WO2009049528A1 - Procédé et dispositif de transmission de signal - Google Patents

Procédé et dispositif de transmission de signal Download PDF

Info

Publication number
WO2009049528A1
WO2009049528A1 PCT/CN2008/072610 CN2008072610W WO2009049528A1 WO 2009049528 A1 WO2009049528 A1 WO 2009049528A1 CN 2008072610 W CN2008072610 W CN 2008072610W WO 2009049528 A1 WO2009049528 A1 WO 2009049528A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
symbol
symbols
weighting factor
pilot
Prior art date
Application number
PCT/CN2008/072610
Other languages
English (en)
French (fr)
Inventor
Shaohui Sun
Yingmin Wang
Hai Tang
Yuemin Cai
Original Assignee
Da Tang Mobile Communications Equipment Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Da Tang Mobile Communications Equipment Co., Ltd. filed Critical Da Tang Mobile Communications Equipment Co., Ltd.
Priority to KR1020107009791A priority Critical patent/KR101125756B1/ko
Priority to JP2010528265A priority patent/JP5365963B2/ja
Priority to US12/682,444 priority patent/US8300592B2/en
Priority to EP08801024.4A priority patent/EP2211513B1/en
Publication of WO2009049528A1 publication Critical patent/WO2009049528A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code

Definitions

  • the present invention relates to Orthogonal Frequency Division Multiplexing (OFDM) wireless mobile communication technologies, and in particular, to a signal transmission method and apparatus.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM technology is widely used as a basic technology in system air interfaces.
  • the process of transmitting signals using OFDM technology includes:
  • Block DB, Data Block
  • the channel resource is a time-frequency two-dimensional structure, and the entire channel resource can be divided into one or more PRBs.
  • Figure 1 is a schematic diagram of a PRB that occupies a portion of the entire channel resource.
  • the PRB includes ⁇ ⁇ consecutive OFDM symbols in the time domain, including N F consecutive orthogonal sub-carriers in the frequency domain.
  • the PRB contains a total of N T xN F time-frequency locations.
  • the technical problem to be solved by the present invention is to provide a signal transmission method and apparatus, so as to reduce interference between neighboring cell users in the same frequency networking mode when using OFDM technology. Communication quality of cell edge users.
  • a signal transmission method includes:
  • the data symbols to be transmitted are subjected to weighted repetition expansion according to the repetition factor RF.
  • the data symbols are copied according to the RF, and an available weighting factor sequence is selected among a set of weighting factor sequences corresponding to the RF; each weighting factor in the selected weighting factor sequence is obtained by copying Each data symbol is multiplied separately to weight-extend the data symbols.
  • the pilot symbols are extended dedicated pilot symbols.
  • the dedicated pilot symbols are weighted repeatedly spread with each of the weighting factor sequences to obtain respective extended dedicated pilot symbols.
  • the dedicated pilot symbols are copied according to the RF; each of the weighting factor sequences is multiplied by each of the dedicated pilot symbols obtained by the copy to weight the dedicated pilot symbols repeatedly.
  • the method further includes: after receiving the blocks of the repeated data units, the receiving end device compares each extended dedicated pilot symbol and the dedicated pilot symbol in an unweighted manner;
  • the inverse operation obtains a sequence of weighting factors that are used for weighted repetition of the dedicated pilot symbols.
  • the pilot symbols are common pilot symbols.
  • the pilot symbol modulation of the neighboring cell users is mapped to non-overlapping time-frequency resource locations in the BRB.
  • the sequences employed by the pilot symbols of neighboring cell users are orthogonal to each other.
  • pilot symbol modulation transmitted by different antennas is mapped to non-overlapping time-frequency resource locations in the BRB.
  • the invention also provides a corresponding signal transmitting device, comprising: a data symbol extension unit, configured to perform weighted repetition expansion on each data symbol to be sent, to obtain an extended data symbol of each data symbol;
  • a data unit block unit configured to map the extended data symbol and the pilot symbol modulation obtained by the data symbol extension unit to a specified time-frequency position in each corresponding block repetition resource block BRB, to obtain each corresponding repeated data unit block;
  • a sending unit configured to send each repeated data unit block obtained by the repeated data unit block unit.
  • the data symbol extension unit performs weighted repetition expansion on the data symbols to be transmitted according to the repetition coefficient RF.
  • the data symbol extension unit includes: a module that copies data symbols according to the RF, and selects a sequence of available weighting factors among a set of weighting factor sequences corresponding to the RF; Each weighting factor is multiplied by each data symbol obtained by the copy to perform a weighted repeated expansion of the data symbol.
  • the pilot symbols are extended dedicated pilot symbols.
  • the apparatus further includes: a pilot symbol extension unit, configured to perform weighted repeated spreading on the dedicated pilot symbols by using each weighting factor in the weighting factor sequence to obtain each extended dedicated pilot symbol.
  • a pilot symbol extension unit configured to perform weighted repeated spreading on the dedicated pilot symbols by using each weighting factor in the weighting factor sequence to obtain each extended dedicated pilot symbol.
  • the pilot symbol extension unit comprises: a module for replicating a dedicated pilot symbol according to the RF; and multiplying each of the dedicated pilot symbols obtained by the copy by each weighting factor in the weighting factor sequence, respectively A pilot symbol weighted repeating extension module.
  • the pilot symbols are common pilot symbols.
  • different repeated data unit blocks can be obtained by weighting and repeating the data of different users occupying the same time-frequency position by using different weighting factor sequences.
  • a user at the edge of a cell receives a signal sent by a user of a neighboring cell, it may separate the repeated data unit blocks occupying the same time-frequency position according to different weighting factor sequences, thereby reducing
  • the interference between users in adjacent cells improves the communication quality of users at the edge of the cell.
  • the receiving end can accurately estimate the state of the wireless channel and the channel response according to the pilot symbols therein, thereby being able to correctly detect And demodulating the received signal.
  • the technical solution provided by the invention can realize effective and reliable transmission of information in a wireless communication channel, and can also realize multiple multiplexing of wireless communication channel resources. Use and multiple access.
  • the method and device By applying the method and device to a wireless mobile cellular system, the same frequency networking can be conveniently implemented to improve the capacity and performance of the system.
  • the proposed method can well solve the problem of resource allocation scheduling and coordinated coordination control in wireless communication, including intra-cell and inter-cell interference, thereby greatly improving system capacity and performance.
  • 1 is a schematic diagram of a PRB in the conventional OFDM technology
  • FIG. 2 is a flowchart of a signal sending method according to an embodiment of the present invention.
  • Figure 3-la, Figure 3-lb, Figure 3-lc, Figure 3-2a, Figure 3-2b, Figure 3-2c, Figure 3-2d and Figure 3-3 are pilot symbol modulations in an embodiment of the present invention a schematic diagram mapped to a block of repeated data units;
  • FIG. 4 is a schematic diagram of a scatter antenna design for a MIMO antenna according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a signal transmitting apparatus according to an embodiment of the present invention.
  • the block repeat multiple access scheme is a new efficient multiple access scheme.
  • Information transmission based on Block Repeat (BR) can be referred to as block repetition transmission.
  • Block repetition based multiplexing may be referred to as Block Repeat Division Multiplex (BRDM).
  • Block-repeating multiple access (BRDMA) can be called Block Repeat Division Multiple Access (BRDMA), a combination of block-repeating multiple access scheme and OFDM, which can be called block-repetition orthogonal frequency division.
  • FIG. 2 a flow of a signal transmitting method according to an embodiment of the present invention is shown.
  • step 21 the data to be transmitted is subjected to modulation division to generate each data symbol.
  • step 22 each data symbol is subjected to weighted repetition and expansion to obtain an extended data symbol of each data symbol.
  • the data symbols to be transmitted may be weighted and repeatedly expanded according to a pre-configured repetition factor (RF, Repeat Factor), that is, the number of times the data symbols are repeated.
  • RF repetition factor
  • a plurality of weighting factor sequences may be configured in advance for one repetition coefficient, and the plurality of weighting factor sequences may be referred to as a weighting factor sequence group corresponding to the repetition coefficient.
  • the weighting factor sequence may also be referred to as a repetition code (RC, Repeat) Code) sequence.
  • Each of the weighting factor sequences corresponding to a repetition coefficient includes the weighting factor of the repetition coefficient. Assuming that the repetition coefficient is N, each weighting factor sequence corresponding to the repetition coefficient contains N weighting factors.
