发明的燃料电池发 电系统及方法,可大幅降低原料碳氢化合物( CH4 )达到一定的转化率( 90% ) 所需的重整反应温度, 并可省去专门的重整水供给装置、 重整水及其蒸发 热。 实施例 2
本实施例按照上述实验方法进行实验。 表 2是原料 CH4空速为 400/h、 质子交换膜燃料电池工作温度为 75 、水碳比为 3. 0、原料 CH4转化率为 90 %时的实验结果。
表 1 中的水碳比为重整水供给装置供给的重整水的摩尔流量与循环气 中水蒸气的摩尔流量之和除以原料中碳的摩尔流量。 表 2
Figure imgf000012_0001
表 2中实验序号 1的循环流量比为 0, 即该实验为本发明的比较试验。 通过比较实验序号 1 ~ 7与比较试验的结果可见, 采用本发明的燃料电池发 电系统及方法,可大幅降低原料碳氢化合物( (¾ )达到一定的转化率( 90% ) 所需的重整反应温度。
以上所述, 仅是本发明的较佳实施例,并非对本发明作任何形式上的限 制, 任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但 凡是未脱离本发明技术方案的内容, 依据本发明的技术实质对以上实施例 所作的任何简单修改、 等同变化, 均仍属于本发明技术方案的范围之内。 工业应用性
该燃料电池发电系统以碳氢化合物为原料进行发电, 其包含原料供给 装置、 重整制氢装置以及燃料电池, 其还包含阳极出口气循环装置, 用于 将燃料电池的阳极出口气循环至重整制氢装置入口。 该发电系统通过循环 阳极出口气中的(¾和 co2, 降低碳氢化合物达到一定的转化率所需的重整 反应温度,抑制重整催化剂的烧结和积碳,从而达到延长重整催化剂、 尤其 是廉价的 Ni系重整催化剂的使用寿命的效果。

