WO2009062407A1 - Modele reduit d'helicoptere a rotor unique presentant une stabilite amelioree - Google Patents

Modele reduit d'helicoptere a rotor unique presentant une stabilite amelioree Download PDF

Info

Publication number
WO2009062407A1
WO2009062407A1 PCT/CN2008/071129 CN2008071129W WO2009062407A1 WO 2009062407 A1 WO2009062407 A1 WO 2009062407A1 CN 2008071129 W CN2008071129 W CN 2008071129W WO 2009062407 A1 WO2009062407 A1 WO 2009062407A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
helicopter
axis
pair
model helicopter
Prior art date
Application number
PCT/CN2008/071129
Other languages
English (en)
French (fr)
Inventor
Guoshu Huang
Yuchen Wu
Yizhen Yu
Huanzhong Ding
Original Assignee
Shanghai Nine Eagles Electronic Technology Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Nine Eagles Electronic Technology Co., Ltd filed Critical Shanghai Nine Eagles Electronic Technology Co., Ltd
Priority to EP08757540A priority Critical patent/EP2210653B1/en
Priority to AT08757540T priority patent/ATE553826T1/de
Priority to DE212008000074U priority patent/DE212008000074U1/de
Priority to ES08757540T priority patent/ES2382760T3/es
Priority to JP2010533414A priority patent/JP2011502869A/ja
Publication of WO2009062407A1 publication Critical patent/WO2009062407A1/zh
Priority to US12/732,004 priority patent/US8177600B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H27/00Toy aircraft; Other flying toys
    • A63H27/12Helicopters ; Flying tops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/37Rotors having articulated joints
    • B64C27/41Rotors having articulated joints with flapping hinge or universal joint, common to the blades
    • B64C27/43Rotors having articulated joints with flapping hinge or universal joint, common to the blades see-saw type, i.e. two-bladed rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/58Transmitting means, e.g. interrelated with initiating means or means acting on blades
    • B64C27/59Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical
    • B64C27/625Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical including rotating masses or servo rotors

