WO2009063120A1 - Proceso catalítico de producción de nitrilos a partir de alcoholes - Google Patents

Proceso catalítico de producción de nitrilos a partir de alcoholes Download PDF

Info

Publication number
WO2009063120A1
WO2009063120A1 PCT/ES2008/070206 ES2008070206W WO2009063120A1 WO 2009063120 A1 WO2009063120 A1 WO 2009063120A1 ES 2008070206 W ES2008070206 W ES 2008070206W WO 2009063120 A1 WO2009063120 A1 WO 2009063120A1
Authority
WO
WIPO (PCT)
Prior art keywords
production process
process according
catalyst
glycerol
nitrile production
Prior art date
Application number
PCT/ES2008/070206
Other languages
English (en)
French (fr)
Inventor
Miguel Ángel BAÑARES GONZÁLEZ
María Olga GUERRERO PÉREZ
Vanesa Instituto de Catálisis y Petroleoquímica CALVINO CASILDA
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2009063120A1 publication Critical patent/WO2009063120A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • B01J35/40
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalytic process for the production of nitriles from alcohols. Therefore, this invention has application in the chemical industry sector in general and, specifically, in the production of organic solvents, polymers, fibers, resins, pesticides, perfumes and medicines. STATE OF THE TECHNIQUE
  • a nitrile is an organic compound that contains a cyano group, CN, such as acetonitrile, benzonitrile or acrylonitrile.
  • Acetonitrile is used as a solvent for many compounds and in the production of fibers, gums and resins.
  • acetonitrile is used as an intermediate in the manufacture of pesticides, perfumes and medications. It is also used in the extraction and refining of copper.
  • Benzonitrile is used as a solvent and as a precursor to other compounds.
  • Acrylonitrile is probably the nitrile manufactured on a larger scale.
  • Acrylonitrile is a monomer that is used in the manufacture of synthetic polymers, especially polyacrylonitrile and acrylic fibers.
  • Acrylic fiber has many uses, it should be noted its use as a precursor of carbon fibers. Dimerization of acrylonitrile produces adiponitrile, used in the synthesis of certain nylons. In small quantities it is also used as a fungicide. Some acrylonitrile derivatives such as 2-chloro-acrylonitrile are used in Diels-Alder reactions. Acrylonitrile is the precursor for the industrial synthesis of acrylamide and acrylic acid.
  • nitriles and especially acrylonitrile
  • paraffins and olefins propane and propylene
  • such raw materials paraffins and / or olefins
  • Glycerol also called glycerin
  • glycerin is derived from methanolysis as well as the methyl esters used in diesel fuels and domestic fuel oil. It is a natural product, available in large quantities, easy to store and transport. In addition, as it is obtained as a byproduct in the manufacture of biofuels, whose demand is increasing, its price is decreasing. Therefore, interest in developing processes that use glycerol as a raw material is increasing. In recent years several patents have appeared that describe processes in this regard.
  • the oxidation of glycerol leads to the obtaining of a great variety of products, used as intermediates in the synthesis of products with high added value.
  • the products obtained in the glycerol oxidation reaction employ aerobic reaction conditions, either by feeding oxygen or air in the gas phase reaction, either by bubbling a stream of oxygen or air into an aqueous solution or in the presence of other solvents, for example, organic, or by the addition of hydrogen peroxide for the liquid phase reaction.
  • oxidation of glycerol also takes place under anaerobic reaction conditions, by electrocatalytic oxidation of glycerol by applying an electric potential to the solution in the presence of nitroxyl radicals as catalysts (TEMPO), and using biocatalysts (enzymes and microorganisms).
  • TEMPO nitroxyl radicals as catalysts
  • An aspect of the present invention is the process for the production of nitriles from alcohols, hereinafter nitrile production process of the invention, which takes place by means of the amonoxidation of alcohol in the presence of an oxidant, a source of nitrogen atoms and a catalyst.
  • a preferred aspect of the present invention is the nitrile production process of the invention in which the alcohol is a polyol.
  • a more preferred aspect of the present invention is the process for producing nitriles of the invention in which the alcohol is glycerol.
  • Another preferred aspect of the present invention is the nitrile production process of the invention in which the oxidant is molecular oxygen.
  • Another preferred aspect of the present invention is the process for producing nitriles of the invention in which the oxidant is hydrogen peroxide, or a highly reactive oxygen source, such as hydroperoxides.
  • Another preferred aspect of the present invention is the process for producing nitriles of the invention in which the source of nitrogen atoms is ammonia.
  • A is V and / or Nb
  • B is Sb, Mo and / or Nb
  • C is an element selected from the group Sn, Ti, Te, W, U
  • D is an element selected from the group Li, Mg, Na, Ca, Sr, Ba, Co, Fe, Cr, Ga, Ni, Ge, Nb, Mo, W, Cu, Tl, P, Zr, Re, Ag, Cd , Zn, Pb, D, Rb, Cs, Ta, Se, Bi, Ce, In, As, B, Al, Mn
  • a more preferred aspect of the present invention is the nitrile production process of the invention in which the catalyst used does not contain elements D and E and, therefore, responds to the formula AaBbCcOx where A is V and / or Nb; B is Sb, Mo and / or
  • Nb, C is an element selected from the group Sn, Ti, Te, W, U; D.
  • a particular embodiment of the present invention is the nitrile production process of the invention in which the catalyst used does not contain the elements C, D and E and, therefore, responds to the formula AaBbOx where A is V and / or Nb and B is Sb, Mo and / or Nb.
  • Another more preferred aspect of the present invention is the process of producing nitriles of the invention in which the catalyst is supported on metal oxides such as
  • Another preferred aspect of the present invention is the production method of nitriles of the invention in which a temperature between 200 and 800 used 0 C and preferably between 350 and 550 0 C.
  • Another preferred aspect of the present invention is the nitrile production process of the invention in which a pressure between 0.1 and 5 bar is used.
  • Another preferred aspect of the present invention is the nitrile production process of the invention in which microwave radiation is used as the activation method, which allows working at more moderate temperatures.
  • Another preferred aspect of the present invention is the production method of nitriles of the invention in which microwave activation is used with adequate power to reach a temperature between 20 and 300 0 C and preferably between 80 and 120 0 C.
  • the present invention is based on the fact, observed by the inventors, that by means of the reaction of amonoxidation of an alcohol in the presence of an oxidant, a source of nitrogen atoms (eg, ammonia) and a catalyst, nitriles are obtained.
  • a source of nitrogen atoms eg, ammonia
  • This reaction is a completely new and attractive procedure for the preparation of nitriles at the industrial level.
  • the reaction involved in this nitrile preparation process is:
  • one aspect of the present invention is the process for the production of nitriles from alcohols, hereinafter the process of producing nitriles of the invention, which takes place by means of the amonoxidation of alcohol in the presence of an oxidant, a source of nitrogen atoms and a catalyst.
  • a preferred aspect of the present invention is the nitrile production process of the invention in which the alcohol is a polyol.
  • a more preferred aspect of the present invention is the process for producing nitriles of the invention in which the alcohol is glycerol.
  • the oxidant can be molecular oxygen, which can be used in the form of air or any other gas mixture containing molecular oxygen.
  • Another preferred aspect of the present invention is the nitrile production process of the invention in which the oxidant is molecular oxygen.
  • Another preferred aspect of the present invention is the process for producing nitriles of the invention in which the oxidant is hydrogen peroxide, or a highly reactive oxygen source, such as hydroperoxides.
  • the most common source of nitrogen atoms that can be used is ammonia. Therefore, another preferred aspect of the present invention is the process for producing nitriles of the invention in which the source of nitrogen atoms is ammonia.
  • A is V and / or Nb
  • B is Sb, Mo and / or Nb
  • C is an element selected from the group Sn, Ti, Te, W, U
  • D is an element selected from the group Li, Mg, Na, Ca, Sr, Ba, Co, Fe, Cr, Ga, Ni, Ge, Nb, Mo, W, Cu, Tl, P, Zr, Re, Ag, Cd , Zn, Pb, D, Rb, Cs, Ta, Se, Bi, Ce, In, As, B, Al, Mn
  • a more preferred aspect of the present invention is the nitrile production process of the invention in which the catalyst used does not contain elements D and E and, therefore, responds to the formula AaBbCcOx where A is V and / or Nb; B is Sb, Mo and / or
  • Nb, C is an element selected from the group Sn, Ti, Te, W, U; D.
  • a particular embodiment of the present invention is the nitrile production process of the invention in which the catalyst used does not contain the elements C, D and E and, therefore, responds to the formula AaBbOx where A is V and / or Nb and B is Sb, Mo and / or Nb.
  • Another more preferred aspect of the present invention is the process of producing nitriles of the invention in which the The catalyst is supported on metal oxides such as AI2O3, Nb2 ⁇ 5 , ZrÜ2, TIO2, SIO2, zeolites, mesoporous material or carbon.
  • metal oxides such as AI2O3, Nb2 ⁇ 5 , ZrÜ2, TIO2, SIO2, zeolites, mesoporous material or carbon.