Claims

权 利 要 求
1、 一种以碳氢化合物为原料进行发电的燃料电池发电系统, 其特征在 于其包含: 原料供给装置、 重整制氢装置、 燃料电池、 以及阳极出口气循 环装置, 用于将燃料电池的阳极出口气循环至重整制氢装置的入口。
2、 根据权利要求 1所述燃料电池发电系统, 其特征在于其中所述阳极 出口气循环装置包含阳极出口气储罐、 气体增压装置和流量计。
3、 根据权利要求 1所述燃料电池发电系统, 其特征在于所述的重整制 氢装置的重整反应器采用 Ni系重整催化剂。
4、 根据权利要求 1所述燃料电池发电系统, 其特征在于其还包含脱硫 装置, 设置于重整制氢装置之前, 用于脱除原料中的碗。
5、 根据权利要求 1 ~ 4任一项所述燃料电池发电系统, 其特征在于其 还包含用于向重整制氢装置导入重整反应所需的水的重整水供给装置。
6、 一种以碳氢化合物为原料进行发电的燃料电池发电方法, 其特征在 于其包含以下步骤:
将原料碳氢化合物与阳极出口气混合后, 导入重整制氢装置进行碳氢 化合物的重整制氢反应以制备重整氢气;
将上述重整氢气导入燃料电池进行发电; 以及
将燃料电池的阳极出口气循环至重整制氢装置入口。
7、 根据权利要求 6所述燃料电池发电方法, 其特征在于将阳极出口气 分流, 被分流的阳极出口气导入燃烧装置进行燃烧, 用于向重整制氢装置 提供碳氢化合物重整反应所需的热量。
8、 根据权利要求 6所述燃料电池发电方法, 其特征在于循环至重整制 氢装置入口的阳极出口气的摩尔流量与原料碳氢化合物中碳的摩尔流量之 比为 4. 0 - 10. 0,阳极出口气的 CH4、 112和( 02的摩尔百分比含量分别为 10 ~ 35%、 10 ~ 35%和 10 ~ 30%, 使得循环至重整制氢装置入口的阳极出口气中 CH4的摩尔流量与原料碳氢化合物中碳的摩尔流量之比为 0. 5 ~ 3. 5、 阳极出 口气中氢气的摩尔流量与原料碳氢化合物中碳的摩尔流量之比为 0. 5 ~ 3. 5、 阳极出口气中水蒸气的摩尔流量与原料碳氢化合物中碳的摩尔流量之 比为 1. 5 ~ 4. 0。
9、 根据权利要求 6所述燃料电池发电方法, 其特征在于包含在重整制 氢反应步骤之前, 将原料碳氢化合物和阳极出口气混合后导入脱硫装置进 行脱 ϋ的步骤。
10、 根据权利要求 6 ~ 9任一项所述燃料电池发电方法, 其特征在于所 述重整制氢装置的重整反应采用 Ni系重整催化剂。
11、 根据权利要求 10所述燃料电池发电方法, 其特征在于重整反应的 反应温度为 560 ~ 660°C:。
12、 一种以碳氢化合物为原料进行发电的燃料电池发电方法, 其特征 在于其包含以下步骤:
将重整水、 原料碳氢化合物和阳极出口气混合后, 导入重整制氢装置 进行碳氢化合物的重整制氢反应以制备重整氢气;
将上述重整氢气导入燃料电池进行发电; 以及
将燃料电池的阳极出口气循环至重整制氢装置的入口。
13、 根据权利要求 12所述燃料电池发电方法, 其特征在于将所述阳极 出口气分流, 被分流的阳极出口气导入燃烧装置进行燃烧, 用于向重整制 氢装置提供碳氢化合物重整反应所需的热量。
14、 根据权利要求 12所述燃料电池发电方法, 其特征在于循环至重整 制氢装置入口的阳极出口气的摩尔流量与原料碳氢化合物中碳的摩尔流量 之比为 1. 5至 8. 0, 阳极出口气的 CH4、 H2和 C02的摩尔百分比含量分别为 10 - 35%. 10 ~ 35%和 10 ~ 30%, 使得循环至重整制氢装置入口的阳极出口气 中 CH4的摩尔流量与原料碳氢化合物中碳的摩尔流量之比为 0. 2 ~ 3. 0、阳极 出口气中氢气的摩尔流量与原料碳氢化合物中碳的摩尔流量之比为 0. 2 ~ 3. 0。
15、 根据权利要求 12所述燃料电池发电方法, 其特征在于包含: 在重 整制氢反应步骤之前, 将原料碳氢化合物和阳极出口气混合后进行脱硫的 步骤。
16、 根据权利要求 12 ~ 15任一项所述燃料电池发电方法, 其特征在于 所述重整制氢装置的重整反应采用 Ni系重整催化剂。
17、 根据权利要求 16所述燃料电池发电方法, 其特征在于重整反应的 反应温度为 560 - 660°C o
PCT/CN2008/001877 2007-11-15 2008-11-14 Système de production d'électricité par pile à combustible et procédé de production d'électricité correspondant WO2009070976A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2007101703837A CN101436672A (zh) 2007-11-15 2007-11-15 燃料电池发电系统及方法
CN200710170383.7 2007-11-15

Publications (1)

Publication Number Publication Date
WO2009070976A1 true WO2009070976A1 (fr) 2009-06-11

Family

ID=40710985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001877 WO2009070976A1 (fr) 2007-11-15 2008-11-14 Système de production d'électricité par pile à combustible et procédé de production d'électricité correspondant

Country Status (2)