Definitions

  • the invention relates to a remote control single-rotor model helicopter. Background technique
  • the remote single-rotor model helicopter is basically technically identical to the real helicopter, but the structure is significantly different.
  • the control methods of the helicopter are Bell mode, Sheila mode and Bell-Sheila hybrid mode.
  • the Bell method is mostly used in real helicopters. Its typical feature is the direct control of the blade angle of the rotor. There is no stable wing, the front edge of the rotor has a counterweight, and more modern helicopters have no counterweight, but the rotor can As a swinging motion, when the helicopter encounters unstable airflow disturbance during travel, the changed aerodynamic load will not be transmitted to the fuselage, and the helicopter's bumps are small.
  • the characteristics of the Bell-type helicopter are that the motion control is relatively straightforward, and the small motion is more sensitive but cannot be used for large-motion flight. Therefore, this method cannot meet the specific requirements for the performance of the common stunt model helicopter: the technical requirements of high sensitivity, high difficulty of operation and large rudder manipulation.
  • the Sheila-controlled R/C helicopter features a pair of balanced wings (also known as Sheila winglets).
  • the balance wing is mainly used as an intermediary between the servo and the main rotor. When operating, the balance wing is first pulled by the servo, and then the main rotor is pulled by the aerodynamic force of the balance wing.
  • the Sheila-style helicopter is suitable for large-motion flights and is mostly used in R/C helicopters, but the simple Sheila method is difficult to obtain sufficient stability.
  • the Bell-Hira hybrid mode is commonly used in model helicopters.
  • the operation process of the "Bell-Hila" mode control system is: according to the instruction of the electronic receiver in the radio remote control device, the servo machine operates the non-rotating swash plate through the connecting rod. Tilting in a specified direction; and the rotating swash plate is rotated synchronously with the main shaft on the inclined surface of the non-rotating swash plate, and the driving torque of the servo is converted into a periodic torque;
  • the pitch rocker arm of the Sheila winglet is pulled through the connecting rod to periodically control the angle of attack or increase or decrease of the "Hila" winglet, so that the rotating Sheila winglet periodically rises or falls.
  • the pitch rocker arm of the synchronously rotating rotor is pulled by the connecting rod to change the angle of attack, and the lift of the rotating rotor is periodically increased or decreased, so that the paddle of the rotor is tilted in the direction required by the command.
  • the longitudinal and lateral moments from the rotor paddle tilt cause the maneuvered model helicopter to move in the pointing direction.
  • the characteristics of the operating system in the "Bell-Hila" mode are: The steering torque of the servo is transmitted to the rotor through the intermediary of "Hira" winglet aerodynamics, rather than a complete mechanical transmission process. This mode is suitable for large rudders. Maneuvering single-rotor model helicopters require high-performance stunt movements.
  • the "Bell-Hila" mode balance hammer and the Sheila winglet are a one-piece assembly, and the axis of the balance hammer-Hila winglet of most model helicopters is perpendicular to the rotor axis.
  • the gyro effect generated when the counterweight rotates overcomes the external disturbance encountered in the flight of the model helicopter, and plays a balancing role, so that the model automatically overcomes the external interference.
  • the balance hammer-Hila winglet is a whole, the winglet rotating at a certain speed plays a certain damping effect on the balance balance of the counterweight, and due to the limitations of this structure, the balance of the counterweight is weakened. efficacy.
  • An embodiment of the present invention provides a single-rotor model helicopter including a main shaft, a rotor clip disposed on the main shaft, a pair of rotors disposed on the rotor clip, and a pair of mixing rocker arms, the helicopter further including manipulation a system and a balancing system, the operating system comprising a servo for outputting a lateral operating torque and a longitudinal operating torque, and a swashplate combination for converting the lateral operating torque and the longitudinal operating torque into a periodic torque, the servo, the swashplate combination and the mixing
  • the arms of the rocker arm are connected by a connecting rod and transmit torque.
  • the balance system includes a balance bar connected to the main shaft and a pair of counterweights disposed at opposite ends of the balance bar.
  • the balance bar and the mixing rocker arm are connected by a connecting rod and transmit torque.
  • the pair of mixing rocker arms are respectively disposed on two sides of the rotor clip, and are rotatably connected to the pitch rocker arms on both sides of the rotor clip through the shaft holes thereof.
  • each mixed control rocker arm has two control points, wherein a first control point of a pair of mixed control rocker arms is opposite to a periodic torque transmitted by the inclined disk combination, and a diagonally opposite second control The point is controlled by the balancing system, and the second control point pair controlled by the balancing system is fulcrum motion with the first control point pair controlled by the swashplate combination.
  • the mechanical longitudinal axis of the model helicopter is in the range of 70 ° ⁇ 20 ° in the direction of the reverse rotor rotation of the longitudinal axis of the model helicopter; while the mechanical transverse axis of the helicopter is in the range of 70 ° ⁇ 20 ° in the direction of the inverse rotor rotation of the transverse axis of the model helicopter Inside.
  • the axis of the balance bar is forward of the leading edge of the rotor and is at an angle of between 25 ° and 65 ° to the axis of the rotor.
  • connection points of the connection point pair of the mixing rocker arm and the pitch rocker arm, the first control point pair, and the second control point pair are three pairs of connection points. It is a universal hinge point pair.
  • the machine longitudinal axis is at right angles to the machine transverse axis.
  • the counterweight is in front of the leading edge of the rotor, and the angle between the counterweight axis and the reference axis of the rotor axis is 45 ° as the reference angle, which is adjusted in both positive and negative directions, and finally the balance performance is obtained through experiments. And the angle between the balance performance and the handling performance is better combined.
  • the reference mechanical longitudinal axis of the helicopter is adjusted in the positive and negative directions at a position of 45 ° in the direction of the reverse rotor rotation of the longitudinal axis of the helicopter, and finally an accurate mechanical longitudinal axis angle is obtained through experiments.
  • the angle of the exact mechanical transverse axis of the helicopter is determined accordingly.
  • the invention applies a control system for manipulating the blade angle by mechanically mixing the rocker arm, and the existing "be Compared with the remote-controlled model helicopter of the "Hill-Hila" mode, the present invention is characterized in that: the control system and the balance system jointly control the periodic control of the rotor pitch by mixing the rocker arms, and the two systems are relatively independent systems.
  • the steering sensitivity and dynamic stability are adjusted separately, so a better combination of dynamic stability and maneuverability of the model helicopter can be found to meet the needs of different groups of people, especially for single-rotor model helicopter beginners. , Operate the model with the right sensitivity.
  • Figure 1 is a schematic diagram of the xyz axis of a single-rotor model helicopter (Chinese coordinate system, the same below).
  • Figure 2 is a schematic view of the single-rotor model helicopter rotor and swashplate in the X-Y plane position.
  • Figure 3 is a mechanical longitudinal axis range of a clockwise rotating rotor.
  • Figure 4 is a mechanical transverse axis range of a clockwise rotating rotor.
  • Figure 5 is a range of longitudinal axis of the rotor that rotates counterclockwise.
  • Figure 6 is a counter-clockwise rotation of the rotor mechanical transverse axis range.
  • FIG. 7 is a partial structural schematic view of a single-rotor model helicopter according to an embodiment of the present invention.
  • Figure 8 is a top plan view of the model helicopter shown in Figure 7.
  • Figure 9 is a schematic diagram showing the disturbance force caused by the rotor of the model helicopter during one revolution and the change in the angle of attack of the rotor.
  • Fig. 10 is a schematic view showing the disturbance force shown in Fig. 9 after being attenuated by one cycle.
  • FIG 11 is a schematic diagram of the disturbance force attenuation process shown in Figure 9.
  • Figure 12 is a partial structural schematic view of a single-rotor model helicopter according to another embodiment of the present invention. Part number in the drawing:
  • Universal articulation universal joint between the first servo rocker arm and the first lower link
  • Universal articulation universal hinged universal joint between the second servo rocker arm and the second lower link: universal joint articulation between the first lower link and the first rocker arm of the non-rotating swash plate: Universal joint between the two lower connecting rods and the second rocker arm of the non-rotating swash plate: the rotating swash plate rocker arm - the universal joint between the third rocker arm and the middle link
  • the universal joint the mixing rocker First universal joint with the middle link
  • FIG. 7 there is shown a partial schematic view of a single-rotor model helicopter of the present invention.
  • the helicopter according to the present invention includes a mechanical operating system, a mechanical balancing system, a main shaft 8 and a rotor clamp 23 and a rotor 24, a pair of rotors 24 rotating about the main shaft 8, and the rotor 24 and the rotor clamp 23 being axially oriented with the rotor axis 25
  • the range is rotatable, and the angle of attack of the rotor 24 relative to the airflow can be increased or decreased, whereby the angle of attack of the rotor can be periodically varied.
  • the structure of these parts will be specifically described.
  • the main components of the mechanical control system include the base 1, the first servo 2, the second servo 3, the servo rocker 4, the first lower link 6, the second lower link 7, the non-rotating swash plate 9 and the rotation A swash plate combination composed of the swash plate 15 and a pair of intermediate links 17 are provided.
  • the base 1 is combined with a helicopter body (not shown) and is used to carry the first servo 2 and the second servo 3.
  • the spindle 8 also extends vertically upward from the base 1.
  • the non-rotating swash plate 9 and the rotary swash plate 15 are rotatably connected by bearings to form a swash plate combination which is sleeved on the main shaft 8 of the helicopter.
  • the rotary swash plate 15 is tilted with the operation tilt of the swash plate 9 without rotating, and the fork 14 drives the middle link 17 and drives the rotary swash plate 15 to rotate in synchronization with the spindle 8.
  • the swashplate combination converts the reciprocating torque transmitted by the first servo 2 and the second servo 3 through the lower links 6, 7 into a periodic moment, and manipulates the rotor blade angle according to the command during each rotation cycle of the rotor 24.
  • the mechanical structure of the operating system is as follows: Two servos 2, 3, respectively receive commands and perform longitudinal and lateral torque manipulation.
  • the rocker arm end on the steering torque output shaft of the first servo machine 2 is hingedly connected to the lower end of the first lower link 6, and the upper end thereof is hinged to the first rocker arm 10 of the non-rotating swash plate 9.
  • Connection 52 The rocker arm end of the steering torque output shaft of the second servo machine 3 is integrally connected with the lower end of the second lower link 7 by a gimbal connection 51, and the upper end thereof is hingedly connected with the second rocker arm 11 of the non-rotating swash plate 9. .
  • the angle between the first rocker arm 10 and the second rocker arm 11 on the non-rotating swash plate is 90°.
  • no The swash plate 9 has an orienting arm 12 which is movable up and down in a chute 13.
  • the directional arm 12 is only allowed to rotate without rotating the swash plate 9 to allow it to tilt in any direction.
  • a pair of third rocker arms 16 (see Fig. 2, Fig. 7, Fig. 8) on the swash plate 15 are arranged symmetrically about the main axis, and the two rocker arms are hingedly connected 54 to the lower end of the middle link 17.
  • the two middle links 17 are rotated by the dial of the shifting fork 14 synchronized with the main shaft and drive the rotating swash plate 15, and the steering torque transmitted from the first and second rocker arms 10, 11 of the non-rotating swash plate is converted into a cycle.
  • the torque is transmitted to the mixing rocker arm 18 through the intermediate link 17.
  • the upper ends of the two middle links 17 are connected to the first universal joint 55 (Fig. 8) of the two mixed control rockers 18 which are diagonally distributed.
  • the control torque of the operating system is thereby transmitted to a pair of mixing rocker arms 18.
  • the pair of mixing rocker arms 18 are respectively disposed on both sides of the rotor clip 23 of the helicopter, and are rotatably connected with the pitch rocker arm 20 on both sides of the rotor clip through the shaft hole of the middle portion, and the rotor clip 23 and the rotor 24 is connected and the rotor angle of attack is periodically manipulated with the rotor axis 25 as the axis of rotation (Fig. 8).
  • the second universal joint point 56 (FIG. 7) of the two mixing rocker arms 18 is connected by a pair of upper links 26 to two universal joint points 57 disposed adjacent to the spindle position of the balance bar 27, such that
  • the second universal joint 56 of the mixing rocker is controlled by a balancing system consisting of a balance bar 27 and a counterweight 28.
  • a pair of balance hammers 28 are provided at both ends of the balance bar 27, and the balance bar 27 is formed integrally with the counterweight 28.
  • the balance bar 27 is centrally connected to the top end of the main shaft 8, that is, above the rotor 24 (Fig. 7); the balance bar is centered on the counterweight swing axis 21, and the counterweight 28 is oriented as indicated by the arrow in Fig. 7. Swing vertically.
  • the key design of the present invention is that the first universal joint 55 and the second universal joint 56 of the mixing rocker 18 are respectively controlled by the operating system and the balance system; the first universal joint of the mixing rocker The point 55 and the second universal joint point 56 are pivotal to each other.
  • the operating system acts on the torque of the first universal joint 55 of the mixing rocker 18 to be controlled by the balance system.
  • the second universal joint point 56 acts as a fulcrum; and the balancing system acts on the moment of the second universal joint point 56 of the mixing rocker arm 18, with the first universal joint 55 controlled by the steering system as a fulcrum.
  • the mixing rocker 18 controlled by the periodic moment transmitted by the rotating swash plate rocker arm - the third rocker arm 16 to the middle link 17 sequentially passes through the pitch rocker arm 20 and the rotor blade 23, and finally realizes the rotor 24 Periodic control of the angle of attack with the rotor axis 25 as the axis of rotation.
  • the balancing balance lever 27-balance hammer 28 drives the second universal joint point 56 of the mixing rocker arm 18, and drives the rotor clip 23 by the shaft hole connection relationship of the mixing rocker arm 18 and the rotor clip 23.
  • the rotor 24 rotates with the rotor axis 25 as the axis of rotation.
  • the balance bar 27 and the horizontal angle of the axis 29 of the counterweight 28 and the axis 25 of the rotor 24 is less than 90°.
  • the angle is in the range of 25 ° to 65 °, and the reference angle is 45 °, and The counterweight is in front of the rotor leading edge 30.
  • the position of the shaft hole and the position of the two pairs of control points are interchangeable, and are not limited to the above.
  • two pairs of steering torque control points are in the middle, the other pair is at the end of the mixing rocker arm, and the connection point with the pitching rocker arm 20 of the rotor is at the other end of the mixing rocker arm.
  • the control of the mixing rocker 18 can be satisfied.
  • the control system of the remote control model helicopter of the above embodiment is placed in the reference plane of the X, Y (Chinese coordinate system) with the center of mass of the helicopter (on the spindle axis) as the origin.
  • the X axis is the vertical axis of the helicopter and the Y axis is the horizontal axis of the helicopter.
  • the rotor is in the range of 135 ° -180 ° -225 ° -270 ° to 315 ° for the half cycle of the blade angle gradually decreasing. Similarly, the rotor is at 315 ° -0 ° -45 ° -90 ° to 135 °
  • the range of the position is a half cycle in which the blade angle is gradually increased, and the blade angle change period of the rotary wing is reversed when the longitudinal joystick is operated.
  • the blade angle is the most at 315 ° when the vertical joystick is pushed.
  • the rotor At the hour point, the rotor is at the maximum point when the blade angle is at 135 °; when the longitudinal joystick is pulled, the rotor is at the minimum angle of the blade angle at 135 °, and the rotor angle is the maximum at 315 °. .
  • the 315 ° -135 ° line is defined as the mechanical longitudinal axis of the helicopter that rotates clockwise.
  • the 225 ° -45 ° line is defined as the mechanical transverse axis of the clockwise rotating single-rotor model helicopter.