  • the catalyst can be used pure or dissolved in some inert solid such as silicon carbide. In this way, it is easier to control the exothermicity of the reaction and therefore better control the temperature.
  • Another preferred aspect of the present invention is the production method of nitriles of the invention in which a temperature between 200 and 800 used 0 C and preferably between 350 and 550 0 C. A decrease of the pressure in the medium The reaction makes it possible to evaporate the alcohol at a lower temperature, which is particularly suitable for glycerol. Therefore, another preferred aspect of the present invention is the nitrile production process of the invention in which a pressure comprised between 0.1 and 5 bar is used.
  • the reaction can be carried out both in the gas phase and in the liquid phase and is accompanied by other side reactions that produce other products such as: acrolein, hydrocyanic acid, hydroxypropanone, propanaldehyde, acetaldehyde, acetone, acrolein adducts with glycerol, polycondensation products of glycerol etc.
  • This decreases the yield and the selectivity towards the desired nitrile.
  • suitable space velocities are between 50 and 10500 h- 1 , preferably between 300 and 3500 h- 1 .
  • any inert gas such as nitrogen, argon or helium
  • the composition of the food is not limited although they usually use source atomic ratios of atoms of N / source of C between 0.1 and 6, usually between 0.2 and 4;
  • the oxidative atomic ratio / source of C is usually between 0.1 and 12, preferably between 0.9 and 6.
  • different technologies such as fixed bed, fluid bed and fluid bed with recirculation can be used. The simplest is the fixed bed.
  • the nitrile production process of the invention can be carried out in the liquid phase using microwave irradiation to activate the process.
  • microwave radiation allows to shorten the reaction times, increase the selectivity of the process and decrease the presence of unwanted reactions. It also acts directly on the entire volume of the sample, and presents easy handling. Therefore, another preferred aspect of the present invention is the process for producing nitriles of the invention in which microwave radiation is used as a chemical activation method, preferably in the liquid phase.
  • Another more preferred aspect of the present invention is the method of production of nitriles of the invention in which a range of temperatures between 20 and 300 0 C is used, and preferably between 80 and 120 0 C.
  • the thermal activation can be performed using a conventional procedure such as a silicone bath.
  • Another more preferred aspect of the present invention is the method of production of nitriles of the invention using microwave radiation in a radiation output suitable microwave is used to reach a reaction temperature between 20 and 300 0 C, and preferably between 80 and 120 0 C.
  • nitriles such as acrylonitrile from an alcohol such as glycerol, available in large quantities in nature and which is also obtained as a by-product in
  • glycerol is used as a carbon source, it should be borne in mind that the one that comes from methanolysis plants in basic medium may contain certain impurities such as sodium chloride or sulfate, organic matter other than glycerol and methanol. In this way, the nitrile produced can also contain such impurities and depending on the use to be given it will have to be purified.
  • An oxide with empirical formula SbiViO n / AI 2 ⁇ 3 was prepared as follows. 300 ml of a solution of 0.070M NH4VO3 was mixed with 3.1 g of Sb 2 Ü3. This mixture was heated to 8O 0 C and allowed to stir continuously for one hour, then 20 g of ⁇ AI 2 Ü3 was added. The mixture was brought to dryness in a rotary evaporator with the bath at 8O 0 C and then dried in an oven at 115 0 C for 24 hours. The resulting solid was calcined at 400 0 C for four hours.
  • the catalyst particles are held in two beds of quartz wool. Dead volumes before and after the catalytic bed are minimized to avoid contribution of the homogeneous reaction.
  • the reactor It has a thermocouple inside it to control the temperature of the catalytic bed. An electric oven is used to heat the reactor.
  • the catalyst is activated by feeding 20 ml (STP) / min (milliliters of gas under standard conditions of pressure and temperature, 1 atm and 25 0 C) from a mixture of 70% helium and 30% oxygen (volumetric percentages) and increasing The temperature from room temperature to 300 0 C at 3 ° C / min., Leaving this temperature for one hour.
  • Glycerol was fed 30 ml / hour with a syringe for injection of liquid, after being introduced, there is a zone for preheating liquid at 300 0 C for vaporizing the glycerol after being vaporized is diluted in the gaseous feed also preheated to 300 0 C.
  • the gaseous diet consisted of 25% oxygen, 8.6% ammonia and the rest helium (volumetric percentages). The gases are introduced with mass flow regulators.
  • reaction products are analyzed at the outlet of the reactor with a gas chromatograph equipped with two detectors, a TCD (Detector of
  • Glycerol Conversion (%) (moles of glycerol consumed / moles of glycerol fed) x 100
  • a solid with empirical formula SbiViNb2 ⁇ n / AI 2 ⁇ 3 was prepared as follows. 280 ml of a 0.025M solution NH4VO3 was mixed with one gram of Sb2O3 and with eight grams of soluble complex of niobium and ammonium oxide. The resulting mixture was heated at 8O 0 C and kept under stirring for one hour, then 20 g of ⁇ AI2O3 was added. The mixture was brought to dryness in a rotary evaporator with the bath at 8O 0 C and then dried in an oven at 115 0 C for 24 hours. The resulting solid was calcined at 400 0 C for four hours.
  • the catalyst is activated by feeding 20 ml (STP) / min (milliliters of gas under standard conditions of pressure and temperature, 1 atm and 25 0 C) from a mixture of 70% helium and 30% oxygen (volumetric percentages) and increasing the temperature from the ambient up to 300 0 C at 3 ° C / min, and leaving this temperature for one hour.
  • Glycerol was fed 30 ml / hour with a syringe for injection of liquid, after being introduced, there is a zone for preheating liquid at 300 0 C for vaporizing the glycerol after being vaporized is diluted in the gaseous feed also preheated to 300 0 C.
  • the gaseous diet consisted of 25% oxygen, 8.6% ammonia and the rest helium (volumetric percentages).
  • the gases are introduced with mass flow regulators.
  • the reaction products are analyzed at the outlet of the reactor with a gas chromatograph equipped with two detectors, a TCD (Thermal Conductivity Detector) and an FID (Ionic Flame Detector). The entire line is heated above 29O 0 C to avoid the condensation of glycerol and other reaction products.
  • Glycerol Conversion (%) (moles of glycerol consumed / moles of glycerol fed) x 100
  • EXAMPLE 3 Production of liquid phase acrylonitrile from glycerol using SbiViOn / AI 2 O 3 as catalyst and hydrogen peroxide oxidizing agent.
  • the oxide with empirical formula Sbi ⁇ ⁇ O n / AI 2 ⁇ 3, was prepared as follows. A solution of Sb (CH3COO) 3 in 0.3M tartaric acid was prepared and kept under continuous stirring until all the antimony dissolved. Next, 300 ml of a 0.070M NH4VO3 solution and 20 g of ⁇ Al 2 ⁇ 3 were added. The mixture was brought to dryness in a rotary evaporator with the bath at 8O 0 C and then dried in an oven at 115 0 C for 24 hours. The resulting solid was calcined at 400 0 C for four hours.
  • 0.5 mmol of glycerol, 15 mmol of hydrogen peroxide and 57 mmol of ammonia are introduced into a 10 ml Pyrex glass spherical flask of capacity provided with two mouths ⁇ one of them connected to the refrigerant and the other free for sampling.
  • the flask with the reaction mixture immersed in a thermostated silicone bath at 100 0 C and the mixture is maintained under continuous stirring for five minutes.
  • 200 mg of catalyst with particle sizes between 0.250 and 0.125 mm are added to the reaction mixture and the reaction time is counted.
  • the sampling is carried out periodically, and the solid catalyst is separated from the reaction products and reagents not consumed by means of a plunger syringe provided with a filter.
  • reaction products are analyzed in a gas chromatograph equipped with FID (Ionic Flame Detector).
  • FID Electronic Flame Detector
  • Glycerol Conversion (%) (moles of glycerol consumed / moles of glycerol fed) x 100
  • EXAMPLE 4 Production of liquid phase acrylonitrile from glycerol using as catalyst Sb I V 1 O n ZAI 2 O 3 under microwave activation and as hydrogen peroxide oxidizing agent.
  • the oxide with empirical formula Sb I V 1 O n ZAI 2 O 3 was prepared following both procedures described in Example 1, Sb I V 1 O n ZAI 2 O 3 (1) and in Example 3, Sb 1 V 1 O n ZAI 2 O 3 (3).
  • 0.5 mmol of glycerol, 15 mmol of hydrogen peroxide and 57 mmol of ammonia are introduced into a 5 ml capacity quartz reactor and screw cap provided with a vent system to avoid overpressures. Subsequently, 200 mg of catalyst with particle sizes between 0.250 and 0.125 mm are added to the reaction mixture.
  • the reactor with the reaction mixture closes tightly and is introduced into a MicroSYNTH Labstation multimode microwave equipment equipped with magnetic stirring, infrared probe temperature controller and software adapted to the equipment to monitor the reaction conditions.
  • the reaction mixture in continuous stirring, is activated under microwave radiation at 100 W of power for 60 minutes, using a heating ramp of 10 ° CZmin to 100 0 C. After the reaction time has elapsed, the sample is allowed to cool to room temperature. and with a plunger syringe provided with a filter, the solid catalyst is separated from the reaction products and reagents not consumed.
  • reaction products are analyzed in a gas chromatograph equipped with FID (Ionic Flame Detector).
  • FID Electronic Flame Detector
  • Glycerol Conversion (%) (moles of glycerol consumed / moles of glycerol fed) x 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

