WO2016197964A1 - 旋翼控制装置及旋翼飞行器 - Google Patents

旋翼控制装置及旋翼飞行器 Download PDF

Info

Publication number
WO2016197964A1
WO2016197964A1 PCT/CN2016/085377 CN2016085377W WO2016197964A1 WO 2016197964 A1 WO2016197964 A1 WO 2016197964A1 CN 2016085377 W CN2016085377 W CN 2016085377W WO 2016197964 A1 WO2016197964 A1 WO 2016197964A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
control device
power
output shaft
shaft
Prior art date
Application number
PCT/CN2016/085377
Other languages
English (en)
French (fr)
Inventor
胡家祺
Original Assignee
胡家祺
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 胡家祺 filed Critical 胡家祺
Publication of WO2016197964A1 publication Critical patent/WO2016197964A1/zh

Links

Definitions

  • the present invention belongs to the technical field of rotorcraft, and more particularly to a rotor control device and a rotorcraft having the rotor control device.
  • Contemporary small unmanned rotorcraft are generally divided into two types: multi-rotor aircraft and single-rotor aircraft similar to helicopters.
  • multi-rotor aircraft which typically have four or more propellers for providing lift and controlling the attitude of the aircraft.
  • the quadrotor has four propellers. By adjusting the average speed of the four propellers to control the flying height of the aircraft and controlling the aircraft by adjusting the speed difference between the propellers. attitude.
  • conventional multi-rotor aircraft require at least four motors to achieve control of the aircraft. From an aerodynamic point of view, it is not as aerodynamically efficient as a conventional helicopter or coaxial twin-blade helicopter, which directly leads to the same order of magnitude or The four-rotor aircraft of the power configuration is not as good as the traditional helicopter.
  • the first single-rotor aircraft has two main propellers, and the two propellers rotate coaxially and rotate in opposite directions.
  • the single-rotor aircraft is provided with a swash plate structure under the propeller, and the swash plate structure is controlled by a servo device, and the pitch of the one or two propellers is periodically controlled by the swash plate structure to realize the pitching and rolling of the aircraft.
  • the control of the degree of freedom controls the yaw of the aircraft by adjusting the difference in the rotational speed of the two propellers, and controls the flying height of the aircraft by adjusting the average rotational speed or pitch of the two propellers to control the magnitude of the lift.
  • the second single-rotor aircraft has three propellers, two of which are main propellers, and the main propellers are coaxially rotated and rotated in opposite directions. At the end of the aircraft there is a small propeller whose axis of rotation is parallel to the main propeller.
  • the yaw of the aircraft is controlled by adjusting the difference between the speeds of the two propellers, and the pitch and roll of the aircraft are controlled by the cooperation of the forward and reverse propellers of the tail rotor and the yaw degree of freedom, by adjusting the average speed or pitch of the two propellers. To control the amount of lift and thus control the flying height of the aircraft.
  • This type of aircraft replaces the function of the swashplate with a tail propeller, but because of its pitch and roll control, the yaw axis needs to constantly adjust the position of the tail propeller, which results in a very low rate of pitch and roll attitude control;
  • the propellers at the tail need to provide both upward thrust and downward thrust, so the blades are designed as symmetrical airfoils, which results in low aerodynamic efficiency, often requiring larger blades to produce some control;
  • the support rod of the tail propeller is exposed to the propeller's downwash airflow, which also causes it to lose a portion of the lift.
  • this type of aircraft does not use swashplates and servo motors to save costs, its pitch and roll attitude control rate is very low, and it is difficult for the aircraft controller or the automatic flight control system to achieve accurate aircraft. Operation, so this type of aircraft is mainly used for low-end helicopter toys.
  • the third single-rotor aircraft has two propellers, one for the main rotor and one for the tail rotor.
  • the rotation axis of the tail rotor is perpendicular to the main rotor, and the tail rotor offsets the torque of the main rotor by changing the speed or changing the pitch.
  • this type of aircraft like the first single-rotor aircraft, uses a swashplate structure and at least two servo motors to control the pitch and roll attitude of the aircraft, which uses a tail propeller that is perpendicular to the main rotor axis.
  • this aircraft also has the disadvantage of the first single-rotor aircraft, that is, the swash plate and the servo motor for controlling the swash plate are easily damaged and difficult to maintain;
  • Such an aircraft like the second single-rotor aircraft, has a support rod for supporting the tail motor, and the tail propeller support rod is exposed to the propeller's downwash airflow, which also causes a portion of the lift to be lost.
  • the multi-rotor aircraft requires at least four motors to achieve control of the aircraft, and its short battery life and low aerodynamic efficiency; the single rotor aircraft not only needs To drive the motor whose main rotor rotates, it also needs to tilt the disc and at least two servo motors to complete the attitude control, but its structure is more complicated.
  • a passive rotor control mechanism for a micro-aircraft is disclosed in the patent (Publication No.
  • WO2014/150526 specifically disclosing the power of the driving motor to the axle by the axle
  • a pair of propeller blades are used to achieve the attitude control of the aircraft, and a pair of hinges are respectively installed between the axle and the propeller.
  • this structure has the following drawbacks: Since the hinge axis is not perpendicular to the power spindle, the distance between the center of gravity of the propeller and the power spindle changes when the propeller swings around the hinge, and therefore the centripetal force of the propeller Coupling with the control force of the propeller, especially at high speeds, the centripetal force of the propeller is far greater than the maximum control torque that the motor can produce.
  • a rotor control device comprising:
  • a servo device provided with a power spindle
  • a power transmission assembly including a power input shaft, a first output shaft, and a second output shaft, the first output shaft being coaxially fixedly coupled to the second output shaft and perpendicular to the power input shaft
  • the power input shaft is fixedly connected to the power spindle;
  • a first propeller and a second propeller disposed coaxially along a radial direction of the fixing frame, the first propeller is fixed on the fixing bracket and fixedly connected to the first output shaft, the second a propeller is fixed on the fixing bracket and fixedly connected to the second output shaft; wherein, a radial axis of the first propeller is parallel to an axis of rotation of the first propeller, and an axis of rotation of the first propeller is The power spindle Vertically, a radial axis of the second propeller is parallel to an axis of rotation of the second propeller, and an axis of rotation of the second propeller is perpendicular to the power spindle;
  • the periodic rotational angular acceleration generated by the servo device causes a periodic torque change, the periodic torque change being transmitted to the first propeller and the first via the power transmission assembly
  • the two propellers control the pitch and roll freedom of the aircraft by controlling the pitch variation of the first propeller and the second propeller.
  • the fixing bracket includes a mounting ring fixedly mounting the first propeller and the second propeller, and a bracket portion disposed in the mounting ring and provided with a mounting hole, the power spindle A fixed connection is made to the power input shaft through the mounting hole.
  • the rotor control device further includes a flexible member that restricts displacement of the power main shaft and the fixed frame and is annular, and the flexible member is fixed to the power spindle and the hole of the mounting hole. Between the walls.
  • the first propeller includes a first transmission shaft fixedly mounted on the mounting ring and coaxially fixedly coupled to the first output shaft, and a first fixed connection with the first transmission shaft a second propeller;
  • the second propeller includes a second transmission shaft fixedly mounted on the mounting ring and coaxially fixedly coupled to the second output shaft, and a second vane fixedly coupled to the second transmission shaft.
  • the power transmission assembly further includes a universal joint mechanism having a power input end and a power output end, and is coupled to the universal joint mechanism and provided with the first output shaft and the second output shaft
  • the power input shaft is disposed at a power input end of the universal joint mechanism
  • the first output shaft is disposed at a power output end of the universal joint mechanism.
  • the universal joint mechanism is an ordinary universal joint, a quasi-constant velocity universal joint, a constant velocity universal joint, a cross shaft universal joint, a double joint universal joint, and a three-axis universal joint. Sections, ball joints, spherical differential joints or circular joints.
  • the power transmission assembly further includes a first gear coaxially fixedly coupled to the power input shaft, a second gear rotatably mounted on the first output shaft, and fixedly mounted to the second a third gear on the output shaft and on the opposite sides of the first gear from the second gear, the second gear and the third gear meshing with the first gear.
  • the server device includes: [0023] a motor having the power spindle;
  • a rotational position sensor fixedly coupled to the motor and configured to detect a relative position of rotation of the motor;
  • a control system receiving a relative position signal of the rotational position sensor and controlling the motor to cause the The angular acceleration of the motor changes periodically.
  • control system includes an attitude controller and a motor controller
  • the attitude controller receives a pilot command signal and an aircraft attitude signal from the inertial measurement unit, generates a control command according to a preset program algorithm, and sends the control command to the motor controller;
  • the motor controller receives a control command of the attitude controller and a position signal provided by the rotational position sensor, and generates a driving signal for driving the motor to operate, the driving signal is driven by the motor controller
  • the inherent drive signals of the electric machine are superimposed to control pitch variations of the first propeller and the second propeller.
  • the driving signal is a sinusoidal driving signal
  • the motor that rotates at a constant speed receives the sinusoidal driving signal to generate a periodic angular acceleration change; the phase of the sinusoidal driving signal determines the pitch Changed to a position in the aircraft coordinate system.
  • the rotational position sensor is a magnetic sensor, a Hall sensor or an optoelectronic code disc.
  • the present invention also provides a rotorcraft including a rotor control device, the rotor control device being the rotor control device.
  • the rotor control device connects the power main shaft with the first propeller and the second propeller by using the fixing bracket, such that the diameter of the first propeller An axis is parallel to an axis of rotation of the first propeller and a radial axis of the second propeller is parallel to an axis of rotation of the second propeller, and an axis of rotation of the first propeller is perpendicular to the power spindle and a rotation axis of the second propeller is perpendicular to the power main shaft, the connection relationship avoiding a force that drives a pitch change of the first propeller and the second propeller with the first propeller and the second
  • the coupling phenomenon between the centripetal forces of the propeller ensures that the rotor control device can accurately and efficiently control the pitch variation of the first propeller and the second propeller, and also enables A rotorcraft with the rotor control can achieve greater pitch and roll control torque.
  • FIG. 1 is a perspective view of a rotor control device according to an embodiment of the present invention.
  • Figure 2 is a partial exploded view of the rotor control device of Figure 1;
  • FIG. 3 is a structural view of the power transmission assembly of FIG. 2;
  • FIG. 4 is a perspective view of a rotor control device according to another embodiment of the present invention.
  • Figure 5 is a partial exploded view of the rotor control device of Figure 4.
  • FIG. 6 is a plan view of a rotor control device according to an embodiment of the present invention in an aircraft coordinate system
  • FIG. 7 is a diagram showing the relationship between the angle between the first propeller and the rotation starting position and the angular acceleration of the aircraft according to an embodiment of the present invention
  • FIG. 8 is a relationship diagram between a pitch of a first propeller and a second propeller and an included angle A according to an embodiment of the present invention
  • FIG. 9 is a block diagram of a control part of a rotor control apparatus according to an embodiment of the present invention.
  • a rotor control apparatus includes:
  • the servo device 10 is provided with a power spindle 120;
  • the power transmission assembly 20 includes a power input shaft 21, a first output shaft 22, and a second output shaft 23, An output shaft 22 is coaxially fixedly connected to the second output shaft 23 and perpendicular to the power input shaft 21, and the power input shaft 21 is fixedly connected to the power spindle 120;
  • a fixing frame 30 coaxially connected to the power spindle 120;
  • a first propeller 40 and a second propeller 50 disposed coaxially along a radial direction of the fixing frame 30, the first propeller 40 being fixed to the fixing frame 30 and fixed to the first output shaft 22 Connecting, the second propeller 50 is fixed to the fixing frame 30 and fixedly connected to the second output shaft 23; wherein, the radial axis of the first propeller 40 and the rotation axis of the first propeller 40 Parallel, the rotation axis of the first propeller 40 is perpendicular to the power main shaft 120, the radial axis of the second propeller 50 is parallel to the rotation axis of the second propeller 50, and the rotation axis of the second propeller 50 Vertical to the power spindle 120;
  • the periodic rotational angular acceleration generated by the servo device 10 causes a periodic torque change that is transmitted to the first propeller 40 via the power transmission assembly 20 and
  • the second propeller 50 controls the pitch and roll freedom of the aircraft by controlling the pitch variation of the first propeller 40 and the second propeller 50.
  • the rotor control device connects the power spindle 120 with the first propeller 40 and the second propeller 50 by using the fixing bracket 30, so that the radial axis of the first propeller 40 Parallel to the rotational axis of the first propeller 40 and such that the radial axis of the second propeller 50 is parallel to the rotational axis of the second propeller 50, and the rotational axis of the first propeller 40 and the power spindle 120 perpendicular and the axis of rotation of the second propeller 50 is perpendicular to the power spindle 120.
  • connection relationship avoids the force that drives the pitch change of the first propeller 40 and the second propeller 50 and the first Coupling between the centripetal forces of a propeller 40 and the second propeller 50 ensures that the rotor control device can accurately and efficiently control the pitch variation of the first propeller 40 and the second propeller 50. Moreover, the rotorcraft with the rotor control device can also achieve greater pitch and roll control torque.
  • first output shaft 22 and the second output shaft 23 may be two parts of the same shaft or two stages of shafts coaxially fixed by a connecting structure, the first output shaft
  • the connection mode of the second output shaft 23 and the second output shaft 23 may be any other structure, which may be determined by a coaxial fixed connection.
  • the fixing frame 30 is formed in an annular shape, and the power spindle 120 of the servo device 10 is disposed along the The axial arrangement of the fixing frame 30, the first propeller 40 and the second propeller 50 are disposed along the radial direction of the fixing frame 30, and the axes of the first propeller 40 and the second propeller 50 It intersects perpendicularly to the axis of the power spindle 120.
  • the servo device 10 During operation, the servo device 10 generates a periodic angular acceleration change, and the angular acceleration change causes a periodic torque change, and the periodic torque change passes through the power spindle 120.
  • the power transmission main body is transmitted to the first propeller 40 and the second propeller 50, thereby driving the first propeller 40 and the second propeller 50 to rotate in the axial direction of the power main shaft 120 to generate a paddle
  • the distance variation thereby achieving control of the two degrees of freedom of the aircraft pitch and roll, is simple in structure and high in aerodynamic efficiency.
  • the fixing frame 30 includes a mounting ring 32 for fixedly mounting the first propeller 40 and the second propeller 50, and is disposed at the A bracket portion 34 is provided in the mounting ring 32 and is provided with a mounting hole 35.
  • the power spindle 120 is fixedly connected to the power input shaft 21 through the mounting hole 35.
  • the mounting ring 32 and the bracket portion 34 are integrally formed.
  • the bracket portion 34 includes a connecting ring 36 provided with the mounting hole 35 and a plurality of connecting rods 37 protruding along the outer wall of the connecting ring 36 to the inner wall of the mounting ring 32, the mounting hole 35,
  • the connecting ring 36 is disposed coaxially with the mounting ring 32, and the mounting hole 35 has a smaller aperture than the mounting ring 32.
  • the power transmission assembly 20 is received in the ring of the mounting ring 32 to be coupled to the first propeller 40 and the second propeller 50 to achieve power transmission.
  • the rotor control device provided by the embodiment of the present invention is fixedly connected to the power input shaft 21 through the mounting hole 35 by the power spindle 120 of the servo device 10, and is described by the power transmission assembly 20
  • the first output shaft 22 and the second output shaft 23 are fixedly coupled to the first propeller 40 and the second propeller 50, respectively, and the first propeller 40 and the seat are fixed by the mounting ring 32.
  • the second propeller 50 is configured to restrict a relative rotation between the first propeller 40 and the second propeller 50 to cause a centripetal force coupling phenomenon.
  • the rotor control device further includes a flexible member 50 that restricts displacement of the power spindle 120 and the holder 30 and is annular, and the flexible member 50 is fixed.
  • the power spindle 120 is between the bore wall of the mounting hole 35.
  • the relative rotation between the power main shaft 120 and the fixing frame 30 is restricted by the flexible member 50, and the relative rotation angle thereof is controlled within a certain angular range.
  • the maximum relative displacement does not exceed 180°.
  • the flexible member 50 is annular and coaxial with the mount 30.
  • the first propeller 40 further includes a first propeller shaft 42 fixedly mounted on the mounting ring 32 and coaxially fixedly coupled to the first output shaft 22. And a first blade 44 fixedly coupled to the first transmission shaft 42; the second propeller 50 includes a first fixed mounting on the mounting ring 32 and coaxially fixedly coupled to the second output shaft 23 A second drive shaft 52 and a second vane fixedly coupled to the second drive shaft 52.
  • the first output shaft 22 and the first blade 44 are fixed to the two ends of the first transmission shaft 42 respectively, and the two ends of the second transmission shaft 52 respectively fix the second output shaft 23 and the first
  • the two blades, the first transmission shaft 42, the first output shaft 22, the second output shaft 23 and the second transmission shaft 52 are coaxially fixedly connected.
  • the first propeller shaft 42 and the second propeller shaft 52 are respectively fixed to the mounting ring 32 such that the first propeller 40 and the second propeller 50 are attached to the fixing bracket 30.
  • the rotation of the power spindle 120 rotates to avoid a centripetal force coupling phenomenon between the first propeller 40 and the second propeller 50.
  • the first vane 44 and the second vane are identical in construction.
  • the power transmission assembly 20 further includes a universal joint mechanism 24 having a power input end 242 and a power output end 244, and is connected to the universal joint mechanism 24.
  • a mounting frame 25 having the first output shaft 22 and the second output shaft 23, wherein the power input shaft 21 is disposed at a power input end 242 of the universal joint mechanism 24, the first output shaft 22 is disposed at the power output end 244 of the gimbal mechanism 24.
  • the mounting frame 25 is located between the first output shaft 22 and the second output shaft 23, and the mounting frame 25, the first output shaft 22 and the second output shaft 23 are integrally formed. production.
  • the gimbal mechanism 24 is located between the mounting frame 25 and the power spindle 120, and the power output end 244 of the universal joint is connected to the first output shaft 22, and the power input end 242 passes
  • the power input shaft 21 is coupled to the power spindle 120 to drive the universal joint mechanism 24 to rotate by the servo device 10, thereby driving the mounting frame 25, the first propeller 40 and the second
  • the propeller 50 performs a rotary motion.
  • the power spindle 120 of the servo device 10 generates an angular acceleration ⁇ , and the power spindle 120 and the solid A torsional moment is generated between the frames 30 and a relative displacement is generated, and the gimbal mechanism 24 transmits the relative displacement to the first drive shaft 42 and the second drive shaft 52 that are perpendicular to the power spindle 120. And the change of the pneumatic angle of attack of the first propeller 40 and the second propeller 50 is generated, thereby generating a control torque, thereby realizing control of two degrees of freedom of the aircraft pitch and roll.
  • the gimbal mechanism 24 is an ordinary universal joint, a quasi-constant velocity universal joint, a constant velocity universal joint, a cross shaft universal joint, a double joint universal joint, and three Shaft type universal joints, ball cage joints, spherical differential joints or wound universal joints.
  • the gimbal mechanism 24 can also be other types of gimbals, which are not enumerated here.
  • the power transmission assembly 20 further includes a first gear 26 coaxially fixedly coupled to the power input shaft 21, and is rotatably mounted on the first output shaft 22.
  • a second gear 27 and a third gear 28 fixedly mounted on the second output shaft 23 and opposite to the second gear 27 on opposite sides of the first gear 26, the second gear 27 and the The third gear 28 meshes with the first gear 26.
  • the first transmission shaft 42, the first output shaft 22, the second gear 27, the third gear 28, the second output shaft 23, and the second transmission shaft 52 are coaxially disposed.
  • the second gear 27 and the third gear 28 are oppositely disposed on both sides of the first gear 26 and both mesh with the first gear 26 .
  • the first output shaft 22 is fixedly coupled to the second gear 27 and coaxial with a rotational axis of the second gear 27, and the second output shaft 23 passes through the third gear 28 and is coupled to the second transmission
  • the shaft 52 is coaxially fixedly coupled, and the third gear 28 is rotatable relative to the second output shaft 23.
  • the first output shaft 22 and the second output shaft 23 are two segments of the same axis.
  • the power spindle 120 of the servo device 10 generates an angular acceleration ⁇ , the power spindle 120 generates a torsional moment and a relative displacement between the fixed frame 30, and the first gear 26 and the second
  • the gear 27 meshes with the third gear 28 and transmits this relative displacement to the first drive shaft 42 and the second drive shaft 52 perpendicular to the power spindle 120, and drives the first propeller 40 and The change of the pneumatic angle of attack of the second propeller 50, thereby generating a control torque, thereby achieving control of the two degrees of freedom of the aircraft pitch and roll.
  • the power transmission assembly 20 can be other types of couplings or flexible fatigue resistant materials.
  • the servo device 10 further includes: [0066] The motor 12 has the power spindle 120;
  • a rotational position sensor 14 fixedly coupled to the motor 12 and configured to detect a relative position of rotation of the motor 12;
  • the control system 16 receives the relative position signal of the rotational position sensor 14 and controls the motor 12 to cause a periodic change in the angular acceleration of the motor 12.
  • the rotor control device provided by the embodiment of the present invention completes the control of the pitch and roll attitude of the aircraft by using one motor 12, which not only reduces the weight and manufacturing cost, but also greatly prolongs the battery life and can carry a larger payload. , but also improved reliability.
  • the rotor control device uses the control system 16 to cause the motor 12 to generate a periodically varying angular acceleration that changes the torque between the main shaft of the motor 12 and the fixed frame 30. Since the main shaft of the motor 12 and the fixing frame 30 are connected by the flexible member 50, the torque variation causes a relative displacement between the power main shaft 120 of the motor 12 and the fixing frame 30. This relative displacement is transmitted to the first output shaft 22 and the second output shaft 23 through the power transmission assembly 20, and through the first transmission shaft 42 fixedly coupled to the first output shaft 22 and The second drive shaft 52, to which the two output shafts 23 are fixedly coupled, directly changes the pitch of the first propeller 40 and the second propeller 50.
  • the rotational position sensor 14 may acquire position signals of the first propeller 40 and the second propeller 50 relative to an aircraft coordinate system, and the rotational position sensor 14 is a magnetic sensor and a Hall. Sensor or optical encoder.
  • control system 16 includes a posture controller 162 and a motor controller 164;
  • the attitude controller 162 receives the command signal of the pilot and the aircraft attitude signal from the inertia measurement unit 15, generates a control command according to a preset program algorithm and sends the control command to the motor controller 164;
  • the motor controller 164 receives a control command of the attitude controller 162 and a position signal provided by the rotational position sensor 14, and generates a driving signal for driving the motor 12 to operate, the driving signal and the driving signal
  • the motor controller 164 drives the inherent drive signal superposition of the motor 12 to control the pitch variation of the first propeller 40 and the second propeller 50.
  • the drive signal that drives the operation of the electric machine 12 includes an average rotational speed signal that maintains the average lift of the aircraft and a signal that controls the pitch and roll attitude of the aircraft to cause the electrical machine 12 to produce a periodic angular acceleration change.
  • the driving signal is a sinusoidal driving signal
  • the motor 12 that rotates at a constant speed receives the sinusoidal driving signal to generate a periodic angular acceleration change; the sinusoidal driving
  • the phase of the signal determines the position of the pitch change in the aircraft coordinate system.
  • the sinusoidal driving signal is superimposed with the inherent driving signal, and when the motor 12 that rotates at a constant speed receives the sinusoidal driving signal, the rotation speed of the motor 12 generates a periodic change.
  • a change in the rotational speed produces a change in angular acceleration, and a change in the angular acceleration causes a change in torque between the power spindle 120 coupled through the flexible member 50 and the mount 30, such that the power spindle 120 A relative displacement is generated between the mounts 30, and the relative displacement is transmitted to the first output shaft 22 and the second output shaft 23 through the power transmission assembly 20, and through the first output shaft 22 and
  • the first transmission shaft 42 and the second transmission shaft 52 to which the second output shaft 23 is fixed directly change the pitch of the first propeller 40 and the second propeller 50.
  • the magnitude of the sinusoidal drive signal determines the magnitude of the pitch change, thereby determining the magnitude of the control torque acting on the aircraft.
  • the phase of the sinusoidal drive signal determines the direction in which the control torque acts on the aircraft, i.e., the magnitude and direction of the aircraft control torque are controllable, thereby achieving control of the two degrees of freedom of the aircraft pitch and roll.
  • the phase of the sinusoidal drive signal determines the position of the pitch of the first propeller 40 and the second propeller 50 in the aircraft coordinate system.
  • the drive signal can be any manner of signal to enable the motor to produce an angular acceleration of a desired magnitude.
  • FIG. 6 is a top plan view of a rotor control device according to an embodiment of the present invention, wherein the aircraft is divided into four quadrants as shown in the figure, and the four quadrants are regarded as an aircraft coordinate system, and the aircraft coordinate system is in the aircraft coordinate system.
  • the angle A between the axis of the first propeller 40 and the starting position of the first quadrant is defined as a position reference value of the motor controller 164.
  • the first propeller 40 rotates in the direction of the reverse pin and The angle A with the starting position varies from -45° to 315°.
  • the motor 12 is The angular acceleration change occurs after receiving the drive signal of the motor controller 164 as shown in the graph of FIG.
  • the pitch of the first propeller 40 is a negative value when the angle A between the first propeller 40 and the starting position is within 135°
  • the pitch of the second propeller 50 is a positive value. Therefore, the first propeller 40 located in the first quadrant and the second quadrant generates a downward lift, and the second propeller 50 located in the third quadrant and the fourth quadrant generates an upward lift. In this way, the aircraft will be subjected to a combined torque to the front.
  • the angular acceleration of the motor 12 is a negative value.
  • a negative displacement is generated between the power main shaft 120 and the fixed frame 30, and the negative displacement is transmitted from the power transmission assembly 20 to the first output shaft 2 2 and the second output shaft 23, and then a first drive shaft 42 and a second drive shaft 52 fixed to the first output shaft 22 and the second output shaft 23 are coupled to the first vane 44 of the first propeller 40 and the On the second blade of the second propeller 50, the pitch of the first propeller 40 is a positive value, and the pitch of the second propeller 50 is a negative value.
  • the pitch of the first propeller 40 is a positive value when the angle A between the first propeller 40 and the starting position is within 135°
  • the pitch of the second propeller 50 is a negative value. Therefore, the second propeller 50 located in the first quadrant and the second quadrant generates a downward lift, and the first propeller 40 located in the third quadrant and the fourth quadrant generates an upward lift. In this way, the aircraft will be subjected to a combined torque to the front. [0085] Therefore, in one working cycle, the aircraft is subjected to a combined torque from the rotor control device provided by the embodiment of the present invention to the front, and the aircraft can complete the forward flight under the control of the torsional moment. .
  • the rotorcraft provided by the embodiments of the present invention includes a rotor control device, and the rotor control device is the above-described rotor control device.
  • the rotor control device provided in this embodiment has the same structure and features as the rotor control device provided in the above embodiments, and functions the same, and will not be described herein.

Landscapes

  • Toys (AREA)

Abstract

一种旋翼控制装置和旋翼飞行器。该旋翼控制装置包括设有动力主轴(120)的伺服装置(10)、动力传递组件(20)、固定架(30)、第一螺旋桨(40)和第二螺旋桨(50),伺服装置(10)产生的周期性的转矩变化经动力传递组件(20)传递至第一螺旋桨(40)和第二螺旋桨(50),并控制第一螺旋桨(40)和第二螺旋桨(50)的桨距变化。该旋翼控制装置利用固定架(30)连接动力主轴(120)与第一螺旋桨(40)和第二螺旋桨(50),避免了驱动第一螺旋桨(40)和第二螺旋桨(50)发生桨距变化的力与第一螺旋桨(40)和第二螺旋桨(50)所受的向心力之间发生耦合现象,保证了该旋翼控制装置可以精确高效地控制第一螺旋桨(40)和第二螺旋桨(50)的桨距变化,而且也使得具有该旋翼控制装置的旋翼飞行器可以获得更大的俯仰和横滚控制力矩。

Description

说明书 发明名称:旋翼控制装置及旋翼飞行器 技术领域
[0001] 本发明属于旋翼飞行器技术领域, 尤其涉及一种旋翼控制装置以及具有该旋翼 控制装置的旋翼飞行器。
背景技术
[0002] 当代小型无人旋翼机通常分为两种类型: 多旋翼飞行器和类似于直升机的单旋 翼飞行器。
[0003] 目前, 最常见且应用最广的是多旋翼飞行器, 这类飞行器通常具有 4个或 4个以 上的螺旋桨, 以用于提供升力和控制飞行器的姿态。 其中, 这类飞行器中最常 见的是四旋翼飞行器, 四旋翼飞行器具有四个螺旋桨, 通过调整四个螺旋桨的 平均转速来控制飞行器的飞行高度以及通过调节各个螺旋桨之间的转速差来控 制飞行器的姿态。 然而, 传统的多旋翼飞行器需要至少 4个电机才能实现对飞行 器的控制, 从空气动力学的角度来看, 其不如传统的直升机或共轴双桨直升机 的气动效率高, 这直接导致相同数量级或动力配置的四旋翼飞行器的续航吋间 不如传统的直升机。
[0004] 单旋翼飞行器主要分为以下三种类型:
[0005] 第一种单旋翼飞行器共有两个主螺旋桨, 两个螺旋桨共轴旋转且旋转方向相反 。 这种单旋翼飞行器在螺旋桨下方设有倾斜盘结构, 该倾斜盘结构由伺服装置 控制, 通过该倾斜盘结构周期性的控制一个或两个螺旋桨的桨距来实现对飞行 器俯仰和横滚两个自由度的控制, 通过调节两个螺旋桨的转速差来控制飞行器 的偏航, 通过调节两个螺旋桨的平均转速或桨距来控制升力大小进而控制飞行 器的飞行高度。 这种飞行器虽然使用了共轴双桨并提高了飞行效率, 但是飞行 器的俯仰和横滚姿态控制需要依靠至少两个伺服电机和倾斜盘结构实现, 多数 倾斜盘结构使用连杆结构实现其结构较为复杂, 而且用以驱动倾斜盘的伺服电 机价格也较为昂贵。 因此, 这类飞行器的制造成本高, 旋翼发生碰撞吋容易损 坏倾斜盘结构和伺服电机, 倾斜盘结构损坏后比较难以修复; 另外倾斜盘结构 和伺服电机占用了机身较大的空间, 同时也增加了重量。
[0006] 第二种单旋翼飞行器共有三个螺旋桨, 其中两个为主螺旋桨, 主螺旋桨共轴旋 转且旋转方向相反。 在飞行器的尾部有一个小的螺旋桨, 其旋转轴与主螺旋桨 是平行的。 通过调节两个螺旋桨的转速差来控制飞行器的偏航, 通过尾桨的螺 旋桨正反转和偏航自由度的配合来控制飞行器的俯仰和横滚, 通过调节两个螺 旋桨的平均转速或桨距来控制升力大小进而控制飞行器的飞行高度。 这种飞行 器用一个尾部螺旋桨来代替倾斜盘的功能, 但是由于其俯仰和滚转控制需要偏 航轴不断调整尾部螺旋桨的位置, 这导致了其俯仰和横滚姿态控制速率极低; 另外, 由于尾部的螺旋桨既需要提供向上的推力又需要提供向下的推力, 所以 其桨叶设计为对称的翼型, 这导致其气动效率很低, 往往需要较大的叶片才能 产生一定的控制力; 此外, 其尾部螺旋桨的支撑杆会暴露于螺旋桨的下洗气流 之下, 这也使得其损失了一部分的升力。 虽然这类飞行器没有使用倾斜盘和伺 服电机而节省了成本, 但是其俯仰和横滚姿态的控制速率很低, 无论是飞行器 的操控者亦或是自动飞行控制系统都很难达到对飞行器的精确操作, 所以此类 飞行器主要用于低端的直升机玩具。
[0007] 第三种单旋翼飞行器共有两个螺旋桨, 一个为主旋翼, 一个为尾旋翼, 尾旋翼 的旋转轴与主旋翼垂直, 尾旋翼通过改变转速或改变桨距来抵消主旋翼的扭矩 并同吋控制飞行器的偏航; 在主旋翼下方设有由伺服装置控制的倾斜盘结构, 通过该倾斜盘结构来周期性的控制主旋翼的桨距来实现对飞行器俯仰和横滚两 个自由度上的控制。 然而, 这种飞行器和第一种单旋翼飞行器一样, 都采用了 倾斜盘结构和至少两个伺服电机来控制飞行器的俯仰和滚转姿态, 伹是其使用 了一个和主旋翼轴垂直的尾螺旋桨来抵消主旋翼的扭矩和控制偏航, 这使得这 种飞行器同样也具有第一种单旋翼飞行器的缺点, 即倾斜盘和用于控制倾斜盘 的伺服电机都容易损坏且较难维护; 此外, 其这种飞行器与第二种单旋翼飞行 器一样, 都具有用于支撑尾部电机的支撑杆, 尾螺旋桨支撑杆会暴露于螺旋桨 的下洗气流之下, 这也使得其损失了一部分的升力。
[0008] 对于上述各种传统旋翼飞行器的控制方式, 多旋翼飞行器至少需要四个电机才 能实现对飞行器的控制, 而其续航时间短且气动效率低; 单旋翼飞行器不但需 要驱动其主旋翼转动的电机, 而且还需要倾斜盘和至少两个伺服电机才能完成 姿态控制, 然而其结构较为复杂。 为此, 为了使单旋翼飞行器结构简单并能实 现姿态控制, 专利 (公开号为 WO2014/150526) 中公开了一种微型飞行器的被动 旋翼控制机构, 具体公开了利用轮轴将驱动电机的动力传递至一对螺旋桨的叶 片上, 以实现飞行器的姿态控制, 并在轮轴与螺旋桨之间分别安装了一对铰链 。 然而, 这种结构却存在着如下缺陷: 由于铰链轴线不与动力主轴垂直, 导致 在螺旋桨围绕铰链摆动吋, 螺旋桨的重心与动力主轴之间的距离发生了变化, 因此, 螺旋桨所受的向心力会与螺旋桨受到的控制力相耦合, 尤其在高转速下 该螺旋桨所受的向心力远远大于电机可以产生的最大控制力矩, 这直接导致了 在高转速下螺旋桨叶片气动攻角变化过小难以产生更大的控制力矩。 而且, 专 利 (公幵号为 WO2014/150526) 中所提供的测试参数曲线也证实了这一问题, 即 在其横轴为转速及纵轴为力矩的图表曲线中可以看出, 其控制力矩过早的到达 力矩平台期, 同时耦合也给控制系统的精确控制带来了不利的影响。
技术问题
[0009] 本发明的目的在于提供一种旋翼控制装置, 旨在解决现有技术中单旋翼飞行器 的螺旋桨容易产生向心力耦合现象的技术问题。
问题的解决方案
技术解决方案
[0010] 本发明是这样实现的, 一种旋翼控制装置, 包括:
[0011] 伺服装置, 设有动力主轴;
[0012] 动力传递组件, 包括动力输入轴、 第一输出轴和第二输出轴, 所述第一输出轴 与所述第二输出轴同轴固定连接, 且与所述动力输入轴相垂直, 所述动力输入 轴与所述动力主轴固定连接;
[0013] 固定架, 与所述动力主轴同轴连接;
[0014] 沿所述固定架的径向同轴设置的第一螺旋桨和第二螺旋桨, 所述第一螺旋桨固 定于所述固定架上并与所述第一输出轴固定连接, 所述第二螺旋桨固定于所述 固定架上并与所述第二输出轴固定连接; 其中, 所述第一螺旋桨的径向轴线与 所述第一螺旋桨的转动轴线平行, 所述第一螺旋桨的转动轴线与所述动力主轴 垂直, 所述第二螺旋桨的径向轴线与所述第二螺旋桨的转动轴线平行, 所述第 二螺旋桨的转动轴线与所述动力主轴垂直;
[0015] 其中, 所述伺服装置产生的周期性旋转角加速度而导致了周期性的转矩变化, 该周期性的转矩变化经所述动力传递组件传递至所述第一螺旋桨和所述第二螺 旋桨, 通过控制所述第一螺旋桨和所述第二螺旋桨的桨距变化来实现对飞行器 俯仰和横滚自由度的控制。
[0016] 进一步地, 所述固定架包括固定安装所述第一螺旋桨和所述第二螺旋桨的安装 圆环以及设置于所述安装圆环内并设有安装孔的支架部, 所述动力主轴穿过所 述安装孔与所述动力输入轴固定连接。
[0017] 进一步地, 所述旋翼控制装置还包括限制所述动力主轴与所述固定架相对位移 且为环状的柔性元件, 所述柔性元件固定于所述动力主轴与所述安装孔的孔壁 之间。
[0018] 进一步地, 所述第一螺旋桨包括固定安装于所述安装圆环上并与所述第一输出 轴同轴固定连接的第一传动轴以及与所述第一传动轴固定连接的第一叶片; 所 述第二螺旋桨包括固定安装于所述安装圆环上并与所述第二输出轴同轴固定连 接的第二传动轴以及与所述第二传动轴固定连接的第二叶片。
[0019] 进一步地, 所述动力传递组件还包括具有动力输入端和动力输出端的万向节机 构以及与所述万向节机构连接并设有所述第一输出轴和所述第二输出轴的安装 框, 其中, 所述动力输入轴设置于所述万向节机构的动力输入端, 所述第一输 出轴设置于所述万向节机构的动力输出端。
[0020] 进一步地, 所述万向节机构为普通万向节、 准等速万向节、 等速万向节、 十字 轴式万向节、 双联式万向节、 三轴式万向节、 球笼式万向节、 球差式万向节或 者绕性万向节。
[0021] 进一步地, 所述动力传递组件还包括与所述动力输入轴同轴固定连接的第一齿 轮、 转动安装于所述第一输出轴上的第二齿轮以及固定安装于所述第二输出轴 上并与所述第二齿轮位于所述第一齿轮相对两侧的第三齿轮, 所述第二齿轮和 所述第三齿轮与所述第一齿轮啮合。
[0022] 进一步地, 所述伺服装置包括: [0023] 电机, 具有所述动力主轴;
[0024] 旋转位置传感器, 固定连接于所述电机并用于检测所述电机转动的相对位置; [0025] 控制系统, 接收所述旋转位置传感器的相对位置信号并控制所述电机, 以使所 述电机的角加速度产生周期性变化。
[0026] 进一步地, 所述控制系统包括姿态控制器和电机控制器;
[0027] 所述姿态控制器接收飞行员的命令信号和来自惯性量测单元的飞行器姿态信号 , 根据预先设定的程序算法生成一控制指令并将所述控制指令发送给电机控制 器;
[0028] 所述电机控制器接收所述姿态控制器的控制指令和所述旋转位置传感器提供的 位置信号, 并生成驱动所述电机运转的驱动信号, 所述驱动信号与所述电机控 制器驱动所述电机的固有驱动信号叠加以控制所述第一螺旋桨和所述第二螺旋 桨的桨距变化。
[0029] 进一步地, 所述驱动信号为一正弦驱动信号, 匀速转动的所述电机接收到所述 正弦驱动信号而发生周期性角加速度变化; 所述正弦驱动信号的相位决定了所 述桨距变化于所述飞行器坐标系中的位置。
[0030] 进一步地, 所述旋转位置传感器为磁传感器、 霍尔传感器或者光电码盘。
[0031] 本发明还提供了一种旋翼飞行器, 包括旋翼控制装置, 所述旋翼控制装置为上 述旋翼控制装置。
发明的有益效果
有益效果
[0032] 本发明相对于现有技术的技术效果是: 该旋翼控制装置利用所述固定架连接所 述动力主轴与所述第一螺旋桨和所述第二螺旋桨, 使得所述第一螺旋桨的径向 轴线与所述第一螺旋桨的转动轴线平行以及使得所述第二螺旋桨的径向轴线与 所述第二螺旋桨的转动轴线平行, 且所述第一螺旋桨的转动轴线与所述动力主 轴垂直以及所述第二螺旋桨的转动轴线与所述动力主轴垂直, 这种连接关系避 免了驱动所述第一螺旋桨和所述第二螺旋桨发生桨距变化的力与所述第一螺旋 桨和所述第二螺旋桨所受的向心力之间发生耦合现象, 保证了该旋翼控制装置 可以精确高效地控制所述第一螺旋桨和所述第二螺旋桨的桨距变化, 而且也使 得具有该旋翼控制装置的旋翼飞行器可以获得更大的俯仰和横滚控制力矩。 对附图的简要说明
附图说明
[0033] 为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面所描述的附图仅 仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳 动的前提下, 还可以根据这些附图获得其他的附图。
[0034] 图 1是本发明一实施例提供的旋翼控制装置的立体图;
[0035] 图 2是图 1中旋翼控制装置的局部分解图;
[0036] 图 3是图 2中动力传递组件的结构图;
[0037] 图 4是本发明另一实施例提供的旋翼控制装置的立体图;
[0038] 图 5是图 4中旋翼控制装置的局部分解图;
[0039] 图 6本发明实施例提供的旋翼控制装置在飞行器坐标系中的俯视图;
[0040] 图 7是本发明实施例提供的第一螺旋桨和旋转起始位置的夹角与飞行器角加速 度的关系图;
[0041] 图 8是本发明实施例提供的第一螺旋桨和第二螺旋桨的桨距与夹角 A的关系图; [0042] 图 9是本发明实施例提供的旋翼控制装置的控制部分的框图。
[0043] 主要元件符号说明:
[]
[Si]
Figure imgf000009_0001
发明实施例
本发明的实施方式
[0044] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0045] 请参照图 1至图 5, 本发明实施例提供的旋翼控制装置包括:
[0046] 伺服装置 10, 设有动力主轴 120;
[0047] 动力传递组件 20, 包括动力输入轴 21、 第一输出轴 22和第二输出轴 23 , 所述第 一输出轴 22与所述第二输出轴 23同轴固定连接, 且与所述动力输入轴 21相垂直 , 所述动力输入轴 21与所述动力主轴 120固定连接;
[0048] 固定架 30, 与所述动力主轴 120同轴连接;
[0049] 沿所述固定架 30的径向同轴设置的第一螺旋桨 40和第二螺旋桨 50, 所述第一螺 旋桨 40固定于所述固定架 30上并与所述第一输出轴 22固定连接, 所述第二螺旋 桨 50固定于所述固定架 30上并与所述第二输出轴 23固定连接; 其中, 所述第一 螺旋桨 40的径向轴线与所述第一螺旋桨 40的转动轴线平行, 所述第一螺旋桨 40 的转动轴线与所述动力主轴 120垂直 , 所述第二螺旋桨 50的径向轴线与所述第二 螺旋桨 50的转动轴线平行, 所述第二螺旋桨 50的转动轴线与所述动力主轴 120垂 直;
[0050] 其中, 所述伺服装置 10产生的周期性旋转角加速度而导致了周期性的转矩变化 , 该周期性的转矩变化经所述动力传递组件 20传递至所述第一螺旋桨 40和所述 第二螺旋桨 50, 通过控制所述第一螺旋桨 40和所述第二螺旋桨 50的桨距变化来 实现对飞行器俯仰和横滚自由度的控制。
[0051] 本发明实施例提供的旋翼控制装置利用所述固定架 30连接所述动力主轴 120与 所述第一螺旋桨 40和所述第二螺旋桨 50, 使得所述第一螺旋桨 40的径向轴线与 所述第一螺旋桨 40的转动轴线平行以及使得所述第二螺旋桨 50的径向轴线与所 述第二螺旋桨 50的转动轴线平行, 且所述第一螺旋桨 40的转动轴线与所述动力 主轴 120垂直以及所述第二螺旋桨 50的转动轴线与所述动力主轴 120垂直, 这种 连接关系避免了驱动所述第一螺旋桨 40和所述第二螺旋桨 50发生桨距变化的力 与所述第一螺旋桨 40和所述第二螺旋桨 50所受的向心力之间发生耦合现象, 保 证了该旋翼控制装置可以精确高效地控制所述第一螺旋桨 40和所述第二螺旋桨 5 0的桨距变化, 而且也使得具有该旋翼控制装置的旋翼飞行器可以获得更大的俯 仰和横滚控制力矩。
[0052] 在该实施例中, 所述第一输出轴 22和所述第二输出轴 23可以是同一轴的两部分 或者通过连接结构而同轴固定的两段轴, 所述第一输出轴 22和所述第二输出轴 2 3的连接方式可以为其他任意结构, 以同轴固定连接为准即可。
[0053] 在该实施例中, 所述固定架 30成圆环状, 所述伺服装置 10的动力主轴 120沿所 述固定架 30的轴向设置, 所述第一螺旋桨 40和所述第二螺旋桨 50沿所述固定架 3 0的径向设置, 且所述第一螺旋桨 40和所述第二螺旋桨 50的轴线与所述动力主轴 120的轴线垂直相交。
[0054] 运行过程中, 所述伺服装置 10产生周期性旋转角加速度变化, 并将该角加速度 变化导致了周期性的转矩变化, 而该周期性的转矩变化经所述动力主轴 120通过 所述动力传递主机传递至所述第一螺旋桨 40和所述第二螺旋浆 50, 从而带动所 述第一螺旋桨 40和所述第二螺旋桨 50绕所述动力主轴 120的轴向旋转而发生桨距 变化, 由此实现对所述飞行器俯仰和横滚两个自由度的控制, 结构简单且气动 效率高。
[0055] 请参照图 1、 图 2、 图 4和图 5 , 进一步地, 所述固定架 30包括固定安装所述第一 螺旋桨 40和所述第二螺旋桨 50的安装圆环 32以及设置于所述安装圆环 32内并设 有安装孔 35的支架部 34, 所述动力主轴 120穿过所述安装孔 35与所述动力输入轴 21固定连接。 所述安装圆环 32与所述支架部 34由一体成型而制成。 所述支架部 3 4包括设有所述安装孔 35的连接环 36以及多个沿所述连接环 36外壁突出延伸至所 述安装圆环 32内壁上的连接杆 37, 所述安装孔 35、 所述连接环 36与所述安装圆 环 32同轴设置, 且所述安装孔 35的孔径远小于所述安装圆环 32的孔径。 所述动 力传递组件 20收容于所述安装圆环 32的环内以与所述第一螺旋桨 40和所述第二 螺旋桨 50连接, 从而实现动力传递。
[0056] 本发明实施例提供的旋翼控制装置利用所述伺服装置 10的动力主轴 120穿过所 述安装孔 35固定连接于所述动力输入轴 21, 并由所述动力传递组件 20的所述第 一输出轴 22和所述第二输出轴 23分别固定连接于所述第一螺旋桨 40和所述第二 螺旋桨 50, 同吋, 利用所述安装圆环 32固定所述第一螺旋桨 40和所述第二螺旋 桨 50, 以限制所述第一螺旋桨 40和所述第二螺旋桨 50之间出现相对转动而发生 向心力耦合现象。 所述伺服装置 10驱动所述动力主轴 120转动时, 所述动力主轴 120通过所述动力传递组件 20带动所述第一螺旋桨 40和所述第二螺旋桨 50旋转 , 以改变所述第一螺旋桨 40和所述第二螺旋桨 50的桨距。
[0057] 请参照图 2和图 5, 进一步地, 所述旋翼控制装置还包括限制所述动力主轴 120 与所述固定架 30相对位移且为环状的柔性元件 50, 所述柔性元件 50固定于所述 动力主轴 120与所述安装孔 35的孔壁之间。 利用所述柔性元件 50限制所述动力主 轴 120与所述固定架 30之间的相对转动, 并将其相对转动角度控制在一定角度范 围, 优选地, 最大相对位移不超过 180°。 在该实施例中, 所述柔性元件 50为圆环 状且与所述固定架 30同轴。
[0058] 请参照图 1至图 5, 进一步地, 所述第一螺旋桨 40包括固定安装于所述安装圆环 32上并与所述第一输出轴 22同轴固定连接的第一传动轴 42以及与所述第一传动 轴 42固定连接的第一叶片 44; 所述第二螺旋桨 50包括固定安装于所述安装圆环 3 2上并与所述第二输出轴 23同轴固定连接的第二传动轴 52以及与所述第二传动轴 52固定连接的第二叶片。 所述第一传动轴 42的两端分别固定所述第一输出轴 22 和所述第一叶片 44, 所述第二传动轴 52的两端分别固定所述第二输出轴 23和所 述第二叶片, 所述第一传动轴 42、 所述第一输出轴 22、 所述第二输出轴 23和所 述第二传动轴 52同轴固定连接。 通过将所述第一传动轴 42和所述第二传动轴 52 分别固定于所述安装圆环 32上, 以使所述第一螺旋桨 40和所述第二螺旋桨 50与 所述固定架 30随所述动力主轴 120的转动而旋转, 避免所述第一螺旋桨 40和所述 第二螺旋桨 50之间产生向心力耦合现象。 在该实施例中, 所述第一叶片 44和所 述第二叶片结构相同。
[0059] 请参照图 1至图 3, 进一步地, 所述动力传递组件 20还包括具有动力输入端 242 和动力输出端 244的万向节机构 24以及与所述万向节机构 24连接并设有所述第一 输出轴 22和所述第二输出轴 23的安装框 25, 其中, 所述动力输入轴 21设置于所 述万向节机构 24的动力输入端 242, 所述第一输出轴 22设置于所述万向节机构 24 的动力输出端 244。 所述安装框 25位于所述第一输出轴 22和所述第二输出轴 23之 间, 且所述安装框 25、 所述第一输出轴 22和所述第二输出轴 23由一体成型而制 成。 所述万向节机构 24位于所述安装框 25与所述动力主轴 120之间, 且所述万向 节的动力输出端 244连接于所述第一输出轴 22, 所述动力输入端 242通过所述动 力输入轴 21连接于所述动力主轴 120 , 以由所述伺服装置 10带动所述万向节机构 24转动, 从而带动所述安装框 25、 所述第一螺旋桨 40和所述第二螺旋桨 50做旋 转运动。
[0060] 所述伺服装置 10的动力主轴 120产生角加速度吋, 所述动力主轴 120会与所述固 定架 30之间产生扭转力矩并产生相对位移, 所述万向节机构 24将这一相对位移 传递到与所述动力主轴 120垂直的第一传动轴 42和所述第二传动轴 52上, 并带动 所述第一螺旋桨 40和所述第二螺旋桨 50气动攻角的变化, 进而产生控制力矩, 从而实现对飞行器俯仰和横滚两个自由度的控制。
[0061] 在该实施例中, 所述万向节机构 24为普通万向节、 准等速万向节、 等速万向节 、 十字轴式万向节、 双联式万向节、 三轴式万向节、 球笼式万向节、 球差式万 向节或者绕性万向节。 在其他实施例中, 所述万向节机构 24也可以是其他类型 的万向节, 此处不一一枚举。
[0062] 请参照图 4和图 5, 进一步地, 所述动力传递组件 20还包括与所述动力输入轴 21 同轴固定连接的第一齿轮 26、 转动安装于所述第一输出轴 22上的第二齿轮 27以 及固定安装于所述第二输出轴 23上并与所述第二齿轮 27位于所述第一齿轮 26相 对两侧的第三齿轮 28, 所述第二齿轮 27和所述第三齿轮 28与所述第一齿轮 26啮 合。 所述第一传动轴 42、 所述第一输出轴 22、 所述第二齿轮 27、 所述第三齿轮 2 8、 所述第二输出轴 23和所述第二传动轴 52同轴设置, 所述第二齿轮 27和所述第 三齿轮 28相对设置于所述第一齿轮 26的两侧并均与所述第一齿轮 26啮合。 所述 第一输出轴 22与所述第二齿轮 27固定连接且与所述第二齿轮 27的转动轴同轴, 所述第二输出轴 23穿过所述第三齿轮 28并与第二传动轴 52同轴固定连接, 所述 第三齿轮 28与所述第二输出轴 23可相对转动。 在该实施例中, 所述第一输出轴 2 2和所述第二输出轴 23为同一轴的两段。
[0063] 所述伺服装置 10的动力主轴 120产生角加速度吋, 所述动力主轴 120会与所述固 定架 30之间产生扭转力矩并产生相对位移, 所述第一齿轮 26与所述第二齿轮 27 和所述第三齿轮 28啮合并将这一相对位移传递到与所述动力主轴 120垂直的第一 传动轴 42和所述第二传动轴 52上, 并带动所述第一螺旋桨 40和所述第二螺旋桨 5 0气动攻角的变化, 进而产生控制力矩, 从而实现对飞行器俯仰和横滚两个自由 度的控制。
[0064] 在该实施例中, 所述动力传递组件 20可以是其他类型的联轴器或者柔性抗疲劳 材料。
[0065] 请参照图 1至图 5以及图 9, 进一步地, 所述伺服装置 10包括: [0066] 电机 12, 具有所述动力主轴 120;
[0067] 旋转位置传感器 14, 固定连接于所述电机 12并用于检测所述电机 12转动的相对 位置;
[0068] 控制系统 16, 接收所述旋转位置传感器 14的相对位置信号并控制所述电机 12, 以使所述电机 12的角加速度产生周期性变化。
[0069] 本发明实施例提供的旋翼控制装置通过使用一个电机 12完成对飞行器俯仰和横 滚姿态的控制, 不但减轻了重量和制造成本, 大大延长了续航时间, 并可搭载 更大的有效载荷, 同时还提高了可靠性。
[0070] 本发明实施例提供的旋翼控制装置利用控制系统 16使电机 12产生周期性变化的 角加速度, 该变化的角加速度使得所述电机 12主轴与所述固定架 30之间的力矩 变化, 而由于所述电机 12主轴与所述固定架 30之间通过所述柔性元件 50相连接 , 这样, 力矩变化会使所述电机 12的动力主轴 120与所述固定架 30之间产生相对 位移, 这一相对位移通过动力传递组件 20传递至所述第一输出轴 22和所述第二 输出轴 23, 并通过与所述第一输出轴 22固定连接的第一传动轴 42以及与所述第 二输出轴 23固定连接的第二传动轴 52直接改变所述第一螺旋桨 40和所述第二螺 旋桨 50的桨距。
[0071] 在该实施例中, 所述旋转位置传感器 14可以获取所述第一螺旋桨 40和所述第二 螺旋桨 50相对飞行器坐标系的位置信号, 所述旋转位置传感器 14为磁传感器、 霍尔传感器或者光电码盘。
[0072] 请参照图 1至图 5以及图 9, 进一步地, 所述控制系统 16包括姿态控制器 162和电 机控制器 164;
[0073] 所述姿态控制器 162接收飞行员的命令信号和来自惯性量测单元 15的飞行器姿 态信号, 根据预先设定的程序算法生成一控制指令并将所述控制指令发送给电 机控制器 164;
[0074] 所述电机控制器 164接收所述姿态控制器 162的控制指令和所述旋转位置传感器 14提供的位置信号, 并生成驱动所述电机 12运转的驱动信号, 所述驱动信号与 所述电机控制器 164驱动所述电机 12的固有驱动信号叠加以控制所述第一螺旋桨 40和所述第二螺旋桨 50的桨距变化。 [0075] 在该实施例中, 驱动所述电机 12运转的驱动信号包括维持飞行器平均升力的平 均转速信号以及控制飞行器俯仰和横滚姿态的使所述电机 12产生周期性角加速 度变化的信号。
[0076] 请参照图 6至图 8, 进一步地, 所述驱动信号为一正弦驱动信号, 匀速转动的所 述电机 12接收到所述正弦驱动信号而发生周期性角加速度变化; 所述正弦驱动 信号的相位决定了所述桨距变化于所述飞行器坐标系中的位置。
[0077] 在该实施例中, 所述正弦驱动信号与所述固有驱动信号叠加, 当匀速转动的电 机 12接收到该正弦驱动信号时, 所述电机 12的转速会产生周期性的变化, 这种 转速变化会产生角加速度的变化, 而角加速度的变化会使通过所述柔性元件 50 连接的所述动力主轴 120与所述固定架 30之间产生力矩变化, 这样, 所述动力主 轴 120与所述固定架 30之间会产生相对位移 , 这一相对位移通过动力传递组件 20 传递至所述第一输出轴 22和所述第二输出轴 23, 并通过与所述第一输出轴 22和 所述第二输出轴 23固连的所述第一传动轴 42和所述第二传动轴 52直接改变了所 述第一螺旋桨 40和所述第二螺旋桨 50的桨距。
[0078] 该正弦驱动信号的幅值决定了桨距变化的大小, 从而决定了作用于所述飞行器 上控制力矩的大小。 所述正弦驱动信号的相位决定了控制力矩作用于所述飞行 器上的方向, 即飞行器控制力矩的大小和方向可控, 从而实现了对飞行器俯仰 和横滚两个自由度的控制。 同吋, 该正弦驱动信号的相位决定了所述第一螺旋 桨 40和所述第二螺旋桨 50桨距变化在飞行器坐标系中的位置。
[0079] 在其他实施例中, 所述驱动信号可以是任意方式的信号, 以使电机能产生所需 大小的角加速度为准。
[0080] 以下以一个工作周期 (即所述第一螺旋桨 40旋转 360°) 为例说明该旋翼控制装 置的工作方式:
[0081] 图 6为本发明实施例提供的旋翼控制装置的俯视图, 图中将所述飞行器分为如 图所示的四个象限, 这四个象限视为飞行器坐标系, 在该飞行器坐标系中, 规 定所述第一螺旋桨 40轴线与所述第一象限起始位置的夹角 A为电机控制器 164的 位置参考值, 运动过程中, 所述第一螺旋桨 40沿逆吋针方向旋转且与起始位置 的夹角 A变化范围为 -45°-315°。 假设所述飞行器需要向前飞行, 此吋所述电机 12 接收到所述电机控制器 164的驱动信号后而发生角加速度变化如图 7的曲线所示
[0082] 请参照图 6至图 8, 当所述第一螺旋桨 40的轴线与起始位置的夹角 A小于 135°时 , 所述电机 12的角加速度为正值, 此吋, 所述动力主轴 120与所述固定架 30之间 产生正向位移, 该正向位移由动力传递组件 20传递至所述第一输出轴 22和所述 第二输出轴 23, 再由与所述第一输出轴 22和所述第二输出轴 23相固连的第一传 动轴 42和所述第二传动轴 52传递至所述第一螺旋桨 40的第一叶片 44和所述第二 螺旋桨 50的第二叶片上, 所述第一螺旋桨 40的桨距为负值, 而所述第二螺旋桨 5 0的桨距为正值。 由于当所述第一螺旋桨 40与起始位置的夹角 A在 135°以内时, 所述第一螺旋桨 40的桨距均为负值, 所述第二螺旋桨 50的桨距均为正值, 因此 , 位于所述第一象限和所述第二象限的第一螺旋桨 40会产生向下的升力, 而位 于所述第三象限和所述第四象限的第二螺旋桨 50会产生向上的升力, 这样, 所 述飞行器会受到一合力向前方的扭转力矩。
[0083] 请参照图 6至图 8, 当所述第一螺旋桨 40的轴线与起始位置的夹角 A为 135°吋, 所述电机 12的角加速度为零, 所述动力主轴 120与所述固定架 30之间不存在相对 位移, 此时, 所述第一螺旋桨 40和所述第二螺旋桨 50的桨距均为零, 因此, 所 述第一螺旋桨 40和所述第二螺旋桨 50所产生的升力大小和方向均相同。
[0084] 请参照图 6至图 8, 当所述第一螺旋桨 40的轴线与起始位置的夹角 A位于 135°与 3 15°之间吋, 所述电机 12的角加速度为负值, 此时, 所述动力主轴 120与所述固定 架 30之间产生负向位移, 该负向位移由动力传递组件 20传递至所述第一输出轴 2 2和所述第二输出轴 23 , 再由与所述第一输出轴 22和所述第二输出轴 23相固连的 第一传动轴 42和所述第二传动轴 52传递至所述第一螺旋桨 40的第一叶片 44和所 述第二螺旋桨 50的第二叶片上, 所述第一螺旋桨 40的桨距为正值, 而所述第二 螺旋桨 50的桨距为负值。 由于当所述第一螺旋桨 40与起始位置的夹角 A在 135°以 内时, 所述第一螺旋桨 40的桨距均为正值, 所述第二螺旋桨 50的桨距均为负值 , 因此, 位于所述第一象限和所述第二象限的第二螺旋桨 50会产生向下的升力 , 而位于所述第三象限和所述第四象限的第一螺旋桨 40会产生向上的升力, 这 样, 所述飞行器会受到一合力向前方的扭转力矩。 [0085] 因此, 在一个工作周期内, 所述飞行器受到来自本发明实施例提供的旋翼控制 装置的一个合力向前方的扭转力矩, 在该扭转力矩的控制下飞行器即可完成向 前飞行的动作。
[0086] 本发明实施例提供的旋翼飞行器包括旋翼控制装置, 所述旋翼控制装置为上述 旋翼控制装置。 该实施例提供的旋翼控制装置与上述各实施例提供的旋翼控制 装置具有相同的结构和特征, 而且所起作用相同, 在此不赘述。
[0087] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。
[0088]

Claims

权利要求书
[权利要求 1] 一种旋翼控制装置, 其特征在于, 包括:
伺服装置, 设有动力主轴;
动力传递组件, 包括动力输入轴、 第一输出轴和第二输出轴, 所述第 一输出轴与所述第二输出轴同轴固定连接, 且与所述动力输入轴相垂 直, 所述动力输入轴与所述动力主轴固定连接; 固定架, 与所述动力主轴同轴连接;
沿所述固定架的径向同轴设置的第一螺旋桨和第二螺旋桨, 所述第一 螺旋桨固定于所述固定架上并与所述第一输出轴固定连接, 所述第二 螺旋桨固定于所述固定架上并与所述第二输出轴固定连接; 其中, 所 述第一螺旋桨的径向轴线与所述第一螺旋桨的转动轴线平行, 所述第 一螺旋桨的转动轴线与所述动力主轴垂直, 所述第二螺旋桨的径向轴 线与所述第二螺旋桨的转动轴线平行, 所述第二螺旋桨的转动轴线与 所述动力主轴垂直;
其中, 所述伺服装置产生的周期性旋转角加速度而导致了周期性的转 矩变化, 该周期性的转矩变化经所述动力传递组件传递至所述第一螺 旋桨和所述第二螺旋桨, 通过控制所述第一螺旋桨和所述第二螺旋桨 的桨距变化来实现对飞行器俯仰和横滚自由度的控制。
[权利要求 2] 如权利要求 1所述的旋翼控制装置, 其特征在于, 所述固定架包括固 定安装所述第一螺旋桨和所述第二螺旋桨的安装圆环以及设置于所述 安装圆环内并设有安装孔的支架部, 所述动力主轴穿过所述安装孔与 所述动力输入轴固定连接。
[权利要求 3] 如权利要求 2所述的旋翼控制装置, 其特征在于, 还包括限制所述动 力主轴与所述固定架相对位移且为环状的柔性元件, 所述柔性元件固 定于所述动力主轴与所述安装孔的孔壁之间。
[权利要求 4] 如权利要求 2所述的旋翼控制装置, 其特征在于, 所述第一螺旋桨包 括固定安装于所述安装圆环上并与所述第一输出轴同轴固定连接的第 一传动轴以及与所述第一传动轴固定连接的第一叶片; 所述第二螺旋 桨包括固定安装于所述安装圆环上并与所述第二输出轴同轴固定连接 的第二传动轴以及与所述第二传动轴固定连接的第二叶片。
[权利要求 5] 如权利要求 1所述的旋翼控制装置, 其特征在于, 所述动力传递组件 还包括具有动力输入端和动力输出端的万向节机构以及与所述万向节 机构连接并设有所述第一输出轴和所述第二输出轴的安装框, 其中, 所述动力输入轴设置于所述万向节机构的动力输入端, 所述第一输出 轴设置于所述万向节机构的动力输出端。
[权利要求 6] 如权利要求 5所述的旋翼控制装置, 其特征在于, 所述万向节机构为 普通万向节、 准等速万向节、 等速万向节、 十字轴式万向节、 双联式 万向节、 三轴式万向节、 球笼式万向节、 球差式万向节或者绕性万向 节。
[权利要求 7] 如权利要求 1所述的旋翼控制装置, 其特征在于, 所述动力传递组件 还包括与所述动力输入轴同轴固定连接的第一齿轮、 转动安装于所述 第一输出轴上的第二齿轮以及固定安装于所述第二输出轴上并与所述 第二齿轮位于所述第一齿轮相对两侧的第三齿轮, 所述第二齿轮和所 述第三齿轮与所述第一齿轮啮合。
[权利要求 8] 如权利要求 1至 7任意一项所述的旋翼控制装置, 其特征在于, 所述伺 服装置包括:
电机, 具有所述动力主轴;
旋转位置传感器, 固定连接于所述电机并用于检测所述电机转动的相 对位置;
控制系统, 接收所述旋转位置传感器的相对位置信号并控制所述电机 , 以使所述电机的角加速度产生周期性变化。
[权利要求 9] 如权利要求 8所述的旋翼控制装置, 其特征在于, 所述控制系统包括 姿态控制器和电机控制器;
所述姿态控制器接收飞行员的命令信号和来自惯性量测单元的飞行器 姿态信号, 根据预先设定的程序算法生成一控制指令并将所述控制指 令发送给电机控制器; 所述电机控制器接收所述姿态控制器的控制指令和所述旋转位置传感 器提供的位置信号, 并生成驱动所述电机运转的驱动信号, 所述驱动 信号与所述电机控制器驱动所述电机的固有驱动信号叠加以控制所述 第一螺旋桨和所述第二螺旋桨的桨距变化。
[权利要求 10] 如权利要求 9所述的旋翼控制装置, 其特征在于, 所述驱动信号为一 正弦驱动信号, 匀速转动的所述电机接收到所述正弦驱动信号而发生 周期性角加速度变化; 所述正弦驱动信号的相位决定了所述桨距变化 于所述飞行器坐标系中的位置。
[权利要求 11] 如权利要求 8所述的旋翼控制装置, 其特征在于, 所述旋转位置传感 器为磁传感器、 霍尔传感器或者光电码盘。
[权利要求 12] —种旋翼飞行器, 包括旋翼控制装置, 其特征在于, 所述旋翼控制装 置为如权利要求 1至 11任意一项所述的旋翼控制装置。
PCT/CN2016/085377 2015-06-10 2016-06-08 旋翼控制装置及旋翼飞行器 WO2016197964A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510317553.4 2015-06-10
CN201510317553.4A CN104973242B (zh) 2015-06-10 2015-06-10 旋翼控制装置及旋翼飞行器

Publications (1)

Publication Number Publication Date
WO2016197964A1 true WO2016197964A1 (zh) 2016-12-15

Family

ID=54270320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085377 WO2016197964A1 (zh) 2015-06-10 2016-06-08 旋翼控制装置及旋翼飞行器

Country Status (2)

Country Link
CN (1) CN104973242B (zh)
WO (1) WO2016197964A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104973242B (zh) * 2015-06-10 2017-10-20 胡家祺 旋翼控制装置及旋翼飞行器
CN105059536B (zh) * 2015-08-07 2018-01-02 胡家祺 变螺距旋翼装置以及多旋翼飞行器
CN108528698B (zh) * 2018-03-07 2020-01-21 芜湖翼讯飞行智能装备有限公司 一种无人机旋翼调整结构
CN109085844A (zh) * 2018-07-23 2018-12-25 郑哲楷 一种航模的控制系统
CN109455295B (zh) * 2018-11-07 2023-09-12 杭州翼能科技有限公司 旋翼控制装置及旋翼飞行器
CN113212746B (zh) * 2021-05-24 2022-08-09 四川迅联达智能科技有限公司 一种移轴反转双旋翼飞行器
CN113895611B (zh) * 2021-11-18 2023-04-07 福州大学 全驱万向四旋翼飞行器及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201454087U (zh) * 2009-07-24 2010-05-12 孙楚 二叶恒速变距螺旋桨
KR101110608B1 (ko) * 2009-07-17 2012-02-15 호남시트주식회사 모형 헬리콥터의 로터헤드장치
CN102458986A (zh) * 2009-05-06 2012-05-16 K4A有限责任公司 用于直升机旋翼的恒速接头
CN203652108U (zh) * 2013-11-26 2014-06-18 无锡市明珠烤漆厂 垂直升降低空民用旋翼机机顶桨伸缩传动机构
KR20140079174A (ko) * 2012-12-18 2014-06-26 한국항공우주연구원 프로펠러 블레이드 피치조절장치
CN104973242A (zh) * 2015-06-10 2015-10-14 胡家祺 旋翼控制装置及旋翼飞行器
CN204979224U (zh) * 2015-06-10 2016-01-20 胡家祺 旋翼控制装置及旋翼飞行器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2902894Y (zh) * 2006-03-16 2007-05-23 武汉大学 一种翼片倾角可调的旋翼
FR2927880B1 (fr) * 2008-02-27 2010-08-20 Eurocopter France Helicoptere muni d'une pluralite d'elements sustentateurs pourvu d'un volet pour commander l'incidence de ses pales
US9068818B2 (en) * 2010-02-24 2015-06-30 Sikorsky Aircraft Corporation Drive mechanisms for variable diameter rotor systems
CN103661926B (zh) * 2013-12-24 2016-09-28 深圳市大疆创新科技有限公司 变螺距装置和应用该装置的旋翼套件及多旋翼飞行器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102458986A (zh) * 2009-05-06 2012-05-16 K4A有限责任公司 用于直升机旋翼的恒速接头
KR101110608B1 (ko) * 2009-07-17 2012-02-15 호남시트주식회사 모형 헬리콥터의 로터헤드장치
CN201454087U (zh) * 2009-07-24 2010-05-12 孙楚 二叶恒速变距螺旋桨
KR20140079174A (ko) * 2012-12-18 2014-06-26 한국항공우주연구원 프로펠러 블레이드 피치조절장치
CN203652108U (zh) * 2013-11-26 2014-06-18 无锡市明珠烤漆厂 垂直升降低空民用旋翼机机顶桨伸缩传动机构
CN104973242A (zh) * 2015-06-10 2015-10-14 胡家祺 旋翼控制装置及旋翼飞行器
CN204979224U (zh) * 2015-06-10 2016-01-20 胡家祺 旋翼控制装置及旋翼飞行器

Also Published As

Publication number Publication date
CN104973242A (zh) 2015-10-14
CN104973242B (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2016197964A1 (zh) 旋翼控制装置及旋翼飞行器
CN211918983U (zh) 用于交通工具的推力发生旋翼总成
EP3594117B1 (en) Canted co-axial rotors for a rotorcraft
US20200010182A1 (en) Pivoting wing system for vtol aircraft
US6719244B1 (en) VTOL aircraft control using opposed tilting of its dual propellers or fans
CN101433766B (zh) 遥控模型直升机平衡系统
CN107215454B (zh) 一种新型复合滚转姿态控制系统及方法
WO2017024623A1 (zh) 变螺距旋翼装置以及多旋翼飞行器
CN102083687A (zh) 三叶下部机翼型飞行体
CN204895843U (zh) 多轴飞行器
CN106477032A (zh) 多轴飞行器
JP6536043B2 (ja) 飛行体
CN110254703B (zh) 一种倾转双旋翼自动悬停t型无人机系统
CN110171568A (zh) 一种可悬停扑翼飞行器
US11822348B2 (en) Flight vehicle and method of controlling flight vehicle
CN104843177A (zh) 飞行器
CN109455295B (zh) 旋翼控制装置及旋翼飞行器
CN204979224U (zh) 旋翼控制装置及旋翼飞行器
JP6618000B1 (ja) 電子部品及び当該電子部品を取り付けた飛行体
CN107908193B (zh) 一种非平面式八旋翼全向飞行器及控制方法
JP5023330B2 (ja) 回転翼機構、該回転翼機構を用いた発電装置、並びに移動装置
CN112520026A (zh) 一种新型变体飞行器
CN108427432B (zh) 一种非平面式三旋翼飞行器及控制方法
JP4702882B2 (ja) 小型回転翼機
JPWO2020169686A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 24.05.18

122 Ep: pct application non-entry in european phase

Ref document number: 16806862

Country of ref document: EP

Kind code of ref document: A1