  • the rotor rotates counterclockwise and the joystick manipulates the longitudinal travel of the model helicopter, when the rocker arm-third rocker arm 16 of the rotary swash plate is rotated to the same position of the first rocker arm 10 that does not rotate the steering longitudinal moment of the swash plate
  • the longitudinal joystick is pushed, the rotor is at 45 °, which is the minimum point of the blade angle, and the rotor is at 225 °, which is the maximum point of the blade angle; in this case
  • the blade angle is the minimum at 225 °, and the blade angle is the maximum at 45 °.
  • the 225 ° -45 ° line is defined as the mechanical longitudinal axis of the counter-clockwise single-rotor model helicopter.
  • the method for determining the position of the mechanical longitudinal axis of a single-rotor model helicopter in the X, Y coordinates is: Rotating the swashplate rocker arm - the third rocker arm 16 is rotated to the first rocker arm 10 without rotating the swash plate (Portrait The rotor axis when the rocker arm is operated at the same angle is the mechanical longitudinal axis; and when the rotary swash plate rocker arm - the third rocker arm 16 is rotated to the same angle as the second rocker arm 11 (laterally operated rocker arm) that does not rotate the swash plate
  • the rotor axis is the mechanical transverse axis.
  • the angle between the longitudinal axis of the machine and the X-axis is an important problem in the present invention.
  • the preferred design is: When maneuvering the model helicopter longitudinal push rod (push-down rudder), the traveling direction of the model helicopter and the X-axis of the helicopter The direction is consistent and accurate in the longitudinal direction, for example, there is such an experimental data (1): a four-channel single-rotor model helicopter mainly for indoor flight, the main data of the rotor: diameter 380mm, the main working segment rotor average chord 24. 8mm
  • the single-rotor rotor weighs 5-6 grams, the rotor speed is 1600-1800 rpm when the air is hovering or horizontally traveling, and the speed of the rotor tip is about 35 meters/second.
  • the model helicopter travels at less than 2 meters/second.
  • the rotor rotates clockwise.
  • the longitudinal axis of the machine is at an angle of 40° to the X axis, that is, the longitudinal axis of the machine is on the 320° to 140 ° line.
  • the experiment proves that the angle between the longitudinal axis of the machine and the X axis is greater than 40 ° , for example, when the angle is 45 ° or more, the thrust rudder maneuvering model helicopter will travel to the left front; on the contrary, when the angle between the longitudinal axis of the machine and the X axis is less than 35 °, the rudder is pushed down.
  • Another experimental data (2) a single rotor model helicopter rotor main data: rotor diameter 520mm, the main working segment rotor average chord 32mm, single rotor weight 12-13 grams, hovering rotor speed 1100 rev / min,
  • the rotor blade tip airspeed is 29 m / s
  • the travel speed is less than 2 m / s
  • the rotor is rotated clockwise, preferably the mechanical longitudinal axis and the X axis angle is 50 °, that is, the mechanical longitudinal axis is 310 ° 130° line.
  • the reason why there is the angle between the longitudinal axis of the machine and the X axis is that the servo machine receives the steering command from the servo machine and the rocker arm starts to move.
  • the paddle of the rotor is periodically operated.
  • the angle of the blade causes the rotor to produce a periodic lift difference, and then the blade is longitudinally inclined.
  • the longitudinal component of the blade lift causes the model helicopter to travel longitudinally. This whole process takes time, so the maneuvering model helicopter is used for longitudinal or lateral travel.
  • the transmission action must have an advance amount, which is reflected in the mechanical structure.
  • the mechanical longitudinal axis has an angle with the X axis of the model helicopter body axis, and the mechanical transverse axis and the Y axis also have an angle equal to the angle, the mechanical longitudinal axis.
  • the model helicopter's Y-axis has an angular position of less than 90° in the direction of the inverse rotor rotation.
  • the angle with the X-axis is different, for example: a model helicopter with a total weight of only 10 grams, the rotor diameter is 150-200mm, the main working segment rotor chord 18-20mm, and the single-piece rotor weighs about 1-2g.
  • the angle between the longitudinal axis of the machine and the X-axis is much less than 45 °, which is close to 20 °.
  • the single-rotor model helicopter with a weight of several kilograms and a rotor diameter of 2000 mm or more has a large angle between the longitudinal axis of the machine and the X-axis. At 45 °, it will increase to about 70°.
  • the angle between the longitudinal axis of the machine and the X-axis ranges from 70° to 20°.
  • the range of the longitudinal axis of the machine is: 290° - 110° as shown in Figure 3
  • the angle between the corresponding mechanical transverse axis and the Y-axis is also in the range of 70 ° to 20 °, for example in the range of 20 ° - 200 ° to 70 ° - 250 ° (shaded) in Figure 4.
  • the mechanical longitudinal axis range is: 70 ° - 250 ° line to 20 ° in Figure 5 - 200° line range (shaded); the corresponding mechanical transverse axis is in the range of 160° – 340° to 110 ° 290° in the shaded area (shaded).
  • the mechanical longitudinal axis of the single-rotor model helicopter is at an angle of less than 90° in the direction of the inverse rotor rotation of the X-axis of the model helicopter, and the angle between the longitudinal axis of the machine and the X-axis of the model helicopter is 70° to 20
  • the mechanical transverse axis is at an angular position of less than 90° in the direction of the inverse rotor of the Y-axis of the model helicopter, and the angle between the longitudinal axis of the machine and the X-axis of the model helicopter ranges from 70° to 20°.
  • the exact position of the machine longitudinal axis and the machine transverse axis can be determined experimentally by: mechanical longitudinal axis at a 45 ° angle (315 ° - 135 ° line, clockwise rotation of the rotor) as a reference to clockwise or inverse
  • the adjustment of the hour hand direction makes it possible to obtain a better mechanical longitudinal axis and a mechanical transverse axis position perpendicular thereto by a plurality of tests.
  • the maneuvering model helicopter travels in a straight line to the front of the model.
  • the position of the chute 13 must be changed so that the slanting disc orientation arm 12 is not rotated by a certain angle until the body X
  • the axis is in line with the heading, at which point the position of the mechanical longitudinal axis is accurate.
  • the above two sets of experimental data in the context of the present invention can be used as a reference for adjusting this angle. Since the mechanical longitudinal axis and the mechanical transverse axis always intersect at right angles, the actual angle between the longitudinal axis of the machine and the X-axis is determined, that is, the angle between the mechanical transverse axis and the Y-axis is determined; the mechanical longitudinal axis and the mechanical transverse axis are at right angles. The relationship is mechanically determined by the right angle relationship between the first rocker arm 10 and the second rocker arm 11 that do not rotate the swash plate.
  • the deviation may be small, such as ⁇ 10 ° ⁇ 20 ° deviation, although the model helicopter can be operated, but the model must be manipulated when flying in a straight line.
  • the X-axis of the helicopter is flying at an angle of ⁇ 10 ° ⁇ 20 ° with the course, the helicopter's waste resistance is increased, and the operator is in trouble.
  • the present invention also provides a method for determining the precise position thereof by experiment, which is easily found by those skilled in the art in accordance with the illustrated techniques and methods of the present invention.
  • the directional arm 12, the chute 13, the first rocker arm 10 that does not rotate the swash plate, and the first servo machine 2 are not rotated.
  • the position of the second servo machine 3 in the space of the model helicopter can also be easily determined.
  • the middle link 17 has an inclined angle to satisfy the position of the spatial position of each component; The angle of the position in the plane coordinates is determined by the middle link 17.
  • a person skilled in the art can also convert the middle link 17, the first lower link 6, and the second lower link 7 by a suitable angle to adjust the first rocker arm 10 of the non-rotating swash plate,
  • the position of the first servo machine 2 and the second servo machine 3 in the space of the model helicopter, of course, the intermediate link 17, the first lower link 6, and the second lower link 7 are excessively tilted, which causes a decrease in servo transmission efficiency.
  • the middle link 17, the first lower link 6, and the second lower link 7 are adjusted to be parallel or nearly parallel with the Z axis, and the first rocker arm 10 of the swash plate will not be rotated.
  • the second rocker arm 11, the first servo machine 2, and the second servo machine 3 are adjusted to a proper position. It is also possible to change the middle link 17 of the operating system shown in Figure 7 (clockwise rotating rotor) to be parallel (upright) or nearly erect with the Z axis, but the following components must be rotated clockwise by an angle, such as 30° to 40°, these components are: directional arm 12 that does not rotate the swash plate, chute 13, first lower link 6, second lower link 7, first rocker arm 10, first servo machine 2, Two servos 3. In actual implementation, due to the limitation of the spatial position, it is difficult for the middle link and the lower link to be completely parallel to the Z axis, and it is often only possible to avoid excessive tilting.
  • the main shaft 8 of the model helicopter will rotate the rotor clip 23-rotor 24 and the counterweight 28 in a clockwise (or counterclockwise) direction.
  • the rotating counterweight 28 is like a rotating gyro. The gyro effect of the counterweight makes the balance bar-balance hammer always Maintain an axially stable rotation.
  • the model helicopter in flight is disturbed by the outside world, for example, the right rotor is lifted by external disturbances, and the left rotor is sunk (according to the reader's perspective in Figure 7), causing the main shaft 8 of the model helicopter to tilt around the center of mass of the helicopter; Due to the gyro effect, the rotational axis of the counterweight 28 in the rotating state is still in the original direction, that is, the balance bar-balance hammer is still rotating on the original plane of rotation, so that the model helicopter main shaft 8 and the balance bar-balance hammer are mutually Vertically and not perpendicularly, the angle between the two changes from 90° to less than 90°.
  • the upper end of the upper link 26 is pushed by the balance bar 27-balance hammer 28 at the hinge point 57 to push the hinge point 56 of the mixing rocker arm 18 downward, so that the mixing rocker arm 18 is pivoted with the hinge point 55 (
  • the center of the wheel is deflected downward by a certain angle, and the rotation of the wing armet 23 and the rotor 24 is rotated by the rotor axis 25 by the mixing shaft of the mixing arm 18 and the shaft pin 23, so that the right angle of the right rotor is reduced and the lift is reduced.
  • Small increase the angle of attack of the left rotor and increase the lift.
  • the counterweight 28 and the balance bar 27 control the up-and-down rotation of the universal hinge point 56 on the end of the mixing rocker 18 through the upper link 26, and the pivot point of the rotation is connected with the upper link 26.
  • the universal hinge point 55 on the other end of the mixing rocker arm.
  • the balance system and the control system are With the gimbal hinge points 55, 56 on both ends of the mixing rocker arm 18 as fulcrums, the control torques from the balance system and the steering system are respectively transmitted to the rotor 24 through the rotor clip 23, with the rotor axis 25 as the rotation axis. Turn.
  • the external disturbance force is a periodic disturbance force for the rotor.
  • the front of the helicopter is pointed to zero degree.
  • the force f represents the disturbance force experienced by the rotor of the model helicopter during one revolution, and the variable of the lift caused by the change of the angle of attack controlled by the gyroscopic effect of the counterweight is denoted by Af.
  • the interference force f is opposite to the direction of the lift change Af, so the disturbance force f is attenuated to f' represented in Fig. 10 after the 360° period, and thereafter the cycles are repeated, and the interference f tends to zero, as shown in Fig. 11. Shown. Therefore, the gyroscopic effect of the counterweight causes the balance system to overcome external disturbances, and the model helicopter of the present invention has dynamic stability.
  • the basic parameters of the model helicopter are the same as the experimental (a) data described above: and the balance system main data: balance weight 28 weight (2g-6g) X 2, counterweight
  • the maximum rotation diameter is 190mm.
  • the counterweight axis 29 is located at an angle of 45 ° with the rotor axis 25 in front of the rotor leading edge 30 as a reference angle.
  • the test of this embodiment proves that the model helicopter is in the radio remote control operation, the counterweight axis 29 and the rotor axis 25
  • the preferred angle range is 45 ° ⁇ 35 °, and 40 ° can be selected as the design angle.
  • the single-rotor model helicopter with the same mode and different specifications and important parameters as the above embodiment may have different angles between the counterweight axis and the rotor axis.
  • the illustrated embodiment illustrates its possible range and the problem. The importance of it.
  • the horizontal angle between the balance bar and the axis of the rotor can be adjusted to 45° as the reference angle, and the balance performance and balance performance and handling performance are better.
  • the angle of the combination, the axis of the balance bar is in front of the leading edge of the rotor, and the horizontal angle with the axis of the rotor is between 25 ° and 65 °.
  • the invention can also adjust the balance performance by adjusting the length of the balance bar and the weight of the counterweight. Not only can different design parameters be selected for different technical requirements at the time of design, but also a heavier balance can be selected when the helicopter is first learned. Hammer, such as the model helicopter counterweight of the above embodiment, can be selected by beginners
  • the hybrid rocker arm 18 of the helicopter of the present invention is dually controlled by the operating system and the balancing system.
  • the mixing rocker arm 18 rotates about the axis of the mixing rocker arm 19 and rotates around the axis 25 of the rotor. The rotation about the axes 19, 25 occurs simultaneously.
  • the mixing rocker arm 18 and the rotor pitch rocker arm 20 of the structure shown in FIG. 7 are connected by a shaft hole, and one end of the mixing rocker arm is a universal joint 55 controlled by the middle link 17 of the operating system, and the other end is a balance system.
  • the universal joint 56 controlled by the upper link 26 obviously has at least two connections of the three joints as a universal joint to satisfy the basic condition of the movement of the mixing rocker 18.
  • the above two universal joints of the mixing rocker arm 18 act as a fulcrum movement of the control connection points: the control system control point of the mixing rocker arm is fulcrum movement with the hinge point controlled by the balance system; the hinge point controlled by the balance system controls the system The control point is a fulcrum motion; and the rotor pitch rocker arm 20 is operated to rotate the rotor about the rotor axis 25 to periodically manipulate and control the blade angle of the rotor 24.
  • FIG. 12 is a schematic structural view of a remote control model helicopter according to another embodiment, which is substantially similar to the helicopter structure shown in FIG. 1 except that the balance bar 27 is placed under the rotor 24.
  • the balance bar 27 is placed under the rotor 24.
  • the present invention applies a mechanical balance system and a mechanical control system for manipulating the blade angle by mechanically mixing the rocker arm, and the control system and balance of the present invention are compared with the existing "Bell-Syrah" mode remote control model helicopter.
  • the system jointly controls the periodic control of the rotor pitch through the mixing rocker.
  • the two systems are relatively independent systems, which can adjust the steering sensitivity and dynamic stability separately, so the dynamic stability of the model helicopter can be found.
  • the maneuverability is better combined to meet the needs of different groups of people, especially for single-rotor model helicopter beginners to provide a model with good stability, suitable handling sensitivity and less control technology.
  • the present invention provides an angle range of the mechanical longitudinal axis with respect to the X-axis and the mechanical transverse axis with respect to the Y-axis and an experimental method for determining the optimum angle, which provides a simple solution for the design of the mechanical control system.
  • the angle between the counterweight and the axis of the rotor of the present invention can be 45 when compared with the structure in which the balance hammer and the axis of the rotor are constantly perpendicular. ° The angle is adjusted to the reference angle, and the best angle is obtained through experiments. The dynamic stability of the model helicopter is significantly better than the "Bell-Hila" mode.
  • the present invention can more effectively change the helicopter by adjusting the weight of the counterweight (the weight of the counterweight or the radius of the counterweight). Balance performance to suit the needs of different groups of people.