  • the data symbol M to be transmitted is first copied according to the pre-configured repetition coefficient, and N to be transmitted are obtained.
  • Data symbol M is selected from the weighting factor sequence group corresponding to the repetition coefficient.
  • available weighting factor sequence refers to a weighting factor sequence that has not been assigned to other users.
  • Multiplying one of the selected weighting factor sequences by one of the N data symbols to be transmitted obtained by the copying can obtain a weighted data symbol. After multiplying N weighting factors in the selected weighting factor sequence by the N data symbols to be transmitted obtained by the copying, N weighted data symbols are obtained, thereby implementing weighted repetition of the data symbol M to be transmitted. Expansion. Each weighted data symbol can be regarded as an extended data symbol of the data symbol M to be transmitted.
  • the selected weight factor sequence includes four of the weighting factor (d, C 2, C 3 and C 4).
  • the data symbol M After copying the data symbol M, four data symbols M are obtained; multiplying ( ⁇ with one data symbol M to obtain a first extended data symbol; multiplying C 2 by one data symbol M to obtain second extended data Symbol; multiplying C 3 by a data symbol M to obtain a third extended data symbol; multiplying C 4 by one data symbol M to obtain a fourth extended data symbol.
  • the plurality of data symbols may be divided into one data symbol group. Then, in the group unit, each data symbol in the data symbol group is subjected to weighted repetition expansion, thereby obtaining an extended data symbol of each data symbol in units of groups, which is called an extended data symbol group.
  • the method of performing weighted repetition expansion on each data symbol in the data symbol group is the same as the method of performing weighted repetition expansion on a single data symbol, and details are not described herein again.
  • the extended data symbols and pilot symbol modulation of each data symbol are mapped to the specified time-frequency in each corresponding Block Repeat Resource Block (BRB). Position, obtain each corresponding duplicate data unit block. Then, in step 24, the respective blocks of repeated data units are transmitted.
  • the BRB ⁇ ⁇ physical resource unit which includes a plurality of consecutive OFDM symbols in the time domain, and also includes a plurality of consecutive orthogonal subcarriers in the frequency domain. The size of a BRB should be deterministic.
  • a group of BRBs is called a Block Repeat Resource Block Group (BRBG).
  • Each BRB constituting the BRBG may be continuous or discontinuous in the time domain and/or the frequency domain.
  • the BRBGs of the BRBs in the time domain may be referred to as BRBGs in the time domain (as shown in Figure 3-1).
  • the BRBGs in which the BRBs are consecutive in the frequency domain may be referred to as BRBGs in the frequency domain.
  • Figure 3-2 The BRBGs of each component BRB that are continuous in the time-frequency domain may be referred to as continuous BRBGs in the time-frequency domain (as shown in Figure 3-3).
  • To each BRB in the same BRBG one extended data symbol group corresponds to one BRB.
  • pilot symbols should also be mapped to specific time-frequency locations in each BRB.
  • the number of BRBs included in a BRBG is the repetition coefficient of a data symbol group.
  • time-frequency resources are allocated to users in BRBG according to user service rate and quality requirements, and one or more BRBGs can be allocated to one user.
  • the repetition coefficients can be the same or different.
  • a block of repeated data units is obtained. It can be seen that the so-called repeated data unit block refers to a block of time-frequency resources in which the extended data symbol group and the pilot symbols are modulated.
  • Figure 3-3 is a schematic diagram of the manner.
  • pilot symbols of the modulation mapping in the repeated data unit block can be public.
  • the common pilot symbol can also be a dedicated pilot symbol.
  • the common pilot symbols are used for channel estimation by all users in the cell, it is not necessary to perform weighted repeated spreading on the common pilot symbols. Since the dedicated pilot symbols are channel estimates for a particular user, the dedicated pilot symbols should be weighted and repeatedly spread, so the modulation mapped to each of the repeated data unit blocks should be the corresponding extended dedicated pilot symbols.
  • the sequence of weighting factors used for weighted repetition of the dedicated pilot symbols should be the sequence of weighting factors used for the corresponding data symbols.
  • the repetition coefficient of the data symbol M is 4, and the four weighting factors included in the selected weighting factor sequence are (d, C 2 , C 3 , and C 4 ), and when the dedicated pilot symbols are weighted and repeatedly spread, This weighting factor sequence is also used.
  • the dedicated pilot symbols are copied according to the repetition coefficient to obtain 4 dedicated pilot symbols. Multiplying a dedicated pilot symbol to obtain a first extended dedicated pilot symbol; multiplying C 2 by a dedicated pilot symbol to obtain a second extended dedicated pilot symbol; C 3 and a dedicated pilot By multiplying the symbols, a third extended dedicated pilot symbol can be obtained; multiplying C 4 by a dedicated pilot symbol, a fourth extended dedicated pilot symbol can be obtained.
  • the signal sent is generally a downlink signal.
  • the information of the BRBG, the information of the weighting factor sequence, the pilot configuration information, and other related information may be transmitted through a broadcast or control channel.
  • the control information notifies each user equipment (UE, User Equipment) in advance so that each UE can receive the repeated data unit block, performs channel estimation by using common pilot symbols in each repeated data unit block, and uses the weighting factor sequence to each duplicate data.
  • the data symbols in the unit block are weighted and combined.
  • the transmitted signal can be either a downlink signal or an uplink signal.
  • the information of the BRBG, the information of the weighting factor sequence, the pilot configuration information, and other related control information may be notified in advance.
  • a UE so that the UE can receive a repeated data unit block, perform channel estimation by using extended dedicated pilot symbols in each repeated data unit block, and use the weighting factor sequence to weight and combine data symbols in each repeated data unit block.
  • the UE may also perform an inverse operation on the extended dedicated pilot symbols in the received multiple repeated data unit blocks to obtain a weighting factor sequence used for weighted repeated spreading of the dedicated pilot symbols, that is, for weighted repetition.
  • the weighting factor sequence of the data symbols is extended, in which case the network side may not notify the UE of the weighting factor sequence in advance.
  • the process of obtaining the weighting factor sequence by the UE inverse operation includes:
  • the received extended dedicated pilot symbols are compared with the dedicated pilot symbols in the unweighted case, and a weighting factor sequence used for weighted repetition of the dedicated pilot symbols is obtained according to the inverse of the comparison result.
  • each extended dedicated pilot symbol received by the UE is ⁇ 1, -1, -1, 1 ⁇
  • the dedicated pilot symbol in the unweighted case obtained by the pilot configuration information is ⁇ 1, 1 , 1 , 1 ⁇
  • the weighting factor sequence for weighted repeated spreading of the dedicated pilot symbols ⁇ 1, 1 , 1 , 1 ⁇ can be obtained by comparison and inverse operations as (1, -1 , -1 , 1 ).
  • TDM Time Division Multiplex
  • the pilot symbols of two adjacent cells should be modulated and mapped to different OFDM symbols. Since the pilot symbols of the two cells do not overlap in time, they can be orthogonal and reduce mutual interference. For an OFDM symbol occupied by other cells, the cell can transmit data using the OFDM symbol.
  • the TDM method is mainly designed for block pilots and decentralized pilots.
  • FDM Frequency Division Multiplexing
  • the pilot symbols of two adjacent cells are modulated and mapped to different orthogonal subcarriers, and since the pilot symbols of the two cells are orthogonal in the frequency domain, interference between each other can be reduced.
  • the cell For a subcarrier occupied by another cell, the cell can use the subcarrier to transmit data.
  • the data may not be transmitted, and the subcarriers are vacant.
  • the FDM method is mainly designed for comb pilots and decentralized pilots.
  • CDM Code Division Multiplexing
  • the pilot sequences of different cells are selected by multiplying one of the orthogonal sequences to obtain a weighted pilot sequence. Due to the orthogonality of the sequences, the pilot symbols of different cells can reduce mutual interference.
  • the modulation mapping manners of the three types of pilot symbols, TDM, FDM, and CDM can be used only in one of them, or can be used in combination, and details are not described herein again.
  • pilot symbols in BR-OFDM systems also requires consideration of multiple antennas.
  • multiple antennas are usually used to transmit data, thereby improving the transmission capability of the system.
  • a typical application is a multiple-input multiple-output (MIMO) technology.
  • the antenna can be divided into a virtual antenna and a physical antenna.
  • the so-called virtual antenna refers to the number of antennas that the receiving end needs to distinguish between the transmitting ends
  • the physical antenna refers to the number of physical antennas actually used by the transmitting end when transmitting data.