Country Link
CN (1) CN101436672A (zh)
WO (1) WO2009070976A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111320135A (zh) * 2020-03-31 2020-06-23 张家港氢云新能源研究院有限公司 一种小型分布式热电联产系统
CN114725432A (zh) * 2022-05-05 2022-07-08 成都岷山绿氢能源有限公司 一种固体氧化物燃料电池零碳发电系统及发电工艺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017202904A1 (de) * 2017-02-23 2018-08-23 Robert Bosch Gmbh Brennstoffzellenvorrichtung
CN109546189B (zh) * 2018-10-29 2021-10-22 南京航空航天大学 一种以液体燃油为燃料电池氢源的多级重整发电系统
CN111336510B (zh) * 2020-02-28 2021-04-02 武汉理工大学 一种多孔介质燃烧和燃料电池多级耦合能源系统
CN113224360A (zh) * 2021-05-14 2021-08-06 华能(天津)煤气化发电有限公司 一种煤和生物质共气化制氢发电的方法和系统
CN113581015B (zh) * 2021-06-08 2023-09-29 北京科技大学 燃料电池系统的安全预警方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116017A (ja) * 1982-12-22 1984-07-04 Mitsubishi Electric Corp 燃料電池発電システムの水素流量測定装置
JPH11238520A (ja) * 1998-02-24 1999-08-31 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電装置
JP2000331698A (ja) * 1999-05-19 2000-11-30 Ishikawajima Harima Heavy Ind Co Ltd ガスタービン排ガスを用いた燃料電池発電装置
CN1825673A (zh) * 2005-02-24 2006-08-30 三菱电机株式会社 燃料电池发电系统及其停止方法
JP2007128680A (ja) * 2005-11-01 2007-05-24 Toyota Central Res & Dev Lab Inc 燃料電池システム
CN101010825A (zh) * 2004-09-27 2007-08-01 丰田自动车株式会社 燃料电池系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116017A (ja) * 1982-12-22 1984-07-04 Mitsubishi Electric Corp 燃料電池発電システムの水素流量測定装置
JPH11238520A (ja) * 1998-02-24 1999-08-31 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電装置
JP2000331698A (ja) * 1999-05-19 2000-11-30 Ishikawajima Harima Heavy Ind Co Ltd ガスタービン排ガスを用いた燃料電池発電装置
CN101010825A (zh) * 2004-09-27 2007-08-01 丰田自动车株式会社 燃料电池系统
CN1825673A (zh) * 2005-02-24 2006-08-30 三菱电机株式会社 燃料电池发电系统及其停止方法
JP2007128680A (ja) * 2005-11-01 2007-05-24 Toyota Central Res & Dev Lab Inc 燃料電池システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111320135A (zh) * 2020-03-31 2020-06-23 张家港氢云新能源研究院有限公司 一种小型分布式热电联产系统
CN114725432A (zh) * 2022-05-05 2022-07-08 成都岷山绿氢能源有限公司 一种固体氧化物燃料电池零碳发电系统及发电工艺

Also Published As

Publication number Publication date
CN101436672A (zh) 2009-05-20

Similar Documents

Publication Publication Date Title
Zou et al. Industrial status, technological progress, challenges, and prospects of hydrogen energy
CN1185742C (zh) 燃料电池系统
WO2009070976A1 (fr) Système de production d'électricité par pile à combustible et procédé de production d'électricité correspondant
CN101597028B (zh) 一种耦合式富氢燃料重整制氢系统
CN108400358B (zh) 固体氧化物燃料电池焦炉气发电工艺及装置
CN105720285B (zh) 一种封闭式燃料电池氢源系统
CN100527499C (zh) 燃料电池系统
CN1707839A (zh) 燃料处理方法和系统
CA2559028A1 (en) Direct alcohol fuel cells using solid acid electrolytes
CN109707992A (zh) 一种多功能充电加氢站
Wu et al. Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China
KR20100046450A (ko) 고체산화물 연료전지 시스템의 연료 개질 방법
CN103165924B (zh) 具有燃料气重整和尾气催化燃烧功能的燃料分配管及应用
CN216844711U (zh) 一种sofc用燃料重整与尾气燃烧耦合换热装置
CN109546189B (zh) 一种以液体燃油为燃料电池氢源的多级重整发电系统
CN209655011U (zh) 一种多功能充电加氢站
CN116525897A (zh) 一种重整气涡轮与高温质子交换膜燃料电池联合发电系统
KR102355411B1 (ko) 선박
KR102355412B1 (ko) 연료전지 시스템 및 이를 구비한 선박
CN112290064A (zh) 一种基于重整制氢的密闭空间燃料电池发电系统
CN114430058A (zh) 固体氧化物燃料电池燃料重整与尾气燃烧耦合换热方法
JP2003165704A (ja) 水素製造システム
Liming et al. A compact fuel processor integrated with 75kw PEM fuel cells
KR102190936B1 (ko) 선박
CN114361538B (zh) 一种高效能量耦合的固体氧化物燃料电池发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08856269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08856269

Country of ref document: EP

Kind code of ref document: A1