Description

改善平衡性能的单旋翼模型直升机 技术领域
本发明涉及一种遥控单旋翼模型直升机。 背景技术
遥控单旋翼模型直升机与真实的直升机在基本技术上是一致的, 但是二者在 结构上又有明显的不同。 目前直升机的控制方式有贝尔方式, 希拉方式和贝尔-希 拉混合方式。
贝尔方式大多使用在真实的直升机, 其典型特征是旋翼的桨叶角的直接控制, 没有稳定翼片, 旋翼的前缘有配重, 更多的现代直升机连配重也没有, 而是旋翼能 作挥舞运动, 当直升机在行进中遇到不稳定气流干扰时,变化的气动载荷不会传导 到机身, 直升机的颠簸较小。 贝尔方式直升机的特性是动作控制较直接, 小动作较 灵敏但无法从事大动作飞行。因此这种方式无法实现常见的特技模型直升机中对操 纵性能特定要求: 卓越性高灵敏度、 动作难度高、 大舵量操纵的技术要求。
希拉方式和贝尔方式的特性相反, 希拉控制方式的 R/C直升机特点是有一对 平衡翼片(又称希拉小翼) 。 平衡翼主要是作为伺服机和主旋翼间的一个中介, 操 纵时先以伺服机拉动平衡翼, 再以平衡翼的空气动力拉动主旋翼。希拉方式的直升 机适合大动作飞行, 多应用在 R/C直升机,但是单纯的希拉方式难以获得足够的稳 定性。
目前在模型直升机中普遍使用的是贝尔-希拉混合方式, "贝尔-希拉"方式 的操纵系统的操纵过程是:根据无线电遥控设备中电子接收机的指令,伺服机通过 连杆操纵不旋转倾斜盘向指定方向倾斜; 而旋转倾斜盘在拨叉的带动下,在不旋转 倾斜盘的倾斜面上与主轴同步旋转, 在此过程中, 伺服机的传动力矩, 转换成周期 性力矩; 旋转倾斜盘在每一个旋转周期中, 通过连杆拉动希拉小翼的桨距摇臂, 周 期地控制 "希拉"小翼的迎角或增大或减小, 使旋转中的希拉小翼周期性地上或下 降,进而再通过连杆拉动同步旋转的旋翼的桨距摇臂改变迎角,也使旋转中的旋翼 的升力周期性地或增大或减小,使旋翼的桨盘向指令要求的方向倾斜,而旋翼桨盘 倾斜而来的纵向力矩和横向力矩, 使所操纵的模型直升机沿指向方向运动。 "贝尔-希拉"模式中操纵系统的特点是: 伺服机的操纵力矩是通过"希拉"小 翼空气动力这个中介传递到旋翼的,而不是完全的机械传动过程,这种模式适宜于 大舵量操纵的单旋翼模型直升机的高难度特技动作的要求。 "贝尔-希拉"模式的 平衡锤与希拉小翼为一整体的组合件, 且该模式多数模型直升机的平衡锤-希拉小 翼的轴线垂直于旋翼轴线。平衡锤旋转时产生的陀螺效应, 克服模型直升机的飞行 中遇到的外界干扰, 起到平衡作用, 使模型自动克服外界的干扰。 然而, 由于平衡 锤-希拉小翼为一个整体, 在一定速度下旋转的小翼对平衡锤的自动平衡作用起到 某种阻尼作用, 且由于这种结构的局限性, 弱化了平衡锤的平衡功效。上述这些特 点导致该模式的单旋翼模型直升机平衡性能较差, 并且操纵技术复杂,要全面掌握 这种操纵技术, 要有教练带教培训, 要进行长期大量的练习才能逐步掌握, 它的高 技术门槛, 造成这种模型有很大的局限性。
业者希望可以对 "贝尔-希拉"方式的直升机进行某些改良, 以提高其平衡性 能, 并降低操纵技术复杂性和难度。然而由于平衡锤的自动平衡功能和希拉小翼的 辅助操纵功能是两个不同的技术问题, 在贝尔-希拉方式中二者却被合成为整体, 根据这种方式设计出来的结构并无法在操纵性能与平衡性能之间有充裕的设计自 由度。
虽然存在上述的局限, 但是在模型直升机领域, "贝尔一希拉 "模式在四通 道及四通道以上级别的无线电遥控直升机上的应用, 已经是一种惯用的模式。而业 界公知的另一类比较容易掌握的共轴双旋翼模型直升机,由于上下旋翼的旋转方向 相反,在操纵这种模型直升机行进时,旋翼的空气动力性能与单旋翼模型直升机有 很大的不同,相应的操纵系统和平衡系统也有显著的特征:平衡锤控制上旋翼解决 直升机的稳定性能、 操纵系统控制下旋翼实现直升机的纵向和横向力矩的操纵。
因此, 航空模型爱好者在学习单旋翼模型直升机时, 以往, 只能选择学习难 以掌握的 "贝尔一希拉"模式单旋翼模型直升机。 事实上, "贝尔一希拉 "模式单旋 翼模型直升机的适宜大舵量、操纵灵敏的特点反而成为一个障碍, 该模式的操纵技 术复杂, 模型直升机自身平衡性能又差, 大多数人连 "贝尔一希拉"模式直升机的 基本飞行操纵一悬停都难以掌握,也就更不谈不上做大舵量的高难度特技动作。在 此背景下, 有必要摆脱这种习惯性模式, 去研制更好飞、更容易操纵的单旋翼模型 直升机。 发明内容
本发明所要解决的技术问题是提供一种改善平衡性能的单旋翼模型直升机。 本发明的一实施例提供一种单旋翼模型直升机, 包括一主轴、 一设于主轴 上的旋翼夹、 设于旋翼夹上的一对旋翼以及一对混控摇臂, 所述直升机还包括 操纵系统和平衡系统, 所述操纵系统包括输出横向操作力矩和纵向操作力矩的 伺服机, 以及一将横向操作力矩和纵向操作力矩转换为周期性力矩的倾斜盘组 合, 伺服机、 倾斜盘组合与混控摇臂的各力臂通过连杆连接并传递力矩。 平衡 系统包括连接于主轴上的平衡杆以及一对设于平衡杆两端的平衡锤, 平衡杆与混 控摇臂之间通过连杆连接并传递力矩。 上述的一对混控摇臂分别设于旋翼夹两 侧, 且通过其轴孔与旋翼夹两侧的桨距摇臂可转动连接。 其中, 每一混控摇臂 具有两个控制点, 其中一对混控摇臂中对角相对的第一控制点对受倾斜盘组合 所传递的周期性力矩控制, 对角相对的第二控制点对受平衡系统所控制, 且由 平衡系统控制的第二控制点对与由倾斜盘组合控制的第一控制点对互为支点 运动。
模型直升机的机械纵轴线在模型直升机的纵轴的逆旋翼 旋 转 方 向 的 70 ° 〜20 ° 范围内; 而直升机的机械横轴线在模型直升机的横轴的逆旋翼旋转 方向的 70 ° 〜20 ° 范围内。 平衡杆的轴线在旋翼前缘前方, 且与旋翼的轴线的水 平夹角介于 25 ° 至 65 ° 之间。
在上述的单旋翼模型直升机中, 混控摇臂的轴孔与桨距摇臂的连接点对、 第 一控制点对、 第二控制点对共三对连接点中, 至少有两对连接点是万向铰接点 对。
在上述的单旋翼模型直升机中, 机械纵轴线与机械横轴线成直角。
在上述的单旋翼模型直升机中, 平衡锤在旋翼前缘前方, 平衡锤轴线与旋 翼轴线的基准水平夹角为 45 ° 作为基准角度, 向正负两个方向调整, 最终通过 实验求得平衡性能及平衡性能与操纵性能较佳组合时的夹角。
在上述的单旋翼模型直升机中, 直升机的基准机械纵轴线在直升机的纵轴 的逆旋翼旋转方向 45 ° 的位置,向正负两个方向调整, 最终通过实验求得准确 的机械纵轴线角度, 并相应决定直升机的准确的机械横轴线的角度。
本发明应用了通过机械混控摇臂来操纵桨叶角的操纵系统, 与现有的"贝 尔-希拉"模式的遥控模型直升机相比较, 本发明的特点是: 操纵系统与平衡系 统共同通过混控摇臂实现对旋翼桨距的周期性操纵控制, 两系统又是相对独立 的系统, 可对操纵灵敏度及动稳定性进行单独的调整, 因此可找到模型直升机 的动稳定性和操纵性较佳组合, 以适应不同人群的需要, 特别是为单旋翼模型 直升机初学者提供一种稳定性好、 操纵灵敏度合适的机型。
附图概述
本发明的特征、 性能由以下的实施例及其附图进一步描述。
图 1是单旋翼模型直升机 xyz坐标轴示意图 (中国坐标系, 以下相同) 。 图 2是单旋翼模型直升机旋翼与倾斜盘在 X-Y平面位置的示意图。
图 3是顺时针旋转旋翼的机械纵轴线范围。
图 4是顺时针旋转旋翼的机械横轴线范围。
图 5是逆时针旋转旋翼机械纵轴线范围。
图 6是逆时针旋转旋翼机械横轴线范围。
图 7是本发明一实施例的单旋翼模型直升机局部结构示意图。
图 8是图 7所示模型直升机的俯视图。
图 9是模型直升机的旋翼在旋转一周期间所受到的干扰力以及旋翼迎角变化 造成升力变化示意图。
图 10是图 9所示干扰力经一个周期衰减后的示意图。
图 11是图 9所示干扰力衰减过程示意图。
图 12是本发明另一实施例的单旋翼模型直升机局部结构示意图。 附图中零件标号:
机座
第一伺服机
第二伺服机
伺服机摇臂
万向铰接: 第一伺服机摇臂与第一下连杆间的万向铰接 万向铰接: 第二伺服机摇臂与第二下连杆间的万向铰接 万向铰接: 第一下连杆与不旋转倾斜盘的第一摇臂间的万向铰接 万向铰接: 第二下连杆与不旋转倾斜盘的第二摇臂间的万向铰接 万向铰接: 旋转倾斜盘摇臂 -第三摇臂与中连杆间的万向铰接 万向铰接: 混控摇臂与中连杆的第一万向铰接
万向铰接: 混控摇臂与上连杆的第二万向铰接
万向铰接: 上连杆与平衡杆间的万向铰接
第一下连杆
第二下连杆
主轴
不旋转倾斜盘
不旋转倾斜盘第一摇臂
不旋转倾斜盘第二摇臂
不旋转倾斜盘定向臂
滑糟
拨叉
旋转倾斜盘
旋转倾斜盘摇臂-第三摇臂
中连杆
混控摇臂
混控摇臂轴线
桨距摇臂
平衡锤摆动轴线
旋翼头
旋翼夹
旋翼
旋翼轴线
上连杆
平衡杆 29 平衡锤轴线
30 旋翼前缘 本发明的最佳实施方式
下面结合附图来说明本发明的单旋翼模型直升机的实施例。
参照图 7所示, 其示出了本发明的单旋翼模型直升机的局部示意图。 根据本 发明的直升机包括机械操纵系统、机械平衡系统、主轴 8以及旋翼夹 23和旋翼 24, 一对旋翼 24以主轴 8为中心旋转,并且旋翼 24及旋翼夹 23以旋翼轴线 25为轴在 一定范围内可转动, 旋翼 24的相对于气流的迎角可增加或减小, 由此旋翼迎角可 周期性变化。 接下来具体描述这些部分的结构。
机械操纵系统主要部件包括机座 1、 第一伺服机 2、 第二伺服机 3、 伺服机摇 臂 4、 第一下连杆 6、 第二下连杆 7、 由不旋转倾斜盘 9和旋转倾斜盘 15组成的倾 斜盘组合、 以及一对中连杆 17。 其中机座 1与直升机的机体 (图未示) 结合并用 以承载第一伺服机 2和第二伺服机 3。 另外, 主轴 8也从机座 1垂直向上延伸。
不旋转倾斜盘 9和旋转倾斜盘 15由轴承联成可转动连接而组成倾斜盘组合, 此倾斜盘组合套接在直升机的主轴 8上。 旋转倾斜盘 15随不旋转倾斜盘 9的被操 纵倾斜而倾斜, 同时拨叉 14驱动中连杆 17并带动旋转倾斜盘 15与主轴 8同步旋 转。 倾斜盘组合将第一伺服机 2和第二伺服机 3通过下连杆 6、 7传递过来的往复 力矩转换成周期性力矩, 并在旋翼 24的每个旋转周期, 根据指令操纵旋翼桨叶角 或减小或增大,使桨盘的某个角度的旋翼升力或减小或增大,桨盘发生倾斜并带动 模型直升机整体发生的倾斜, 实现模型直升机的纵向力矩和横向力矩的操纵,控制 模型直升机的行进方向。
操纵系统的机械结构如下: 两伺服机 2、 3, 分别接收指令并执行纵向力矩、 横向力矩的操纵。其中,第一伺服机 2的操纵力矩输出轴上的摇臂端与第一下连杆 6下端成万向铰接连接 50, 其上端与不旋转倾斜盘 9的第一摇臂 10成万向铰接连 接 52。 第二伺服机 3的操纵力矩输出轴上的摇臂端与第二下连杆 7下端成万向铰 接连接 51, 其上端与不旋转倾斜盘 9的第二摇臂 11成万向铰接连接 53。