  • the receiving end needs to be able to separately estimate the channel information of each virtual antenna transmitting data from the transmitting end to the receiving end. Therefore, each virtual antenna requires a separate pilot to distinguish.
  • the pilots of different virtual antennas can be distinguished by TDM, FDM or CDM.
  • each antenna has a separate pilot symbol, and the pilot symbols between the antennas are modulated and mapped into different OFDM symbols. Orthogonality is maintained by non-overlapping in time.
  • each antenna has a separate pilot symbol, and the pilot symbols between the antennas are modulated and mapped to different subcarriers, and the frequency domain does not pass. Overlap to maintain orthogonality.
  • the pilot symbols of all the antennas are modulated and mapped to the same time-frequency resource position, but the pilot symbols of the antennas are multiplied by different orthogonal sequences. , pilot symbols that are orthogonal to each other can be obtained.
  • the pilot of each antenna may select one of the orthogonal pilot symbols to maintain the orthogonality of the multi-antenna pilot symbols in the form of code divisions, thereby enabling the receiving end to estimate the channel information based on the orthogonal pilot symbols.
  • Figure 4 shows the design of a 2x2 MIMO dedicated spread pilot.
  • the BRB shown in Figure 4 includes 4 OFDM symbols and 4 subcarriers for a total of 16 time-frequency resource locations.
  • Four pilot symbols are separately mapped and mapped to the 16 time-frequency resource locations of the BRB, occupying two of the two OFDM symbols.
  • the pilot symbol density in the frequency domain is the same as for a single antenna. Since the pilot symbols are modulated on two OFDM symbols, antenna 1 can select pilot symbol 1 as its pilot symbol, and antenna 2 can select pilot symbol 2 as its pilot symbol.
  • the pilot symbols in two OFDM symbols can also be multiplied by an orthogonal sequence of length 2 to distinguish between antenna 1 and antenna 2 by different orthogonal sequences.
  • Fig. 5 is a schematic view of the device.
  • the apparatus includes a data symbol extension unit S51, a repeated data unit block unit S52, and a transmission unit S53.
  • the data symbol expanding unit S51 After the data to be transmitted by the transmitting device is modulated and divided, and the data symbols are generated, the data symbol expanding unit S51 performs weighted and repeated expansion on the data symbols to be transmitted to obtain the expansion of each data symbol. Exhibition data symbols.
  • the data symbol extension unit S51 can perform weighted repeated expansion of the data symbols to be transmitted according to the pre-configured RF.
  • a plurality of weighting factor sequences may be configured in advance for one repetition coefficient, and the plurality of weighting factor sequences may be referred to as a weighting factor sequence group corresponding to the repetition coefficient.
  • the weighting factor sequence may also be referred to as a repeat code (RC, Repeat Code) sequence.
  • Each of the weighting factor sequences corresponding to a repetition coefficient includes the weighting factor of the repetition coefficient. Assuming that the repetition coefficient is N, each weighting factor sequence corresponding to the repetition coefficient contains N weighting factors.
  • the data symbol extension unit S51 When the data symbol extension unit S51 performs weighted repetition expansion on a data symbol M to be transmitted, assuming that the pre-configured repetition coefficient is N, the data symbol M to be transmitted is first copied according to the pre-configured repetition coefficient. N data symbols M to be transmitted are obtained. Then, the data symbol expansion unit S51 selects an available weighting factor sequence from the weighting factor sequence group corresponding to the repetition coefficient.
  • the so-called available weighting factor sequence here refers to a weighting factor sequence that has not been assigned to other users.
  • the data symbol expansion unit S51 multiplies one of the selected weighting factor sequences by one of the N data symbols to be transmitted obtained by the copy, and obtains a weighted data symbol. After multiplying N weighting factors in the selected weighting factor sequence by the N data symbols to be transmitted obtained by the copying, N weighted data symbols are obtained, thereby implementing weighted repetition of the data symbol M to be transmitted. Expansion. Wherein, each weighted data symbol can be regarded as an extended data symbol of the data symbol M to be transmitted.
  • the repetition factor is 4 and the four weighting factors included in the selected weighting factor sequence are (d, C 2 , C 3 , and C 4 ).
  • the data symbol M After copying the data symbol M, four data symbols M are obtained; multiplying ( ⁇ with one data symbol M to obtain a first extended data symbol; multiplying C 2 by one data symbol M to obtain second extended data Symbol; multiplying C 3 by a data symbol M to obtain a third extended data symbol; multiplying C 4 by one data symbol M to obtain a fourth extended data symbol.
  • the data symbol expansion unit S51 may divide the plurality of data symbols into one data symbol group. Then, in the group unit, each data symbol in the data symbol group is weighted and repeatedly expanded, thereby obtaining an extended data symbol of each data symbol in units of groups, which is called an extended data symbol group. Weighted repeated extension of each data symbol in a data symbol group The method is the same as the method of performing weighted repeated expansion on a single data symbol, and will not be described here.
  • the repeated data unit block unit S52 maps the extended data symbols and pilot symbol modulations of the data symbols obtained by the data symbol expansion unit S51 to the specified time-frequency positions in the corresponding BRBs. Obtain each corresponding duplicate data unit block. Then, each of the repeated data unit blocks obtained by the repeated data unit block unit S52 is transmitted by the transmitting unit S53.
  • pilot symbol of the modulated data unit block unit S52 in the repeated data unit block may be either a common pilot symbol or a dedicated pilot symbol.
  • the common pilot symbols are used for channel estimation by all users in the cell, it is not necessary to perform weighted repeated spreading on the common pilot symbols. Since the dedicated pilot symbols are channel estimates for a particular user, the dedicated pilot symbols should be weighted and repeatedly spread, so the modulation mapped to each of the repeated data unit blocks should be the corresponding extended dedicated pilot symbols. In this case, in the apparatus shown in Fig. 5, a pilot symbol extension unit should also be included.
  • the pilot symbol spreading unit is configured to multiply each weighting factor in the weighting factor sequence by a dedicated pilot symbol to perform weighted repeated spreading on the dedicated pilot symbol to obtain each extended dedicated pilot symbol.
  • the sequence of weighting factors used for weighted repetition of the dedicated pilot symbols should be the sequence of weighting factors used for the corresponding data symbols.
  • the repetition coefficient of the data symbol M is 4, and the four weighting factors included in the selected weighting factor sequence are (d, C 2 , C 3 , and C 4 ), and when the dedicated pilot symbols are weighted and repeatedly spread, This weighting factor sequence is also used.
  • the pilot symbol spreading unit first copies the dedicated pilot symbols by the repetition coefficient to obtain 4 dedicated pilot symbols. Then, the pilot symbol extension unit multiplies a dedicated pilot symbol to obtain a first extended dedicated pilot symbol; multiplying c 2 by a dedicated pilot symbol to obtain a second extended dedicated pilot symbol; By multiplying c 3 by a dedicated pilot symbol, a third extended dedicated pilot symbol can be obtained; multiplying c 4 by a dedicated pilot symbol, a fourth extended dedicated pilot symbol can be obtained.
  • Figure 3-3 is a schematic diagram of the manner.
  • the method and the device provided by the present invention can be used for an existing base station (Node B ), a radio network controller (RNC, Radio Network Controller) or a user terminal, and can also be used for a base station in an evolved solution.
  • the (eNode B) and the user terminal can also be used for some network side devices of similar base station functions in the future communication system, as well as user terminals.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • J Field Programmable Gate Array
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • J Field Programmable Gate Array
  • the various exemplary elements described in connection with the embodiments disclosed herein may be implemented or executed by logic devices, discrete gates or transistor logic, discrete hardware components, or any combination thereof.
  • General purpose processor may be microprocessing However, in another case, the processor may be any conventional processor, controller, microcontroller or state machine.
  • the processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such structure.
  • the steps of the method described in connection with the above disclosed embodiments may be embodied directly in hardware, a software module executed by a processor, or a combination of the two.
  • Software modules may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a typical storage medium is coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium is an integral part of the processor.
  • the processor and storage medium may exist in an ASIC.
  • the ASIC may exist in a subscriber station.
  • the processor and storage medium may exist as discrete components in the subscriber station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

