WO2009050310A1 - Cierres pelables a base de poliolefina - Google Patents

Cierres pelables a base de poliolefina Download PDF

Info

Publication number
WO2009050310A1
WO2009050310A1 PCT/ES2007/070175 ES2007070175W WO2009050310A1 WO 2009050310 A1 WO2009050310 A1 WO 2009050310A1 ES 2007070175 W ES2007070175 W ES 2007070175W WO 2009050310 A1 WO2009050310 A1 WO 2009050310A1
Authority
WO
WIPO (PCT)
Prior art keywords
closure
peelable
propylene
plastomer
elastomer
Prior art date
Application number
PCT/ES2007/070175
Other languages
English (en)
French (fr)
Inventor
Eva-Maria Kupsch
Kurt Kronawittleithner
Maria I. Arroyo Villan
Original Assignee
Dow Global Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Inc. filed Critical Dow Global Technologies Inc.
Priority to PCT/ES2007/070175 priority Critical patent/WO2009050310A1/es
Priority to CN2007801020388A priority patent/CN101903457A/zh
Priority to BRPI0721999-7A2A priority patent/BRPI0721999A2/pt
Priority to JP2010529417A priority patent/JP2011501775A/ja
Priority to EP07823069A priority patent/EP2204409A1/en
Publication of WO2009050310A1 publication Critical patent/WO2009050310A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging

Definitions

  • the invention consists of a heat sealable and peelable polyolefin based closure that has good optical characteristics.
  • the invention also consists of methods for making and using heat sealable and peelable closures.
  • Heat sealable and peelable films are used on a large scale in containers with temporary closure, including, for example, food product containers and medical devices. During use, the consumer detaches the peelable film. In order to obtain consumer acceptance, some characteristics associated with a heat sealable and peelable film are desired. For example, the film should provide a leak-proof closure for the bag or container. A thermal seal is commonly used to seal a bag.
  • Various devices have been constructed in order to form bags while they are filled simultaneously with the desired content. These devices are commonly known as vertical forming-filling-sealing machines and horizontal forming-filling-sealing machines.
  • hot tack The ability of an adhesive or sealant layer to resist deformation of the closure while it is still in a hot or molten state is generally referred to as "hot tack" or hot stamping integrity.
  • hot sealing integrity of the sealable and peelable film must be adequate.
  • a wide sealing time margin also allows high-speed packaging of heat-sensitive products, as well as allows some degree of tolerance to changes in packing or filling speeds.
  • the film should also have the desired "peelable” feature that is necessary to provide a container or bag with an easily open closure.
  • pelability consists in the ability to separate two materials or substrates at the time of opening a package, without compromising the integrity of those materials or substrates.
  • the force required to release a seal is called “sealing force” or “thermal sealing force”, which can be measured in accordance with ASTM F88-94.
  • the desired sealing force varies depending on the specific applications of the end user. Generally, it is desired that the sealing force be around 1-9 pounds per inch for flexible packaging applications such as cereal bags, snack food packages, tubular cookie packages and the cake mix bags.
  • a sealing force of approximately 2-3 pounds per inch is commonly specified, although the specific force varies depending on individual manufacturing requirements.
  • a sealable and peelable film can also be used in rigid packaging applications, such as lids for certain foods (for example, pudding containers) and medical devices. Typical rigid gaskets have an approximate sealing force of 1-5 pounds per inch.
  • the closure layer can be in the lid or in the container or in both parts.
  • a heat sealable and peelable film are a low coefficient of friction and good resistance to abuse.
  • a low coefficient of friction ensures that the sealant layer can be processed efficiently and without problems in manufacturing and packaging equipment, and is particularly important for packaging in vertical forming, filling and sealing machines.
  • Good resistance to abuse and Tenacity are desirable, for example, in cereal box bags to withstand tears and perforations caused by irregularly shaped rigid cereals.
  • Many peelable closures are resealable, that is, the gasket can be resealed after opening. In some applications it is important to be able to detect when the package has been opened to indicate, for example, that a package has been subject to improper handling.
  • Heat sealable and peelable films are generally manufactured from one or more polymeric resins.
  • the resulting characteristics of a heat sealable and peelable film depend largely on the type of resins used to form the film.
  • ethylene vinyl acetate (EVA) and ethylene methyl acrylate (EMA) copolymers provide excellent heat sealing properties.
  • EVA ethylene vinyl acetate
  • EMA ethylene methyl acrylate
  • the closures produced with these copolymers are so strong that it is usually not possible to release the closure without damaging the film.
  • polybutylene is mixed with an EVA polymer with a view to producing a heat sealable and peelable film.
  • the heat sealable and peelable film emits a certain unpleasant smell due to the presence of EVA.
  • ionomers such as SURL YN®
  • EVA ethylene glycol dimethacrylate
  • some fibrous filament formation or tearing of fibers is caused by separating the film.
  • ionomers are generally expensive and can give off a characteristic odor.
  • WO2007 / 044159 presents stripping closures that meet many of these objectives.
  • This reference shows mixtures of approximately 5% to 98% by weight of elastomers or plastomers based on propylene with a second particular polymer of a group consisting preferably of polyethylene and stretch polymers.
  • the stripping closures have better optical properties, in particular with respect to the low amounts of total mist that can be observed.
  • Figure 1 is a bar graph showing the mist of blown films of 50 microns with variations in the proportion of resin A with respect to resin B as described in Example 1.
  • Figure 2 is a graph illustrating the thermal sealing forces of a 50-50 mixture of PBPE / LDPE with various sealing temperatures in a variety of materials as described in Example 2.
  • polymer refers to a polymer compound prepared by polymerizing monomers, whether of the same type or of a different type.
  • polymer encompasses the term “homopolymer.” which is usually used when talking about polymers prepared from a single type of monomer, as well as “copolymer” that refers to polymers prepared from two or more different monomers.
  • low density polyethylene may also be referred to as "LDPE", by its acronym, “high pressure ethylene polymer” or “highly branched polyethylene” and is defined as meaning that the polymer is partially or fully homopolymerized or copolymerized in autoclave reactors or tubular reactors at pressures greater than 14,500 psi (100 MPa) through the use of free radical initiators such as peroxides (see, for example, US Patent 4,599,392, incorporated herein by reference ).
  • LDPE low density polyethylene
  • high pressure ethylene polymer or “highly branched polyethylene” and is defined as meaning that the polymer is partially or fully homopolymerized or copolymerized in autoclave reactors or tubular reactors at pressures greater than 14,500 psi (100 MPa) through the use of free radical initiators such as peroxides (see, for example, US Patent 4,599,392, incorporated herein by reference ).
  • MWD molecular weight distribution
  • M w and M n are determined according to the methods known in this field using conventional gel permeation chromatography (GPC).
  • the ratio Mw (absolute) / Mw (GPC) is defined in which the Mw (absolute) is the weight average molecular weight derived from the low angle light scattering area (for example, 15 degrees) and an injected mass of polymer, and Mw (GPC) is the weight average molecular weight obtained from calibration with gel permeation chromatography (GPC).
  • the light scattering detector is calibrated to obtain the average molecular weight in equivalent weight as the GPC instrument for a linear polyethylene homopolymer standard such as, for example, NBS 1475.
  • melt strength which is also referred to in the relevant field as “melt tension” is defined and quantified in this document with the meaning of tension or force (such as that applied by a winding drum equipped with a tensioning element) required to extract a molten extruded material at a drag rate at which the melt strength reaches a plateau value before the breaking rate above its melting point when passing through a die of a plastomer standard, as described in ASTM D1238-E.
  • the melt strength values presented here in centinewtons (cN) are determined using a Gottfert Rheotens unit at 190 0 C. This invention relates to a mixture of at least two components; mixtures that are particularly suitable for use in the manufacture of a peelable closure.
  • the first component in the mixtures of this invention is a plastomer or elastomer based on propylene or "PBPE".
  • PBPE propylene
  • These materials comprise at least one copolymer with at least 50% by weight of units derived from propylene and at least 5% by weight of units derived from a comonomer other than propylene, preferably ethylene.
  • Suitable elastomers and / or plastomers based on propylene are presented in WO2006 / 115839, WO03 / 040442 and WO / 2007/024447, each of which is incorporated by reference in its entirety with this mention.
  • PBPEs that are suitable for reactors and have a molecular weight distribution of less than 3.5 are particularly interesting for use in this invention.
  • the author intends to use the term "suitable for reactors" as defined in US Patent 6,010,588 and this term generally refers to a polyolefin resin whose molecular weight distribution (MWD) or polydispersity has not been substantially altered after polymerization.
  • the preferred PBPE will have a heat of fusion (as determined using the DSC method of differential scanning calorimetry described in US patent application 60/709688) of less than an approximate value of 90 joules / g, preferably an approximate value of less than 70 joules / g and more preferably an approximate value of less than 50 joules / g.
  • the PBPE has approximately 3 to 15% ethylene or approximately 5 to 14% ethylene or approximately 7 to 12% ethylene, by weight of the propylene-based elastomer or plastomer.
  • the remaining units of the propylene copolymer are derived from at least one comonomer such as ethylene, a C4-20 ⁇ -olefin, a C4-20 diene, a styrenic compound and similar components, preferably the comonomer is at least one of ethylene and a C 4- I 2 ⁇ -olefin, such as 1-hexene or 1-octene. It is preferred that the remaining units of the copolymer are derived solely from ethylene.
  • the amount of comonomer that does not come from ethylene in the propylene-based elastomer or plastomer varies, at least in part, depending on the comonomer and the desired heat of fusion of the copolymer. If the comonomer is ethylene, then typically the comonomer derived units comprise no more than about 15% of the weight of the copolymer. The minimum amount of ethylene derived units is typically at least 3%, preferably at least about 5% and more preferably at least about 9% by weight based on the weight of the copolymer.
  • the preferred composition would have a heat of fusion that would approximate the margins of a propylene-ethylene copolymer with about 3 to 20% of the weight of ethylene.
  • the propylene-based elastomer or plastomer of this invention can be obtained by any process and includes co-polymers made by catalysis with Ziegler-Natta catalysts, CGC catalysts (restricted geometry catalysts), metallocene catalysts and metal-centered heteroaryl ligand catalysis, not metallocene.