不旋转倾斜盘上的第一摇臂 10和第二摇臂 11之间的夹角为 90° 。 另外, 不 旋转倾斜盘 9上有一定向臂 12, 定向臂 12在一滑槽 13内可上下移动, 定向臂 12 只限止不旋转倾斜盘 9转动而允许其向任意方向倾斜。
旋转倾斜盘 15上一对第三摇臂 16 (见图 2、 图 7、 图 8 ) 以主轴为中心对称 排列, 两摇臂与中连杆 17下端成万向铰接连接 54。 两中连杆 17受与主轴同步旋 转的拨叉 14的拨带并驱动旋转倾斜盘 15同步转动,将不旋转倾斜盘的第一、第二 摇臂 10、 11传来的操纵力矩转换成周期性力矩, 通过中连杆 17传到混控摇臂 18。 其中, 两中连杆 17上端与两混控摇臂 18的呈对角分布的第一万向铰接 55 (图 8 ) 连接。 由此将操纵系统的控制力矩传递给一对混控摇臂 18。
上述的一对混控摇臂 18是分别设于直升机的旋翼夹 23两侧, 且通过其中部 的轴孔与旋翼夹两侧的桨距摇臂 20成可转动连接, 而旋翼夹 23与旋翼 24连接并 以旋翼轴线 25为转动轴而周期性操纵旋翼迎角 (图 8 ) 。
另一方面, 两混控摇臂 18的第二万向铰接点 56 (图 7 ) 通过一对上连杆 26 与设于平衡杆 27邻近主轴位置的两个万向铰接点 57连接,使该对混控摇臂的第二 万向铰接点 56被由平衡杆 27和平衡锤 28组成的平衡系统所控制。 其中一对平衡 锤 28设于平衡杆 27的两端, 平衡杆 27与平衡锤 28形成一整体。 在本实施例中, 平衡杆 27中心连接于主轴 8的顶端, 即位于旋翼 24的上方 (图 7 ) ;平衡杆以平 衡锤摆动轴线 21为轴, 平衡锤 28如图 7箭头所示方向可垂直摆动。
由此, 本发明的关键设计在于使混控摇臂 18的第一万向铰接点 55与第二万 向铰接点 56分别受操纵系统、平衡系统控制; 混控摇臂的第一万向铰接点 55与第 二万向铰接点 56互为支点运动, 具体地说, 对于操纵系统来说, 操纵系统作用在 混控摇臂 18 的第一万向铰接点 55 的力矩, 以平衡系统所控制的第二万向铰接点 56作为支点;而平衡系统作用在混控摇臂 18的第二万向铰接点 56的力矩,以操纵 系统所控制的第一万向铰接点 55作为支点。在操纵方面,受旋转倾斜盘摇臂 -第三 摇臂 16至中连杆 17传递过来的周期矩所控制的混控摇臂 18依次通过桨距摇臂 20、 旋翼夹 23, 最终实现旋翼 24以旋翼轴线 25为转动轴的迎角的周期性控制。 在平 衡方面,起平衡作用的平衡杆 27-平衡锤 28带动混控摇臂 18的第二万向铰接点 56, 并通过混控摇臂 18与旋翼夹 23的轴孔连接关系带动旋翼夹 23-旋翼 24以旋翼轴 线 25为转动轴转动。
另外值得一提的是, 如图 8所示, 与目前的贝尔-希拉方式不同的是, 平衡杆 27及平衡锤 28的轴线 29与旋翼 24的轴线 25的水平夹角小于 90° , 在本发明的 实施例中, 此夹角范围为 25 ° 至 65 ° , 其基准夹角为 45 ° , 且平衡锤在旋翼前缘 30前方。
在一对混控摇臂 18的三对连接点中,轴孔位置以及二对控制点位置是可换的, 并不限于上述的方式。例如: 两对操纵力矩控制点一对在中部、 另一对在混控摇臂 端部, 而与旋翼的桨距摇臂 20的连接点在混控摇臂的另一端部。 总之, 三对连接 点中, 只要至少有二对是万向铰接点即可满足对混控摇臂 18的控制。
接下来说明本发明的实施例的操纵系统的关键参数设计。
结合图 7参照图 1和图 2所示, 上述实施例的遥控模型直升机的操纵系统, 放在以直升机质心 (在主轴轴心上)作为原点的 X、 Y (中国坐标系)参照平面中, 其 中 X轴是直升机的纵轴, Y轴是直升机的横轴, 以下是几种可能出现的情形。
在旋翼为顺时针方向旋转、 操纵杆操纵模型直升机纵向行进的情形中, 当旋 转倾斜盘的摇臂-第三摇臂 16转至与不旋转倾斜盘的操纵纵向力矩的第一摇臂 10 同一方位 (两轴线重合, 见图 3)时, 此时推纵向操纵杆, 旋翼 24在 315 ° 位置, 为 桨叶角最小时点, 而旋翼 24 则在 135 ° 位置为旋翼桨叶角最大时 点。 旋翼在 135 ° -180° -225 ° -270° 到 315 ° 位置的范围内为桨叶角逐渐减小的半周期, 同 理, 旋翼在 315 ° -0° -45 ° -90° 到 135 ° 位置的范围内为桨叶角逐渐增大的半周 期,而作纵向操纵杆拉杆操纵时旋旋翼的桨叶角变化周期相反。在此例中旋翼的每 个旋转周期,当旋转倾斜盘摇臂 16旋转到与不旋转倾斜盘第一摇臂 10同一角度重 合时, 推纵向操纵杆时在 315 ° 处为桨叶角为最小时点, 旋翼在 135 ° 处为桨叶角 为最大时点; 拉纵向操纵杆时, 旋翼在 135 ° 处为桨叶角为最小时点, 旋 翼 在 315 ° 处为桨叶角为最大时点。 315 ° -135 ° 线定义为该顺时针旋转的单旋翼模型 直升机的机械纵轴线。
而在旋翼为顺时针方向旋转、 操纵模型直升机横向行进的情形中, 当旋转倾 斜盘摇臂-第三摇臂 16旋转到与不旋转倾斜盘第二摇臂 1 1同一角度重合时 (参见图 4),操纵横向操纵杆向左时旋翼在 225 ° 处为桨叶角为最小时点,旋翼在 45 ° 处为 桨叶角为最大时点; 而操纵横向操纵杆向右时旋翼在 45 ° 处为桨叶角为最小时点, 旋翼在 225 ° 处为桨叶角为最大时点。 225 ° -45 ° 线定义为该顺时针旋转单旋翼 模型直升机的机械横轴线。 在旋翼为逆时针方向旋转、 操纵杆操纵模型直升机纵向行进的情形下, 当旋 转倾斜盘的摇臂-第三摇臂 16旋转至不旋转倾斜盘的操纵纵向力矩的第一摇臂 10 同一方位两轴线重合时 (见图 5), 推纵向操纵杆, 旋翼在 45 ° 位置, 为桨叶角最小 时点, 而旋翼则在 225 ° 位置, 为桨叶角最大时点; 而在此例中旋翼的每个旋转周 期, 拉纵向操纵杆时, 桨叶在 225 ° 处为桨叶角为最小时点, 桨叶在 45 ° 处为桨叶 角为最大时点。 225 ° -45 ° 线定义为该逆时针旋转的单旋翼模型直升机的机械纵 轴线。
而在旋翼为逆时针方向旋转、 操纵模型直升机横向行进的情况中, 当旋转倾 斜盘摇臂-第三摇臂 16旋转到与不旋转倾斜盘第二摇臂 11 同一角度重合时 (见图 6), 操纵横向操纵杆向左时旋翼在 315 ° 处为桨叶角为最小时点, 旋翼在 135 ° 处 为桨叶角为最大时点; 而操纵横向操纵杆向右时旋翼在 135 ° 处为桨叶角为最小时 点, 旋翼在 315 ° 处为桨叶角为最大时点; 225 ° -45 ° 线定义为该逆时针旋转单 旋翼模型直升机的机械横轴线。
总而言之, 判定一单旋翼模型直升机的机械纵轴线在 X、 Y座标中的位置的方 法是: 旋转倾斜盘摇臂-第三摇臂 16旋转到与不旋转倾斜盘第一摇臂 10 (纵向操纵 摇臂)同一角度时的旋翼轴线就是机械纵轴线; 而当旋转倾斜盘摇臂-第三摇臂 16 旋转到与不旋转倾斜盘第二摇臂 11 (横向操纵摇臂)同一角度时的旋翼轴线就是机 械横轴线。
机械纵轴线与 X轴的夹角, 是本发明中很重要的问题, 较佳的设计是: 当操 纵模型直升机纵向推杆(推降舵)时, 模型直升机的行进方向与该直升机的 X轴指 向一致并准确在纵向行进, 例如有这样一个实验数据(一) : 一种主要面向室内飞 行的四通道单旋翼模型直升机, 旋翼的主要数据: 直径 380mm、 主要工作段旋翼平 均翼弦 24. 8mm、单片旋翼重 5-6克、空中悬停或水平行进时旋翼转速为 1600-1800 转 /分, 旋翼桨尖的速度在 35米 /秒左右, 通常模型直升机行进速度小于 2米 /秒, 旋翼为顺时针方向旋转, 较佳状况的机械纵轴线与 X轴的夹角为 40° , 即机械纵 轴线在 320° — 140 ° 线上; 实验证明当机械纵轴线与 X轴的夹角大于 40 ° , 例如 夹角达到 45 ° 甚至更大时, 推降舵操纵模型直升机会向左前方行进; 相反, 当机 械纵轴线与 X轴的夹角小于 35 ° 时, 推降舵操纵模型直升机会很明显地向右前方 行进; 在这种不利情况下, 要操纵模型直升机向前往指定方向行进, 则必须使模型 直升机 X轴与行进航线有一个角度,虽然通过操纵模型直升机仍然可以作向前沿指 定航线行进, 但这样, 会使模型直升机行进时废阻力聚增, 显然这样的设计是不合 理的。
另有一实验数据 (二), 一单旋翼模型直升机旋翼主要数据: 旋翼直径 520mm、 主要工作段旋翼平均翼弦 32mm、 单片旋翼重 12-13克、 悬停时旋翼转速为 1100转 /分, 旋翼桨尖空速为 29米 /秒, 行进速度小于 2米 /秒, 旋翼为顺时针方向旋转, 较佳状况的机械纵轴线与 X轴的夹角为 50° ,即机械纵轴线在 310° 130° 线上。
从空气动力学角度分析, 之所以存在机械纵轴线与 X轴的夹角, 其原因是从 伺服机接收到操纵指令伺服机摇臂开始动作,通过一系列机械传动过程到周期性操 纵旋翼的桨叶角, 使旋翼产生周期性升力差, 再使桨盘发生纵向倾斜, 桨叶升力的 纵向分力使模型直升机纵向行进,这整个过程是需要时间的,所以操纵模型直升机 纵向或横向行进时机械传动动作须有提前量, 反映在机械结构上其特征是:机械纵 轴线与模型直升机体轴的 X轴有一个夹角、机械横轴线与 Y轴同样有一个角度相等 的夹角,机械纵轴线与机械横轴线垂直; 而旋翼不论是顺时针方向旋转还是逆时针 方向旋转, 总是机械纵轴线在模型直升机的 X 轴的逆旋翼旋转方向的一个小于 90° 的角度的位置、机械横轴线在模型直升机的 Y轴的逆旋翼旋转方向的一个小于 90° 的角度位置。
然而不同的单旋翼模型直升机, 模型直升机大小差异、 旋翼翼型的空气动力 特性、 旋翼的翼载荷(g/单位面积) 、 旋翼转速、 模型直升机的设计行进速度等基 本参数的不同, 机械纵轴线与 X轴的夹角是不同的, 例如:一架全重仅十多克的模 型直升机, 旋翼直径 150- 200mm、 主要工作段旋翼翼弦 18- 20mm、 单片旋翼重 1-2 克左右, 其机械纵轴线与 X轴的夹角远小于 45 ° , 接近 20 ° ; 相反, 全机重达数 公斤、 旋翼直径达 2000mm以上的单旋翼模型直升机, 其机械纵轴线与 X轴的夹角 远大于 45 ° , 会增大到 70° 左右。
在本发明中, 机械纵轴线与 X轴的夹角范围在 70° — 20° , 在上面讨论的顺 时针旋转旋翼中, 机械纵轴线范围是: 如图 3中的 290° — 110° 线到