La presente invención se refiere a un proceso catalítico para la producción de nitrilos a partir de alcoholes, tales como polioles, por ejemplo el glicerol, reacción llamada amonoxidación. Para ello, se hace reaccionar al 5alcohol con una fuente de nitrógeno como por ejemplo amoniaco, en presencia de un oxidante como el oxígeno o peróxido de hidrógeno, y en presencia de un catalizador. Los catalizadores basados en oxidos de V, Nb y Sb soportados en alumina alcanzan rendimientos superiores al 48% a acrilonitrilo en la amonoxidación de glicerol. Esta invención es particularmente útil para obtener 10productos de alto valor añadido como el acrilonitrilo a partir de glicerol, el cual se produce como subproducto en la fabricación de biocombustibles.

Description

PROCESO CATALÍTICO DE PRODUCCIÓN DE NITRILOS A PARTIR
DE ALCOHOLES
SECTOR DE LA TÉCNICA La presente invención se refiere a un proceso catalítico para Ia producción de nitrilos a partir de alcoholes. Por tanto, esta invención tiene aplicación en el sector de Ia industria química en general y, concretamente, en Ia producción de disolventes orgánicos, polímeros, fibras, resinas, pesticidas, perfumes y medicamentos. ESTADO DE LA TÉCNICA
Un nitrilo es un compuesto orgánico que contiene un grupo ciano, CN, como acetonitrilo, benzonitrilo o acrilonitrilo. El acetonitrilo se usa como disolvente de muchos compuestos y en Ia producción de fibras, gomas y resinas. Además, el acetonitrilo se usa como intermedio en Ia fabricación de pesticidas, perfumes y medicamentos. También se usa en Ia extracción y en el refinamiento de cobre. El benzonitrilo se usa como disolvente y como precursor de otros compuestos. El acrilonitrilo es probablemente el nitrilo fabricado a mayor escala. El acrilonitrilo es un monómero que se utiliza en Ia fabricación de polímeros sintéticos, especialmente el poliacrilonitrilo y las fibras acrílicas. La fibra acrílica tiene muchos usos, conviene resaltar su uso como precursor de las fibras de carbono. La dimerización del acrilonitrilo produce adiponitrilo, usado en Ia síntesis de ciertos nylons. En pequeñas cantidades se usa también como funguicida. Algunos derivados del acrilonitrilo como el 2-cloro-acrilonitrilo se utilizan en las reacciones de Diels-Alder. El acrilonitrilo es el precursor para Ia síntesis industrial de acrilamida y de ácido acrílico.
El método industrial más popular para Ia producción de nitrilos es mediante Ia amonoxidación de una olefina. En este método una olefina, como propileno o isobuteno, reaccionan en presencia de catalizador con amoniaco y oxígeno a alta temperatura, en fase gas. Hay varias patentes que describen esté método y/o los catalizadores que llevan a cabo dicha reacción (US3895049, GB1426303, SE457506, WO03011804, JP2003260354, CN1600423, JP2004174487, entre otras). En vista del alto precio del propileno, en los últimos años se ha tratado de desarrollar el proceso de obtención del nitrilo a partir de Ia parafina, como propano o isobutano. En Ia amonoxidación de Ia parafina, ésta reacciona a alta temperatura en fase gas con oxígeno y amoniaco en presencia de catalizador. El uso del alcano disminuye Ia conversión y requiere condiciones más severas de presión y temperatura respecto al uso del alqueno. Hay varias patentes que describen esté método y/o los catalizadores que llevan a cabo dicha reacción (WO0059869, JP11310562, CN1146988, JP4275266, JP3157356, JP2258065, JP2111444, JP2075347, JP2261544, IN175744, IN172305, todas ellas asignadas a Ia Standar OiI Co).
Por tanto, Ia producción de nitrilos, y especialmente del acrilonitrilo, es dependiente de las correspondientes parafinas y olefinas (propano y propileno) que se obtienen del craqueo del petróleo. Además, tales materias primas (parafinas y/o olefinas), de origen fósil, contribuyen con el efecto invernadero. Se hace pues necesario disponer de un proceso de obtención de nitrilos a partir de otra materia prima.
El glicerol (también llamado glicerina) deriva de Ia metanolisis a Ia vez que los esteres metílicos que se usan en los combustibles diesel y en el fuel-oil doméstico. Es un producto natural, disponible en gran cantidad, fácil de almacenar y transportar. Además, al obtenerse como subproducto en Ia fabricación de biocombustibles, cuya demanda está aumentando, su precio está disminuyendo. Por tanto, el interés por desarrollar procesos que utilicen glicerol como materia prima está aumentando. En los últimos años han aparecido varias patentes que describen procesos en este sentido. Se ha patentado Ia obtención de acroleína a partir de glicerol (WO2006087083, WO2006087084, WO2007090990, asignadas a Arkema France; JP2006290815, asignada a Kao Corp; US5387720, asignada a Degussa; y WO2007058221 asignada a Nippon Catalytic Chem). También hay una patente que describe Ia obtención de ácido acrílico a partir de glicerol (WO2007090991 , asignada a Arkema France).
La oxidación de glicerol conduce a Ia obtención de una gran variedad de productos, empleados como intermedios en Ia síntesis de productos de alto valor añadido. Hasta el momento, los productos obtenidos en Ia reacción de oxidación de glicerol, emplean condiciones aeróbicas de reacción, bien alimentando oxígeno o aire en Ia reacción en fase gaseosa, bien por borboteo de una corriente de oxígeno o aire en disolución acuosa o en presencia de otros disolventes, por ejemplo, orgánicos, o por adición de peróxido de hidrógeno para Ia reacción en fase líquida. La oxidación de glicerol también tiene lugar en condiciones anaeróbicas de reacción, por oxidación electrocatalítica del glicerol aplicando un potencial eléctrico a Ia solución en presencia de radicales nitroxilo como catalizadores (TEMPO), y empleando biocatalizadores (enzimas y microorganismos).
En Ia presente invención se propone un procedimiento para Ia producción de nitrilos a partir de alcoholes, mediante Ia reacción de amonoxidación del alcohol. Esta reacción tiene lugar en fase vapor y/o en fase líquida en presencia de un catalizador sólido. Los catalizadores más adecuados en este tipo de reacciones son materiales multi-fase, insolubles en el medio de reacción. Buenos resultados se obtienen con el sistema basado en antimonio y vanadio. Dicho sistema catalítico ha sido estudiado antes para Ia reacción de amonoxidación de propano para obtener acrilonitrilo. Las primeras patentes sobre estos catalizadores están asignadas a Power Gas-I.C.I (Ger. Offen 2058004 (1971 ) and Ger. Offen
2224214 (1973)). Durante quince años no se publicaron más patentes sobre este sistema catalítico hasta que en 1998 Ia Standard OiI publicara una serie de patentes sobre el sistema V-Sb (patentes US 4,746,641 ; 4,788,317; 4,767,739 y 4,788,173). En estas patentes los catalizadores se preparaban con Ia reacción redox de Sb2O3 and V2O5 en medio acuoso, seguida de Ia adición de alúmina o sílica-alúmina como soporte, además de otros elementos como dopantes. Un método alternativo (US 4,784,979) consiste en hacer reaccionar Sb2O3 con el ion monoperoxovanadio VO(θ2)+, obtenido en Ia reacción de V2O5 con H2O2; de esta manera los catalizadores obtenidos tenían mejor resistencia. En una segunda patente, US 4,879,264, se mantenía a reflujo Ia disolución de monoperoxovanadio durante más de 16 horas antes de añadir el antimonio, de manera que se formaba primero un sol y después un gel de vanadio. Muchas patentes han aparecido sobre Ia modificación del catalizador con varios agentes dopantes (JP11 ,033,399, Patentes US 5,008,427; 5,214016; 5,432,141 ; 5,498,588; 5,994,259 y 6,043,185, y WO 95/05895).