信号发送方法及装置
本申请要求于 2007 年 10 月 11 日提交中国专利局、 申请号为 200710175758.9、 发明名称为"信号发送方法、 信号发送装置 "的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及正交频分复用 ( OFDM , Orthogonal Frequency Division Multiplexing )无线移动通信技术, 尤其涉及一种信号发送方法及装置。
背景技术
在未来通信系统中, OFDM技术被广泛釆用, 作为系统空中接口时的基 本技术。
釆用 OFDM技术发送信号的过程包括:
a、 对待发送的数据进行调制分割, 生成多个数据符号;
b、 将生成的多个数据符号和导频符号 (公共导频符号或专用导频符号) 调制映射到物理资源块(PRB, Physical Resource Block )的指定时频位置, 获 得待发送数据对应的数据块(DB, Data Block );
c、 发送所述数据块。
釆用 OFDM技术发送信号时, 信道资源是一个时频二维的结构, 整个信 道资源可以被划分为一个或多个 PRB。 图 1是 PRB的示意图, 该 PRB占用了 整个信道资源的一部分。 该 PRB在时域上包括 Ντ个连续的 OFDM符号, 在 频域上包括 NF个连续的正交的子载波。 该 PRB共包含 NTxNF个时频位置。
可以看出, 釆用 OFDM技术发送信号时, 可以釆用一个 OFDM符号中不 同的正交的子载波发送不同用户的数据, 从而实现多用户的复用和多址接入。
对于 OFDM系统, 不存在小区内多址干扰。 但是, 在同频组网的方式下, 相邻小区之间的用户如果在相同的时频位置发送信号, 就会产生彼此间的干 扰。 尤其在小区边缘, 用户距离其它的相邻小区较近, 来自相邻小区中其它用 户的干扰信号会比较强, 使得小区边缘的用户的通信质量急剧恶化。
发明内容
有鉴于此, 本发明解决的技术问题是提供一种信号发送方法及装置, 以降 低在釆用 OFDM技术时, 在同频组网方式下相邻小区用户之间的干扰, 提高 小区边缘用户的通信质量。
为此, 本发明提供的技术方案如下:
一种信号发送方法, 包括:
对待发送的各数据符号进行加权重复扩展,获得各数据符号的扩展数据符 号;
将各数据符号的扩展数据符号和导频符号调制映射到各对应的块重复资 源块 BRB中的指定时频位置, 获得各对应的重复数据单元块;
发送所述各重复数据单元块。
优选地, 按重复系数 RF对待发送的数据符号进行加权重复扩展。
在一些实施例中, 按所述 RF复制数据符号, 并在所述 RF对应的一组加 权因子序列中选择可用的加权因子序列;将被选择的加权因子序列中的各加权 因子与复制获得的各数据符号分别相乘, 以对数据符号进行加权重复扩展。
在一些实施例中, 所述导频符号为扩展专用导频符号。
在一些实施例中,釆用所述加权因子序列中的各加权因子对专用导频符号 加权重复扩展, 获得各扩展专用导频符号。
优选地, 按所述 RF复制专用导频符号; 釆用所述加权因子序列中的各加 权因子与复制获得的各专用导频符号分别相乘,以对专用导频符号加权重复扩 展。
在一些实施例中,进一步包括:接收端设备收到所述各重复数据单元块后, 将其中的各扩展专用导频符号和未加权情况下的专用导频符号进行比照;
逆运算获得对专用导频符号进行加权重复扩展所釆用的加权因子序列。 在一些实施例中, 所述导频符号为公共导频符号。
在一些实施例中, 将相邻小区用户的导频符号调制映射到 BRB中不重叠 的时频资源位置。
在一些实施例中, 相邻小区用户的导频符号所釆用的序列彼此正交。
在一些实施例中, 将不同天线发送的导频符号调制映射到 BRB中不重叠 的时频资源位置。 本发明还提供一种相应的信号发送装置, 包括: 数据符号扩展单元, 用于对待发送的各数据符号进行加权重复扩展, 获得 各数据符号的扩展数据符号;
重复数据单元块单元,用于将数据符号扩展单元获得的扩展数据符号和导 频符号调制映射到各对应的块重复资源块 BRB中的指定时频位置, 获得各对 应的重复数据单元块; 和
发送单元, 用于发送重复数据单元块单元获得的各重复数据单元块。 优选地, 数据符号扩展单元按重复系数 RF对待发送的数据符号进行加权 重复扩展。
在一些实施例中, 数据符号扩展单元包括: 按所述 RF复制数据符号, 并 在所述 RF对应的一组加权因子序列中选择可用的加权因子序列的模块; 将被 选择的加权因子序列中的各加权因子与复制获得的各数据符号分别相乘,以对 数据符号进行加权重复扩展的模块。
在一些实施例中, 所述导频符号为扩展专用导频符号。
在一些实施例中, 所述装置还包括: 导频符号扩展单元, 用于釆用所述加 权因子序列中的各加权因子对专用导频符号加权重复扩展,获得各扩展专用导 频符号。
优选地, 导频符号扩展单元包括: 按所述 RF复制专用导频符号的模块; 釆用所述加权因子序列中的各加权因子与复制获得的各专用导频符号分别相 乘, 以对专用导频符号加权重复扩展的模块。
在一些实施例中, 所述导频符号为公共导频符号。
在本发明中,通过釆用不同的加权因子序列对占用相同时频位置的不同用 户的数据进行加权重复扩展, 可以获得不同的重复数据单元块。在同频组网方 式下,如果某个小区边缘的用户收到相邻小区用户发送的信号时, 可以依据不 同的加权因子序列对占用相同时频位置的各重复数据单元块进行分离,从而降 低了相邻小区用户之间的干扰, 提高了小区边缘用户的通信质量。 此外, 将导 频符号调制映射到重复数据单元块后,接收端在接收到重复数据单元块后, 就 可以根据其中的导频符号准确地估计无线信道的状态和信道响应,从而能够正 确地检测和解调接收信号。釆用本发明提供的技术方案可以实现无线通信信道 中信息的有效可靠和可变速率的传输,还可以实现无线通信信道资源的多路复 用和多址接入。将该方法和装置应用到无线移动蜂窝系统中, 可以方便地实现 同频组网,提高系统的容量和性能。该方法的提出可以很好地解决无线通信中 的资源的分配调度和干扰的协调控制问题, 包括小区内和小区间干扰,从而极 大地提高了系统容量和性能。
附图说明
图 1是现有的釆用 OFDM技术时一个 PRB的示意图;
图 2是本发明实施例信号发送方法的流程图;
图 3-la、 图 3-lb、 图 3-lc、 图 3-2a、 图 3-2b、 图 3-2c、 图 3-2d和图 3-3 是本发明实施例中将导频符号调制映射到重复数据单元块的示意图;
图 4是本发明实施例中对一个 MIMO天线釆用分散导频设计的示意图; 图 5是本发明实施例信号发送装置的结构示意图。
具体实施方式
在本发明中, 提出了 "块重复多址接入"的思想。 块重复多址接入方案是一 种新的高效的多址接入方案。 基于块重复(BR, Block Repeat )的信息传输可 以称之为块重复传输。基于块重复的多路复用可以称之为块重复复用(BRDM, Block Repeat Division Multiplex )。基于块重复的多址接入可以称之为块重复多 址接入(BRDMA, Block Repeat Division Multiple Access )„ 块重复多址接入方 案与 OFDM的结合, 可以称之为块重复正交频分复用 (BR-OFDM )和块重复 正交频分多址接入 ( BR-OFDMA )„
为使本领域技术人员更好地理解本发明 ,下面结合附图和实施例对本发明 进行详细说明。
参照图 2, 示出了本发明实施例信号发送方法的流程。
在步骤 21中, 对待发送的数据进行调制分割, 生成各数据符号; 在步骤 22中, 对各数据符号进行加权重复扩展, 获得各数据符号的扩展 数据符号。
可以按预先配置的重复系数(RF, Repeat Factor ), 也就是对数据符号进 行重复的次数, 对待发送的数据符号进行加权重复扩展。 此外, 可以预先为一 个重复系数配置多个加权因子序列,所述多个加权因子序列可以称为该重复系 数对应的加权因子序列组。 所述加权因子序列也可以称为重复码( RC , Repeat Code )序列。
一个重复系数所对应的每个加权因子序列中,都包含所述重复系数个加权 因子。假设重复系数为 N, 则该重复系数对应的每个加权因子序列中都包含有 N个加权因子。
在对一个待发送的数据符号 M进行加权重复扩展时, 假设预先配置的重 复系数为 N, 则首先根据预配置的重复系数, 对所述待发送的数据符号 M进 行复制, 获得 N个待发送数据符号 M。 然后, 从该重复系数所对应的加权因 子序列组中选择一个可用的加权因子序列。这里所谓的可用的加权因子序列是 指尚未被分配给其他用户的加权因子序列。