340° — 160° 线范围 (阴影部分) 。 相应的机械横轴线与 Y轴的夹角范围亦在 70 ° 一 20° , 例如在图 4中为 20° — 200° 线到 70° — 250° 线范围内 (阴影部分)。 而在逆时针旋转旋翼中,机械纵轴线范围是:如图 5中的 70° — 250° 线到 20° — 200° 线范围 (阴影部分) ; 相应的机械横轴线如图 6中的 160° — 340° 线到 110 ° 一 290° 线范围内 (阴影部分) 。
总之, 单旋翼模型直升机的机械纵轴线在模型直升机的 X轴的逆旋翼旋转方 向的一个小于 90° 的角度的位置, 且机械纵轴线与模型直升机的 X轴的夹角范围 在 70° 〜20° ; 而机械横轴线在模型直升机的 Y轴的逆旋翼旋转方向的一个小于 90° 的角度位置, 且机械纵轴线与模型直升机的 X轴的夹角范围在 70° 〜20° 。
在实际设计中可通过实验确定机械纵轴线和机械横轴线的精确位置, 方法是: 机械纵轴线以 45 ° 夹角(315 ° — 135 ° 线、 顺时针旋转旋翼)为基准向顺时针或逆 时针方向作调整,通过多次试验求得较佳的机械纵轴线及与其垂直的机械横轴线位 置。具体地说, 操纵模型直升机向模型前行进作直线飞行, 如果出现机体 X轴与航 向有夹角, 则须改变滑槽 13的位置, 使不旋转倾斜盘定向臂 12转一定角度, 直到 机体 X轴与航向一致,这时的机械纵轴线的位置是准确的。本发明内容中的上述两 组实验数据可作为调整这个夹角的参考。而由于机械纵轴线和机械横轴线总是直角 相交, 因此, 确定机械纵轴线与 X轴的实际夹角, 也即决定了机械横轴线与 Y轴的 夹角;机械纵轴线和机械横轴线直角关系,在机械结构上是由不旋转倾斜盘的第一 摇臂 10与第二摇臂 11之间的直角关系决定的。
操纵系统中的机械纵轴线和机械横轴线的位置如果设计不当, 在偏差不大, 如 ± 10° 〜20° 偏差时, 虽然能操纵模型直升机飞行, 但在作直线航线飞行时, 须 操纵模型直升机的 X轴指向与航线在 ± 10 ° 〜20° 夹角下飞行, 直升机废阻力增 力 Π, 并给操纵者带来麻烦。 因此, 本发明除了提供机械纵轴线和机械横轴线的位置 的范围外,还提供了通过实验求得其精确位置的方法,本领域技术人员根据本发明 的所阐述的技术和方法,很容易找到单旋翼模型直升机的准确的机械纵轴线和机械 横轴线的准确位置。
确定机械纵轴线与 X轴的实际夹角之后, 在操纵系统结构设计中, 不旋转倾 斜盘的定向臂 12、 滑槽 13、 不旋转倾斜盘的第一摇臂 10、 第一伺服机 2、 第二伺 服机 3在模型直升机的空间的位置也可容易地确定,如图 7所示的操纵系统, 中连 杆 17有一倾斜角度来满足各零部件的空间位置的定位; 而拨叉 14所在位置在 ΧΥ 平面坐标中的角度则由中连杆 17所决定。 本领域技术人员也可将中连杆 17、 第一 下连杆 6、 第二下连杆 7转换一个合适的角度来调整不旋转倾斜盘的第一摇臂 10、 第一伺服机 2、第二伺服机 3在模型直升机的空间的位置, 当然中连杆 17、第一下 连杆 6、 第二下连杆 7过度倾斜会带来伺服机传动效率的降低。 在模型直升机空间 允许的情况下, 将中连杆 17、第一下连杆 6、第二下连杆 7调整到与 Z轴平行或接 近于平行, 将不旋转倾斜盘的第一摇臂 10、 第二摇臂 11、 第一伺服机 2、 第二伺 服机 3调整到合适位置。也可将图 7 (顺时针方向旋转旋翼)所示的操纵系统的中连 杆 17改成与 Z轴平行 (直立)或接近直立状态, 但须将下列部件顺时针旋转一个角 度, 如转过 30° 〜40° , 这些部件是: 不旋转倾斜盘的定向臂 12、 滑槽 13、 第 一下连杆 6、 第二下连杆 7、 第一摇臂 10、 第一伺服机 2、 第二伺服机 3。 实际实 施中, 由于空间位置所限, 中连杆、 下连杆难以完全平行于 Z轴, 往往仅能避免过 分倾斜。
下面描述本发明的平衡系统的基本原理。
模型直升机的主轴 8将带动旋翼夹 23-旋翼 24和平衡锤 28向顺时针(或逆时 针)方向旋转, 旋转的平衡锤 28如旋转的陀螺, 平衡锤的陀螺效应使平衡杆 -平衡 锤始终保持在一个轴向稳定的旋转状态。
如果飞行中模型直升机受到外界干扰, 例如右边旋翼受外界干扰而抬升, 左 边旋翼下沉(以图 7中阅读者的视角为准) , 造成模型直升机的主轴 8以直升机质 心为中心发生倾斜; 而由于陀螺效应的作用, 旋转状态中的平衡锤 28的旋转轴指 向仍处于原方向, 也就是平衡杆 -平衡锤仍在原旋转平面上旋转, 因而模型直升机 主轴 8 与平衡杆-平衡锤由原来相互垂直转而不垂直, 两者的夹角由 90° 向小于 90° 变化。 此时, 上连杆 26上端在铰接点 57处受平衡杆 27-平衡锤 28的带动向 下推动混控摇臂 18的铰接点 56处, 致使混控摇臂 18以铰接点 55为支点(圆心) 向下偏转一定角度, 并通过混控摇臂 18与旋翼夹 23 的轴孔连接关系带动旋翼夹 23-旋翼 24以旋翼轴线 25为转动轴转动, 使右旋翼迎角减小,升力减小;使左旋翼 迎角增大, 升力增大。
在图 7中的主轴 8未被示出的另外一面那些对称的部件上也同时产生力矩大 小相等、 方向相反的力矩。
需要说明的是, 在上述过程中, 平衡锤 28、 平衡杆 27通过上连杆 26控制混 控摇臂 18—端上的万向铰接点 56上下转动, 转动的支点是与上连杆 26连接的混 控摇臂另一端上的万向铰接点 55。 而在整个运动过程中, 平衡系统和操纵系统是 以混控摇臂 18两端上的万向铰接点 55、 56互为支点,将分别来自于平衡系统和操 纵系统的控制力矩通过旋翼夹 23传递到旋翼 24, 以旋翼轴线 25为转动轴而转动。
可见, 由于平衡锤的作用, 促使右旋翼升力减小, 左旋翼升力增大, 结果促 使右旋翼下降, 左旋翼抬升, 正好克服外界对模型直升机的干扰, 使模型直升机恢 复到原来稳定的平衡状态。
由于模型直升机的旋翼是在高速旋转状态, 外界干扰力对于旋翼来说是一种 周期性的干扰力, 为说明方便, 设直升机的正前方指向为零度。 图 9中力 f表示模 型直升机的旋翼在旋转一周期间所受到的干扰力,而该旋翼受平衡锤的陀螺效应所 控制的迎角变化造成升力的变量以 Af 表示。 在图 9中, 干扰力 f 与升力变化 Af 的指向相反,所以干扰力 f经过这 360° 周期后衰减为图 10中所表示的 f ' ,此后 各周期周而复始, 干扰 f趋向零, 如图 11所示。 因此, 平衡锤的陀螺效应使平衡 系统克服外界干扰, 本发明的模型直升机具有动稳定性。
在本发明的有关平衡系统的一个较佳实施例中, 模型直升机的基本参数与前 述的实验 (一)数据相同: 而平衡系统主要数据: 平衡锤 28重量 (2g-6g ) X 2、 平 衡锤的最大旋转直径 190mm。试验以平衡锤轴线 29位于旋翼前缘 30前方与旋翼轴 线 25的夹角 45 ° 为基准夹角, 该实施例试验证明: 模型直升机在无线电遥控操纵 行进中, 平衡锤轴线 29 与旋翼轴线 25 的较佳夹角范围为 45 ° 〜35 ° , 可选择 40° 作为设计夹角。 然而在 45 ° 基准夹角 ± 20° 范围内均可飞行, 但当该夹角偏 离最佳角度后, 动平衡性能会逐渐变差。 该实验中 当平衡锤轴线与旋翼轴线夹角 从 25 ° 趋向 0° 调整, 对模型直升机做操纵动作时, 模型直升机出现摆动, 并且随 着平衡锤轴线与旋翼轴线夹角减小,其摆动幅度逐步加剧,模型直升机稳定性剧降。 而平衡锤轴线与旋翼轴线夹角从 65 ° 往 90 ° 变化时, 模型直升机的动稳定性也趋 于变差, 难以控制模型直升机正常飞行。
与上述实施例相同模式而规格及重要参数不同的单旋翼模型直升机, 其平衡 锤轴线与旋翼轴线最佳夹角是会有所不同的,所列举的实施例说明了其可能的范围 及该问题的重要性。在进行设计和验证实验时,平衡杆与所述旋翼轴线的水平夹角 可以将 45 ° 作为基准角度, 向正负两个方向调整, 最终通过实验求得平衡性能及 平衡性能与操纵性能较佳组合时的夹角, 所述平衡杆的轴线在所述旋翼前缘前方, 与所述旋翼的轴线的水平夹角介于 25 ° 至 65 ° 之间。 本发明还可以通过调整平衡杆的长度和平衡锤的的重量来调整平衡性能, 不 仅可以在设计时针对不同的技术要求选定不同的设计参数,而且可以在初学操纵直 升机时选择较重的平衡锤, 例如上述实施例的模型直升机平衡锤, 初学者可选择
5g— 6g, 随着操纵技术的进步, 再逐渐减轻平衡锤到 3g— 1. 5g。 实践证明其平衡 性能的调整效果远胜于"贝尔一希拉"模式。
综上所述, 本发明的直升机的混控摇臂 18受操纵系统及平衡系统双重控制, 混控摇臂 18以混控摇臂轴线 19为轴转动, 同时又绕旋翼轴线 25转动, 实际上绕 轴线 19、 25的转动是同时发生的。 图 7所示结构的混控摇臂 18与旋翼桨距摇臂 20为轴孔连接,混控摇臂一端为操纵系统的中连杆 17所控制的万向铰接 55, 另一 端为平衡系统的上连杆 26所控制的万向铰接 56, 显然这三个连接点至少有两个连 接为万向铰接方可满足混控摇臂 18运动的基本条件。混控摇臂 18的上述两个万向 铰接作为控制连接点互为支点运动:混控摇臂的操纵系统控制点以平衡系统控制的 铰接点为支点运动;平衡系统控制的铰接点以操纵系统控制点为支点运动; 并带动 旋翼桨距摇臂 20操纵旋翼绕旋翼轴线 25转动, 实现周期性地操纵和控制旋翼 24 的桨叶角。
图 12为另一个实施例的遥控模型直升机结构示意图, 其大致与图 Ί所示直升 机结构相似,差别仅在于将平衡杆 27置于旋翼 24下方,本实施例的详细结构参见 上述的描述, 在此不再展开。
综上所述, 本发明的上述实施例, 具有如下显著优点:
1.本发明应用了通过机械混控摇臂来操纵桨叶角的机械平衡系统和机械操纵 系统, 与现有的"贝尔-希拉"模式的遥控模型直升机相比较, 本发明的操纵系统与 平衡系统共同通过混控摇臂实现对旋翼桨距的周期性操纵控制,两系统又是相对独 立的系统,可对操纵灵敏度及动稳定性进行单独的调整, 因此可找到模型直升机的 动稳定性和操纵性较佳组合, 以适应不同人群的需要,特别是为单旋翼模型直升机 初学者提供一种稳定性好、 操纵灵敏度合适、 操纵技术难度较小的机型。
2.本发明提供了机械纵轴线相对于 X轴及机械横轴线相对于 Y轴的夹角范围 以及求得最佳夹角实验方法, 为机械操纵系统的设计提供了简捷的一种方案。
3、 与现有的"贝尔一希拉"模式的遥控模型直升机中, 平衡锤与旋翼的轴线恒 定为垂直的结构相比, 本发明的平衡锤与旋翼的轴线的夹角, 在设计时可以 45 ° 夹角为基准调整该夹角,通过实验求得最佳夹角,其模型直升机的动稳定性显著优 于" 贝尔一希拉"模式。
4、 与现有的" 贝尔一希拉"模式的遥控模型直升机相较, 本发明可以通过调 节平衡锤的陀螺效应的大小(调整平衡锤重量或平衡锤旋转半径), 更十分有效地 改变直升机的平衡性能, 以适应不同人群的需要。