DESCRIPCIÓN BREVE DE LA INVENCIÓN
Un aspecto de Ia presente invención es el procedimiento para Ia producción de nitrilos a partir de alcoholes, en adelante procedimiento de producción de nitrilos de Ia invención, que tiene lugar mediante Ia amonoxidación del alcohol en presencia de un oxidante, una fuente de átomos de nitrógeno y una catalizador.
Un aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el alcohol es un poliol.
Un aspecto más preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el alcohol es glicerol.
Otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el oxidante es oxígeno molecular. Otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el oxidante es peróxido de hidrógeno, o una fuente de oxígeno altamente reactivo, como hidroperóxidos. Otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que Ia fuente de átomos de nitrógeno es amoniaco.
Otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el catalizador responde a Ia fórmula AaBbCcDdEeOx donde A es V y/o Nb; B es Sb, Mo y/o Nb, C es un elemento seleccionado del grupo Sn, Ti, Te, W, U; D es un elemento seleccionado del grupo Li, Mg, Na, Ca, Sr, Ba, Co, Fe, Cr, Ga, Ni, Ge, Nb, Mo, W, Cu, Tl, P, Zr, Re, Ag, Cd, Zn, Pb, D, Rb, Cs, Ta, Se, Bi, Ce, In, As, B, Al, Mn; E es un elemento seleccionado del grupo Pd, Au, Pt, Ru, Rh, Os, Ir; y donde a y d = 0-10 , c, d y e, = 0-30, y x se determina por el estado de oxidación de los cationes presentes.
Un aspecto más preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el catalizador utilizado no contiene los elementos D y E y, por tanto, responde a Ia formula AaBbCcOx donde A es V y/o Nb; B es Sb, Mo y/o
Nb, C es un elemento seleccionado del grupo Sn, Ti, Te, W, U; D.
Una realización particular de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el catalizador utilizado no contiene los elementos C, D y E y, por tanto, responde a Ia formula AaBbOx donde donde A es V y/o Nb y B es Sb, Mo y/o Nb.
Un ejemplo particular de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el catalizador utilizado es VzSbyOx soportado en AI2O3, donde z = 0-10, y=10-0 y x se determina por el estado de oxidación de los cationes presentes. Otro aspecto más preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el catalizador se encuentra soportado sobre óxidos metálicos tales como
AI2O3, Nb2θ5, Zrθ2, TÍO2, SÍO2, zeolitas, o material mesoporoso o carbonoso.
Otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que se utiliza una temperatura entre 200 y 800 0C y, preferentemente, entre 350 y 550 0C. Otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que se utiliza una presión comprendida entre 0.1 y 5 bares.
Otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que se utiliza radiación microondas como método de activación, Io que permite trabajar a temperaturas más moderadas.
Otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que se utiliza activación por microondas con una potencia adecuada para alcanzar una temperatura entre 20 y 300 0C y, preferentemente, entre 80 y 120 0C.
DESCRIPCIÓN DETALLADA
La presente invención se basa en el hecho, observado por los inventores, de que mediante Ia reacción de amonoxidación de un alcohol en presencia de un oxidante, una fuente de átomos de nitrógeno (e.g., amoníaco) y un catalizador se obtienen nitrilos. Esta reacción es un procedimiento totalmente novedoso y atractivo para Ia preparación de nitrilos a nivel industrial. La reacción implicada en este procedimiento de preparación de nitrilos es:
R-OH + NH3 + OXIDANTE → R-CN + H2O + N2
Por tanto, un aspecto de Ia presente invención es el procedimiento para Ia producción de nitrilos a partir de alcoholes, en adelante procedimiento de producción de nitrilos de Ia invención, que tiene lugar mediante Ia amonoxidación del alcohol en presencia de un oxidante, una fuente de átomos de nitrógeno y una catalizador.
Un aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el alcohol es un poliol.
Un aspecto más preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el alcohol es glicerol.
En este caso, Ia reacción que tiene lugar para Ia producción de acrilonitrilo a partir de glicerol es:
CH2OH-CHOH-CH2OH + OXIDANTE + NH3 → CH2CHCN + H2O + N2
El oxidante puede ser oxígeno molecular, que puede usarse en forma de aire o de cualquier otra mezcla de gases que contenga oxígeno molecular.
Otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el oxidante es oxígeno molecular.
Otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el oxidante es peróxido de hidrógeno, o una fuente de oxígeno altamente reactivo, como hidroperóxidos. La fuente de átomos de nitrógeno más usual que puede utilizarse es amoniaco. Por tanto, otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que Ia fuente de átomos de nitrógeno es amoniaco. Otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el catalizador responde a Ia fórmula AaBbCcDdEeOx donde A es V y/o Nb; B es Sb, Mo y/o Nb, C es un elemento seleccionado del grupo Sn, Ti, Te, W, U; D es un elemento seleccionado del grupo Li, Mg, Na, Ca, Sr, Ba, Co, Fe, Cr, Ga, Ni, Ge, Nb, Mo, W, Cu, Tl, P, Zr, Re, Ag, Cd, Zn, Pb, D, Rb, Cs, Ta, Se, Bi, Ce, In, As, B, Al, Mn; E es un elemento seleccionado del grupo Pd, Au, Pt, Ru, Rh, Os, Ir; y donde a y d = 0-10 , c, d y e, = 0-30, y x se determina por el estado de oxidación de los cationes presentes.
Un aspecto más preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el catalizador utilizado no contiene los elementos D y E y, por tanto, responde a Ia formula AaBbCcOx donde A es V y/o Nb; B es Sb, Mo y/o
Nb, C es un elemento seleccionado del grupo Sn, Ti, Te, W, U; D.
Una realización particular de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el catalizador utilizado no contiene los elementos C, D y E y, por tanto, responde a Ia formula AaBbOx donde donde A es V y/o Nb y B es Sb, Mo y/o Nb.
Un ejemplo particular de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el catalizador utilizado es VzSbyOx soportado en AI2O3, donde z = 0-10, y=10-0 y x se determina por el estado de oxidación de los cationes presentes.
Otro aspecto más preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que el catalizador se encuentra soportado sobre óxidos metálicos tales como AI2O3, Nb2θ5, ZrÜ2, TÍO2, SÍO2, zeolitas, material mesoporoso o carbono.
El catalizador puede utilizarse puro o disuelto en algún sólido inerte como por ejemplo carburo de silicio. De esta manera, es más fácil controlar Ia exotermicidad de Ia reacción y por tanto controlar mejor Ia temperatura.
Para obtener el producto deseado es necesario utilizar temperaturas y presiones adecuadas. Otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que se utiliza una temperatura entre 200 y 800 0C y, preferentemente, entre 350 y 550 0C. Un descenso de Ia presión en el medio de reacción posibilita el poder evaporar el alcohol a una temperatura más baja, que es particularmente conveniente para el glicerol. Por tanto, otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que se utiliza una presión comprendida entre 0.1 y 5 bares.