将被选择的加权因子序列中的一个加权因子与所述复制获得的 N个待发 送数据符号中的一个相乘, 可以获得一个加权的数据符号。将被选择的加权因 子序列中的 N个加权因子分别与所述复制获得的 N个待发送数据符号相乘后 , 即可获得 N个加权的数据符号, 从而实现对待发送数据符号 M的加权重复扩 展。 其中, 每个加权的数据符号都可以看作待发送数据符号 M的扩展数据符 号。
假设重复系数为 4,被选择的加权因子序列所包括的 4个加权因子为( d、 C2、 C3和 C4 )。 将数据符号 M复制后, 获得 4个数据符号 M; 将 (^与一个数 据符号 M相乘, 可以获得第一扩展数据符号; 将 C2与一个数据符号 M相乘, 可以获得第二扩展数据符号; 将 C3与一个数据符号 M相乘, 可以获得第三扩 展数据符号; 将 C4与一个数据符号 M相乘, 可以获得第四扩展数据符号。
当待发送的数据符号有多个时,可以将所述多个数据符号划分为一个数据 符号组。 然后, 以组为单位, 对该数据符号组中的各数据符号都进行加权重复 扩展,从而获得以组为单位的各数据符号的扩展数据符号, 称为扩展数据符号 组。对数据符号组中各数据符号进行加权重复扩展的方法, 与对单个数据符号 进行加权重复扩展的方法相同, 这里不再赘述。
获得各数据符号的扩展数据符号后, 在步骤 23中, 将各数据符号的扩展 数据符号和导频符号调制映射到各对应的块重复资源块(BRB, Block Repeat Resource Block ) 中的指定时频位置, 获得各对应的重复数据单元块。 然后, 在步骤 24中, 发送所述各重复数据单元块。 在 BR-OFDM系统中, BRB ^ ^本物理资源单位, 其在时域上包括多个 连续的 OFDM符号, 在频域上也包括多个连续的正交的子载波。 一个 BRB的 大小应该是确定的。 若干个 BRB组成一组, 称为块重复资源块组(BRBG, Block repeat Resource Block Group )。组成 BRBG的各 BRB在时域和 /或频域上 可以是连续的, 也可以是不连续的。 各组成 BRB在时域上连续的 BRBG, 可 以称为时域连续的 BRBG(如图 3-1所示);各组成 BRB在频域上连续的 BRBG, 可以称为频域连续的 BRBG (如图 3-2所示)。 各组成 BRB在时频域上都连续 的 BRBG, 可以称为时频域连续的 BRBG (如图 3-3所示)。 到同一个 BRBG中的各 BRB, —个扩展数据符号组对应一个 BRB。 同时, 还 应该将导频符号也调制映射到每个 BRB中特定的时频位置。
可以看出, 一个 BRBG所包含的 BRB数量, 即为一个数据符号组的重复 系数。 在调度时频资源时, 根据用户业务速率以及质量的需求, 以 BRBG为 单位为用户分配时频资源, 可以为一个用户分配一个或多个 BRBG。 为不同用 户分配的 BRBG, 其重复系数可以相同也可以不同。
将一个扩展数据符号组和导频符号调制映射到一个 BRB后, 将会获得一 个重复数据单元块。可以看出所谓的重复数据单元块是指,调制映射了扩展数 据符号组和导频符号的一块时频资源。
可以看出, 将导频符号调制映射到重复数据单元块后,接收端在接收到重 复数据单元块后,就可以根据其中的导频符号准确地估计无线信道的状态和信 道响应, 从而能够正确地检测和解调接收信号。 a、在重复数据单元块中同一 OFDM符号的至少一个子载波上调制映射导 频符号, 图 3-la、 3-lb和 3-lc分别是该方式的三个示意图;
b、在重复数据单元块中至少一个 OFMD符号的同一子载波上调制映射导 频符号, 图 3-2a、 3-2b、 3-2c和 3-2d分别是该方式的四个示意图;
c、在重复数据单元块的多个 OFDM符号的不同子载波上调制映射导频符 号, 图 3-3是该方式的一个示意图。
这里需要说明的是,在重复数据单元块中调制映射的导频符号既可以是公 共导频符号, 也可以是专用导频符号。
由于公共导频符号是供小区中所有用户进行信道估计的,因此不必对公共 导频符号进行加权重复扩展。 由于专用导频符号是供特定用户进行信道估计 的, 因此应该对专用导频符号进行加权重复扩展, 所以调制映射到各重复数据 单元块的应该是对应的扩展专用导频符号。
对专用导频符号加权重复扩展所釆用的加权因子序列应该是对应的数据 符号所釆用的加权因子序列。
假设, 数据符号 M的重复系数为 4, 被选择的加权因子序列所包括的 4 个加权因子为 (d、 C2、 C3和 C4 ), 则对专用导频符号进行加权重复扩展时, 也釆用该加权因子序列。
首先按所述重复系数复制专用导频符号, 获得 4个专用导频符号。 将 与一个专用导频符号相乘, 可以获得第一扩展专用导频符号; 将 C2与一个专 用导频符号相乘, 可以获得第二扩展专用导频符号; 将 C3与一个专用导频符 号相乘, 可以获得第三扩展专用导频符号; 将 C4与一个专用导频符号相乘, 可以获得第四扩展专用导频符号。
获得四个扩展专用导频符号后,将第一扩展专用导频符号和第一扩展数据 符号调制映射到同一个对应的 BRB, 获得第一重复数据单元块; 将第二扩展 专用导频符号和第二扩展数据符号调制映射到同一个对应的 BRB, 获得第二 重复数据单元块;将第三扩展专用导频符号和第三扩展数据符号调制映射到同 一个对应的 BRB, 获得第三重复数据单元块; 将第四扩展专用导频符号和第 四扩展数据符号调制映射到同一个对应的 BRB, 获得第四重复数据单元块。 送信号一般为下行信号。
在发送下行信号的情况下, 网络侧确定用于发送数据符号的 BRBG和加 权因子序列后, 可以通过广播或控制信道将所述 BRBG的信息、 加权因子序 列的信息、 导频配置信息以及其它相关控制信息预先通知各用户设备(UE, User Equipment )从而使各 UE可以接收重复数据单元块, 利用各重复数据单 元块中的公共导频符号进行信道估计,利用所述加权因子序列对各重复数据单 元块中的数据符号进行加权合并。 送信号既可以是下行信号, 也可以是上行信号。
在发送下行信号的情况下, 网络侧确定用于发送数据符号的 BRBG和加 权因子序列后, 可以将所述 BRBG的信息、 加权因子序列的信息、 导频配置 信息以及其它相关控制信息预先通知相关 UE, 从而使所述 UE可以接收重复 数据单元块, 利用各重复数据单元块中的扩展专用导频符号进行信道估计, 利 用所述加权因子序列对各重复数据单元块中的数据符号进行加权合并。
所述 UE也可以对接收到的多个重复数据单元块中的扩展专用导频符号进 行逆运算, 获得对专用导频符号进行加权重复扩展所釆用的加权因子序列,也 就是用于加权重复扩展数据符号的加权因子序列, 在这种情况下, 网络侧可以 不将所述加权因子序列预先通知 UE。
UE逆运算获得加权因子序列的过程包括:
将接收到的扩展专用导频符号和未加权情况下的专用导频符号进行比照, 根据比照结果逆运算获得对专用导频符号进行加权重复扩展所釆用的加权因 子序列。
例如, UE接收到的各扩展专用导频符号为 {1 , -1 , -1 , 1} , 而其通过导 频配置信息获得的未加权情况下的专用导频符号为 {1 , 1 , 1 , 1} , 则通过比 照、 逆运算可以获得对专用导频符号 {1 , 1 , 1 , 1}进行加权重复扩展的加权 因子序列为 (1 , -1 , -1 , 1 )。
需要指出的是,对于蜂窝移动通信系统而言,相邻小区间的干扰会降低系 统的性能。 因此在信道估计中, 为了减少相邻小区的干扰, 无论是专用导频的 设计还是公共导频的设计都需要仔细考虑。相邻小区发送信号时, 可以釆用以 下几种方式调制映射导频符号, 以进一步降低相邻小区间的相互干扰。 这里所 时分复用 (TDM, Time Division Multiplex ) 方式:
相邻的两个小区的导频符号应该被调制映射到不同的 OFDM符号, 由于 两个小区的导频符号在时间上不重叠,从而可以保持正交,降低相互间的干扰。 对于被其他小区占用的 OFDM符号,本小区可以利用该 OFDM符号传输数据。
为了进一步降低对导频符号的干扰, 也可以不传输数据, 该 OFDM符号 被空置。
TDM方式主要针对块状导频和分散式导频而设计。
频分复用 ( FDM, Frequency Division Multiplexing )方式:
相邻的两个小区的导频符号被调制映射到不同的正交的子载波,由于两个 小区的导频符号通过频域正交, 因此可以降低相互间的干扰。对于被其他小区 占用的子载波, 本小区可以利用该子载波传输数据。
为了进一步降低对导频符号的干扰,也可以不传输数据,该子载波被空置。
FDM方式主要针对梳状导频和分散式导频而设计。
码分复用 (CDM, Code Division Multiplexing )方式:
相邻的两个小区的导频符号如果被调制映射到相同的时频资源位置,将导 致小区间的导频符号在同步系统中是重叠的。此时, 可以设置一个正交序列集 合8 = {81 , S2 , . . . . .. , Sk}, 包含有 k个正交序列, 每个正交序列为 = [Si— 1
Si— 2 , . .. . .. , Si m] , l ≤ i≤ k。 不同小区的导频序列选择其中一个正交序列 进 行相乘, 得到一个加权的导频序列, 由于 序列的正交性, 不同小区的导频 符号可以减少相互间干扰。
可以看出 , 在相邻小区之间 , TDM、 FDM和 CDM这三种导频符号的调 制映射方式既可以只使用其中的一种, 也可以组合使用, 这里不再赘述。
在 BR-OFDM系统中使用导频符号,还需要考虑多天线的情况。在目前的 宽带通信系统中, 为了增加系统容量, 通常釆用多根天线发送数据, 从而提高 系统传输能力, 典型的应用是多输入多输出 ( MIMO , Multiple-Input Multiple-Out-put )技术。
在 MIMO技术中, 天线可以分为虚拟天线和物理天线, 所谓的虚拟天线 是指接收端需要区分发送端的天线数目,而物理天线指发送端在发送数据时候 实际使用的实物天线的数目。为了能够准确地对不同天线发送的数据进行检测 和解调,接收端需要能够单独地估算出发送端到接收端的每根虚拟天线发送数 据的信道信息。 因此, 每根虚拟天线都需要单独的导频来区分。 其不同虚拟天 线的导频可以釆用 TDM、 FDM或 CDM方式来区分。
釆用 TDM方式调制映射导频符号时, 同一小区的下行传输中, 每根天线 都有单独的导频符号,天线间的导频符号被调制映射到不同的 OFDM符号中, 通过时间上的不重叠来保持正交性。
釆用 FDM方式调制映射导频符号时, 同一小区的下行传输中, 每根天线 都有单独的导频符号, 天线间的导频符号被调制映射到不同的子载波, 通过频 域上的不重叠来保持正交性。
釆用 CDM方式调制映射导频符号时, 同一小区的下行传输中, 所有天线 的导频符号被调制映射到相同的时频资源位置,但各天线的导频符号与不同的 正交序列相乘, 可以得到相互正交的导频符号。每根天线的导频可以选择其中 的一个正交导频符号,通过码分的形式来保持多天线导频符号的正交,从而使 得接收端能够根据正交的导频符号来估计信道信息。
对于 BR-OFDM系统,在自包含的导频设计方式下,如果基本单元块可以 表示为 Nb = NbtxNbf, Nbt为 OFDM符号的个数、 Nbf为子载波的个数, 则对于 块状导频设计,在 Nbt个 OFDM符号中都必须有每根虚拟天线对应的导频符号; 对于梳状导频设计, 则在 Nbf个子载波中都必须有每根虚拟天线对应的导频符 号; 对于分散式导频设计, 则在 Nbt个 OFDM符号或者 Nbf个子载波中有每根 虚拟天线对应的导频符号。 导频符号可以釆用 TDM、 FDM和 CDM方式进行 复用。
图 4示出了一个 2x2的 MIMO釆用分散导频的设计。图 4所示的 BRB包 括 4个 OFDM符号和 4个子载波, 共 16个时频资源位置。 在 BRB的 16个时 频资源位置分别调制映射了 4个导频符号, 共占用了两个 OFDM符号中的两 个子载波。 频域上的导频符号密度与单天线相同。 由于在两个 OFDM符号调 制映射导频符号, 因此, 天线 1可以选择导频符号 1作为其导频符号, 天线 2 可以选择导频符号 2作为其导频符号。 同时, 两个 OFDM符号内的导频符号 也可以与一个长度为 2 的正交序列相乘, 通过不同的正交序列来区分天线 1 和天线 2。
基于上述信号发送方法, 本发明还提出了相应的信号发送装置, 图 5是该 装置的示意图。 该装置包括数据符号扩展单元 S51、 重复数据单元块单元 S52 和发送单元 S53。
发送端设备对待发送的数据进行调制分割, 生成数据符号后,数据符号扩 展单元 S51将对待发送的数据符号都进行加权重复扩展,获得各数据符号的扩 展数据符号。
数据符号扩展单元 S51可以按预先配置的 RF, 对待发送的数据符号进行 加权重复扩展。 此外, 可以预先为一个重复系数配置多个加权因子序列, 所述 多个加权因子序列可以称为该重复系数对应的加权因子序列组。所述加权因子 序列也可以称为重复码( RC , Repeat Code )序列。
一个重复系数所对应的每个加权因子序列中,都包含所述重复系数个加权 因子。假设重复系数为 N, 则该重复系数对应的每个加权因子序列中都包含有 N个加权因子。
数据符号扩展单元 S51在对一个待发送的数据符号 M进行加权重复扩展 时, 假设预先配置的重复系数为 N, 则首先根据预配置的重复系数, 对所述待 发送的数据符号 M进行复制, 获得 N个待发送数据符号 M。 然后, 数据符号 扩展单元 S51 从该重复系数所对应的加权因子序列组中选择一个可用的加权 因子序列。 这里所谓的可用的加权因子序列是指, 尚未被分配给其他用户的加 权因子序列。
数据符号扩展单元 S51 将被选择的加权因子序列中的一个加权因子与所 述复制获得的 N个待发送数据符号中的一个相乘, 可以获得一个加权的数据 符号。 将被选择的加权因子序列中的 N个加权因子分别与所述复制获得的 N 个待发送数据符号相乘后, 即可获得 N个加权的数据符号, 从而实现对待发 送数据符号 M的加权重复扩展。 其中, 每个加权的数据符号都可以看作待发 送数据符号 M的扩展数据符号。
假设,重复系数为 4 ,被选择的加权因子序列所包括的 4个加权因子为( d、 C2、 C3和 C4 )。 将数据符号 M复制后, 获得 4个数据符号 M; 将 (^与一个数 据符号 M相乘, 可以获得第一扩展数据符号; 将 C2与一个数据符号 M相乘, 可以获得第二扩展数据符号; 将 C3与一个数据符号 M相乘, 可以获得第三扩 展数据符号; 将 C4与一个数据符号 M相乘, 可以获得第四扩展数据符号。
当待发送的数据符号有多个时,数据符号扩展单元 S51可以将所述多个数 据符号划分为一个数据符号组。 然后, 以组为单位, 对该数据符号组中的各数 据符号都进行加权重复扩展,从而获得以组为单位的各数据符号的扩展数据符 号, 称为扩展数据符号组。对数据符号组中各数据符号进行加权重复扩展的方 法, 与对单个数据符号进行加权重复扩展的方法相同, 这里不再赘述。
获得各数据符号的扩展数据符号后,重复数据单元块单元 S52会将数据符 号扩展单元 S51 获得的各数据符号的扩展数据符号和导频符号调制映射到各 对应的 BRB中的指定时频位置, 获得各对应的重复数据单元块。 然后, 利用 发送单元 S53发送重复数据单元块单元 S52获得的各重复数据单元块。
这里需要说明的是,重复数据单元块单元 S52在重复数据单元块中调制映 射的导频符号既可以是公共导频符号, 也可以是专用导频符号。
由于公共导频符号是供小区中所有用户进行信道估计的,因此不必对公共 导频符号进行加权重复扩展。 由于专用导频符号是供特定用户进行信道估计 的, 因此应该对专用导频符号进行加权重复扩展, 所以调制映射到各重复数据 单元块的应该是对应的扩展专用导频符号。在这种情况下, 在图 5所示的装置 中, 还应该包括一个导频符号扩展单元。
导频符号扩展单元用于釆用加权因子序列中的各加权因子分别与专用导 频符号相乘, 以对专用导频符号加权重复扩展, 获得各扩展专用导频符号。
对专用导频符号加权重复扩展所釆用的加权因子序列应该是对应的数据 符号所釆用的加权因子序列。
假设, 数据符号 M的重复系数为 4, 被选择的加权因子序列所包括的 4 个加权因子为 (d、 C2、 C3和 C4 ), 则对专用导频符号进行加权重复扩展时, 也釆用该加权因子序列。
导频符号扩展单元首先按所述重复系数复制专用导频符号,获得 4个专用 导频符号。 然后, 导频符号扩展单元将 与一个专用导频符号相乘, 可以获 得第一扩展专用导频符号; 将 c2与一个专用导频符号相乘, 可以获得第二扩 展专用导频符号; 将 c3与一个专用导频符号相乘, 可以获得第三扩展专用导 频符号; 将 c4与一个专用导频符号相乘, 可以获得第四扩展专用导频符号。
S52 将第一扩展专用导频符号和第一扩展数据符号调制映射到同一个对应的 BRB,获得第一重复数据单元块; 重复数据单元块单元 S52将第二扩展专用导 频符号和第二扩展数据符号调制映射到同一个对应的 BRB , 获得第二重复数 据单元块;重复数据单元块单元 S52将第三扩展专用导频符号和第三扩展数据 符号调制映射到同一个对应的 BRB , 获得第三重复数据单元块; 重复数据单 元块单元 S52 将第四扩展专用导频符号和第四扩展数据符号调制映射到同一 个对应的 BRB, 获得第四重复数据单元块。