  • These copolymers include random copolymers, block copolymers and graft copolymers, although preferably the copolymers have a random configuration.
  • Exemplary propylene copolymers include VISTAMAXX polymer from Exxon-Mobil and VERSIFY propylene / ethylene elastomers and plastomers from The Dow Chemical Company.
  • the density of the propylene-based elastomers or plastomers of this invention typically has an approximate value of at least 0.850 g / cm 3 , may have an approximate value of at least 0.860 g / cm 3 and may also have an approximate value of at minus 0.865 g / cm 3 , measured in accordance with ASTM D-792.
  • the density should have an approximate value of less than 0.89 g / cc.
  • the lower the density the lower the fog, but the use of a lower density material may cause the material to cease to be a "peelable"closure; therefore, it is necessary to balance these properties.
  • the weight average molecular weight (M w ) of the propylene-based elastomers or plastomers of this invention can vary widely, but is usually between 10,000 and 1,000,000 (it being understood that the only limit to the maximum or minimum M w value is the which is fixed by practical considerations).
  • M w weight average molecular weight
  • the minimum M w has an approximate value of 20,000, although more preferably it is set at around 25,000.
  • M w of the elastomer or plastomer based on propylene it is considered desirable to match the M w of the elastomer or plastomer based on propylene with the M w of the LDPE, in the sense that if an LDPE of lower M w is used, a PBPE of smaller M w should also be used.
  • the polydispersity of the propylene-based elastomers or plastomers of this invention typically has an approximate value between 2 and 5. In general, to obtain low fog, it is preferred to use materials having a narrow polydispersity.
  • the terms "narrow polydispersity,”"narrow molecular weight distribution,””narrowMWD” and similar terms mean a ratio (M w / M n ) of weight average molecular weight (M w ) to the number average molecular weight ( M n ) of less than about 3.5, although this ratio may be less than about 3.0, also less than about 2.8 and also less than about 2.5.
  • the PBPEs used in this invention have a flow rate (MFR) between 0.5 and 2,000 g / lOmin, preferably between 1 and 1,000, more preferably between about 2 and 500 and more preferably even between 2 and About 40
  • MFR melt index
  • the melt index (MFR) that is selected in particular will depend in part on the intended methods of manufacturing, such as blown film processes, extrusion coating, sheet extrusion, injection molding or molten film.
  • the melt index (MFR) for propylene and ethylene copolymers and / or one or more C4-C20 ⁇ -olefins is measured in accordance with ASTM D-1238, with conditions L (2.16 kg, 23O 0 C) .
  • the Mw value (grams per mole) was measured using gel permeation chromatography.
  • the general mixtures used in this invention will also comprise a low density polyethylene (LDPE).
  • LDPE low density polyethylene
  • the preferred LDPE for this invention has a melt index (I 2 ) (determined according to ASTM D 1238, with conditions of 190 ° C / 2.16 kg) between approximately 0.2 and 100 g / 10 minutes. More preferably the melt index is greater than an approximate value of 0.2 g / 10 minutes, with the most preferable value being 0.5 g / 10 minutes.
  • the melt index is preferably less than 50 g / 10 minutes, more preferably less than 20 g / 10 minutes, with an approximate value below 10 g / 10 minutes being most preferable.
  • the preferred LDPE will also have a density (as determined according to ASTM D792) between 0.915 and 0.930 g / cc, preferably between 0.915 and 0.925 g / cc.
  • a density as determined according to ASTM D792
  • ASTM D792 ASTM D792
  • Such an LDPE can be manufactured in a tubular reactor as it is generally referred to in this field.
  • the second component of this invention may also include mixtures of LDPE / LDPE, for example, mixtures in which one of the LDPE resins has a relatively higher melt index and the other has a lower melt index and is more highly branched. , although if it is desired to obtain a small amount of mist it is not convenient to use highly branched materials such as those typically produced in an autoclave reactor.
  • a component with a higher melt index can be obtained using a tubular reactor and another component of the mixture can be added that has a lower melt index and is more highly branched in a separate extrusion step or using a tubular reactor or a parallel autoclave reactor in combination with special methods to control the melt index of each reactor such as, for example, the recovery of telomeres in the recycle stream or the addition of fresh ethylene to the autoclave reactor or by other methods known in this countryside.
  • both homopolymers and high pressure ethylene copolymers are considered useful in this invention, homopolymer polyethylene is generally preferred.
  • the PBPE will ideally comprise at least an approximate value of 45% by weight of the mixture used to make the peelable closure, with at least 48% or about 50% being preferred for certain applications.
  • the PBPE should not comprise more than 55% by weight of the mixture used to make the peelable closure, with no more than 52% being preferred for certain applications. Therefore, the PBPE will ideally comprise at least an approximate value of 45% by weight of the mixture used to make the peelable closure, with at least 48% or about 50% being preferred for certain applications.
  • LDPE should not comprise more than 55% by weight of the mixture used to make the peelable closure, with no more than 52% being preferred for certain applications.
  • mixtures composed of smaller amounts of LDPE may be preferred, for example, less than about 50% or even less than 47 %.
  • the closures of this invention can be produced by any process such as, for example, blown film, sheet extrusion, injection molding, molten film or extrusion coating processes.
  • the peelable closure layer can be produced with the desired thickness, for example from 1 millimeter to 3 mm.
  • the sealant layer can be used as a monolayer, but more typically it will be a layer with a multilayer structure, for example, a 10 micron sealant layer with a 30 micron support layer.
  • peelable closures made from the mixtures described in this invention will have a sealing force of about 1.5 to 10 N / 15mm, preferably 2.0 to 8 N / 15 mm, as determined using a Kopp heat sealer with a sealing time of 0.5 second and a sealing bar pressure of 0.5 N / mm 2 .
  • the sealing force is measured after at least 24 hours of maturation in 15 mm wide samples separated at 100 mm / minute in the machine direction pulled by a Lloyds tensile tester.
  • the stripping closures of this invention will have a heat seal initiation temperature of less than 14O 0 C, preferably less than 13O 0 C, it being more preferable to have less than
  • the heat seal start temperature is defined as the minimum temperature at which a mature seal strength of 1.0 N / 15 mm is obtained using the Kopp heat sealer and the Lloyds tensile tester, as described previously.
  • the "haze” of the resulting closures refers to the total haze (that is, the internal haze plus the external haze) and is determined according to ISO 14782. As is known in this field, the total haze value will depend on the thickness of the film being measured. Thus, for the purposes of this application, mist values "equivalents" reported will be based on a 50 micron film or closure thickness. A film or closure having a thickness greater than 50 microns will have a total observed mist value slightly higher than its equivalent mist, while a film or closure that is less than 50 microns will have an observed total mist value slightly less than its equivalent mist.
  • the closures of this invention should have a mist value of 8% or less, more preferably 6% or less, or, even more preferably, 5% or less.
  • composition of this invention may also contain various additives as is generally known in this field.
  • additives include antioxidants, ultraviolet light stabilizers, thermal stabilizers, gliding agents, anti-blocking agents, pigments or dyes, auxiliary processing materials (such as fluoropolymers, for example), crosslinking catalysts, flame retardants, fillers, foaming agents, etc.
  • the stripping closures of this invention can be sealed against any conceivable surface.
  • the peelable closures of this invention can be sealed with various polypropylene materials (including homopolymer polypropylene, random copolymer polypropylene, impact copolymer polypropylene, polypropylene-based elastomer or plastomer, etc.) , various polyethylene materials (including homopolymer and copolymer materials such as high density polyethylene, low density polyethylene, linear low density polyethylene "LLDPE” (which includes linear and substantially linear LLDPE that has a narrow distribution of molecular weight, such as those prepared using metallocene catalysts), ultra low density polyethylene, etc., or with themselves.
  • polypropylene materials including homopolymer polypropylene, random copolymer polypropylene, impact copolymer polypropylene, polypropylene-based elastomer or plastomer, etc.
  • various polyethylene materials including homopolymer and copolymer materials such as high density poly
  • PBPE by these examples was prepared according to the general teachings of WO2006 / 115839.
  • the blown film line used has a 60 mm diameter die.
  • the die nozzle opening measures 1.2 mm and the blowing ratio is 1: 2: 5.
  • the standard melting temperature was between 205 0 C and 210 0 C. All films were approximately 50 microns thick.
  • Figure 1 shows that the mist of the film made of a mixture / compound of 50% resin A with 50% resin B is ⁇ 5% significantly less than expected when compared to the 8% mist observed in the films of 50 microns made of a mixture / compound of 40% resin A and 60% resin B, or when compared with the haze of 7.5% observed in the 50 micron films made with 60% resin A and 40% of resin B and with 50 micron films made with 70% of resin A and 30% of resin B in which a mist of 8.9% was obtained.
  • the sealing force of the 50 micron film of a mixture / compound of 50% resin A and 50% resin B is measured with the film itself and with a blown film of 50 microns of resins C, D and E made in the same manner as described in example 1.
  • the sealing curves of the 50 microns film of a mixture / compound of 50% resin A and 50% of resin B show a sealing force between 2 N / 15 mm and 6 N / 15 mm in the temperature range of the sealing bar of 11O 0 C and 17O 0 C when sealed with itself, with a film of 50 microns made with resin C, and with a 50 micron film made with resin D.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

La invención consiste en un cierre sellable por calor y pelable a base de poliolefina en el que se han mejorado los valores de bruma. Los cierres pelables están integrados aproximadamente por entre 45 y 55% por peso de un elastómero o plastómero a base de propileno y aproximadamente por entre 45 y 55% por peso de polietileno de baja densidad. Estos cierres pelables exhiben valores totales de bruma inferiores a 8% en base a un espesor de película de 50 micras.

Description

CIERRES PELABLES A BASE DE POLIOLEFINA CAMPO DE LA INVENCIÓN
La invención consiste en un cierre sellable por calor y pelable a base de poliolefina que tiene buenas características ópticas. La invención también consiste en los métodos para hacer y usar cierres sellables por calor y pelables.
ANTECEDENTES Y RESUMEN DE LA INVENCIÓN
Las películas sellables por calor y pelables (también llamadas en este documento "cierres pelables") se emplean a gran escala en envases con cierre temporal, entre los que se incluyen, por ejemplo, los envases de productos alimenticios y dispositivos médicos. Durante su uso, el consumidor desprende la película pelable. Para obtener la aceptación del consumidor, se desean algunas características asociadas a una película sellable por calor y pelable. Por ejemplo, la película debería proporcionar un cierre a prueba de fugas para la bolsa o envase. Para sellar una bolsa se utiliza comúnmente un sellado térmico. Se han construido diversos aparatos con el fin de formar bolsas mientras éstas se llenan simultáneamente con el contenido deseado. Estos aparatos se conocen comúnmente con el nombre de máquinas formadoras-llenadoras-selladoras verticales y máquinas formadoras- llenadoras-selladoras horizontales.
Estas máquinas suelen tener manguitos o barras formadoras que modelan una pieza plana de película dándole la forma tubular de una bolsa. Las mordazas metálicas de sellado en caliente pasan de una posición abierta a una posición cerrada, entrando en contacto con la película con el fin de sellarla dándole la forma de bolsa. Durante el proceso de sellado, la capa exterior de la película entra en contacto directo con la superficie metálica caliente de las mordazas senadoras. De este modo, el calor se transfiere a través de la capa exterior de la película para derretir y fundir la capa sellante interior y formar un cierre. Por lo general, la capa exterior tiene una temperatura de fusión más alta que la capa sellante interior. Así, mientras la capa sellante interior se funde para formar un cierre, la capa exterior de la película no se funde ni se adhiere a las mordazas selladoras. Tras la reapertura de las mordazas selladoras, la película se enfría a temperatura ambiente.
Antes de enfriarse a temperatura ambiente la capa sellante interior ya debería poder preservar la integridad del cierre. La capacidad de una capa adhesiva o sellante de resistir la deformación del cierre mientras se encuentra todavía en estado caliente o fundido se denomina generalmente "hot tack" o integridad de sellado en caliente. Para formar un buen cierre, la integridad de sellado en caliente de la película sellable y pelable debe ser adecuada. Además de una integridad de sellado en caliente adecuada, también es deseable tener una baja temperatura de inicio del sellado térmico que contribuya a asegurar altas velocidades en la línea de empaque y un amplio margen de tiempo de sellado como una forma de tener en cuenta la variabilidad en las condiciones del proceso como, por ejemplo, la presión y la temperatura. Un amplio margen de tiempo de sellado también permite el empaque a alta velocidad de productos sensibles al calor, así como permite cierto grado de tolerancia a los cambios en las velocidades de empaque o llenado. Además de la característica "sellable" de una película sellable y pelable, la película también debería tener la característica "pelable" deseada que es necesaria para proporcionar a un envase o bolsa un cierre que pueda abrirse fácilmente. Por lo general, la pelabilidad consiste en la capacidad de separar dos materiales o sustratos en el momento de abrir un empaque, sin comprometer la integridad de esos materiales o sustratos. La fuerza requerida para desprender un cierre se denomina "fuerza de sellado" o "fuerza de sellado térmico", que puede medirse conforme a la norma ASTM F88-94. La fuerza de sellado deseada varía en función de las aplicaciones específicas del usuario final. Por lo general, se desea que la fuerza de sellado esté en torno a 1-9 libras por pulgada para las aplicaciones de empaque flexible como, por ejemplo, las bolsas de cereales, los empaques de alimentos tipo snack, los empaques tubulares de galletas y las bolsas de mezclas para pasteles. Por ejemplo, para las bolsas de caja de cereales de fácil apertura, se especifica comúnmente una fuerza de sellado aproximada de 2-3 libras por pulgada, aunque la fuerza específica varía en función de los requerimientos individuales de fabricación. Además de la aplicación de empaque flexible, también se puede usar una película sellable y pelable en aplicaciones de empaque rígido, como las tapas para ciertos alimentos (por ejemplo, envases para pudines) y dispositivos médicos. Los empaques rígidos típicos tienen una fuerza de sellado aproximada de 1-5 libras por pulgada. La capa del cierre puede estar en la tapa o en el envase o en ambas partes.
Otras características deseables de una película sellable por calor y pelable son un bajo coeficiente de rozamiento y una buena resistencia al abuso. Un bajo coeficiente de rozamiento asegura que la capa sellante pueda procesarse en forma eficiente y sin problemas en equipos de fabricación y envasado, y es particularmente importante para el envasado en máquinas formadoras, llenadoras y selladoras verticales. La buena resistencia al abuso y la tenacidad son deseables, por ejemplo, en bolsas de cajas de cereales para soportar desgarros y perforaciones causados por los cereales rígidos de forma irregular. Entre otras características están la conservación de sabores y olores, y las propiedades de barrera o transmisión. Muchos cierres pelables son resellables, es decir, el empaque puede volver a sellarse después de abierto. En algunas aplicaciones es importante poder detectar cuándo se ha abierto el envase para indicar, por ejemplo, que un envase ha sido objeto de manipulaciones indebidas.
Las películas sellables por calor y pelables se fabrican generalmente a partir de una o más resinas poliméricas. Las características resultantes de una película sellable por calor y pelable dependen en gran medida del tipo de resinas utilizadas para formar la película. Por ejemplo, los copolímeros de etileno-vinilo-acetato (EVA) y etileno-acrilato de metilo (EMA) proporcionan excelentes propiedades de sellado térmico. Sin embargo, los cierres producidos con estos copolímeros son tan fuertes que usualmente no es posible desprender el cierre sin dañar la película. Para paliar este problema, se mezcla polibutileno con un polímero EVA con miras a producir una película sellable por calor y pelable. Aunque se mejora la pelabilidad de la película, la película sellable por calor y pelable despide cierto olor desagradable debido a la presencia de EVA. Además de usar polibutileno, se mezclan algunos ionómeros como, por ejemplo, SURL YN®, con EVA para producir una película sellable por calor y pelable. En esos casos, aunque la película es pelable, se causa cierta formación de filamentos fibrosos o desgarro de fibras al separar la película. Además, por lo general los ionómeros son costosos y pueden despedir cierto olor característico.
Asimismo, los típicos sistemas de cierre pelable a base de EVA-polibutileno "maduran" en cuanto a la fuerza de sellado. En efecto, la fuerza de sellado aumenta con el paso del tiempo tras la formación del cierre. Esto se considera una desventaja en estos sistemas, porque los cierres que son seguros en el momento en que se forma el empaque aumentan su fuerza antes de llegar al consumidor, con lo cual resulta más difícil abrir el empaque.
En la Patente estadounidense n° 6.590.034 se describen cierres pelables hechos a partir de una mezcla de dos polímeros inmiscibles que forman una fase continua y una fase discontinua en la cual el valor absoluto del diferencial de la viscosidad de cizalla de los dos polímeros es inferior a 100%. Aunque en dicha patente se habla de muchos materiales posibles, esta referencia se centra en el uso de polipropileno homopolímero como la fase discontinua.
Si bien se ha empleado un cierto número de sistemas de resina para producir una película sellable por calor y pelable, sigue existiendo la necesidad de producir una película sellable por calor y pelable mejorada y con una buena relación coste-calidad que tenga la fuerza de sellado deseada durante el procesamiento y el transporte, así como en el momento de la apertura del empaque por parte del consumidor final. Es deseable que el sistema de resina utilizado para producir la película sellable por calor y pelable tenga una temperatura relativamente más baja de inicio del sellado y un margen de tiempo relativamente amplio para el sellado térmico. Asimismo, es deseable que la película sellable por calor y pelable sea relativamente resistente al envejecimiento y tenga un coeficiente de rozamiento relativamente más bajo y buena resistencia al abuso y tenacidad.
WO2007/044159 presenta cierres pelables que cumplen muchos de estos objetivos. Esta referencia muestra mezclas de aproximadamente entre 5% y 98% por peso de elastómeros o plastómeros a base de propileno con un segundo polímero particular de un grupo que consiste preferiblemente en polietileno y polímeros estíremeos. Sin embargo, para muchas aplicaciones, también se desea que los cierres pelables tengan mejores propiedades ópticas, en particular respecto a las bajas cantidades de bruma total que pueden observarse.
Se ha descubierto que ocurre un efecto sinérgico de baja bruma total en los cierres pelables hechos con elastómeros o plastómeros a base de propileno y polietileno de baja densidad en una mezcla en proporción aproximada de 50:50.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La Figura 1 es un gráfico de barras que muestra la bruma de películas sopladas de 50 mieras con variaciones en la proporción de resina A respecto a la resina B como se describe en el Ejemplo 1.