La reacción se puede llevar a cabo tanto en fase gaseosa como en fase líquida y está acompañada por otras reacciones secundarias que producen otros productos como: acroleína, ácido cianhídrico, hidroxipropanona, propanaldehído, acetaldehído, acetona, aducios de acroleína con glicerol, productos de policondensación del glicerol etc. Esto disminuye el rendimiento y Ia selectividad hacia el nitrilo deseado. Para evitar estas reacciones secundarias y Ia formación de productos no deseados es importante limitar el tiempo de residencia en el reactor, por otro lado, cuando se aumenta el tiempo de residencia se obtienen conversiones mayores. Por tanto, velocidades espaciales adecuadas se encuentran entre 50 y 10500 h-1, preferiblemente entre 300 y 3500 h-1. Como gas disolvente para ajustar Ia velocidad espacial y Ia presión parcial de los reactivos se puede usar cualquier gas inerte, como nitrógeno, argón o helio. La composición de Ia alimentación no esta limitada aunque se suelen utilizar relaciones atómicas fuente de átomos de N/fuente de C entre 0.1 y 6, normalmente entre 0.2 y 4; Ia relación atómica oxidante/fuente de C suele estar comprendida entre 0.1 y 12, preferentemente entre 0.9 y 6. Cuando Ia reacción tiene lugar en fase gas se pueden utilizar diferentes tecnologías tales como lecho fijo, lecho fluido y lecho fluido con recirculación. El más simple es el lecho fijo.
El procedimiento de producción de nitrilos de Ia invención se puede llevar a cabo en fase líquida utilizando Ia irradiación de microondas para activar el proceso. De hecho, en Ia presente invención se observó que Ia radiación microondas permite acortar los tiempos de reacción, aumentar Ia selectividad del proceso y disminuir Ia presencia de reacciones no deseadas. También actúa directamente sobre todo el volumen de Ia muestra, y presenta un fácil manejo. Por tanto, otro aspecto preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que se utiliza radiación microondas como método de activación químico, preferentemente en fase líquida.
Otro aspecto más preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención en el que se utiliza un rango de temperaturas comprendido entre 20 y 300 0C, y preferentemente entre 80 y 120 0C. La activación térmica se puede realizar utilizando un procedimiento convencional como, por ejemplo, un baño de silicona. Otro aspecto más preferente de Ia presente invención es el procedimiento de producción de nitrilos de Ia invención utilizando radiación de microondas en el que se utiliza una potencia de irradiación de microondas adecuada para alcanzar una temperatura de reacción comprendida entre 20 y 300 0C, y preferentemente entre 80 y 120 0C. Mediante esta invención se consigue producir nitrilos como el acrilonitrilo a partir de un alcohol como el glicerol, disponible en grandes cantidad en Ia naturaleza y que además se obtiene como subproducto en
Ia fabricación de biocombustibles, evitándose Ia utilización de una parafina o una olefina (propano o propileno) procedentes de los combustible fósiles.
En caso de utilizar glicerol como fuente de carbono hay que tener en cuenta que el que proviene de las plantas de metanolisis en medio básico puede contener ciertas impurezas como cloruro o sulfato sódicos, materia orgánica distinta al glicerol y metanol. De esta manera, el nitrilo producido puede contener también tales impurezas y dependiendo del uso que vaya a dársele habrá de ser purificado.
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN
EJEMPLO 1 -Producción de Acrilonitrilo a partir de glicerol utilizando como catalizador SbiViOn/AI2θ3.
Un óxido con formula empírica SbiViOn/AI2θ3 se preparó de Ia siguiente manera. 300 mi de una solución de 0.070M NH4VO3 se mezcló con 3.1 g de Sb2Ü3. Esta mezcla se calentó a 8O0C y se dejó en agitación continua durante una hora, después, 20 g de γ AI2Ü3 fue adicionada. La mezcla se llevó a sequedad en un rotavapor con el baño a 8O0C y después se secó en una estufa a 1150C durante 24 horas. El sólido resultante fue calcinado a 4000C durante cuatro horas.
50 mg de catalizador SbiViOn/AI2θ3 con tamaños de partícula entre 0.250 y 0.125 mm se diluyen con 250 mg de CSi y se coloca en el interior de un reactor de lecho fijo hecho en cuarzo (DE=9mm, Dl=7.8mm, L=290 mm). Las partículas de catalizador se sostienen en dos lechos de lana de cuarzo. Los volúmenes muertos antes y después del lecho catalítico son minimizados para evitar contribución de Ia reacción homogénea. El reactor tiene en su interior un termopar para controlar Ia temperatura del lecho catalítico. Un horno eléctrico se utiliza para calentar el reactor.
El catalizador se activa alimentando 20 mi (STP)/min (mililitros de gas en condiciones estándar de presión y temperatura, 1 atm y 250C) de una mezcla de 70% de helio y 30% de oxígeno (porcentajes volumétricos) y aumentando Ia temperatura desde Ia ambiente hasta 3000C a 3°C/min., y dejando esta temperatura durante una hora. El glicerol se alimenta a 30 ml/hora con una jeringa para inyección de líquidos, tras ser introducido, hay una zona para precalentamiento de líquidos a 300 0C para vaporizar al glicerol que tras ser vaporizado es diluido en Ia alimentación gaseosa precalentada también a 3000C. La alimentación gaseosa consistió en 25% de oxígeno, 8.6% de amoniaco y el resto helio (porcentajes volumétricos). Los gases se introducen con reguladores de flujo másico.
Los productos de reacción se analizan a Ia salida del reactor con un cromatógrafo de gases equipado con dos detectores, un TCD (Detector de
Conductividad Térmica) y un FID (Detector Iónico de Llama). Toda Ia linea está calefactada por encima de 29O0C para evitar Ia condensación del glicerol y de otros productos de reacción.
Las conversiones, selectividades y rendimientos se han calculado mediante las siguientes fórmulas:
Conversión de Glicerol (%) = (moles de glicerol consumido / moles de glicerol alimentado ) x 100
Selectividad a un compuesto (%) = ((moles formados de compuesto * átomos de carbono del compuesto)/(moles de glicerol consumido * átomos de carbono en glicerol)) x 100
Rendimiento a un compuesto (%) = (selectividad a un compuesto * conversión de glicerol) / 100
Los resultados se muestran en las tablas 1 y 2. Tabla 1. Conversión de Glicerol (%) y selectividad (%) de Ia reacción en ausencia (CSi) y presencia del sólido SbiViOn/AI2θ3.
Figure imgf000014_0001
Convers. = conversión etil. = etileno acetonit. = acetonitrilo acrol. = acroleina acrilonit = acrilonitrilo
Tabla 2. Rendimientos (%) de Ia reacción en ausencia (CSi) y presencia del sólido Sb1V1On/AI2O3.
Figure imgf000014_0002
etil. = etileno acetonit. = acetonitrilo acrol. = acroleina acrilonit = acrilonitrilo
Se alcanzan conversiones de 71.6% en Ia amonoxidación de glicerol para Ia producción de acrilonitrilo, rendimientos similares a los obtenidos en Ia reacción de obtención del acrilonitrilo a partir de propano. El acrilonitrilo es el principal producto de esta reacción, con una selectividad del 56%, y un rendimiento del 40.1 %. El segundo producto en abundancia es Ia acroleina, que es un intermedio en Ia formación de acrilonitrilo. EJEMPLO 2 - Producción de Acrilonitrilo a partir de glicerol utilizando como catalizador Sbi ViNb2OnZAI2O3
Un sólido con formula empírica SbiViNb2θn/AI2θ3 se preparó de Ia siguiente manera. 280 mi de una solución de 0.025M NH4VO3 se mezcló con un gramo de Sb2O3 y con ocho gramos de complejo soluble de óxido de niobio y amonio. La mezcla resultante se calentó a 8O0C y se mantuvo en agitación durante una hora, después, 20 g de γ AI2O3 fue adicionada. La mezcla se llevó a sequedad en un rotavapor con el baño a 8O0C y después se secó en una estufa a 1150C durante 24 horas. El sólido resultante fue calcinado a 4000C durante cuatro horas.
50 mg de catalizador SbiViNb2On/AI2θ3 con tamaños de partícula entre 0.250 y 0.125 mm se diluyen con 250 mg de CSi y se coloca en el interior de un reactor de lecho fijo hecho en cuarzo (DE=9mm, Dl=7.8mm, L=290 mm). Las partículas de catalizador se sostienen en dos lechos de lana de cuarzo. Los volúmenes muertos antes y después del lecho catalítico son minimizados para evitar contribución de Ia reacción homogénea. El reactor tiene en su interior un termopar para controlar Ia temperatura del lecho catalítico. Un horno eléctrico se utiliza para calentar el reactor. El catalizador se activa alimentando 20 mi (STP)/min (mililitros de gas en condiciones estándar de presión y temperatura, 1 atm y 250C) de una mezcla de 70% de helio y 30% de oxígeno (porcentajes volumétricos) y aumentando Ia temperatura desde Ia ambiente hasta 3000C a 3°C/min, y dejando esta temperatura durante una hora. El glicerol se alimenta a 30 ml/hora con una jeringa para inyección de líquidos, tras ser introducido, hay una zona para precalentamiento de líquidos a 300 0C para vaporizar al glicerol que tras ser vaporizado es diluido en Ia alimentación gaseosa precalentada también a 3000C. La alimentación gaseosa consistió en 25% de oxígeno, 8.6% de amoniaco y el resto helio (porcentajes volumétricos). Los gases se introducen con reguladores de flujo másico. Los productos de reacción se analizan a Ia salida del reactor con un cromatógrafor de gases equipado con dos detectores, un TCD (Detector de Conductividad Térmica) y un FID (Detector Iónico de Llama). Toda Ia linea está calefactada por encima de 29O0C para evitar Ia condensación del glicerol y de otros productos de reacción.
Las conversiones, selectividades y rendimientos se han calculado mediante las siguientes fórmulas:
Conversión de Glicerol (%) = (moles de glicerol consumido / moles de glicerol alimentado ) x 100
Selectividad a un compuesto (%) = (moles formados de compuesto*atomos de carbono en ese compuesto)/(moles de glicerol consumido*atomos de carbono en glicerol) x 100
Rendimiento a un compuesto (%) = (selectividad a un compuesto * conversión de glicerol) / 100
Los resultados se muestran en las tablas 3 y 4.
Tabla 3. Conversión de Glicerol (%) y selectividad (%) de Ia reacción en ausencia (CSi) y presencia del sólido SbiViNb2θn/AI2θ3.
Figure imgf000016_0001
Convers. = conversión etil. = etileno acetonit. = acetonitrilo acrol. = acroleina acrilonit = acrilonitrilo
Tabla 4. Rendimientos (%) de Ia reacción en ausencia (CSi) y presencia del sólido SbiViNb2On/AI2O3.
Figure imgf000017_0001
etil. = etileno acetonit. = acetonitrilo acrol. = acroleina acrilonit = acrilonitrilo
Con este catalizador Ia conversión es mayor; se alcanzan conversiones de 82.6% en Ia amonoxidación de glicerol para Ia producción de acrilonitrilo, rendimientos similares a los obtenidos en Ia reacción de obtención del acrilonitrilo a partir de propano. El acrilonitrilo es el principal producto de esta reacción, con una selectividad del 58.3%, y un rendimiento del 48.1 %. El segundo producto en abundancia es Ia acroleina, que es un intermedio en Ia formación de acrilonitrilo.
EJEMPLO 3 - Producción de Acrilonitrilo en fase líquida a partir de glicerol utilizando como catalizador SbiViOn/AI2O3 y como agente oxidante peróxido de hidrógeno.
El óxido con formula empírica Sbi\ΛOn/AI2θ3, se preparó de Ia siguiente manera. Se preparó una disolución de Sb(CH3COO)3 en ácido tartárico 0.3M y se mantuvo en continua agitación hasta que todo el antimonio se disolvió. A continuación, 300 mi de una solución 0.070M NH4VO3 y 20 g de γ Al2θ3 fueron adicionados. La mezcla se llevó a sequedad en un rotavapor con el baño a 8O0C y después se secó en una estufa a 1150C durante 24 horas. El sólido resultante fue calcinado a 4000C durante cuatro horas. 0.5 mmol de glicerol, 15 mmol de peróxido de hidrógeno y 57 mmol de amoníaco se introducen en un matraz esférico de vidrio Pyrex de 10 mi de capacidad provisto de dos bocas^ una de ellas conectada al refrigerante y Ia otra libre para Ia toma de muestras. El matraz con Ia mezcla de reacción se sumerge en un baño termostatizado de silicona a 1000C y se mantiene Ia mezcla en continua agitación durante cinco minutos. Posteriormente 200 mg de catalizador con tamaños de partícula entre 0.250 y 0.125 mm se adicionan a Ia mezcla de reacción y se empieza a contabilizar el tiempo de reacción. La toma de muestra se realiza de forma periódica, y se separan el catalizador sólido de los productos de reacción y reactivos no consumidos mediante una jeringa de émbolo provista de filtro.
Los productos de reacción se analizan en un cromatógrafo de gases equipado con FID (Detector Iónico de Llama).
Las conversiones, selectividades y rendimientos se han calculado mediante las siguientes fórmulas:
Conversión de Glicerol (%) = (moles de glicerol consumido / moles de glicerol alimentado ) x 100
Selectividad a un compuesto (%) = (moles formados de compuesto*atomos de carbono en ese compuesto)/(moles de glicerol consumido*atomos de carbono en glicerol) x 100
Rendimiento a un compuesto (%) = (selectividad a un compuesto * conversión de glicerol) / 100
Los resultados se muestran en las tabla 5 y 6.
Tabla 5. Conversión de Glicerol (%) y selectividad (%) de Ia reacción en presencia del sólido SbiViOn/AI2θ3.
Figure imgf000018_0001
Tabla 6. Rendimientos (%) de Ia reacción en presencia del sólido Sb1V1OnZAI2O3.
Figure imgf000019_0001
EJEMPLO 4 -Producción de Acrilonitrilo en fase líquida a partir de glicerol utilizando como catalizador SbIV1OnZAI2O3 bajo activación microondas y como agente oxidante peróxido de hidrógeno.
El óxido con fórmula empírica SbIV1OnZAI2O3, se preparó siguiendo ambos procedimientos descritos en Ejemplo 1 , SbIV1OnZAI2O3 (1 ) y en Ejemplo 3, Sb1V1OnZAI2O3 (3).
0.5 mmol de glicerol, 15 mmol de peróxido de hidrógeno y 57 mmol de amoníaco se introducen en un reactor de cuarzo de 5 mi de capacidad y tapón de rosca provisto de sistema de venteo para evitar sobrepresiones. Posteriormente 200 mg de catalizador con tamaños de partícula entre 0.250 y 0.125 mm se adicionan a Ia mezcla de reacción. El reactor con Ia mezcla de reacción, se cierra herméticamente y se introduce en un equipo microondas multimodo MicroSYNTH Labstation provisto de agitación magnética, controlador de temperatura por sonda de infrarrojos y software adaptado al equipo para monitorear las condiciones de reacción.
La mezcla de reacción, en continua agitación, se activa bajo radiación microondas a 100 W de potencia durante 60 minutos, empleando una rampa de calentamiento de 10°CZmin hasta 1000C. Transcurrido el tiempo de reacción Ia muestra se deja enfriar a temperatura ambiente y con una jeringa de émbolo provista de filtro, se separan el catalizador sólido de los productos de reacción y reactivos no consumidos.
Los productos de reacción se analizan en un cromatógrafo de gases equipado con FID (Detector Iónico de Llama).
Las conversiones, selectividades y rendimientos se han calculado mediante las siguientes fórmulas: Conversión de Glicerol (%) = (moles de glicerol consumido / moles de glicerol alimentado ) x 100
Selectividad a un compuesto (%) = (moles formados de compuesto*atomos de carbono en ese compuesto)/(moles de glicerol consumido*atomos de carbono en glicerol) x 100
Rendimiento a un compuesto (%) = (selectividad a un compuesto * conversión de glicerol) / 100
Los resultados se muestran en las tabla 7 y 8.
Tabla 5. Conversión de Glicerol (%) y selectividad (%) de Ia reacción en presencia del sólido SbIV1OnZAI2O3.
Figure imgf000020_0001
(1 ) = procedimiento de preparación del sólido (Ejemplo 1 )
(3) = procedimiento de preparación del sólido (Ejemplo 3)
Tabla 6. Rendimientos (%) de Ia reacción en presencia del sólido
SbiViOn/AI2O3.
Figure imgf000020_0002