Claims

权 利 要 求
1、 一种单旋翼模型直升机, 包括一主轴、 一设于主轴上的旋翼夹、 设于 旋翼夹上的一对旋翼以及一对混控摇臂, 所述直升机还包括操纵系统和平衡系 统, 其中:
所述操纵系统包括:
第一伺服机, 其具有一用以输出纵向操纵力矩的第一输出轴;
第二伺服机, 其具有一用以输出横向操纵力矩的第二输出轴;
一倾斜盘组合, 通过连杆连接第一伺服机、 第二伺服机, 以将所述纵向操 作力矩和横向操作力矩转换为周期性力矩;
所述平衡系统包括:
一连接于所述主轴上的平衡杆以及一对设于平衡杆两端的平衡锤; 所述的一对混控摇臂分别设于所述旋翼夹两侧, 且通过其轴孔与旋翼夹两 侧的桨距摇臂可转动连接;
其中, 每一所述混控摇臂具有两个控制点, 其中一对混控摇臂中对角相对 的第一控制点对受所述倾斜盘组合所传递的周期性力矩控制, 对角相对的第二 控制点对受所述平衡系统所控制, 且由所述平衡系统控制的第二控制点对与由 所述倾斜盘组合控制的该第一控制点对互为支点运动;
所述模型直升机的机械纵轴线在模型直升机的纵轴的逆旋翼旋转方向的 70 ° 〜20 ° 范围内; 而所述直升机的机械横轴线在模型直升机的横轴的逆旋翼 旋转方向的 70 ° 〜20 ° 范围内;
所述平衡杆的轴线在所述旋翼前缘前方, 与所述旋翼的轴线的水平夹角介于 25 ° 至 65 ° 之间。
2、 如权利要求 1所述的单旋翼模型直升机, 其特征在于, 所述混控摇臂 的所述轴孔与所述桨距摇臂的连接点对、 所述第一控制点对、 所述第二控制点 对共三对连接点中, 至少有两对连接点是万向铰接点对。
3、 如权利要求 1所述的单旋翼模型直升机, 其特征在于, 所述机械纵轴 线与所述机械横轴线成直角。
4、 如权利要求 1所述的单旋翼模型直升机, 其特征在于, 所述直升机的 基准机械纵轴线在直升机的纵轴的逆旋翼旋转方向 45 ° 的位置, 而直升机的基 准机械横轴线在直升机的横轴的逆旋翼旋转方向 45 ° 的位置。
5、 如权利要求 1所述的单旋翼模型直升机, 其特征在于, 所述倾斜盘组 合包括设于直升机主轴上的不旋转倾斜盘和旋转倾斜盘, 所述不旋转倾斜盘具 有第一摇臂和第二摇臂, 所述第一摇臂与所述第一输出轴通过一第一下连杆连 接以传递所述纵向操纵力矩; 所述第二摇臂与所述第二输出轴通过一第二下连 杆连接以传递所述横向操纵力矩; 所述旋转倾斜盘具有一对以所述主轴为中心 对称排列的第三摇臂, 所述两第三摇臂分别通过两中连杆与所述一对混控摇臂 的所述第一控制点对连接。
6、 如权利要求 5所述的单旋翼模型直升机, 其特征在于, 所述不旋转倾 斜盘还包括一定向臂, 所述定向臂被限制在一竖直的滑槽内上下移动。
7、 如权利要求 1所述的单旋翼模型直升机, 其特征在于, 所述平衡杆上 设有一对万向铰接点,其通过一对上连杆连接所述一对混控摇臂的所述第二对控 制点对。
8、 如权利要求 1所述的单旋翼模型直升机, 其特征在于, 所述平衡杆连接 于主轴的顶端, 且位于所述旋翼夹的上方。
9、 如权利要求 1所述的单旋翼模型直升机, 其特征在于, 所述平衡杆位于 所述旋翼夹的下方的主轴上。
10、 如权利要求 1所述的单旋翼模型直升机, 其特征在于, 所述平衡杆轴 线与所述旋翼的轴线的基准水平夹角为 45 ° 。
PCT/CN2008/071129 2007-11-16 2008-05-29 Modele reduit d'helicoptere a rotor unique presentant une stabilite amelioree WO2009062407A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP08757540A EP2210653B1 (en) 2007-11-16 2008-05-29 Single rotor model helicopter with improved stability behavior
AT08757540T ATE553826T1 (de) 2007-11-16 2008-05-29 Modellhubschrauber mit einem rotor und verbessertem stabilitätsverhalten
DE212008000074U DE212008000074U1 (de) 2007-11-16 2008-05-29 Einrotoriger Modellhubschrauber mit verbessertem Stabilitätsverhalten
ES08757540T ES2382760T3 (es) 2007-11-16 2008-05-29 Helicóptero de modelismo mono-rotor con comportamiento de estabilidad mejorado
JP2010533414A JP2011502869A (ja) 2007-11-16 2008-05-29 バランス特性を改良する単回転翼模型ヘリコプター
US12/732,004 US8177600B2 (en) 2007-11-16 2010-03-25 Single rotor model helicopter with improved stability behavior