La Figura 2 es un gráfico que ilustra las fuerzas de sellado térmico de una mezcla 50- 50 de PBPE/LDPE con diversas temperaturas de sellado en una variedad de materiales como se describe en el Ejemplo 2.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN El término "polímero", según se usa en este documento, se refiere a un compuesto polimérico preparado por monómeros polimerizantes, bien sean del mismo tipo o de un tipo diferente. De este modo, el término genérico de polímero abarca el término "homopolímero" que suele emplearse al hablar de polímeros preparados a partir de un solo tipo de monómero, así como "copolímero" que hace referencia a los polímeros preparados a partir de dos o más monómeros diferentes.
El término "polietileno de baja densidad" también puede denominarse "LDPE", por su acrónimo, "polímero de etileno de alta presión" o "polietileno altamente ramificado" y se define con el significado de que el polímero es parcial o totalmente homopolimerizado o copolimerizado en reactores de autoclave o reactores tubulares a presiones superiores a 14.500 psi (100 MPa) mediante el uso de iniciadores de radicales libres como, por ejemplo, peróxidos (ver, por ejemplo, la Patente estadounidense 4.599.392, incorporada a este documento por referencia) .
El término distribución del peso molecular o "MWD", por sus siglas en inglés, se define como el ratio entre el peso molecular medio en peso y el peso molecular medio en número (Mw/Mn). Mw y Mn se determinan conforme a los métodos conocidos en este campo utilizando la cromatografía de permeación sobre gel convencional (GPC, por sus siglas en inglés).
Se define el ratio Mw(absoluto)/Mw(GPC) en el cual el Mw(absoluto) es el peso molecular medio en peso derivado del área de dispersión de luz a bajo ángulo (por ejemplo, 15 grados) y una masa inyectada de polímero, y el Mw(GPC) es el peso molecular medio en peso obtenido a partir de la calibración con cromatografía de permeación sobre gel (GPC). El detector de dispersión de luz se calibra para obtener el peso molecular medio en peso equivalente como el instrumento GPC para un estándar de homopolímero de polietileno lineal como, por ejemplo, NBS 1475.
La "resistencia del fundido" a la que también se le denomina en el campo relevante "tensión del fundido" se define y cuantifica en este documento con el significado de tensión o fuerza (como la que se aplica mediante un tambor de arrollamiento equipado con un elemento tensor) requerida para extraer un material extruido fundido a una velocidad de arrastre a la cual la resistencia del fundido llega a un valor de meseta antes del índice de ruptura por encima de su punto de fusión al pasar a través de un dado de un plastómero estándar, como el que se describe en la norma ASTM D1238-E. Los valores de resistencia del fundido que se presentan en este documento en centinewtons (cN) se determinan usando una unidad Gottfert Rheotens a 1900C. Esta invención se refiere a una mezcla de al menos dos componentes; mezclas que son particularmente adecuadas para su uso en la fabricación de un cierre pelable.
El primer componente en las mezclas de esta invención es un plastómero o elastómero a base de propileno o "PBPE". Estos materiales comprenden como mínimo un copolímero con al menos un 50% de peso de unidades derivadas de propileno y al menos un 5% de peso de unidades derivadas de un comonómero que no sea propileno, preferiblemente etileno. Los elastómeros y/o plastómeros adecuados a base de propileno se presentan en WO2006/115839, WO03/040442 y WO/2007/024447, cada una de las cuales se incorpora por referencia en su totalidad con esta mención. Los PBPE que son adecuados para reactores y tienen una distribución de peso molecular inferior a 3,5 son particularmente interesantes para su uso en esta invención. En esta invención el autor se propone utilizar el término "adecuado para reactores" según se define en la Patente estadounidense 6.010.588 y este término se refiere en general a una resina de poliolefina cuya distribución de peso molecular (MWD) o polidispersidad no ha sido alterada sustancialmente tras la polimerización. El PBPE preferido tendrá un calor de fusión (según se determina utilizando el método DSC de calorimetría diferencial de barrido descrito en la solicitud de patente estadounidense 60/709688) inferior a un valor aproximado de 90 joules/g, preferiblemente un valor aproximado de menos de 70 joules/g y más preferiblemente un valor aproximado de menos de 50 joules/g. Si se utiliza etileno como un comonómero, el PBPE tiene aproximadamente entre 3 y 15% de etileno o aproximadamente entre 5 y 14% de etileno o aproximadamente entre 7 y 12% de etileno, por peso del elastómero o plastómero a base de propileno.
Aunque las unidades restantes del copolímero de propileno se derivan al menos de un comonómero como el etileno, una α-olefina C4-20, un dieno C4-20, un compuesto estirénico y componentes similares, preferiblemente el comonómero es al menos uno de etileno y una α- olefina C4-I2 como, por ejemplo, 1-hexeno o 1-octeno. Se prefiere que las unidades restantes del copolímero se deriven únicamente de etileno.
La cantidad de comonómero que no provenga del etileno en el elastómero o plastómero a base de propileno varía, al menos en parte, en función del comonómero y el calor deseado de fusión del copolímero. Si el comonómero es etileno, entonces típicamente las unidades derivadas de comonómero comprenden no más de aproximadamente 15% del peso del copolímero. La cantidad mínima de las unidades derivadas de etileno es típicamente al menos 3%, preferiblemente al menos cerca de 5% y más preferiblemente al menos cerca de 9% del peso en función del peso del copolímero. Si el polímero comprende al menos otro comonómero que no sea etileno, entonces la composición preferida tendría un calor de fusión que se aproximaría a los márgenes de un copolímero de propileno-etileno con cerca de 3 a 20% del peso de etileno. Si bien no se tiene la intención de restringirse por limitaciones teóricas, se piensa que lograr una cristalinidad y una morfología de cristales aproximadamente similares contribuye a alcanzar una funcionalidad similar como cierre pelable.
El elastómero o plastómero a base de propileno de esta invención puede obtenerse mediante cualquier proceso e incluye los copolímeros hechos por catálisis con catalizadores Ziegler-Natta, catalizadores CGC (catalizadores de geometría restringida), catalizadores metalocénicos y catálisis de ligandos heteroarilos centrada en el metal, no metalocénica. Estos copolímeros incluyen copolímeros aleatorios, copolímeros de bloque y copolímeros de injerto, aunque preferiblemente los copolímeros tienen una configuración aleatoria. Entre los copolímeros de propileno ejemplares están el polímero VISTAMAXX de Exxon-Mobil y los elastómeros y plastómeros de propileno/etileno VERSIFY de The Dow Chemical Company.
La densidad de los elastómeros o plastómeros a base de propileno de esta invención tiene típicamente un valor aproximado de al menos 0,850 g/cm3, puede tener un valor aproximado de al menos 0,860 g/cm3 y también puede tener un valor aproximado de al menos 0,865 g/cm3, medidos conforme a la norma ASTM D-792. Preferiblemente la densidad debe tener un valor aproximado inferior a 0,89 g/cc. En general, tanto menor sea la densidad, menor será la bruma, pero el uso de un material de más baja densidad puede hacer que el material deje de ser un cierre "pelable"; por lo tanto, es preciso equilibrar estas propiedades. El peso molecular medio en peso (Mw) de los elastómeros o plastómeros a base de propileno de esta invención puede variar ampliamente, pero suele estar entre 10.000 y 1.000.000 (entendiéndose que el único límite al valor Mw máximo o mínimo es el que se fija por consideraciones prácticas). Para los homopolímeros y copolímeros que se utilizan en la fabricación de cierres pelables, preferiblemente el Mw mínimo tiene un valor aproximado de 20.000, si bien más preferiblemente se fija en torno a 25.000. En general, para una baja bruma, se considera deseable equiparar el Mw del elastómero o plastómero a base de propileno con el Mw del LDPE, en el sentido de que si se usa un LDPE de más bajo Mw, se deberían usar también un PBPE de menor Mw.
La polidispersidad de los elastómeros o plastómeros a base de propileno de esta invención tiene típicamente un valor aproximado entre 2 y 5. En general para obtener poca bruma, se prefiere utilizar materiales que tengan una estrecha polidispersidad. Las expresiones "estrecha polidispersidad", "estrecha distribución del peso molecular", "estrecha MWD" y términos similares significan un ratio (Mw/Mn) de peso molecular medio en peso (Mw) respecto al peso molecular medio en número (Mn) de menos de 3,5 aproximadamente, aunque este ratio puede ser inferior a 3,0 aproximadamente, también inferior a 2,8 aproximadamente y también inferior a 2,5 aproximadamente.
Lo ideal es que los PBPE que se utilizan en esta invención tengan un índice de fluidez (MFR) entre 0,5 y 2.000 g/lOmin, preferiblemente entre 1 y 1.000, más preferiblemente entre 2 y 500 aproximadamente y más preferiblemente aun entre 2 y 40 aproximadamente. El índice de fluidez (MFR) que se seleccione en particular dependerá en parte de los métodos previstos de fabricación como, por ejemplo, procesos de película soplada, recubrimiento por extrusión, extrusión de láminas, moldeo por inyección o película fundida. El índice de fluidez (MFR) para los copolímeros de propileno y etileno y/o una o más α-olefinas C4-C20 se mide conforme a la norma ASTM D-1238, con condiciones L (2,16 kg, 23O0C).
Los índices de fluidez (MFR) superiores a 250 aproximadamente se calcularon siguiendo esta correlación:
MFR = 9XlO18Mw"33584
El valor Mw (gramos por mol) se midió utilizando la cromatografía de permeación sobre gel.