Claims

REIVINDICACIONES
1. Procedimiento para Ia producción de nitrilos a partir de alcoholes caracterizado porque tiene lugar mediante Ia amonoxidación del alcohol en presencia de un oxidante, una fuente de átomos de nitrógeno y un catalizador.
2. Procedimiento de producción de nitrilos según reivindicación 1 caracterizado porque el alcohol es un poliol.
3. Procedimiento de producción de nitrilos según reivindicación 1 caracterizado porque el poliol es un es glicerol.
4. Procedimiento de producción de nitrilos según reivindicaciones 1 caracterizado porque el oxidante es oxígeno molecular.
5. Procedimiento de producción de nitrilos según reivindicación 1 caracterizado porque el oxidante es un hidroperóxido.
6. Procedimiento de producción de nitrilos según reivindicación 5 caracterizado porque el hidroperóxido es peróxido de hidrógeno
7. Procedimiento de producción de nitrilos según reivindicación 1 caracterizado porque Ia fuente de átomos de nitrógeno es amoniaco.
8. Procedimiento de producción de nitrilos según reivindicación 1 caracterizado porque el catalizador responde a Ia fórmula AaBbCcDdEeOx donde A es V y/o Nb; B es Sb, Mo y/o Nb, C es un elemento seleccionado del grupo Sn, Ti, Te, W , U; D es un elemento seleccionado del grupo Li, Mg, Na, Ca, Sr, Ba, Co, Fe, Cr, Ga, Ni, Ge, Nb, Mo, W, Cu, Tl, P, Zr, Re, Ag, Cd, Zn, Pb, D, Rb, Cs, Ti, Ta, Se, Bi, Ce, In, As, B, Al, Mn; E es un elemento seleccionado del grupo Pd, Au, Pt, Ru, Rh, Os, Ir; y donde a y d = 0-10, c, d y e, = 0-30, y x se determina por el estado de oxidación de los cationes presentes.
9. Procedimiento de producción de nitrilos según reivindicación 8 caracterizado porque el catalizador no contiene los elementos D y E y, por tanto, responde a Ia formula AaBbCcOx donde A es V y/o Nb; B es Sb, Mo y/o Nb, C es un elemento seleccionado del grupo Sn, Ti, Te, W , U.
10. Procedimiento de producción de nitrilos según reivindicación 9 caracterizado porque el catalizador no contiene el elemento C y, por tanto, responde a Ia formula AaBbOx donde donde A es V y/o Nb y B es Sb, Mo y/o Nb.
11. Procedimiento de producción de nitrilos según reivindicación 10 caracterizado porque el catalizador utilizado es VzSbyOx soportado en AI2O3, donde z = 0-10, y=10-0 y x se determina por el estado de oxidación de los cationes presentes.
12. Procedimiento de producción de nitrilos según reivindicaciones 8-11 caracterizado porque el catalizador se encuentra soportado sobre óxidos metálicos, zeolitas, o material mesoporoso o carbonoso.
13. Procedimiento de producción de nitrilos según reivindicación 1 caracterizado porque se utiliza una temperatura entre 200 y 800 0C y, preferentemente, entre 350 y 550 0C.
14. Procedimiento de producción de nitrilos según reivindicación 1 caracterizado porque se utiliza una presión comprendida entre 0.1 y 5 bares.
15. Procedimiento de producción de nitrilos según reivindicación 1 caracterizado porque se utiliza radiación microondas como método de activación químico, preferentemente en fase líquida.
i 16. Procedimiento de producción de nitrilos según reivindicación 15 caracterizado porque se usa Ia potencia de Ia radiación de microondas necesaria para alcanzar una temperatura de reacción entre 20 y 300 0C, y preferiblemente, entre 80 y 120 0C.
PCT/ES2008/070206 2007-11-13 2008-11-13 Proceso catalítico de producción de nitrilos a partir de alcoholes WO2009063120A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200702992 2007-11-13
ES200702992A ES2319949B1 (es) 2007-11-13 2007-11-13 Proceso catalitico de produccion de nitrilos a partir de alcoholes.

Publications (1)

Publication Number Publication Date
WO2009063120A1 true WO2009063120A1 (es) 2009-05-22

Family

ID=40638375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/070206 WO2009063120A1 (es) 2007-11-13 2008-11-13 Proceso catalítico de producción de nitrilos a partir de alcoholes

Country Status (2)