可以看出, 将导频符号调制映射到重复数据单元块后,接收端在接收到重 复数据单元块后,就可以根据其中的导频符号准确地估计无线信道的状态和信 道响应, 从而能够正确地检测和解调接收信号。 a、在重复数据单元块中同一 OFDM符号的至少一个子载波上调制映射导 频符号, 图 3-la、 3-lb和 3-lc分别是该方式的三个示意图;
b、在重复数据单元块中至少一个 OFMD符号的同一子载波上调制映射导 频符号, 图 3-2a、 3-2b、 3-2c和 3-2d分别是该方式的四个示意图;
c、在重复数据单元块的多个 OFDM符号的不同子载波上调制映射导频符 号, 图 3-3是该方式的一个示意图。
可以看出,本发明所提供的方法和装置,既可以用于现有的基站( Node B )、 无线网络控制器 (RNC, Radio Network Controller )或用户终端, 也可以用于 演进方案中的基站(eNode B )和用户终端, 还可以用于未来通信系统中的某 些类似基站功能的网络侧设备, 以及用户终端。
本领域技术人员可以明白,这里结合所公开的实施例描述的各种示例性的 方法步骤和装置单元均可以电子硬件、软件或二者的结合来实现。 为了清楚地 示出硬件和软件之间的可交换性,以上对各种示例性的步骤和单元均以其功能 性的形式进行总体上的描述。这种功能性是以硬件实现还是以软件实现依赖于 特定的应用和整个系统所实现的设计约束。本领域技术人员能够针对每个特定 的应用, 以多种方式来实现所描述的功能性,但是这种实现的结果不应解释为 倒是背离本发明的范围。
利用通用处理器、 数字信号处理器(DSP, Digital Singnal Processor ), 专 用集成电路 ( ASIC, Application Specific Integrated Circuit ), 现场可编程门阵 歹' J ( FPGA, Field Programmable Gate Array )或者其它可编程的逻辑器件、 分 立门或者晶体管逻辑、分立硬件组件或者他们之中的任意组合, 可以实现或执 行结合这里公开的实施例描述的各种示例性的单元。通用处理器可能是微处理 器, 但是在另一种情况中, 该处理器可能是任何常规的处理器、 控制器、 微控 制器或者状态机。 处理器也可能被实现为计算设备的组合, 例如, DSP和微处 理器的组合、 多个微处理器、 一个或者更多结合 DSP核心的微处理器或者任 何其他此种结构。
结合上述公开的实施例所描述的方法的步骤可直接体现为硬件、由处理器 执行的软件模块或者这二者的组合。软件模块可能存在于 RAM存储器、闪存、 ROM存储器、 EPROM存储器、 EEPROM存储器、 寄存器、 硬盘、 移动磁盘、 CD-ROM或者本领域熟知的任何其他形式的存储媒质中。 一种典型存储媒质 与处理器耦合,从而使得处理器能够从该存储媒质中读信息,且可向该存储媒 质写信息。 在替换实例中, 存储媒质是处理器的组成部分。 处理器和存储媒质 可能存在于一个 ASIC中。 该 ASIC可能存在于一个用户站中。 在一个替换实 例中, 处理器和存储媒质可以作为用户站中的分立组件存在。
提供所述公开的实施例,可以使得本领域技术人员能够实现或者使用本发 明。 对于本领域技术人员来说, 这些实施例的各种修改是显而易见的, 并且这 里定义的总体原理也可以在不脱离本发明的范围和主旨的基础上应用于其他 明, 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均 应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种信号发送方法, 其特征在于, 包括:
对待发送的各数据符号进行加权重复扩展,获得各数据符号的扩展数据符 号;
将各数据符号的扩展数据符号和导频符号调制映射到各对应的块重复资 源块 BRB中的指定时频位置, 获得各对应的重复数据单元块;
发送所述各重复数据单元块。
2、 如权利要求 1所述的方法, 其特征在于, 所述对待发送的数据符号进 行加权重复扩展包括:
按重复系数 RF复制数据符号, 并在所述 RF对应的一组加权因子序列中 选择可用的加权因子序列;
将被选择的加权因子序列中的各加权因子与复制获得的各数据符号分别 相乘, 以对数据符号进行加权重复扩展。
3、 如权利要求 2所述的方法, 其特征在于, 所述导频符号为扩展专用导 频符号; 所述方法进一步包括: 釆用所述加权因子序列中的各加权因子对专用 导频符号加权重复扩展, 获得各扩展专用导频符号。
4、 如权利要求 3所述的方法, 其特征在于, 所述方法进一步包括: 按所述 RF复制专用导频符号;
釆用所述加权因子序列中的各加权因子与复制获得的各专用导频符号分 别相乘, 以对专用导频符号加权重复扩展。
5、 如权利要求 3所述的方法, 其特征在于, 所述方法进一步包括: 接收端设备收到所述各重复数据单元块后 ,将其中的各扩展专用导频符号 和未加权情况下的专用导频符号进行比照;
逆运算获得对专用导频符号进行加权重复扩展所釆用的加权因子序列。
6、 如权利要求 1所述的方法, 其特征在于, 所述导频符号为公共导频符 号。
7、 如权利要求 1至 6任意一项所述的方法, 其特征在于, 将相邻小区用 户的导频符号调制映射到 BRB中不重叠的时频资源位置。
8、 如权利要求 1至 6任意一项所述的方法, 其特征在于, 相邻小区用户 的导频符号所釆用的序列彼此正交。
9、 如权利要求 1至 6任意一项所述的方法, 其特征在于, 将不同天线发 送的导频符号调制映射到 BRB中不重叠的时频资源位置。
10、 如权利要求 1至 6任意一项所述的方法, 其特征在于, 被不同天线发 送的导频符号所釆用的序列彼此正交。
11、 一种信号发送装置, 其特征在于, 包括:
数据符号扩展单元, 用于对待发送的各数据符号进行加权重复扩展, 获得 各数据符号的扩展数据符号;
重复数据单元块单元,用于将数据符号扩展单元获得的扩展数据符号和导 频符号调制映射到各对应的块重复资源块 BRB中的指定时频位置, 获得各对 应的重复数据单元块; 和
发送单元, 用于发送重复数据单元块单元获得的各重复数据单元块。
12、 如权利要求 11所述的装置, 其特征在于, 数据符号扩展单元按重复 系数 RF对待发送的数据符号进行加权重复扩展。
13、 如权利要求 12所述的装置, 其特征在于, 数据符号扩展单元包括: 按所述 RF复制数据符号, 并在所述 RF对应的一组加权因子序列中选择 可用的加权因子序列的模块;
将被选择的加权因子序列中的各加权因子与复制获得的各数据符号分别 相乘, 以对数据符号进行加权重复扩展的模块。
14、 如权利要求 13所述的装置, 其特征在于, 所述导频符号为扩展专用 导频符号; 所述装置还包括:
导频符号扩展单元,用于釆用所述加权因子序列中的各加权因子对专用导 频符号加权重复扩展, 获得各扩展专用导频符号。
15、如权利要求 14所述的装置, 其特征在于, 所述导频符号扩展单元包括: 按所述 RF复制专用导频符号的模块;
釆用所述加权因子序列中的各加权因子与复制获得的各专用导频符号分 别相乘, 以对专用导频符号加权重复扩展的模块。
16、 如权利要求 11所述的装置, 其特征在于, 所述导频符号为公共导频 符号。
PCT/CN2008/072610 2007-10-11 2008-10-07 Procédé et dispositif de transmission de signal WO2009049528A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107009791A KR101125756B1 (ko) 2007-10-11 2008-10-07 신호 전송 방법 및 디바이스
JP2010528265A JP5365963B2 (ja) 2007-10-11 2008-10-07 信号伝送方法及び装置
US12/682,444 US8300592B2 (en) 2007-10-11 2008-10-07 Signal transmission method and device
EP08801024.4A EP2211513B1 (en) 2007-10-11 2008-10-07 A signal transmission method and a device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710175758.9 2007-10-11
CN2007101757589A CN101409583B (zh) 2007-10-11 2007-10-11 信号发送方法、信号发送装置

Publications (1)

Publication Number Publication Date
WO2009049528A1 true WO2009049528A1 (fr) 2009-04-23

Family

ID=40567010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072610 WO2009049528A1 (fr) 2007-10-11 2008-10-07 Procédé et dispositif de transmission de signal

Country Status (6)

Country Link
US (1) US8300592B2 (zh)
EP (1) EP2211513B1 (zh)
JP (1) JP5365963B2 (zh)
KR (1) KR101125756B1 (zh)
CN (1) CN101409583B (zh)
WO (1) WO2009049528A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400131B (zh) * 2007-09-30 2010-11-17 大唐移动通信设备有限公司 基于块重复多址接入方式的资源分配/管理方法、装置
US8638745B2 (en) * 2009-05-15 2014-01-28 Telefonaktiebolaget L M Ericsson (Publ) Reference symbol distribution method and apparatus
CN101931437A (zh) 2009-06-19 2010-12-29 松下电器产业株式会社 无线通信系统中的解调参考信号设置方法及装置
CN101741461B (zh) * 2009-12-29 2014-04-02 华为技术有限公司 邻区干扰消除方法、装置和接收机
CN102082755B (zh) * 2010-01-11 2016-06-08 电信科学技术研究院 一种下行导频的传输方法、装置
US8854998B2 (en) * 2011-02-11 2014-10-07 Mediatek Inc. Method of UE RSRQ measurement precaution for interference coordination
WO2012167548A1 (zh) * 2011-11-14 2012-12-13 华为技术有限公司 应用在正交频分多址系统中的数据发送和接收方法、装置及系统
CN103516639B (zh) * 2012-06-30 2016-12-21 华为技术有限公司 信道估计方法、信道估计装置和接收机
CN105519174A (zh) * 2013-09-30 2016-04-20 富士通株式会社 信号测量方法、用户设备以及基站
WO2017105301A1 (en) * 2015-12-16 2017-06-22 Telefonaktiebolaget Lm Ericsson (Publ) Transmitting communication device, receiving communication device and method performed therein comprising mapping the constellation symbols
WO2018027705A1 (zh) * 2016-08-10 2018-02-15 华为技术有限公司 信号传输方法、装置和系统
WO2018028775A1 (en) * 2016-08-10 2018-02-15 Huawei Technologies Co., Ltd. Common synchronization signal for a new radio carrier supporting different subcarrier spacing
CN107734678B (zh) * 2016-08-12 2023-05-23 中兴通讯股份有限公司 一种信息传输方法、装置和系统
CN107846726B (zh) * 2016-09-19 2019-08-09 上海朗帛通信技术有限公司 一种ue、基站中的发射功率调整的方法和装置
CN108282312B (zh) * 2017-01-06 2020-09-01 电信科学技术研究院 一种上行传输方法、终端及基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030067961A1 (en) * 2001-10-04 2003-04-10 Hudson John E. Wireless spread spectrum communications system, communications apparatus and method therefor
CN1571414A (zh) * 2004-04-30 2005-01-26 焦秉立 多用户块传输通信发射方法和接收方法
CN1747462A (zh) * 2005-10-20 2006-03-15 清华大学 一种正交频分复用系统信号发送及接收方法
CN1992701A (zh) * 2005-12-31 2007-07-04 华为技术有限公司 一种交错型正交频分复用的接入方法及装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1374443B1 (en) 2001-04-05 2006-07-12 Nortel Networks Limited Transmitter for a wireless communications system using multiple codes and multiple antennas
US20060274829A1 (en) * 2001-11-01 2006-12-07 A4S Security, Inc. Mobile surveillance system with redundant media
US7164649B2 (en) * 2001-11-02 2007-01-16 Qualcomm, Incorporated Adaptive rate control for OFDM communication system
JP3727283B2 (ja) * 2001-11-26 2005-12-14 松下電器産業株式会社 無線送信装置、無線受信装置及び無線送信方法
KR100520621B1 (ko) 2002-01-16 2005-10-10 삼성전자주식회사 가중화된 비이진 반복 누적 부호와 시공간 부호의 부호화방법 및 장치
JP4043287B2 (ja) * 2002-05-24 2008-02-06 三菱電機株式会社 無線通信システム、通信装置および受信品質測定方法
KR100511299B1 (ko) * 2002-12-13 2005-08-31 엘지전자 주식회사 이동 통신 시스템의 데이터 심볼 맵핑 및 확산 장치
KR100560386B1 (ko) * 2003-12-17 2006-03-13 한국전자통신연구원 무선 통신 시스템의 상향 링크에서 코히어런트 검출을위한 직교주파수 분할 다중 접속 방식의 송수신 장치 및그 방법
CN1719817A (zh) 2004-07-09 2006-01-11 北京三星通信技术研究有限公司 正交频分复用通信系统的导频传输和接收方法
CN1756248B (zh) 2004-09-29 2010-06-02 上海贝尔阿尔卡特股份有限公司 多入多出正交频分复用移动通信系统及信道估计方法
US8831115B2 (en) * 2004-12-22 2014-09-09 Qualcomm Incorporated MC-CDMA multiplexing in an orthogonal uplink
US7876806B2 (en) * 2005-03-24 2011-01-25 Interdigital Technology Corporation Orthogonal frequency division multiplexing-code division multiple access system
JP4827843B2 (ja) 2005-06-17 2011-11-30 パナソニック株式会社 マルチキャリア通信における無線通信基地局装置、無線通信移動局装置および無線通信方法
WO2007008036A2 (en) * 2005-07-13 2007-01-18 Lg Electronics Inc. Method for transmitting/receiving signal having spread training symbol in mobile communication system
JP4305771B2 (ja) * 2005-08-01 2009-07-29 シャープ株式会社 セルラ移動通信システムにおける基地局の送信装置及び移動局の受信装置
JP4584807B2 (ja) * 2005-10-03 2010-11-24 シャープ株式会社 移動体通信システム、移動体通信システムにおけるスクランブルコードの割り当て方法、基地局装置、及び移動局装置
US8130857B2 (en) * 2006-01-20 2012-03-06 Qualcomm Incorporated Method and apparatus for pilot multiplexing in a wireless communication system
US8509323B2 (en) * 2006-08-22 2013-08-13 Motorola Mobility Llc Resource allocation including a DC sub-carrier in a wireless communication system
CN101232484B (zh) * 2007-01-26 2011-08-17 电信科学技术研究院 信号传输方法、装置及通信系统
CN101399803B (zh) * 2007-09-27 2011-04-13 大唐移动通信设备有限公司 正交频分复用传输信号的多用户检测方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030067961A1 (en) * 2001-10-04 2003-04-10 Hudson John E. Wireless spread spectrum communications system, communications apparatus and method therefor
CN1571414A (zh) * 2004-04-30 2005-01-26 焦秉立 多用户块传输通信发射方法和接收方法
CN1747462A (zh) * 2005-10-20 2006-03-15 清华大学 一种正交频分复用系统信号发送及接收方法
CN1992701A (zh) * 2005-12-31 2007-07-04 华为技术有限公司 一种交错型正交频分复用的接入方法及装置

Also Published As

Publication number Publication date
US8300592B2 (en) 2012-10-30
CN101409583B (zh) 2013-02-13
JP2011501484A (ja) 2011-01-06
JP5365963B2 (ja) 2013-12-11
KR20100060028A (ko) 2010-06-04
EP2211513A1 (en) 2010-07-28
EP2211513B1 (en) 2018-11-07
KR101125756B1 (ko) 2012-03-27
CN101409583A (zh) 2009-04-15
US20100254341A1 (en) 2010-10-07
EP2211513A4 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
WO2009049528A1 (fr) Procédé et dispositif de transmission de signal
CN114285540B (zh) 使用正交时间频率空间调制的多路存取
CN106302300B (zh) 一种基于滤波器组多载波系统的信号发送和接收的方法及装置
KR101701899B1 (ko) 무선시스템에서 하향링크 통신을 위한 8개 송신안테나 기준신호 설계
JP5580398B2 (ja) マルチストリーム伝送におけるパイロット信号をマッピングする方法及びシステム
CN102461052B (zh) 在资源的不连续簇上传输参考信号的方法及装置
EP1987617B1 (en) Pilot signal transmission method and apparatus
EP3840276B1 (en) Apparatus and method for initialization and mapping of reference signals in a communication system
KR101650749B1 (ko) 릴레이를 위한 백홀 서브프레임의 제어 채널 자원 할당 방법 및 장치
US9203569B2 (en) Method for transmitting pilot for multiple carrier system
CN104012015B (zh) 无线通信系统中发送专用参考信号的控制信道发送方法及设备
WO2017045607A1 (zh) 一种物理下行控制信道的传输方法及装置
US20090168730A1 (en) Pilot Signal Allocation Method and Apparatus
CN106411486B (zh) 一种上行解调导频的发送接收方法及装置
CN106788926B (zh) 一种降低网络延迟的无线通信方法和装置
US9509473B2 (en) Method and device for sending and receiving a reference signal
WO2020207245A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018028998A1 (en) Device and user equipment to process a channel state information reference signal
WO2009059536A1 (fr) Procédé, dispositif, station de base et équipement d'utilisateur destinés à une insertion de fréquence pilote dans un système mrof
US9780931B2 (en) Flexible transmission of messages in a wireless communication system
WO2009124454A1 (zh) 多载波mimo系统的基站中为移动终端确定导频图案的方法
KR101513512B1 (ko) 직교 주파수 분할 다중 접속 시스템에서의 이종 서브프레임간 송수신 방법 및 장치
US11683121B2 (en) Systems and methods for uplink signaling
KR101208539B1 (ko) 주파수 도약 사용자 신호와 스케줄링 사용자 신호의 다중화방법 및 이를 이용한 신호 송신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08801024

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12682444

Country of ref document: US

Ref document number: 2010528265

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107009791

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 913/MUMNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008801024

Country of ref document: EP