Las mezclas generales que se usan en esta invención también comprenderán un polietileno de baja densidad (LDPE). El LDPE preferido para esta invención tiene un índice de fusión (I2) (determinado según la norma ASTM D 1238, con condiciones de 190°C/2,16 kg) entre 0,2 y 100 g/10 minutos aproximadamente. Más preferiblemente el índice de fusión es superior a un valor aproximado de 0,2 g/10 minutos, siendo el valor más preferible 0,5 g/10 minutos. El índice de fusión es preferiblemente inferior a 50 g/10 minutos, más preferiblemente inferior a 20 g/10 minutos, siendo el más preferible un valor aproximado por debajo de 10 g/10 minutos. El LDPE preferido también tendrá una densidad (como se determina conforme a la norma ASTM D792) entre 0,915 y 0,930 g/cc, preferiblemente entre 0,915 y 0,925 g/cc. En general, el uso de materiales de LDPE de menor densidad trae consigo cierres que exhiben una menor bruma, pero al igual que ocurre con el componente de PBPE, esta tendencia debe compensarse con otras propiedades con el fin de alcanzar un buen equilibrio general de propiedades.
Un LDPE de ese tipo puede fabricarse en un reactor tubular como se le denomina generalmente en este campo.
El segundo componente de esta invención puede incluir también mezclas de LDPE/LDPE, por ejemplo, mezclas en las cuales una de las resinas LDPE tiene un índice de fusión relativamente más elevado y la otra tiene un índice de fusión más bajo y está más altamente ramificada, aunque si se desea obtener poca cantidad de bruma no conviene utilizar materiales altamente ramificados como los que se producen típicamente en un reactor de autoclave. Se puede obtener un componente con un índice de fusión más elevado utilizando un reactor tubular y se puede añadir otro componente de la mezcla que tenga un índice de fusión más bajo y sea más altamente ramificado en un paso separado de extrusión o utilizando un reactor tubular o un reactor de autoclave paralelo en combinación con métodos especiales para controlar el índice de fusión de cada reactor como, por ejemplo, la recuperación de telómeros en la corriente de reciclaje o la adición de etileno fresco al reactor de autoclave o mediante otros métodos conocidos en este campo. Aunque se considera que tanto los homopolímeros como los copolímeros de etileno de alta presión son útiles en esta invención, se prefiere generalmente el polietileno homopolímero.
Se ha descubierto que se obtienen resultados óptimos en términos de la bruma total resultante si la proporción de PBPE respecto a LDPE es aproximadamente 50:50. Por lo tanto, el PBPE comprenderá idealmente al menos un valor aproximado de 45% por peso de la mezcla utilizada para fabricar el cierre pelable, prefiriéndose al menos 48% o cerca de 50% para ciertas aplicaciones. Como solución ideal, el PBPE no debería comprender más del 55% por peso de la mezcla utilizada para fabricar el cierre pelable, prefiriéndose no más de 52% para ciertas aplicaciones. Por lo tanto, el PBPE comprenderá idealmente al menos un valor aproximado de 45% por peso de la mezcla utilizada para fabricar el cierre pelable, prefiriéndose al menos 48% o cerca de 50% para ciertas aplicaciones. Como solución ideal, el LDPE no debería comprender más del 55% por peso de la mezcla utilizada para fabricar el cierre pelable, prefiriéndose no más de 52% para ciertas aplicaciones. En el caso de que se desee una baja temperatura de inicio del sellado térmico y/o una elevada integridad de sellado en caliente, pueden preferirse mezclas integradas por menores cantidades de LDPE como, por ejemplo, menos de 50% aproximadamente o incluso menos de 47%.
Los cierres de esta invención pueden producirse mediante cualquier proceso como, por ejemplo, película soplada, extrusión de láminas, moldeo por inyección, película fundida o procesos de recubrimiento por extrusión. La capa de cierre pelable puede producirse con el espesor deseado, por ejemplo de 1 miera a 3 mm. La capa sellante puede usarse como una monocapa, pero más típicamente será una capa con una estructura multicapa, por ejemplo, una capa sellante de 10 mieras con una capa de soporte de 30 mieras.
Si la capa sellante (en particular una capa sellante integrada por PBPE en su mayor parte) se coextruye sobre un sustrato a base de polipropileno, entonces toda la estructura será reciclable. Los cierres pelables hechos a partir de las mezclas descritas en esta invención tendrán una fuerza de sellado al madurar de aproximadamente 1,5 a 10 N/15mm, preferiblemente 2,0 a 8 N/ 15 mm, según se determine utilizando un sellador térmico Kopp con un tiempo de sellado de 0,5 segundo y una presión de barra selladora de 0,5 N/mm2. La fuerza de sellado se mide después de al menos 24 horas de maduración en muestras de 15 mm de ancho separadas a 100 mm/minuto en la dirección de la máquina tiradas por un probador de tracción Lloyds. Cualquier persona con conocimientos normales sobre este campo debería comprender que puede ser una ventaja tener una fuerza de sellado ligeramente menor para empaques flexibles y ligeramente mayor para empaques rígidos. Los cierres pelables de esta invención tendrán una temperatura de inicio del sellado térmico inferior a 14O0C, preferiblemente inferior a 13O0C, siendo más preferible tener menos de
1250C. La temperatura de inicio del sellado térmico se define como la temperatura mínima a la cual se obtiene una fuerza de sellado madurada de 1,0 N/ 15 mm utilizando el sellador térmico Kopp y el probador de tracción Lloyds, según se describió anteriormente.
La "bruma" de los cierres resultantes se refiere a la bruma total (es decir, la bruma interna más la bruma externa) y se determina conforme a la norma ISO 14782. Como se sabe en este campo, el valor de bruma total dependerá del espesor de la película que se esté midiendo. De este modo, para los fines de esta aplicación, los valores de bruma "equivalentes" reportados se basarán en un espesor de película o de cierre de 50 mieras. Una película o cierre que tenga un espesor superior a 50 mieras tendrá un valor total observado de bruma ligeramente más alto que su bruma equivalente, mientras que una película o cierre que tenga menos de 50 mieras tendrá un valor total observado de bruma ligeramente menor que su bruma equivalente. Los cierres de esta invención deberían tener un valor de bruma de 8% o menos, más preferiblemente 6% o menos, o, aun más preferiblemente, 5% o menos.
Asimismo, debería comprenderse que la composición de esta invención también puede contener diversos aditivos como se sabe generalmente en este campo. Entre los ejemplos de esos aditivos están los antioxidantes, los estabilizadores de luz ultravioleta, los estabilizadores térmicos, agentes deslizantes, agentes antibloqueo, pigmentos o colorantes, materiales auxiliares de procesamiento (como los fluoropolímeros, por ejemplo), catalizadores entrecruzantes, retardantes de llama, rellenos, agentes espumantes, etc.
Los cierres pelables de esta invención pueden sellarse contra cualquier superficie concebible. En particular, se contempla que los cierres pelables de esta invención pueden sellarse con diversos materiales de polipropileno (incluyendo el polipropileno homopolímero, el polipropileno de copolímero aleatorio, el polipropileno de copolímero de impacto, el elastómero o plastómero a base de polipropileno, etc.), diversos materiales de polietileno (incluyendo los materiales de homopolímero y copolímero como el polietileno de alta densidad, el polietileno de baja densidad, el polietileno de baja densidad lineal "LLDPE" (lo que incluye el LLDPE lineal y sustancialmente lineal que tiene una estrecha distribución de peso molecular como, por ejemplo, los que se preparan utilizando catalizadores metalocénicos), el polietileno de densidad ultrabaja, etc., o consigo mismos.
Los siguientes ejemplos ilustran aun más esta invención. EJEMPLOS: La Tabla 1 presenta una descripción de todas las resinas que se usan en los ejemplos. El
PBPE por estos ejemplos fue preparado según las enseñanzas generales de WO2006/115839.
Tabla 1
Figure imgf000013_0001
Figure imgf000014_0001
* se determina aplicando la norma ASTM D-1238 (2,16 kg, 1900C) ** se determina aplicando la norma ASTM D-1238 (2,16 kg, 2300C)
Ejemplo 1
Se prepara una serie de ensayos de película soplada y se mide la bruma. La línea de película soplada utilizada tiene un dado de 60 mm de diámetro. La abertura de la boquilla del dado mide 1,2 mm y la relación de soplado es 1:2:5. La temperatura de fusión estándar estuvo entre 2050C y 2100C. Todas las películas tenían un espesor de aproximadamente 50 mieras.
La bruma de tres películas diferentes que varían en cuanto a la proporción de resina A respecto a la resina B se midió conforme a la norma ISO 14782.
La Figura 1 muestra que la bruma de la película hecha de una mezcla/compuesto de 50% de resina A con 50% de resina B es con < 5% significativamente menor que lo esperado al comparársele con la bruma de 8 % observada en las películas de 50 mieras hechas de una mezcla/compuesto de 40% de resina A y 60% de resina B, o al comparársele con la bruma de 7,5% observada en las películas de 50 mieras hechas con 60% de resina A y 40% de resina B y con las películas de 50 mieras hechas con 70 % de resina A y 30% de resina B en las que se obtuvo una bruma de 8,9 %.
Ejemplo 2:
La fuerza de sellado de la película de 50 mieras de una mezcla/compuesto de 50% de resina A y 50% de resina B se mide con la propia película y con una película soplada de 50 mieras de resinas C, D y E hecha de la misma manera como se describe en el ejemplo 1. En la Figura 2 se observa que las curvas de sellado de la película de 50 mieras de una mezcla/compuesto de 50 % de resina A y 50% de resina B muestran una fuerza de sellado entre 2 N / 15 mm y 6 N / 15 mm en la gama de temperaturas de la barra selladora de 11O0C y 17O0C cuando se la sella consigo misma, con una película de 50 mieras hecha con resina C, y con una película de 50 mieras hecha con la resina D. En la Figura 2 se observa también que las curvas de sellado de la película de 50 mieras de una mezcla/compuesto de 50 % de resina A y 50% de resina B muestran una fuerza de sellado entre 2 N / 15 mm y 6 N / 15 mm en la gama de temperaturas de la barra selladora de 11O0C y 15O0C, cuando se la sella con una película de 50 mieras hecha con la resina E.

Claims

SE REIVINDICA LO SIGUIENTE:
1. Una capa de cierre pelable integrada por: a. aproximadamente entre 45 y 55% por peso de un elastómero o plastómero a base de propileno; b. aproximadamente entre 45 y 55% por peso de un polietileno de baja densidad en la cual dicho cierre pelable se caracteriza por tener un valor total equivalente de bruma inferior a 8%.
2. El cierre pelable de la Reivindicación 1 en el cual el elastómero o plastómero a base de propileno contiene aproximadamente entre 5 y 15% por peso del elastómero o plastómero a base de propileno de unidades derivadas de etileno.
3. El cierre pelable de la Reivindicación 1 en el cual el elastómero o plastómero a base de propileno tiene un calor de fusión inferior a 90 joules/g.
4. El cierre pelable de la Reivindicación 1 en el cual el elastómero o plastómero a base de propileno tiene un calor de fusión inferior a 70 joules/g.
5. El cierre pelable de la Reivindicación 1 en el cual el elastómero o plastómero a base de propileno comprende entre 48 y 52% del cierre pelable y el polietileno de baja densidad comprende entre 48 y 52% del cierre pelable.
6. El cierre pelable de la Reivindicación 1 en el cual el elastómero o plastómero a base de propileno y el polietileno de baja densidad están presentes en una proporción de 1:1.
7. La composición de la Reivindicación 1 comprende además uno o más aditivos de un grupo integrado por antioxidantes, estabilizadores de luz ultravioleta, estabilizadores térmicos, agentes deslizantes, agentes antibloqueo, pigmentos o colorantes, sustancias auxiliares de procesamiento (como, por ejemplo, fluoropolímeros), catalizadores entrecruzantes, retardantes de llama, rellenos y agentes espumantes.
8. El cierre pelable de la Reivindicación 1 en el cual el cierre tiene una fuerza de sellado entre 1,0 y 10 N/15mm.
9. El cierre pelable de la Reivindicación 1 en el cual el cierre tiene una fuerza de sellado entre 1,25 y 9 N/15mm.
10. El cierre pelable de la Reivindicación 1 en el cual el cierre tiene una fuerza de sellado entre 1,5 y 8 N/15mm.
11. El cierre pelable de la Reivindicación 1 en el cual el valor equivalente de bruma total es inferior a 6%.
12. El cierre pelable de la Reivindicación 1 en el cual el valor equivalente de bruma total es inferior a 5%.
13. El cierre pelable de la Reivindicación 1 en el cual el cierre se sella con un homopolímero o un copolímero de polietileno.
14. El cierre pelable de la Reivindicación 1 en el cual el cierre se sella con un polipropileno homopolímero, un polipropileno copolímero aleatorio, un polipropileno copolímero de impacto o un elastómero o plastómero a base de propileno.
15. El cierre pelable de la Reivindicación 1 en el cual el cierre se sella consigo mismo.
PCT/ES2007/070175 2007-10-19 2007-10-19 Cierres pelables a base de poliolefina WO2009050310A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/ES2007/070175 WO2009050310A1 (es) 2007-10-19 2007-10-19 Cierres pelables a base de poliolefina
CN2007801020388A CN101903457A (zh) 2007-10-19 2007-10-19 基于聚烯烃的可剥离的密封件
BRPI0721999-7A2A BRPI0721999A2 (pt) 2007-10-19 2007-10-19 Vedação de proteção
JP2010529417A JP2011501775A (ja) 2007-10-19 2007-10-19 ポリオレフィン系の可剥性シール
EP07823069A EP2204409A1 (en) 2007-10-19 2007-10-19 Polyolefin based peelable seals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2007/070175 WO2009050310A1 (es) 2007-10-19 2007-10-19 Cierres pelables a base de poliolefina

Publications (1)

Publication Number Publication Date
WO2009050310A1 true WO2009050310A1 (es) 2009-04-23

Family

ID=38895397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/070175 WO2009050310A1 (es) 2007-10-19 2007-10-19 Cierres pelables a base de poliolefina

Country Status (5)

Country Link
EP (1) EP2204409A1 (es)
JP (1) JP2011501775A (es)
CN (1) CN101903457A (es)
BR (1) BRPI0721999A2 (es)
WO (1) WO2009050310A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008249A (ja) * 2010-06-23 2012-01-12 Mitsui Chemicals Inc ポリプロピレン系樹脂組成物からなる光学部品
US10239676B2 (en) 2013-10-16 2019-03-26 Dow Global Technologies Llc Flexible film composition for heat seals and container with same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5394096B2 (ja) * 2009-02-24 2014-01-22 オカモト株式会社 イージーピールフィルム
US20130095335A1 (en) * 2011-10-17 2013-04-18 Becton, Dickinson And Company Film Composition for Controlled Peelable Seal Film
WO2014099305A1 (en) * 2012-12-19 2014-06-26 Dow Global Technologies Llc Flexible film composition forheat seals and container with same
WO2015077901A1 (en) * 2013-11-27 2015-06-04 Exxonmobil Chemical Patents Inc. Films and methods of making the same
EP3112150A1 (en) * 2015-06-30 2017-01-04 Dow Global Technologies LLC Methods of preparing a peelable seal layer
TW201723001A (zh) * 2015-12-16 2017-07-01 陶氏全球科技有限責任公司 具有可剝離及不可剝離熱密封件之封裝
JP2017177579A (ja) * 2016-03-30 2017-10-05 株式会社細川洋行 易剥離性シーラントフィルム
PL3378642T3 (pl) * 2017-03-23 2021-12-20 Dow Global Technologies, Llc Folie wielowarstwowe i opakowania je zawierające
MX2023006466A (es) * 2020-12-11 2023-06-16 Dow Global Technologies Llc Estructuras multicapa que incluyen peliculas orientadas y capas selladoras.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599392A (en) 1983-06-13 1986-07-08 The Dow Chemical Company Interpolymers of ethylene and unsaturated carboxylic acids
US6010588A (en) 1993-05-25 2000-01-04 Exxon Chemical Patents Inc. Polyolefin fibers and their fabrics
US20020150781A1 (en) * 2001-01-02 2002-10-17 The Dow Chemical Company Peelable seal and method of making and using same
WO2003040442A1 (en) 2001-11-06 2003-05-15 Dow Global Technologies Inc. Isotactic propylene copolymer fibers, their preparation and use
WO2006115839A1 (en) 2005-04-19 2006-11-02 Dow Global Technologies Inc. Composition suitable for high gloss blown film and films made therefrom
WO2007024447A1 (en) 2005-08-19 2007-03-01 Dow Global Technologies, Inc. Propylene based meltblown nonwoven layers and composite structures
WO2007044159A1 (en) 2005-10-05 2007-04-19 Dow Global Technologies Inc. Polyolefin based peelable seals

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599392A (en) 1983-06-13 1986-07-08 The Dow Chemical Company Interpolymers of ethylene and unsaturated carboxylic acids
US6010588A (en) 1993-05-25 2000-01-04 Exxon Chemical Patents Inc. Polyolefin fibers and their fabrics
US20020150781A1 (en) * 2001-01-02 2002-10-17 The Dow Chemical Company Peelable seal and method of making and using same
US6590034B2 (en) 2001-01-02 2003-07-08 Dow Global Technologies Inc. Peelable seal and method of making and using same
WO2003040442A1 (en) 2001-11-06 2003-05-15 Dow Global Technologies Inc. Isotactic propylene copolymer fibers, their preparation and use
WO2006115839A1 (en) 2005-04-19 2006-11-02 Dow Global Technologies Inc. Composition suitable for high gloss blown film and films made therefrom
WO2007024447A1 (en) 2005-08-19 2007-03-01 Dow Global Technologies, Inc. Propylene based meltblown nonwoven layers and composite structures
WO2007044159A1 (en) 2005-10-05 2007-04-19 Dow Global Technologies Inc. Polyolefin based peelable seals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008249A (ja) * 2010-06-23 2012-01-12 Mitsui Chemicals Inc ポリプロピレン系樹脂組成物からなる光学部品
US10239676B2 (en) 2013-10-16 2019-03-26 Dow Global Technologies Llc Flexible film composition for heat seals and container with same

Also Published As

Publication number Publication date
EP2204409A1 (en) 2010-07-07
JP2011501775A (ja) 2011-01-13
CN101903457A (zh) 2010-12-01
BRPI0721999A2 (pt) 2014-03-18

Similar Documents

Publication Publication Date Title
WO2009050310A1 (es) Cierres pelables a base de poliolefina
ES2632944T3 (es) Precintos desprendibles a base de poliolefinas
ES2264080T3 (es) Pelicula retractil de union de elementos.
WO2007015415A1 (ja) ポリプロピレン樹脂組成物、フィルムまたはシート、該フィルムまたはシートから得られる延伸フィルム、積層体および該積層体から得られる延伸フィルム
US20060210801A1 (en) Resin composition having an easy-to-open property and use thereof
KR20020042875A (ko) 실란트 수지 조성물, 실란트 필름 및 그 용도
WO2008100720A1 (en) Extrusion coated polyolefin based compositions for heat sealable coatings
JP5582669B2 (ja) シーラント樹脂組成物、シーラントフィルムおよびその用途
US20060019112A1 (en) Use of branched polyethylenes in multilayer films and resealable closures
WO2018181011A1 (ja) 二軸配向ポリプロピレン系樹脂フィルム
BR112019001663B1 (pt) Filme multicamada e embalagem
ES2922183T3 (es) Métodos de preparación de una capa de sellado desprendible
WO2021059913A1 (ja) プロピレン系樹脂組成物及びヒートシール用フィルム
JPH10259279A (ja) ポリエチレン系樹脂組成物およびそのフィルム
US20070116911A1 (en) Hot seal resins
BR112019017881B1 (pt) Filme multicamada, embalagem e estrutura multicamada
JP2002234123A (ja) シーラントフィルム及びこれを用いた積層フィルム、包装体。
JP2002273842A (ja) レトルト包装用多層フィルム
JP7132081B2 (ja) 易開封性シーラントフィルムおよび包装体
BRPI0617965B1 (pt) Sealed sealed layer composition
JP2024141269A (ja) 樹脂組成物、フィルム、多層フィルム、積層体、および包装体
JP2021138808A (ja) 熱接着フィルム
JP2024141270A (ja) 樹脂組成物、フィルム、多層フィルム、積層体、および包装体
TW202411077A (zh) 蒸煮包裝(retort packaging)用聚丙烯系薄膜、及積層體

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780102038.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07823069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529417

Country of ref document: JP

Ref document number: 2007823069

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2813/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: PI0721999

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100419