Country Link
ES (1) ES2319949B1 (es)
WO (1) WO2009063120A1 (es)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130029841A1 (en) * 2010-04-09 2013-01-31 Dow Global Technologies Llc Catalyst compositions for producing mixed alcohols
CN103464192A (zh) * 2013-09-26 2013-12-25 中国石油大学(北京) 一种介孔镍钼氧化物催化剂及其制备方法和应用
WO2014170604A1 (fr) * 2013-04-17 2014-10-23 Centre National De La Recherche Scientifique Procede de production de nitriles mettant en œuvre un catalyseur a base d'antimoine et de fer
WO2017220512A1 (en) 2016-06-20 2017-12-28 Clariant International Ltd Compound comprising certain level of bio-based carbon
WO2018108608A1 (en) 2016-12-12 2018-06-21 Clariant International Ltd Polymer comprising certain level of bio-based carbon
WO2018108610A1 (en) 2016-12-12 2018-06-21 Clariant International Ltd Polymer comprising certain level of bio-based carbon
WO2018108611A1 (en) 2016-12-12 2018-06-21 Clariant International Ltd Use of bio-based polymer in a cosmetic, dermatological or pharmaceutical composition
WO2018108609A1 (en) 2016-12-12 2018-06-21 Clariant International Ltd Polymer comprising certain level of bio-based carbon
CN112206776A (zh) * 2020-07-28 2021-01-12 陕西延长石油(集团)有限责任公司 复合金属氧化物、原料组合物及其制备方法和应用
US11306170B2 (en) 2016-12-15 2022-04-19 Clariant International Ltd. Water-soluble and/or water-swellable hybrid polymer
US11339241B2 (en) 2016-12-15 2022-05-24 Clariant International Ltd. Water-soluble and/or water-swellable hybrid polymer
US11401362B2 (en) 2016-12-15 2022-08-02 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
US11447682B2 (en) 2015-06-17 2022-09-20 Clariant International Ltd Water-soluble or water-swellable polymers as water loss reducers in cement slurries
US11542343B2 (en) 2016-12-15 2023-01-03 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB709337A (en) * 1950-12-30 1954-05-19 Distillers Co Yeast Ltd Manufacture of nitriles
EP0107638A2 (en) * 1982-09-30 1984-05-02 Monsanto Company Catalysts for the oxidation and ammoxidation of alcohols
US20040220434A1 (en) * 2003-05-02 2004-11-04 Brophy John H. Process for converting a hydrocarbon to an oxygenate or a nitrile
DE102004042793A1 (de) * 2004-09-03 2006-03-09 Columbus Filter Gmbh Verfahren zur kontinuierlichen Entfernung von oxidierbaren organischen Verbindungen aus nichtoxidierbaren Flüssigkeiten
WO2008113927A1 (fr) * 2007-02-16 2008-09-25 Arkema France Procede de synthese d'acrylonitrile a partir de glycerol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB709337A (en) * 1950-12-30 1954-05-19 Distillers Co Yeast Ltd Manufacture of nitriles
EP0107638A2 (en) * 1982-09-30 1984-05-02 Monsanto Company Catalysts for the oxidation and ammoxidation of alcohols
US20040220434A1 (en) * 2003-05-02 2004-11-04 Brophy John H. Process for converting a hydrocarbon to an oxygenate or a nitrile
DE102004042793A1 (de) * 2004-09-03 2006-03-09 Columbus Filter Gmbh Verfahren zur kontinuierlichen Entfernung von oxidierbaren organischen Verbindungen aus nichtoxidierbaren Flüssigkeiten
WO2008113927A1 (fr) * 2007-02-16 2008-09-25 Arkema France Procede de synthese d'acrylonitrile a partir de glycerol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUERRERO-PEREZ, M. O. ET AL.: "New Reaction: Conversion of Glycerol into Acrylonitrile", CHEMISTRY & SUSTAINABILITY, vol. 1, 2008, pages 511 - 513 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130029841A1 (en) * 2010-04-09 2013-01-31 Dow Global Technologies Llc Catalyst compositions for producing mixed alcohols
US9415375B2 (en) * 2010-04-09 2016-08-16 Dow Global Technologies Llc Catalyst compositions for producing mixed alcohols
WO2014170604A1 (fr) * 2013-04-17 2014-10-23 Centre National De La Recherche Scientifique Procede de production de nitriles mettant en œuvre un catalyseur a base d'antimoine et de fer
FR3004713A1 (fr) * 2013-04-17 2014-10-24 Centre Nat Rech Scient Procede de production de nitriles mettant en oeuvre un catalyseur a base d'antimoine et de fer.
CN105308019A (zh) * 2013-04-17 2016-02-03 科学研究国家中心 使用基于锑和铁的催化剂生产腈的方法
US9676705B2 (en) 2013-04-17 2017-06-13 Ecole Centrale De Lille Process for the production of nitriles using a catalyst based on antimony and iron
CN103464192A (zh) * 2013-09-26 2013-12-25 中国石油大学(北京) 一种介孔镍钼氧化物催化剂及其制备方法和应用
CN103464192B (zh) * 2013-09-26 2015-11-18 中国石油大学(北京) 一种介孔镍钼氧化物催化剂及其制备方法和应用
US11447682B2 (en) 2015-06-17 2022-09-20 Clariant International Ltd Water-soluble or water-swellable polymers as water loss reducers in cement slurries
WO2017220512A1 (en) 2016-06-20 2017-12-28 Clariant International Ltd Compound comprising certain level of bio-based carbon
EP3984992A1 (en) 2016-06-20 2022-04-20 Clariant International Ltd Compound comprising certain level of bio-based carbon
US11142494B2 (en) 2016-06-20 2021-10-12 Clariant International Ltd. Compound comprising certain level of bio-based carbon
WO2018108609A1 (en) 2016-12-12 2018-06-21 Clariant International Ltd Polymer comprising certain level of bio-based carbon
WO2018108611A1 (en) 2016-12-12 2018-06-21 Clariant International Ltd Use of bio-based polymer in a cosmetic, dermatological or pharmaceutical composition
WO2018108610A1 (en) 2016-12-12 2018-06-21 Clariant International Ltd Polymer comprising certain level of bio-based carbon
US11311473B2 (en) 2016-12-12 2022-04-26 Clariant International Ltd Use of a bio-based polymer in a cosmetic, dermatological or pharmaceutical composition
US11384186B2 (en) 2016-12-12 2022-07-12 Clariant International Ltd Polymer comprising certain level of bio-based carbon
WO2018108608A1 (en) 2016-12-12 2018-06-21 Clariant International Ltd Polymer comprising certain level of bio-based carbon
US11306170B2 (en) 2016-12-15 2022-04-19 Clariant International Ltd. Water-soluble and/or water-swellable hybrid polymer
US11339241B2 (en) 2016-12-15 2022-05-24 Clariant International Ltd. Water-soluble and/or water-swellable hybrid polymer
US11401362B2 (en) 2016-12-15 2022-08-02 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
US11542343B2 (en) 2016-12-15 2023-01-03 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
CN112206776A (zh) * 2020-07-28 2021-01-12 陕西延长石油(集团)有限责任公司 复合金属氧化物、原料组合物及其制备方法和应用
CN112206776B (zh) * 2020-07-28 2023-04-28 陕西延长石油(集团)有限责任公司 复合金属氧化物、原料组合物及其制备方法和应用

Also Published As

Publication number Publication date
ES2319949B1 (es) 2010-03-17
ES2319949A1 (es) 2009-05-14

Similar Documents

Publication Publication Date Title
WO2009063120A1 (es) Proceso catalítico de producción de nitrilos a partir de alcoholes
CN103894179B (zh) 一种钼钒基复合氧化物催化剂及其制备和应用
US20160271595A1 (en) Catalyst for ammonia synthesis and ammonia decomposition
US7906689B2 (en) Catalyst composition and producing process thereof for use in manufacturing methacrolein
CN101695657B (zh) 一种利用甘油生产乳酸的方法及其专用催化剂
TWI655029B (zh) 經改良之選擇性氨氧化催化劑(一)
CN101244971A (zh) 一种生物乙醇高效脱水制乙烯的合成方法
ES2324932T3 (es) Procedimiento y catalizador para la preparacion selectiva de acido acetico por oxidacion catalitica de etano y/o etileno.
CN108084053B (zh) 由木质纤维素类生物质材料制备乙腈的方法
KR20150089064A (ko) 혼합 금속 산화물 암모니아산화 촉매용 전하소 첨가제
CN105195238A (zh) 一种分子层沉积制备金属-氧化物复合纳米催化剂的方法
TW201202185A (en) Method for preparing acrolein from glycerol or glycerine
CH617170A5 (es)
CN106117082A (zh) 一种高选择性制备乙腈的方法
CN107073455B (zh) 改进的选择性氨氧化催化剂
CN105727942A (zh) 一种钯/碳纳米管催化剂及其制备方法和应用
CN103537301A (zh) 用于甲醇氧化联产甲缩醛和甲酸甲酯的催化剂及其制法和应用
CN101774944B (zh) 乙腈生产工艺
CN102452870B (zh) 一种催化氧化环烯烃的方法
WO2020097707A1 (pt) Processo de oxidação seletiva de glicerol
CN102941098A (zh) 一种二氧化碳加氢合成甲烷所用的催化剂及其制备方法
Wu et al. Direct oxidation of methane to methanol using CuMoO 4
CN1364655A (zh) 碳纳米管促进铜-基甲醇合成催化剂及其制备方法
ES2337004B1 (es) Procedimiento de hidrogenacion selectiva de nitrocicloalcanos para obtener oximas ciclicas.
CN107303486B (zh) 一种加氢精制催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08849040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08849040

Country of ref document: EP

Kind code of ref document: A1