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007101704882A CN101433766B (zh) 2007-11-16 2007-11-16 遥控模型直升机平衡系统
CN200710170488.2 2007-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/732,004 Continuation US8177600B2 (en) 2007-11-16 2010-03-25 Single rotor model helicopter with improved stability behavior

Publications (1)

Publication Number Publication Date
WO2009062407A1 true WO2009062407A1 (fr) 2009-05-22

Family

ID=40638332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071129 WO2009062407A1 (fr) 2007-11-16 2008-05-29 Modele reduit d'helicoptere a rotor unique presentant une stabilite amelioree

Country Status (8)

Country Link
US (1) US8177600B2 (zh)
EP (1) EP2210653B1 (zh)
JP (1) JP2011502869A (zh)
CN (1) CN101433766B (zh)
AT (1) ATE553826T1 (zh)
DE (1) DE212008000074U1 (zh)
ES (1) ES2382760T3 (zh)
WO (1) WO2009062407A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058447A3 (en) * 2009-11-12 2011-11-03 Prox Dynamics As Rotor assembly
US9199729B1 (en) 2014-05-08 2015-12-01 Hirobo Co., Ltd. Coaxial counter-rotating unmanned helicopter

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8589131B2 (en) * 2007-08-16 2013-11-19 Indra Sistemas, S.A. Real-time simulation procedure for a helicopter rotor
WO2011000146A1 (zh) * 2009-06-30 2011-01-06 Tian Yu 遥控模型直升机
CN101708369B (zh) * 2009-12-04 2012-06-20 许岳煌 飞行器玩具
US8460050B2 (en) * 2011-03-11 2013-06-11 Ta-Sen Tu Transmission mechanism for remote-controlled toy helicopter
CN202802769U (zh) * 2012-09-18 2013-03-20 深圳市沈氏彤创航天模型有限公司 遥控模型像真直升机的传动机构
CN102853027A (zh) * 2012-09-28 2013-01-02 苏州金科信汇光电科技有限公司 高速轴心装置
JP5319832B1 (ja) * 2012-10-08 2013-10-16 ヒロボー株式会社 遠隔操縦ヘリコプタのロータヘッド及び遠隔操縦ヘリコプタ
JP5260779B1 (ja) * 2012-10-08 2013-08-14 ヒロボー株式会社 同軸反転式無人ヘリコプタ
US20140315464A1 (en) * 2013-04-23 2014-10-23 Kevork G. Kouyoumjian Remotely Controlled, Impact-Resistant Model Helicopter
US20150321756A1 (en) * 2014-05-08 2015-11-12 Hirobo Co., Ltd. Rotor Head of Remote Control Helicopter and Remote Control Helicopter
CN106143899B (zh) * 2016-06-29 2018-10-23 上海未来伙伴机器人有限公司 变距旋翼及包括该变距旋翼的多旋翼飞行器及其飞行方法
CN111750841A (zh) * 2020-07-04 2020-10-09 北京首钢建设集团有限公司 一种建筑轴线控制检测方法
CN112572797A (zh) * 2020-12-28 2021-03-30 广西电网有限责任公司梧州供电局 一种无人机的高压电力塔涉鸟异物自动清除方法及系统
CN113310471B (zh) * 2021-03-31 2022-12-23 黄河水利职业技术学院 一种高稳定性的高精度地理信息测绘装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19524793A1 (de) * 1995-02-15 1996-08-22 Bruno Ziegler Drehflügler mit Kreiselstabilisierung des Rotors
DE20007283U1 (de) * 2000-01-25 2001-04-12 Henseleit Jan Rotorkopf für einen Modellhubschrauber mit vertikal verschiebbarer Paddelstange
CN1533819A (zh) * 2003-03-28 2004-10-06 京商株式会社 模型直升飞机的转动翼节距控制机构
DE202007000987U1 (de) 2007-01-23 2007-04-12 Dauschek Klaus Rotorkopfanordnung für einen ferngesteuerten Modellhubschrauber
CN2889427Y (zh) * 2006-04-18 2007-04-18 罗之洪 航模直升机转向机构
EP2172396A1 (en) 2007-07-02 2010-04-07 Hirobo Co., Ltd. Rotor head of remotely-controlled helicopter, and remotely-controlled helicopter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2920127B2 (ja) * 1997-12-01 1999-07-19 六郎 細田 ヘリコプタのメイン・ロータ・ブレードの制御装置
IT1303441B1 (it) * 1998-12-03 2000-11-06 Vladimiro Lidak Rotore principale monopala per elicotteri
DE20013145U1 (de) * 2000-07-28 2000-11-16 Guzicki Gerd Rotorkopf für einen Modellhubschrauber mit gedämpfter Stabilisierungseinrichtung
DE20121609U1 (de) * 2001-03-06 2003-04-10 Vogel Heribert Fernsteuerbares Fluggerät
AU2002329966A1 (en) * 2001-09-04 2003-03-18 Paul E. Arlton Rotor system for helicopters
JP3673253B2 (ja) * 2002-10-06 2005-07-20 ヒロボー株式会社 同軸反転式ラジオコントロールヘリコプタ及びラジオコントロールヘリコプタのブレード傾動機構
CN1254297C (zh) * 2002-10-06 2006-05-03 飞龙宝株式会社 同轴反转式无线电控制直升飞机
CN2717814Y (zh) * 2004-08-23 2005-08-17 沈安平 共轴双旋翼遥控直升机
JP4343167B2 (ja) * 2005-11-10 2009-10-14 株式会社タイヨー 無線操縦ヘリコプタ玩具
CN201154229Y (zh) * 2007-11-16 2008-11-26 上海九鹰电子科技有限公司 遥控模型直升机平衡系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19524793A1 (de) * 1995-02-15 1996-08-22 Bruno Ziegler Drehflügler mit Kreiselstabilisierung des Rotors
DE20007283U1 (de) * 2000-01-25 2001-04-12 Henseleit Jan Rotorkopf für einen Modellhubschrauber mit vertikal verschiebbarer Paddelstange
CN1533819A (zh) * 2003-03-28 2004-10-06 京商株式会社 模型直升飞机的转动翼节距控制机构
CN2889427Y (zh) * 2006-04-18 2007-04-18 罗之洪 航模直升机转向机构
DE202007000987U1 (de) 2007-01-23 2007-04-12 Dauschek Klaus Rotorkopfanordnung für einen ferngesteuerten Modellhubschrauber
EP2172396A1 (en) 2007-07-02 2010-04-07 Hirobo Co., Ltd. Rotor head of remotely-controlled helicopter, and remotely-controlled helicopter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058447A3 (en) * 2009-11-12 2011-11-03 Prox Dynamics As Rotor assembly
US9156548B2 (en) 2009-11-12 2015-10-13 Prox Dynamics As Rotor assembly
US9199729B1 (en) 2014-05-08 2015-12-01 Hirobo Co., Ltd. Coaxial counter-rotating unmanned helicopter

Also Published As

Publication number Publication date
US8177600B2 (en) 2012-05-15
EP2210653B1 (en) 2012-04-18
CN101433766B (zh) 2012-01-04
JP2011502869A (ja) 2011-01-27
ES2382760T3 (es) 2012-06-13
DE212008000074U1 (de) 2010-07-15
EP2210653A4 (en) 2010-11-24
CN101433766A (zh) 2009-05-20
ATE553826T1 (de) 2012-05-15
EP2210653A1 (en) 2010-07-28
US20100178836A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
WO2009062407A1 (fr) Modele reduit d'helicoptere a rotor unique presentant une stabilite amelioree
US10518878B2 (en) Multi-rotor aircraft control
US8308522B2 (en) Flying toy
US8186615B2 (en) Rotor head of remotely-controlled helicopter and remotely-controlled helicopter
JP3884025B2 (ja) 二重反転翼のピッチ角可変機構およびそれを備えた二重反転翼を有する飛行装置
JP2007191144A (ja) ヘリコプタ
CN104760695A (zh) 一种利用矢量旋转法来进行四旋翼飞机控制的方法
WO2007026701A1 (ja) 羽ばたき式飛行装置
JP2005193905A (ja) 同軸反転式ラジオコントロールヘリコプタ及びその飛行制御方法
WO2016197964A1 (zh) 旋翼控制装置及旋翼飞行器
CN204895843U (zh) 多轴飞行器
JP2004121798A (ja) 同軸反転式ラジオコントロールヘリコプタ
CN106167092B (zh) 一种共轴直升机及其旋翼系统
CN104973241A (zh) 具有主副多旋翼结构的无人飞行器
CN108791857B (zh) 共万向轴式全刚性双旋翼直升机
CN202070153U (zh) 共轴双桨式模型直升机的旋翼驱动装置
CN101869769B (zh) 单旋翼模型直升机的机械操纵系统
CN201195054Y (zh) 单旋翼模型直升机的机械操纵系统
KR100672978B1 (ko) 무인 동축반전 수직 이착륙 비행체의 로터헤드
CN201154229Y (zh) 遥控模型直升机平衡系统
CN107891976A (zh) 一种无人机螺旋桨装置及其无人机
CN201551849U (zh) 单旋翼直升机的航向操纵装置
WO2011000146A1 (zh) 遥控模型直升机
JPH11510127A (ja) 回転翼航空機の回転運動の制御及び自動安定用のシステム
CN101564599B (zh) 单旋翼模型直升机的机械操纵系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008757540

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010533414

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE