WO2009044927A1 - 自動潅水システム - Google Patents

自動潅水システム Download PDF

Info

Publication number
WO2009044927A1
WO2009044927A1 PCT/JP2008/068314 JP2008068314W WO2009044927A1 WO 2009044927 A1 WO2009044927 A1 WO 2009044927A1 JP 2008068314 W JP2008068314 W JP 2008068314W WO 2009044927 A1 WO2009044927 A1 WO 2009044927A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
storage chamber
water storage
conduit
absorbing material
Prior art date
Application number
PCT/JP2008/068314
Other languages
English (en)
French (fr)
Inventor
Kozo Oshio
Original Assignee
Kozo Oshio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kozo Oshio filed Critical Kozo Oshio
Publication of WO2009044927A1 publication Critical patent/WO2009044927A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/02Methods or installations for obtaining or collecting drinking water or tap water from rain-water
    • E03B3/03Special vessels for collecting or storing rain-water for use in the household, e.g. water-butts
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/005Reservoirs connected to flower-pots through conduits
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/108Rainwater harvesting

Definitions

  • the present invention relates to an automatic irrigation system for effectively raining rainwater into a plant (especially a moss plant) that greens on a rooftop or a wall of a building.
  • the surface temperature of the concrete will be stored in summer. However, it was reduced to nearly 20 ° C by greening, and because it has a heat retaining effect in winter, an example of reducing electricity usage fees by 10% a year was given. .
  • the present invention has been made in view of the above-mentioned problems, and in order to greenen the rooftops, walls, and roofs of buildings, rainwater of natural blessings is stored, and the stored rainwater is effectively used without waste. This is to provide an automatic irrigation system that can be greened with power and without water.
  • the present invention combines the buoyancy action of a buoyancy body floating in water with the capillary action due to the surface tension of water, and the position from high to low due to the gravity of water.
  • the rainwater automatically flows into the reservoir tank and the reservoir tank is sealed each time.
  • the water stored in the reservoir tank in the sealed state is sent to the outside of the reservoir tank (water transfer). And supply the necessary amount of water according to demand. It is configured to supply water. The principle will be described with reference to FIG. In Fig.
  • Fig. 20 (a) water is stored in the container for about 8 minutes, the container is closed in a sealed state, a hole of about several millimeters is opened in the lid, and the container is opened in Fig. 20 (b).
  • the water in the container does not flow out of the opening hole due to the surface tension of the water, but keeps the state as it is. In this state, the air in the container is in a slightly negative pressure state, and the negative pressure and the surface tension of water are balanced and continue to be maintained. Therefore, as shown in Fig. 20 (c), when a water absorbing material made of a fibrous polymer absorber is inserted into the hole of the opening, the water in the container is reduced by the action of capillary action due to the surface tension of the water.
  • the water absorption material absorbs water, penetrates, and flows out of the container.
  • the air equivalent to the water outflow rises into the water in the container as small bubbles. Therefore, with this configuration, regardless of the amount of water in the container, water permeates through the action of capillary action due to the surface tension of the water, and only the amount of water that permeates can flow out.
  • the amount of water flowing out is proportional to the cross-sectional area of the water-absorbing material, and the amount of water flowing out can be adjusted appropriately according to the cross-sectional area of the water-absorbing material.
  • the present invention can automatically create a pressure state, and the present invention is based on the buoyancy effect of a buoyant body that floats on the water stored in a water storage tank, the fluidity of water, and the surface tension of the water. By combining the action of capillarity, it is configured to automatically supply an appropriate amount of rainwater. ⁇ The invention's effect ⁇
  • the automatic irrigation system of the present invention can store rainwater of natural blessings and effectively use the stored rainwater without waste, and has power and water (tap water) facilities on the rooftop, walls, and roof of the building. Even if it is not, it is possible to grow plants by supplying an appropriate amount of water from rainwater stored at all times, thus reducing the heat island phenomenon and reducing CO 2 by photosynthesis semipermanently, greatly contributing to the prevention of global warming. it can.
  • Figure (b) shows a perspective view of the entire storage tank 1 for storing rainwater and storing it
  • Figure (a) is a longitudinal sectional view from the side of the storage tank 1
  • Figure (c) is The longitudinal cross-sectional view seen from the front is shown.
  • the water storage tank 1 is formed in a rectangular parallelepiped shape with plastic materials such as polypropylene, vinyl chloride, and ABS resin, and the rain receiving part 1 a inclined obliquely as shown in the figure is provided in the upper opening. Then, the water tank 1 is divided into the upper tank and the lower tank at the section 1h.
  • the upper tank is formed with a reservoir 1A for storing rainwater
  • the lower tank is formed from the reservoir 1A.
  • an enclosure 1c is provided below the opening 1b to allow water to freely enter and exit, and a buoyant body made of a hollow sphere in the enclosure 1c. 2 is provided on the lower side of the side of the compartment 1 B, and a discharge port 1 d for discharging the water accumulated in the compartment 1 B is provided.
  • Fix the water pipe 3d so that water does not leak from the opening of the outlet 1d, and connect the end of the water conduit 3 to the water inlet 4d formed at the end of the water pipe 4 shown in Fig. 15
  • a water absorbing material 5 described later is fitted in a gap portion 4 b formed in the water supply pipe 4 so as to be horizontally long without gaps.
  • FIG. 3 shows a cross-sectional view of one embodiment of the automatic rinsing system of the present invention.
  • Fig. 17 (a) is a perspective view of the configuration, and
  • Fig. 18 (b) shows the configuration of the building. The state implemented on the roof is shown.
  • Fig. 18 (b) when the configuration of the present invention is installed on the roof of a building and implemented, rainwater is formed into an appropriate width and length as shown in Fig. 3 (a). Above and water storage Rain falls evenly on the rain catcher 1a provided in tank 1 and rainwater accumulates. The rainwater flows into the storage tank 1 from the surface of the rain receiving portion 1a inclined slightly, and the rainwater that flows into the storage chamber 1A in the storage tank 1 is an opening provided in the partition 1h. Pass through 1b and into branch 1B. When the volume of water in the branch chamber 1 B increases, the water flows into the water conduit 3 inserted into the water compartment 1 B due to its own weight, and the water passes through the water conduit 3 into the water supply tube 4. Inflow.
  • the water fills the hollow portion 4a formed in the water supply pipe 4, and eventually becomes full. Therefore, since the hollow portion 4a of the water supply pipe 4 and the portion of the water absorbing material 5 are in close contact with each other, and the inside of the hollow portion 4a is in a closed room, the water filled in the hollow portion 4a is The water pressure applied to the hollow portion 4a by the principle of the path force is the same at any site.
  • the water filled in the hollow portion 4a gradually absorbs water from the end of the water absorbing material 5 due to the action of capillary action due to the surface tension of the water, and eventually permeates the entire water absorbing material 5 ⁇ .
  • the buoyancy of the buoyancy body 2 is F
  • the gravity of the weight of the buoyancy body 2 is g 3
  • the water accumulated in the compartment 1B from the installation surface of the water storage tank 1 Hl is the height of water stored in the reservoir 1 A, h 2
  • the cross-sectional area of the conduit 3 is s
  • the opening area of the opening 1 b is S
  • the conduit from inside the compartment 1 B The pressure gl at which the water added in 3
  • the configuration of the present invention is composed of a buoyant body 2 where F> g 1+ g 2+ g 3, and the buoyancy F generated in the buoyant body 2 corresponds to the amount of water of the same volume that the buoyant body 2 sinks into water. Since the buoyancy F for the weight to be applied acts upward, the opening surface where the upper part of the buoyant body 2 and the opening 1 b contact is in close contact, and the water in the reservoir 1 A flows into the branch 1 B Can not. Then, the water in the compartment 1 B does not flow out of the conduit 3 and remains as it is.
  • buoyancy F of the buoyant body 2 is configured to be F-g 1 + g 2+ g 3 when the water in the reservoir 1 A is full, the water in the reservoir 1 A is less than full. If so, the water in the reservoir 1A will not flow into the compartment 1B.
  • the water in the reservoir 1 A becomes F g 1+ g 2+ g 3 at any height, and the water in the reservoir 1 A is Since water flows into the compartment 1 B, the water in the reservoir 1 A will flow in rapidly. In this state, the opening surface between the upper part of the buoyant body and the opening 1 b is always close.
  • the buoyant body has a pressure g 2 that pushes down the buoyant body from the opening 1 b and a pressure g 1 that pulls down the buoyant body from the outlet 1 d, which always works downward. Moves up and down, and the water in the reservoir 1A always flows into the branch 1B in that state.
  • both the pressure g 2 of the water in the reservoir 1 A and the pressure gl of the water in the branch chamber 1 B are simultaneously applied to the conduit 3, and both of them are introduced into the conduit 3. Since the pressure is applied, the water in reservoir 1 A always flows into branch 1 B. In this state, the more water (height) in reservoir 1 A, the more pressure ( As the water pressure increases, the amount of water flowing out of the conduit 3 increases in proportion to the amount of water (height) in the reservoir 1A. Even if the flow rate is reduced by installing a valve for adjusting the flow rate in the conduit 3 in that state, the water pressure g 2 in the reservoir 1 A and the branch chamber 1 B are always in the conduit 3. Since both pressures of the water pressure gl are applied, water will continue to flow out of the conduit 3 at both pressures, and excess water will flow out more than necessary.
  • Water in the water guide pipe 3 moves into the water supply pipe 4 connected to the water absorbing material 5 by the action of water absorption by the capillary phenomenon, and at the same time, the water in the branch chamber 1 B flows into the water guide pipe 3.
  • the state in the compartment IB at that time is the state shown in Fig. 20 (c) (d), and the air in the sealed container in that state is in a negative pressure state. Since the negative pressure state is reached, the amount of water corresponding to the negative pressure flows from the opening 1b where the water in the reservoir 1A is in close contact with the negative pressure. Come out.
  • the amount of water that flows out from the water storage chamber 1A into the compartment 1B corresponds to the amount of water (evaporation) of the water-absorbing material 5 that can be constantly replenished. Therefore, more than necessary extra water is not supplied from the reservoir 1 A to the water absorbent 5.
  • the rain catcher 1a can be configured as a slide type. Further, the water conduit 3 and the water supply may be integrated in the configuration of the present invention.
  • FIG. 4 shows the configuration of the embodiment of the present invention.
  • FIG. 4 (a) shows a configuration in which two buoyant bodies 2 are connected to each other, and the opening portion 1 b has a pressing force due to the lower buoyant body force and the upper buoyant body 2. The opening 1b can be closed more tightly by the pulling pressure due to the buoyancy.
  • the side wall of the compartment 1B has a long horizontal discharge P 1 d is installed, and the water absorbing material 5 is inserted directly into the discharge port 1d, and y is shown in Fig. 18 (c), and the water pipe 3 and the water supply pipe are shown. 4 can also be configured to absorb water directly from the interior of the compartment 1 B to the water-absorbing material 5 -S3 Fig.
  • the partition y part 1 h is provided with a support shaft part 2 b, and the support arm part 2 b is pivotally supported by a lever arm 2 a formed in the shape of “ ⁇ j”, and a buoyant body at the tip of the lever arm 2 a.
  • the opening 1 b can be closed with the plugging portion 2 C so as to be firmly in close contact.
  • the peripheral edge of the opening 1 b is formed in a protruding shape inside the water storage chamber 1 A. For example, even if an unnecessary object enters the water storage chamber 1 A, the unnecessary object remains in the opening 1 b. The structure is difficult to enter. Further, the opening 1 b is provided with a filter 1 f that permeates water appropriately, and the amount of water flowing into the compartment 1 B can be moderated by the filter 1 f.
  • a valve 1 e is provided at the discharge port 1 d.
  • FIG. 5 shows the configuration of the present invention so that water can be supplied intermittently.
  • Water storage tank 1 is formed in the upper tank from the top, storage chamber 1 is divided into the middle tank 1 B, the temporary storage chamber 1 C is formed in the lower tank, and each tank is provided with a partition 1 h that is divided upward and downward.
  • a partition 1 that partitions B and the temporary reservoir 1 C is provided with an opening 1 b that communicates with both chambers, and a water absorbent 5 having an appropriate cross-sectional area that fits into the opening 1 b is separated into one chamber 1 B is inserted into the temporary water storage chamber 1C, and the opposite side is inserted into the temporary water storage chamber 1C.
  • In the temporary water storage chamber 1C there is a water conduit 3 bent into an n shape as shown in the figure.
  • the amount of water penetrating from the water absorbing material 5 is proportional to the cross sectional area of the water absorbing material 5, so the cross sectional area is set appropriately. This makes it possible to supply the necessary water intermittently.
  • the water pipe 3 that has been stretched immediately is inserted into the discharge ⁇ 1 d, and the water accumulated in the temporary reservoir 1 C is continuously discharged through the water pipe 3 at all times.
  • the water pipe 3 that has been stretched immediately is inserted into the discharge ⁇ 1 d, and the water accumulated in the temporary reservoir 1 C is continuously discharged through the water pipe 3 at all times.
  • an opening 1b is formed in the opening 1b in the partition 1 that partitions the water 1C and the temporary storage 1C, and the opening 1b Even if the water-absorbing material 5 is not particularly provided, the water-absorbing material 5 may be configured so that water appropriately flows from the opening 1b.
  • the position of the center of gravity moves when water accumulates in the container, and the container tilts and discharges the water as shown in Fig. 11 described later.
  • the water accumulated in a predetermined amount intermittently in the temporary reservoir 1 c is discharged through a water conduit 3 bent into an n-shape, and a water supply pipe 4 is connected to the water conduit 3 in the same manner as in the above embodiment.
  • a water supply pipe 4 is connected to the water conduit 3 in the same manner as in the above embodiment.
  • water can be supplied from the water supply pipe 4 to the water absorbing material 5 having an appropriate length.
  • the temporary storage chamber 1C is provided in a discharge port 1d formed with a water absorption material 5 that directly absorbs water that has been intermittently filled into the temporary storage chamber 1C.
  • the configuration of the present invention may be implemented by providing a water absorbing material 5 having an appropriate length for absorbing water directly into the water storage 1 A and the compartment 1 B at the discharge P 1 d.
  • a flat floating sheet 1 i made of foamed steel ⁇ - is provided in the water storage chamber 1 A, and when rainwater accumulates in the water storage chamber 1 A, it floats-h 1 i The floating sheet 1 i reduces the surface of the water accumulated in the reservoir 1 A so that the area in contact with the air is small, and minimizes the amount of water that evaporates in the air. You can.
  • FIG. 6 and 7 show the configurations of the above-described embodiments, in which the volume in the compartment IB is reduced and the width of the buoyant body 2 that floats up and down is reduced.
  • the volume in the compartment 1 B is reduced by reducing the volume in the compartment 1 B, so that the water in the compartment 1 B is more than necessary to the water absorbent 5. It is possible to suppress the water supply as much as possible, and to finely adjust the amount of water supplied from within the compartment 1B.
  • the volume in the compartment 1B can also be adjusted by appropriately setting the width of the compartment 1B.
  • the configuration shown in Fig. 6 (c) is such that when the water stored in the compartment 1B reaches a certain amount, the water flows out.
  • Fig. 7 shows a configuration in which the height of the water conduit 3 inserted into the compartment 1 B is set to an appropriate height.
  • the cross-sectional area of the water conduit 3 is s, and the compartment 1 B
  • the g 1 is Adjustment is possible even if h of the discharge P 1 d into which the conduit 3 is inserted is increased. Since the positional relationship with the buoyant body 2 depends on the height h of the outlet 1d, the amount of water flowing out of the compartment 1B can be finely adjusted even with this configuration.
  • FIG. 8, FIG. 9 and FIG. 10 show the configuration of another embodiment to which the buoyancy action of the buoyancy body of the present invention is applied. Reservoir in the configuration of Fig. 8, Fig. 9 and Fig. 10
  • buoyancy of this buoyancy lid 2 A is smaller than the specific gravity i of the buoyancy lid 2 A, the buoyancy action will work if the specific gravity of the water is smaller than the specific gravity of water.
  • the buoyancy lid 2 A is composed of 200 cubic centimeters with a weight of 1 99 g, when the buoyancy lid 2 A is submerged, the buoyancy lid will work slightly and the buoyancy will increase. There will be a slight gap between the lid 2A and the inflow 1m that opens, allowing water to flow downward.
  • the buoyancy lid 2 A having a specific gravity smaller than that of water for example, the buoyancy lid 2 A made of a bamboo shoot material can be used.
  • the water accumulated in A does not evaporate from the reservoir 1 A, but is transported as it flows into the water conduit 3 and evaporates from the surface of the water absorbent 5.
  • FIG. 8 (a) shows that an opening 1b of an appropriate size through which water flows into the compartment 1B is formed in the partition 1h at the bottom of the water storage chamber 11AA.
  • the opening 1 b is provided with a water guide 1 k as shown in the figure.
  • the water in the water storage chamber 1 A can be kept in the branch 1 B by, for example, configuring the shape of the opening 1 b to extend partly downward. It may be configured to flow appropriately into
  • FIG. 8 (b) shows a configuration in which the water guide pipe 3 is inserted directly into the opening 1b formed in the bottom surface of the water storage chamber 1A.
  • the surface tension of the water absorbing material 5 connected to the water supply pipe 4 causes the amount of water to be absorbed to flow directly from the water storage chamber 1 A into the water guide pipe 3, and the required amount of water is supplied to the water supply. Transported into tube 4.
  • a pinhole hole may be provided above the water storage chamber 1A so that a slight amount of air flows from the outside into the water storage chamber 1A.
  • FIG. 9 shows a configuration in which the water absorbing material 5 is provided in the opening 1 b without any gap.
  • the water in the reservoir 1A is due to the surface tension of the water absorbent 5 provided in the opening 1b, and the amount of water absorbed is from the reservoir 1A to the compartment 1B. It is poured into. The amount of water that is poured increases and decreases in proportion to the cross-sectional area of the water absorbing material 5. Even in this configuration, a pinhole hole may be provided above the compartment “! B so that a slight amount of air flows into the compartment 1 B from the outside.
  • FIG. 9 (b) is similar to FIG. 9 (a In this configuration, a buoyant body 2 is further provided in the compartment 1 B.
  • the buoyancy of the buoyancy body 2 closes the opening 1 b and closes the water.
  • the water supply amount can be finely adjusted to prevent the inflow of water Figure 9 (c) is bent into an n-shape as shown in the figure in Fig. 9 (a). In this configuration, the water accumulated in the branch chamber 1 B is lower than the highest point of the water conduit 3 bent into an n shape.
  • Fig. 10 shows the configuration shown in Fig. 8 without a compartment 1 B in the reservoir tank 1 and a reservoir chamber.
  • a negative pressure is applied to the air in the sealed closed chamber in A due to the weight of rainwater accumulated in the storage tank 1, so the buoyancy lid 2 A that closes the opening of the inlet 1 m has The same negative pressure due to the suction action is applied, and the more the amount of water accumulated in the water storage chamber 1 A is, the more the amount of water is stored in the air in the closed room.
  • the suction force applied to the A is increased.
  • the greater the amount the stronger the sealed condition in the water storage tank 1. Therefore, rainwater collected in the reservoir 1A does not naturally flow out from the outlet 1d.
  • the more water that accumulates in the reservoir tank the greater the water pressure applied to the reservoir tank outlet, so the amount of water flowing out of the outlet increases proportionally. End up.
  • the water in the reservoir 1 A is vaporized and the water vapor adheres to the contact surface between the buoyancy lid 2 A and the inflow portion 1 m. Become stronger.
  • a titanium oxide film of photocatalyst may be formed on the surface where the buoyancy lid 2A or the inflow portion 1m contacts, and the surface can be cleaned by being exposed to ultraviolet light. Since a film of water is formed on the top, the degree of adhesion is increased.
  • the center of gravity of the buoyancy lid 2A can be shifted from the center to make it eccentric, and if the configuration of the buoyancy lid 2A is finished, the side near the center of gravity is finished to a smooth surface. Since the side surface is always facing down, it can be configured to always touch the surface of the inflow 1 m.
  • a pinhole hole may be provided so that a slight amount of air flows from the outside into the water storage chamber 1A and the branch chamber 1B.
  • Fig. 15 ( ⁇ ) the configuration of each of the embodiments shown in Figs.
  • the water guide pipe 3 shown in (d) may be filled with a water absorbing material, and water may be guided (conveyed) by the water absorbing action of the water absorbing material.
  • a string-shaped water absorbing material 5c of appropriate thickness is passed through the conduit 3, leaving an appropriate gap in the conduit 3, and the string It may be configured such that water is introduced (carrying) in the water guide pipe 3 by the water absorption action of the water absorbing material 5c and the water flow flowing through a space part with an appropriate gap.
  • a string-shaped water guide material 1 k having an appropriate thickness is passed through the water guide pipe 3, and the surface of the water guide material 1 k is affected by the surface tension of water, so that water is introduced into the water guide pipe 3.
  • the string-shaped water absorbent 5c passing through the water conduit 3 and the string-shaped water conduit 1k or the water absorbent 5 to be filled may be passed through the water supply pipe 4 or the water pipe. 4 It may be connected to or integrated with a sheet-like water-absorbing material 5 that absorbs water from inside. The amount of water flowing in the conduit 3 is determined by the inner diameter of the conduit 3 and the string-like water absorbent 5 c and string
  • FIG. 11 to FIG. 14 show the configuration of an embodiment using the fluidity action in which the water of the present invention flows from a high position to a low position by gravity.
  • a water storage portion 1 j having a low center as shown in the figure is provided above the water storage tank 1 and below the rain receiving portion 1 a.
  • An inflow portion 1 m that opens at the center of the inflow portion is formed, and an eccentric vessel 1 1 into which rainwater flows in from the inflow portion 1 m is pivotally supported as shown in the figure.
  • the center of gravity of the eccentric container 1 1 moves (to the right in the figure), so it rotates around the support shaft 1 1 a, and the water collected in the eccentric container 1 1 The water is discharged onto the partition 1 h.
  • the eccentric container 11 is mounted on the support portion 1 1b provided on the partition portion 1h. It is pivotally supported by a support shaft 1 1 a and is rotatable about the support shaft 1 1 a.
  • the eccentric container 11 is formed in a cylindrical shape, and rainwater flowing in from the inflow portion 1 m flows into the eccentric container 11 as shown in the figure.
  • the rear end of the eccentric container 1 1 is provided with a weight part 1 1 c, and in the state where water does not flow into the eccentric container 11 shown in FIG.
  • the position of the center of gravity of the entire eccentric container 1 1 is moved to the right of the support shaft 1 1 a in the figure, so that the eccentric container 1 1 moves in the direction of the arrow by the movement of the center of gravity position.
  • the water in the re-eccentric container 1 1 that rotates and is in the state of a (e) flows out onto the partition 1h at a stroke. Since the water flowing out of t moves from a high position to a low iu.m by gravity due to its fluidity, it flows into the reservoir 1A from the inlet 1 m where the water opens to the lowest position.
  • the water in the water storage chamber 1 A passes through the water conduit 3 from the discharge port 1 d and is shown in FIG.
  • the water in the reservoir 1 A can be automatically supplied (supplied) by being guided by the water absorbing material 5 while being introduced.
  • Fig. 1 2 shows the inflow part f] by the spherical lid 1 2 separate from the eccentric container 1 1
  • an annular actuating part 1 1d for moving the lid body 1 2 is provided at the rear end of the eccentric container 1 1, and the lid body 1 2 is formed from the lid body 1 2.
  • the center of gravity of the entire eccentric container 1 1 is located on the rear end side of the support shaft 1 1a. If there is, the rear end is placed on the partition 1h and y is bent at the same time between the actuating part 1 1d and the eccentric container 1 1 and bent as shown in Fig. (B).
  • the lid body 1 2 comes off from the operating part 1 1 d and becomes completely free, and the inflow part 1 m can be sealed with the white weight of the lid body 1 2.
  • the lid 1 2 placed on the actuating part 1 1 d becomes completely free. It is possible to completely seal the inlet 1 m. Kill.
  • the buoyancy lid 2 A has a specific gravity smaller than water and floats on water.
  • the lid 12 has a specific gravity greater than water. Since it can be carried out even under conditions that do not float on the water, the sealed state in the water storage chamber 1 A after the rain stops is larger with the lid 12 having a higher specific gravity if the volume is the same.
  • the figure ( C ) shows that the rain water collected in the eccentric device 1 1 is full, the eccentric container 1 1 is tilted as shown in the figure, and the lid 1 2 is lifted up by the actuator 1 1 d. At the same time, the water in the eccentric vessel 11 flows, and the water flows from the inflow portion 1 m opened at a low position into the water storage chamber 1 A 3 ⁇ 4. This state of (b) and (c) is automatically repeated during the rain, and rainwater flowing in the water storage chamber 1A is accumulated in the configuration of the present invention. It becomes. When the rain stops, the inside of the water storage chamber 1 A is kept sealed by the lid 1 2.
  • Figures 14 (a) and (b) show the configuration of another embodiment.
  • Figure intended the shaft 1 1 a provided with a rotatable arm (arm) like actuating portion 1 1 d at the center to the rear end portion of the O urchin eccentric container 1 1 to indicate (a), the eccentric vessel 1
  • the operating part 1 1d is not in contact with the lid 1 2 and does not operate, and the water storage chamber 1A is sealed by the lid 1 2 Is blocked.
  • the actuating part 1 1 d rotates in the direction of the arrow due to its own weight and stops at the stopper 1 1 e. And push the side of the lid 1 2 up.
  • the lid body 12 is separated from the position where the inflow portion 1 m is blocked, and an opening is formed in the inflow portion 1 m as shown in the figure, so that the water in the eccentric container 1 1 flows into the water storage chamber 1 A. It is like this. Then, by repeating the state shown in Fig. (A) and Fig. (B), rainwater flows into the reservoir 1A more and more.
  • the shape of the lid 12 is not limited to a sphere, and may be a cone or other shapes, and the shape of the operating portion 11 1 d may be an annular shape, an arm (arm) shape, or other shapes. Also good.
  • Fig. 1 3 shows that the storage tank 1 is partitioned by a partition y part 1 h, a transport pipe 1 3 is provided at the opening of the inflow part 1 m formed in the partition y part 1 h, and rainwater passes through the transport pipe 1 3. Is configured to move into the reservoir 1A. As shown in the figure, the rainwater that flows from the rain catcher 1a onto the reservoir 1j flows into the inflow 1m formed in the reservoir 1j that is lowered at the center, and the rainwater that flows into the reservoir 1j It is poured into the eccentric container 1 1 located below. As shown in Fig.
  • the center of gravity of the eccentric container 1 1 is moved by the rainwater poured into it, and when the eccentric container 1 1 rotates and tilts as shown in Fig. (C), the water in the eccentric container 1 1 is partitioned at once.
  • the actuating rod 13 3 a that has flowed out onto the ridge 1 h and simultaneously pressed by the rear end of the eccentric container 11 is moved upward by the restoring force of the spring 13 3 b in a free state. At that time Since there is a gap from the top to the bottom in the transfer pipe 1 3, the partition
  • FIG. 14 (c) and (d) are constructed according to the same principle as in Figures 13 (b) and (c), and the transport pipe 13 is folded back as shown in the figure. Even if a small foreign object enters the transfer pipe 1 3, it accumulates under the sealing valve 1 3 c, making it difficult to enter the water storage chamber 1 A. It is also possible to remove the foreign matter inside by making the transfer tube 13 removable.
  • the compartment 1 B having the same configuration is provided below the water storage chamber 1 A.
  • the water stored in the water storage chamber 1A may be temporarily stored in the branch chamber 1B, and the water may be gradually discharged or intermittently discharged.
  • FIGS. 15 (a) to (c) and FIG. 16 show an enlarged view of the water supply pipe 4 constituting the present invention.
  • the water supply pipe 4 is formed in a cylindrical shape of an appropriate length as shown in the figure, and a hollow portion 4a having an appropriate space is formed in the water supply pipe 4, and its hollow space is formed.
  • a gap 4b having an appropriate width connected to the space of the part 4a is formed, and a water supply ⁇ 4d for injecting water into the hollow part 4a is provided at the end.
  • the water absorbing material 5 is inserted into the gap 4 b and sandwiched between them, and fixed with the fastener 4 e.
  • the hollow portion 4a can be filled with water, and the required amount of water supply can be finely adjusted.
  • the length of the water supply pipe 4 may be formed to an appropriate length according to the size of the water-absorbing material 5, and in the examples only a straight shape is shown, but it is bent into an L-shape. Alternatively, it may be configured in a square shape such as a U shape or a mouth shape. It may also be configured so that it can be connected in a joint type.
  • Fig. 16 shows the structure of another embodiment of the water supply pipe 4 ⁇
  • the water supply pipe 4 is formed into a hollow and appropriate cylindrical shape as shown in the figure, and an appropriate number of pipes are formed on the side surface of the water supply pipe 4. Opening 4c,
  • each opening 4 c formed in the water supply pipe 4 is directed downward and is in contact with the surface of the water absorbent 5, and the water guide pipe 3 is fitted into the water inlet 4 d, and the water guide pipe
  • Fig. 16 (c) shows the configuration of another embodiment of the present configuration, in which the water supply pipe 4 is connected in a comb shape so that water can be supplied in a wide area. Depending on the volume of the water-absorbing material 5, an appropriate number of connections may be configured. In addition, the size of the hole of each opening 4c may be set appropriately according to the amount of water to be supplied.
  • FIG. 17 and FIG. 18 show configurations for cultivating plants at the time of -rm according to the present invention.
  • moss The characteristics of moss about the moss (property), moss is the first plant that rose from the sea to the ground 400 million years ago, and the environment of the earth at that time is the current 20 environment of carbon dioxide The moss that survived in the harsh environment is a very strong vital moss, currently growing 24,000 species in the world and 25,000 species in Japan. Other moss
  • the position can continue to live as it is, and then regenerate if given moisture. It can grow well even in the rain of nature blessings. (However, because it is dry and has no water, it is dormant, so photosynthesis is not performed in that state.) When general trees wither and die, it generates C 0 2 greater than absorbed C 0 2 On the other hand, moss can completely fix Co 2 collected by photosynthesis.
  • Moss plants can be broadly divided into mosses and moss.
  • Su moss includes cedar moss, snago mosquitoes, and moss moss. And depending on how it grows, it is half-negative
  • the white moss is about 2 of white weight
  • Resistant to changes in temperature and requires no soil or fertilizer, and is inorganic (sand, stone, glass, 3
  • snails are suitable for the moss plant. So, if the moss is in a dry state without moisture, it becomes dormant, and during that time, photosynthesis is also paused, but according to the configuration of the present invention, it continues to replenish moisture appropriately even when it does not rain. Thanks to this, photosynthesis by moss can be continued for a long time. Therefore, in rooftop greening, which is one of the key measures against global warming, cultivating moss plants according to the configuration of the present invention eliminates the need for maintenance costs and maintenance. It is continuously cultivated.
  • FIG. 17 (a) and (C) are constructed by placing only the water absorbent 5 on the installation surface.
  • soil is not required, and moss can be grown directly on the water-absorbing material 5 where water evaporates.
  • Fig. 17 (d) shows that the upper layer of the water-absorbing material 5 is formed of the water-absorbing water-absorbing material 5a, and the lower layer is composed of the water-absorbing material 5b that prevents the roots of plants from entering and permeates water.
  • Examples of the water-absorbing material 5 and the water-absorbing material 5a can be carried out with JAMGUARD (registered trademark) made of fine polyester fiber from Toyobo Co., Ltd.
  • the entire water absorbing material 5b will eventually absorb water evenly.
  • a bottom water supply mat made of Toyobo's polyester composite sheet and a root-proof water-permeable sheet (registered trademark) made of high-density polyester fibers are used.
  • the water-absorbing material 5 has a waterproof material 6 on the lower surface.
  • an adhesive 7 is provided on the bottom surface of the waterproof material 6. Considering that the water-absorbing material 5 may rise due to a typhoon or strong wind, it can be fixed easily by adhering it appropriately to the concrete surface with the adhesive 7.
  • Fig. 18 (a) When installing on the wall of a building as shown in Fig. 18 (a),
  • the adhesive 7 can be implemented with a silicon-based adhesive or the like, or may be composed of an adhesive 7 of a type in which the release paper is peeled off and pasted.
  • a three-dimensional netting material 8 is provided on the surface of the water absorbing material 5. Filling the solid netting material 8 with water-absorbing material, you can grow moss on the water-absorbing material. The Depending on the configuration, it can be cultivated three-dimensionally, so that the cultivation area is large, but the effect of its photosynthesis is also great.
  • the three-dimensional netting material 8 is Toyobo Co., Ltd. As a water-absorbing material, Toyobo's Lanseal (registered trademark) can be used.
  • Fig. 18 shows a state where the present invention is implemented in an actual building.
  • the present inventor has a bath tub in a white house (length 54 cm x width 97 cm x depth 50 cm, tap water is dripped at the gap between the pota, pota, and butter. It took about four and a half days to get a cup, so if you keep the water in the bathtub flowing away,
  • Fig. 18 (a) is performed on the wall 10 B of the building 10 and the water supplied to the water absorbing material 5 is absorbed into the water absorbing material 5 by the capillary phenomenon due to the surface tension of the water. At the same time, since downward gravity is applied, the water absorbed in the water absorbing material 5 descends while evenly penetrating from above to below. Fig.
  • the opening area of the opening 1b and the water conduit 3, and the size of the buoyant body 2 and the buoyancy lid 2A may be appropriately set according to the amount of water to be supplied.
  • the buoyancy body 2 and the buoyancy lid body 2 A may be either a hollow structure or a foam structure, or a dense structure, and the surface thereof may be formed of rubber so that the hermetic seal with the opening 1 b can be increased.
  • the shape may be a cone having a circular cross section.
  • the cross section of the buoyant body 2 is preferably circular, and by making it circular, a force due to buoyancy can be applied evenly to the opening surface of the opening 1b.
  • the water absorbing material 5 can be implemented by a polymer absorbent polymer plastic material, a polyglutamate cross-linked plastic material, glass fiber, glass wool, non-woven fabric, polyamide fiber, or the like.
  • the structure of the water storage tank 1 may be configured by combining the compartment 1B separate from the water storage chamber 1A to form the partition 1h, or separate from the water storage chamber 1A.
  • the compartment 1 B and the separate temporary reservoir 1 C may be combined to form upper and lower cut-off portions 1 h.
  • a pinhole hole may be formed so that a slight amount of air flows from the outside to the appropriate location of the water storage tank 1, and a water absorbing material is filled in the water conduit 3.
  • the water may be guided by the water absorbing material through the string-shaped water absorbing material 5 c.
  • the discharge port 1 d formed in an appropriate width
  • a water absorbing material 5 having an appropriate length may be directly inserted into the structure.
  • the capacity to store rainwater in the storage tank 1 can be designed appropriately depending on the region where the precipitation is different. For example, the average number of rainy days in Tokyo in January and January is small.
  • FIG. 21 shows a photograph of the embodiment of the storage tank 1 of the present invention.
  • a filter is provided between the rain receiving portion 1 a and the water storage portion 1 j to provide rain. Water may be allowed to pass through, and the filter can prevent foreign matter (bird's dung or floating material) from entering the water storage tank 1.
  • the present invention also provides water stored in the water storage tank 1.
  • water storage tank 1 not only rain water but also general water it water can be used.
  • a sensor that monitors the amount of water in the water storage tank 1 is provided, and the water is automatically stored when the water runs out. Make sure to supply water in tank 1 »In that case, there will be no extra water used for plant growth compared to conventional irrigation systems. Therefore, the present invention has a water saving effect as compared with the conventional rinsing system.
  • the present invention may be configured to reflect infrared rays by applying a white treatment or a reflective coating.
  • the present invention can be implemented only with rain water of natural blessings, and does not discharge all co 2 ⁇ Co 2 reduction due to energy saving by reducing the Co 2 reduction due to the reduction of the land phenomenon and photosynthetic action, and the energy consumption of the O chamber can be reduced.
  • the conditions under which plants actively carry out photosynthesis are that there is sufficient light, high temperatures, and high concentrations of CO 2, and the rooftops of objects are better exposed to the sun than the ground.
  • Figures 22 to 27 show the results of the verification test of the automatic irrigation system J according to the present invention.
  • Figures 22 to 24 are tests showing the principle shown in Figure 20. 2 5 Figure
  • the water in the middle container is completely lost in 7 tons.
  • the water in the container can be moved without power by the surface tension of the water.
  • “Automatic Irrigation System J can automatically irrigate and supply water.
  • Fig. 25 (a) and Fig. 26, (Test method) Open a 2 mm opening on the surface of the cylindrical sealed container, and put water in the container for up to 9 minutes. Connect the container and water-absorbing material with a tube, and insert a string-shaped water-absorbing material into the tube. The water in the container
  • the water-absorbing material is 1 cm long, 25 G m wide, 3 mm thick, and uses a guard guard that is a water-absorbing material of Toyobo.
  • the conventional rinsing system requires a control device for controlling the water supply, a power supply facility, and a facility for supplying an appropriate amount of clean water.
  • the container and the water absorbing material are connected by a tube. Insert water-absorbing material. See how the water in the container is sent through the tube and absorbed by the water-absorbing material.
  • the water-absorbing material is "I 9 Gm in length, 25 Cm in width x 3 m in thickness, Toyobo's jam guard is used.
  • the rubber hole is floated on water. Use a pole.
  • the water that runs out of water is proportional to the water that evaporates from the surface of the water-absorbing material.
  • FIG. 28 is a perspective view showing the principle of the present invention.
  • the heated iron ingot is radiated from the surface by infrared radiation as indicated by the arrow. In this case, the heated iron ingot does not cool easily.
  • Figure 29 shows a photograph of the word written by the prophet (predicted to 2 0 0 7.3.10).
  • the inventor filed the invention of the automatic irrigation system as an invention of 2 0 7 .1 0.1 (priority priority), which was invented just 7 months after the prophecy was written.
  • the English translation is Ma n y p e o p l e o n t h e E a r t h n e e d K o z o s b r a i n s .D o n 't f o e t t h e f a c t a n d t h e m i s s i o n e n t r u s t e d t o K o z o.
  • Fig. 1 (a) is a partial longitudinal sectional view of an embodiment of the present invention.
  • (B) is a perspective view of a portion of an embodiment of the present invention.
  • FIG. 2 (a) and 2 (c) are partial longitudinal sectional views showing an embodiment of the present invention.
  • FIG. 2 (b) is a partial perspective view showing an embodiment of the present invention.
  • Figures 3 (a), (b), and (c) are partial longitudinal sectional views of an embodiment of the present invention.
  • 4 (a) and 4 (b) are partial longitudinal sectional views showing an embodiment of the present invention.
  • Figures 6 (a), (b), and (c) are partial longitudinal sectional views of an embodiment of the present invention.
  • Figures 8 (a), (b), (c), and (d) are partial longitudinal sectional views of one embodiment of the present invention.
  • Figures 9 (a), (b), and (c) illustrate one embodiment of the present invention.
  • Fig. 11 (a) (c) (d) (e) is a partial longitudinal sectional view (b) of one embodiment of the present invention.
  • (f) is a side view of a part of an embodiment of the present invention.
  • Fig. 12 (a) is a partial longitudinal sectional view of one embodiment of the present invention.
  • (B) and (c) are partial side views of one embodiment of the present invention.
  • (D) is a side view of the present invention.
  • Fig. 13 (a) (b) (c) is a partial longitudinal sectional view of one embodiment of the present invention.
  • Fig. 14 (a) (b) (c) (d) is a longitudinal section of a part of one embodiment of the present invention.
  • Fig. 15 (a) (b) is a part of one embodiment of the present invention.
  • Fig. 16 (a) and (c) are perspective views of a part of one embodiment of the present invention.
  • (B) is a longitudinal sectional view of a part of one embodiment of the present invention.
  • Fig. 17 (a) is a perspective view of one embodiment of the present invention
  • (b) is a longitudinal sectional view in the X-Y direction of one embodiment of the present invention
  • (c) (d)
  • (f) (g)
  • Fig. 18 (a) (b) (c) is a perspective view of an embodiment of the present invention.
  • FIG. 9 Schematic of data showing some water absorption capabilities of the present invention
  • Fig. 20 (a) (b) (c) (d) is a longitudinal sectional view showing the principle of the present invention.
  • Fig. 21 (a) is a photograph from the perspective of the embodiment of the storage tank according to the present invention. (B) is a photograph from the front of the embodiment of the storage tank according to the present invention.
  • FIG. 2 Photo from the front of the demonstration test showing the principle of the automatic irrigation system of the present invention
  • FIG. 2 3 Photo of the demonstration from the front of the demonstration test showing the principle of the automatic irrigation system of the present invention
  • Fig. 2 (a) (b) is a photograph from the top of the demonstration test 12 of the automatic harbor water system of the present invention.
  • Fig. 2 6 The present invention Of the automatic irrigation system demonstration test 1
  • FIG. 7 Photo from the top of the demonstration test 2 of the automatic irrigation system of the present invention
  • FIG. 2 Perspective view showing the principle of the automatic harbor water system of the present invention

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Soil Sciences (AREA)
  • Building Environments (AREA)

Abstract

建物の屋上や壁面を潅水するのに、自然の恵みの雨水や水道水を貯水し、その貯水した水を無駄なく有効に利用することで、無電源、無動力で潅水する自動潅水システムを提供します。その原理構成は水中の浮力体の浮力作用と水の表面張力による毛細管現象の作用を組み合わせること、または、水の重力による高い位置から低い位置に流れる流動性の作用と、水の表面張力による毛細管現象の作用を組み合わせることで、潅水の需要を満たす分量の水を自動的に給水(供給)します。本発明は、潅水した水が蒸発する際に、地面から熱を奪うこと、無動力によるCO2消費の削減、植物栽培によるCO2の削減などにより地球温暖化防止に貢献するものです。          

Description

明細書
自動港水システム
【技術分野 ]
本発明は 、 ビルの屋上や壁面に緑化する植物 (特に苔植物) に、 雨水を無駄無 く 有効に港水する自動灌水システムに関する。
【背景技術】
現在地球 化が深刻な問題に y その問 は地球規模 まで広がつ てます。 世界の温室効果ガスであ 4年の c o 2 の排出量は 6 5億 トン まで増えてお 、 それによる地球 /皿の上 によつて、 北極 の氷河がと ても速いスピ ―ドで溶け出 してる の で海面の水位が上 しておリ 、 一刻も早く 対策を打たなければならない状況です。 それで京都議定書で日本の C O 2 削減目 が 、 1 9 9 0年から 2 0 0 8年までにマイナス 6 %だったのが、 実 際には 2 0 0 5年までにプラス 7 . 8 <½まで上昇しており 、今後も上昇の一途と考 えられます そして 2 0 0 6年度の日本の C 0 2 の排出量は 1 3億 4 1 0 0万 ト ンで やはり プラス 6 . 4 %上昇しています。 (京都議定書基準の 9 0年比) この ままでは京都議定書で日本に求められている 2 0 0 8年から 2 0 1 2年までの 5 年間の平均でマイナス 6 %も達成できない状況です。 その背景に我々の生活水準 が向上してるため、 C O 2 の排出量が年々増えており 、 その C O 2 の排出量を削 減するこ とは、 現在の生活水準を下げない限り不可能と考えられます。 そこでこ れから排出される C O 2 を如何に吸収して削減させていく かが非常に重要にな り ます そのひとつの方法と して、 ビルの屋上を緑化するこ とで、 ヒー トアイ.ラン ド現象を抑えられて冷暖房の消費電力を削減でき、 そ して緑化する植物の光合成 作用によつて、 C 0 2 を吸収して酸素を生成する一挙両得の効果が得られます。
2 0 0 7年 6月 2 3 日に放映された T B Sの番組で、 ビルの屋上を緑化する こ とで その断熱作用で緑化 しない場合は、 夏にコ ンク リー トの表面温度が蓄熱作 用で 5 0 °Cあつたのが、 緑化するこ とで 2 0 °C近く 下げられ、 冬は保温作用があ るため 、 年間で電気使用料が 1 0 %削減できた実例を挙げてま した。
そこで C O 2 削減のためビルの屋上を綠化する上で最も重要で鍵になるのは、 屋上が挺索源で無上水 (無水道水) の状態でも、 自然の恵みの雨水を如何に無駄 無く 利用 して緑化できるかにな り ます。 電源を使った り上水を使えば、 それによ つて C 0 2 をまた排出するこ とになり ますし、 ビルの屋上に電源や上水の設備を 設けるにはその設備費が新たにかかりますし、 実現がかなリ難し く な ります。 そこで従来、 無電源で自動的に水を供給 (給水) するように した装置の公知公 報が出願されてますが、 そのいずれの公知の装置では、 貯水槽に溜まる水量 (高 さ) に比例して排水口に加わる水圧が大き く なるため、 その水量 (高さ) に比例 した水圧分で流出する水量は大き く な り ます。 そのため公知技術のいずれの構成 も、 必要以上に給水されて しまい、 水を無駄無く 有効に灌水できる構成ではあ り ませんで した。 またその各構成も上水 (水道水) を利用 して、 貯水槽内に溜める 水量を定期的にタイマー等で監視して補給しなければならなく 、 そ して上水 (水 道水) を利用するためその分の C O 2 を排出することにな り ます。 またビルの屋 上で上水 (水道水) を利用するにはその配管設備も必要になり 、 地球温暖化のた めに ビルの屋上の緑化が容易ではないのが現状で した。
【特許文献 1 】
実開平 3 — 7 4 2 4 0号公報
【発明の開示】
【発明が解決しょ う とする課題】
本発明は、 前述の問題に鑑みてなされたもので、 建物の屋上や壁面や屋根を緑 化するのに、 自然の恵みの雨水を貯水し、 その貯水した雨水を無駄無く 有効に利 用するこ とで、 趣 /,》、電源で且つ無上水で緑化できる自動灌水システムを提供するこ とであ ^ o
【課題を解決するための手段】
本発明は前記 題を解決するために、 水中に浮く浮力体の浮力作用と 、 水が持 つ表面張力による毛細管現象作用を組合せるこ とで、 及び水の重力によつて高い 位置から低い位置に流れる流動性の作用と、 水が持つ表面張力による毛細管現象 作用を組合せるこ とで、 雨水を自動的に貯水タ ンク内に流入させながらその都度 貯水タ ンク内を密封の状態に し、 その密封状態で貯水タ ンク内に溜ま た水を貯 水タ ンクの外へ数送 (導水) させるのに、 水が持つ表面張力による毛 管現象の 作用を利用 して水を吸水材内へと吸水させながら、 需要に応じた必要分の水を給 水 (供給) する構成に したものである。 その原理を図 2 0で説明する。 図 2 0 ( a ) において、 容器に水を 8分目 ぐらい溜め、 その容器を密閉状態に蓋を し、 その蓋 に数 m m程度の開口する穴を開け、 その容器を図 2 0 ( b ) に示すよ うに逆さに すると、 容器内にある水はその水の表面張力によって、 開口する穴から流出する こ とはな く 、 そのままの状態を維持し続ける。 この状態の時、 容器内の空気は若 干負圧状態になり 、 その負の圧力と水の表面張力が平衡してその状態を保ち続け るこ とになる。 そこで図 2 0 ( c ) に示すよ うに、 その開口の穴に繊維状の高分 子吸収体でなる吸水材を揷入すると、 水の表面張力による毛細管現象の作用で、 容器内の水はその吸水材に吸水されて浸透し容器の外へと流出 していく 。 そして その水の流出分に相当する空気は、 小さな気泡となって容器内の水の中を上昇し ていきます。 そのためこの構成であれば、 容器内にある水の量に関係なく 、 水の 表面張力による毛細管現象の作用で水が浸透していき、 その浸透する水量分のみ 流出させることができます。 その流出する水の量は、 吸水材の断面積に比例 し、 吸水材の断面積に応じて適当に流出する水量を調整できます。 その吸水材の断面 積が小さい場合は、 吸水された水が吸水材から下に水滴となって落ちるこ とはな く 、 その吸水材の表面から蒸発していく水量分のみ容器内の水が減っていく こ と になります。 実際に図 2 0 ( d ) に示すよ うに、 水が 2 0 0 m I 入る容器に水を
8分目まで入れて、 吸水材にティ ッシュペーパーを揷入して試験を したが、 その 容器内の水が全部無く なるのに、 開口が 2 . 5 m mで 1 曰半、 2 m mで 3 曰、 1 .
5 m mで 5 曰 を要した。 (注 ; その曰の気温や湿度で水の蒸発量が変わる。) 亍ィ ッシュペーパーを揷入しない容器では、 容器内の水は全く減るこ とがなく 、 これ によ リ 亍ィ ッシュペーパーが毛細管現象の働きを して、 水を搬送できるこ とが確 認できる。
また水中に浮く 浮力体の浮力作用を利用するこ とで、 及び水の重力によって高 い位置から低い位置に流れる流動性の作用を利用することで、 貯水タ ンク内を密 室になった負圧状態を自動的に造るこ とができ、 本発明は貯水タ ンクに溜めた雨 水を、 水に浮く 浮力体の浮力作用と、 及び水の流動性の作用と、 水の表面張力に よる毛細管現象の作用を組合せるこ とで、 雨水を自動的に適量分給水する構成に したものである。 【発明の効果】
本発明の自動灌水システムは、 自然の恵みの雨水を貯水して、 その貯水した雨 水を無駄無く 有効に利用でき、 建物の屋上や壁面や屋根で電源や上水 (水道水) の設備が無く ても、 常時貯水した雨水から適量の水を供給して植物を生育できる ため、 ヒー トアイラン ド現象の低減や、 光合成による C O 2 削減を半永久的に行 え、 地球温暖化防止にも大いに貢献できる。
【実施例】
本発明を図面を基に詳細に説明する。
図 1 、 図 2は、 本発明の実施例の構成を示したものである。 図 ( b ) は雨水を溜 めて貯水する貯水タ ンク 1 の全体の斜視図を示し、 図 ( a ) はその貯水タ ンク 1 の側方から見た縦断面図、 図 ( c ) はその正面から見た縦断面図を示す。
貯水タ ンク 1 をポリ プロ ピレンや塩化ビニルや A B S樹脂等のプラスチック材 で直方体状に形成し、 その上部開口に図の様に斜めに傾けた雨受け部 1 a を設け る。 そ して貯水タ ンク 1 内を仕切 レ』部 1 h で上槽と下槽とに仕切り 、 上槽には雨 水を溜める貯水室 1 Aを形成し、 下槽には貯水室 1 Aから雨水を流入する分室 1 Bを形成し、 両槽を仕切る仕切 リ部 1 h に円形状の孔でなる開口部 1 b を設け、 貯水室 1 A内に溜まった雨水をその開口部 "! bから分室 1 B内へと流入させる。 その開口部 1 bの下には格子状で自由に水が出入リする囲い部 1 c を設け、 その 囲い部 1 c 内に中空の球体でなる浮力体 2 を設ける。 そして分室 1 Bの側面の下 側には分室 1 B内に溜まった水を排出する排出口 1 d を設ける。 その棑出口 1 d に水を搬送する導水管 3 を挿入 し、 排出口 1 dの開口から水が漏れないよ うに し つかり固定する。 その導水管 3の端部を図 1 5 に示す給水管 4の端部に形成した 給水口 4 d に嵌合して接続し、 その給水管 4に横長に形成した隙間部 4 b に、 後 述する吸水材 5 を隙間無く嵌合して設けた構成になっている。
この構成で実施する状態を各図に基づいて詳述する。 図 3は本発明の自動濯水 システムの 1 実施例の断面図を示したもので、 図 1 7 ( a ) はその構成の斜視図 であり 、 図 1 8 ( b ) はその構成をビルの屋上に実施した状態を示す。
図 1 8 ( b ) に示すよ うに、本発明の構成をビルの屋上に設置して実施すると、 図 3 ( a ) に示すよ うに、 雨水は適当な幅と長さに形成した吸水材 5上や、 貯水 タ ンク 1 に設けた雨受け部 1 a上に均一に降リ、 雨水が溜まつていく。 その雨水 はやや斜めに傾けた雨受け部 1 aの面から貯水タンク 1 内へと流れ、 その貯水タ ンク 1 内で貯水室 1 Aに流れた雨水は仕切リ部 1 hに設けた開口部 1 bを通り、 分室 1 B内へと流れていく。 そしてその分室 1 B内の水嵩が高く なると、 その水 の自重によリ分室 1 B内に挿入した導水管 3内へと Mれ、 その水は導水管 3を通 つて給水管 4内へと流入していく 。 次にその水は給水管 4内に形成した中空部 4 a内に充 していき、 やがて満水状態になる。 そこで給水管 4の中空部 4 a と吸 水材 5の 部とは隙間無く密接しており、 中空部 4 a内は密室状態になってるた め、 中空部 4 a内に充満した水は、 パス力ルの原理で中空部 4 a内に加わる水圧 はどの部位でも同じになる。 そして中空部 4 a内に充満した水は、 水の表面張力 による毛細管現象の作用で 、 吸水材 5の端部から徐々に吸水していき、 やがて吸 水材 5全体に浸透してい < 。 また同時に空から降る雨も吸水材 5に吸水されるた め、 その雨水は吸水材 5の面上から徐々に全体に吸水されていき、 やがて全体が 雨水で満水状態になる そうなると中空部 4 a内にある水は吸水材 5の端部から 吸水されなく なり、 その吸水されない水は分室 1 B内でどんどん溜まっていく。 そしてその水は図の様に途中浮力体 2を浮かせながら上昇していき、 その水があ ¾度溜まった時点で 、 浮力体 2の上部がその浮動によって開口部 1 bを閉栓状 態に蓋をするため、 分室 1 B内には空気の空隙ができた状態で、 貯水室 1 A内の 水が開口部 1 bから分室 1 B内へと流入するのを妨げ、 それ以上の雨水は貯水タ ンク 1 内でどんどん溜まつていく 。 そして雨が降 y続く限り、 その雨水は貯水室
1 A内が満杯になるまで溜まっていく。
本発明の原理を説明すると、 図 3 ( c ) において、 浮力体 2の浮力を F、 浮力 体 2の重量分の重力を g 3、 貯水タ ンク 1 の設置面から分室 1 B内に溜まる水の 高さを h l、 貯水室 1 A内に溜まる水の高さを h 2、 導水管 3の導水断面積を s 、 開口部 1 bの開口面積を Sとすると、 分室 1 B内から導水管 3内に加わる水が流 出しよ う とする圧力 g lは、
g l = s x h lであり、
貯水室 1 A内から開口部 1 bに加わる水が分室 1 B内に流入しょ うとする圧力 g 2は、 g 2 = S X h 2 となり、 本発明の構成は、 F > g 1+ g 2+ g 3 となる浮力体 2で構成しており、 浮力体 2に 生じる浮力 Fは、 その浮力体 2が水中に沈む同体積分の水量に相当する重量分の 浮力 Fが上向ぎに作用するため、 浮力体 2の上部と開口部 1 b との接する開口面 は密接状態となり 、 貯水室 1 A内の水は分室 1 B内へと流入できない。 そ して分 室 1 B内の水も導水管 3から流出せず、 そのままの状態を保つ。 その貯水室 1 A 内の水が満杯になった時に、 F - g 1 + g 2+ g 3 となるよ うに浮力体 2の浮力 Fを 構成すれば、 貯水室 1 A内の水は満杯以下であれば、 その貯水室 1 A内の水が分 室 1 B内へと流入する こ とはない。
こ こで十分な浮力がない浮力体で構成した場合を考えると、 貯水室 1 A内の水 が如何なる高さでも Fぐ g 1+ g 2+ g 3 となり 、 貯水室 1 A内の水は分室 1 B内へ と流入するため、 その貯水室 1 A内の水がどんどん流入してく ることになリ 、 そ の状態は浮力体の上部と開口部 1 b との開口面が常に近接状態で接してない状態 であり 、 その浮力体には、 開口部 1 bから浮力体を押下げる圧力 g 2 と排出口 1 dから浮力体を引き下げる圧力 g 1 が、 常時下方向に働く ため浮力体が上下に動 き、 貯水室 1 A内の水もその状態では常時分室 1 B内へと流入していく こ とにな る。 そ してその状態では、 導水管 3 内にも貯水室 1 A内の水の圧力 g 2 と分室 1 B内の水の圧力 g l との両圧力が同時に加わって、 導水管 3 内にその両圧力が作 用するため、 貯水室 1 A内の水は分室 1 B内に常時流出 し、 その状態では貯水室 1 A内の水量 (高さ) が多いほど、 導水管 3 内に加わる圧力 (水圧) も大き く な リ、 その導水管 3 内から流出する水の量も貯水室 1 A内の水量 (高さ) に比例し て多く なつて しまう。 また仮にその状態で導水管 3 に流量を調節するバルブを設 けて流量を絞ったと しても、 その導水管 3 内には常に貯水室 1 A内の水の圧力 g 2 と、 分室 1 B内の水の圧力 g l の両圧力が加わるため、 その両圧力で導水管 3 内から水が流出 し続け、 必要以上の余分な水が流出 して しまう こ とになる。
本発明の構成において、 図 3 ( c ) の状態で、 雨が降って貯水室 1 A内に水が 溜まり、 前記の F > g 1+ g 2+ g 3の状態で、 貯水室 1 A内の水が開口部 1 bから 分室 1 B内に流入できない状態で、 雨があがって吸水材 5 に吸水されてた水が蒸 発 (気化) し始めると、 吸水材 5内に吸水されてた水が次第に蒸発 (気化) して いきながら、 同時に吸水材 5内にある水と給水管 4内にある水とが表面張力によ る毛細管現象で、 給水管 4内にある水が吸水材 5 内へと吸水されて浸透し続け搬 送していく 。 その毛細管現象による吸水の作用で、 吸水材 5に接続した給水管 4 内へと導水管 3 内の水が移動し、 同時に分室 1 B内の水が導水管 3 内へと流入 し ていく 。 その時の分室 I B内の状態は前記の図 2 0 ( c ) ( d ) の状態にな y 、 その状態で密閉した容器内の空気が負圧状態になったよ うに、 分室 1 B内も同様 に負圧状態になるため、 その負圧になる圧力によ って、 貯水室 1 A内の水が密接 状態の開口部 1 bからその負圧分に相当する水量の水が流入して浸水して く る。 そのため貯水室 1 A内から分室 1 B内へと水が流出する水量は、 吸水材 5の水が 蒸発 (気化) する分に相当 し、 その蒸発 (気化) 分を常に補給できることになる。 そのため必要以上の余分. 水が貯水室 1 A内から吸水材 5へと給水される こ とが ない。
こで貯水室 1
置面積や設置地域
で設計すれば、 自 供給するこ とができます。 ま た降水量は降雨面 例するため、 図 2 ( a ) ( b ) に示すよ うに、 雨受け部 1 a をスライ ド式に ようにして構成する こと もできる。 また本発明の構成で 導水管 3及び給水 一体に して構成してもよい
図 4は、 本発明 実施例の構成を示 したものである。 図 4 ( a ) は 、 浮力 体 2 を 2個連結し て構成したものである の構成であれば、 開 Ρ部 1 b には下方の浮力体 力による押す圧力と 、 上方の浮力体 2の浮力による引 く 圧力によって、 よ り いつそう密接状態にして開口部 1 b を塞ぐこ とがでさる 3Ϊ た図 4 ( a ) では分室 1 Bの側面に横に長い幅を持つた排出 P 1 d を設け 、 その 排出口 1 d に直接吸水材 5 を揷入して設けてお y 、 図 1 8 ( c ) にその構成で設 置した状態を示してお り 、 導水管 3や給水管 4 を設けなく てあ、 吸水材 5 に分室 1 B内から直接吸水して給水するよ うに構成する こ と もでき -S3 図 4 ( b ) はて この原理を使って、 小さな浮力体 2でも十分な密接状態に して開口部 1 b を塞ぐ よ うに構成したものである。 仕切 y部 1 h に支軸部 2 b を設け、 その支軸部 2 b に 「く j の字状に形成したてこ腕 2 a を枢支 し、 そのてこ腕 2 a の先端に浮力体
2 を設け、 てこ腕 2 a の頂点に球状の閉栓部 2 c を設けたもので の構成 であれば、 小さな浮力体 2でもてこの原理で大きな圧力が作用 し、 開口部 1 b を 閉栓部 2 Cで塞いでしっかり密接状態にできる。 尚、 本構成では開口部 1 bの周 縁を貯水室 1 A内側に突状に形成しており、 例えば不要物が貯水室 1 A内に入つ ても、 その不要物が開口部 1 b 内に入 yにく い構造になっている。 また開口部 1 b には適当に水を浸透して通すフィルタ 1 f を設けており 、 そのフィルタ 1 f に よって分室 1 B内への水の流出量を緩やかにできる。 また本構成では、 排出口 1 d にバルブ 1 e を設けており 、 そのバルブ 1 e の開閉調節によって、 分室 1 B内 に加わる負圧状態と、 導水管 3内に流れる水の流量を微妙に調節できる。
図 5 は、本発明の構成で、水を間欠的に供給できるよ う に構成したものである。 貯水タ ンク 1 を上から上槽に貯水室 1 中槽に分室 1 B、 下槽に一時貯水室 1 Cを形成し、 各槽に上方と下方に仕切る仕切 り部 1 h を設け、 分室 1 B と一時貯 水室 1 Cを仕切る仕切り部 1 に、 両室に連通する開口部 1 b を設け、 その開口 部 1 b に嵌合する適当な断面積の吸水材 5 をその片側を分室 1 B内に出 し、 反対 の片側を一時貯水室 1 C内に挿入して設け、 その一時貯水室 1 C内には図の様に n形に曲げた導水管 3 を設けて構成したものである。 この構成で徐々に雨水が分 室 I B内と貯水室 1 A内に溜まっていき、 浮力体 2によって分室 1 Bが密閉 (密 封) 状態に保たれた状態の時、 開口部 1 b に設けた吸水材 5 は、 水が持つ表面張 力による毛細管現象と下方に働く 重力によ って、 吸水される水が吸水材 5に浸透 しながら下方に搬送され、 分室 1 B内から一時貯水室 1 C内へと水が徐々に流入 していく 。 その時分室 1 B内はその流入する水の分で負圧状態になるため、 その 負圧分は貯水室 1 A内から分室 1 B内へと水が逐次流入 して く る。 そ して一時貯 水室 1 C内に溜まる水が、 Π形に曲げた導水管 3の最高点よ り も下方の の高 さの時には、 水は導水管 3 内に流れるこ とはないが、 水が n形に曲げた導水管 3 の最高点よ り も上方の ^ の高さになった時には、 一時貯水室 1 C内の水は導水 管 3 内に流入して流れ出 し、 その水は高さが Π形に曲げた導水管 3の入リ ロの高 さになるまで流れ続ける。 従ってこの構成によって、 吸水材 5から徐々に浸透し てきた水を一時貯水室 1 C内に所定の量に達するまで溜めておき、 その所定量に なった水をその都度間欠的に給水することができる。 こ こで吸水材 5から浸透す る水の量は、 その吸水材 5の断面積に比例するため、 その断面積を適当に設定す るこ とで、 間欠的に必要 の水を適当に給水できる。 この実施例の構成で、 まつ す ぐに伸ばした導水管 3 を排出□ 1 d に揷入して設け、 一時貯水室 1 C内に溜ま る水をその導水管 3を通して常時連続的に排出するよ うに構成しても勿論よい。 また分 1 B と一時貯水 1 Cを仕切る仕切り部 1 に けた開口部 1 bに、 後 述する図 8 ( a ) に示すよ ラ に開口部 1 b を構成して、 その開口部 1 b に前記の 吸水材 5 を特に設けなく ても 、 その開 Π部 1 bから水が適当に流入 して く るよ ラ に構成してもよい。
冋、 間欠的に水を供給する構成と しては、 容器に水が溜まる とで重心の位置 が移動し 、 その容器が傾いて放水するよう に した後述する図 1 1 に示す鹿おどし の原理の構成に してもよい 一時貯水室 1 c内に間欠的に所定の量溜めた水は n 形に曲げた導水管 3で排出 し、 その導水管 3 に前記実施例と に給水管 4を接 続し , その給水管 4から適当長幅の吸水材 5に水を供給するよ フにできる 。 また 図 4 ( a ) に示すように、 一時貯水室 1 Cに間欠的に所定 mめた水を直接吸水 する吸水材 5 を横長に形成した排出口 1 d に設け、 一時貯水室 1 C内から直接吸 水して排出するよ 0に構成してもよい。 また同様に本発明の構成を貯水 1 A及 び分室 1 Bに水を直接吸水する適当長幅の吸水材 5 を排出 P 1 d に設けて実施し てもよい。 本実施例の構成では、 貯水室 1 A内に発泡スチ □ ―ル等でなる平板状 の浮きシー ト 1 i を設けており、 貯水室 1 A内に雨水が溜まると浮きシ ― h 1 i が水面上に浮さ、 その浮きシー ト 1 i によって、 貯水室 1 A内に溜まつた水表面 空気とが触れる面積が小さ く な リ、 空気中に蒸発する水の量を極力少なく する こ とができる。
図 6 、 図 7 は、 前記の各実施例の構成で、 分室 I B内の容積を小さ く し、 そ し て上下に浮動する浮力体 2の動きの幅を小さ く した構成である。 図 ( a ) のよ う に分室 1 B内の容積を小さ く するこ とで、 分室 1 B内に溜まる水量が少な く なる ため、 分室 1 B内の水が吸水材 5へと必要以上に給水されること を極力抑えるこ とができ、 また分室 1 B内から給水する水量を微妙に調整できる。 分室 1 B内の 容積も図 6 ( b ) に示すよ うに、 分室 1 Bの容積の幅んを適当に設定することで 調整できる。 図 6 ( c ) に示す構成は、 分室 1 B内に貯まった水がある所定の量 に達した時に、 水が流出するよ う に構成したものである。 前実施例と同様に分室 1 B内に溜まった水が、 n形に曲げた導水管 3の最高点よ り も下方の d 1 の高さ の時には 、 水は導水管 3内に流れるこ とはないが、 水が n形に曲げた導水管 3の 最 ι¾点よ リ も上方の d 2 の高さになった時には 、 分室 1 B内の水は導水管 3 内に χπ!入して流れ出 し、 その水は水の高さが π形に曲げた導水管 3の入 y Pの高さに なるまで ; れ ifon る。
図 7 は 、 分室 1 B内に揷入する導水管 3の高さを適当な高さに設定 した構成を 示す 前実施例で示したよ うに、 導水管 3 の導水断面積を s 、 分室 1 B内に貯ま る水の高さ h 1 の時、 分室 1 B内から導水管 3 内に加わる水が流出 しよ ラ とする 圧力 g 1 は、 g 1 = s X h 1 となり 、 その g 1 は導水管 3 を挿入する排出 P 1 d の h を高く しても調整できる。 その排出口 1 dの高さ h によって、 浮力体 2 と の位置関係が係るため、 その構成でも分室 1 B内から流出する水量を微妙に調整 できる
図 8 、 図 9 、 図 1 0は 、 本発明の浮力体の浮力作用を応用したも う ひと の実 施例の構成を示したものである。 図 8及び図 9 、 図 1 0の構成において 貯水室
1 Aの上部内で雨受け部 1 a の下方に、 図の様に中央に低く 凹状に窪んだ空間部
1 I を形成した貯水部 1 j を設け、 その貯水部 1 j の中央の凹状に窪んだ空間部 1 I の下方に開口 した流入部 1 mを形成し、 その凹状に窪んだ空間部 1 I 内に雨 水で水没した際に適当な浮力で浮く 浮力蓋体 2 Aを設けて構成したものである。 その浮力蓋体 2 Aの作用と働きについて、 図 8 ( c ) ( d ) で詳述する。 雨受け部 1 a 上に降った雨水は貯水タ ンク 1 の中にどんどん入り ながら貯水部 1 〗 上に注 がれる。 そ して雨水が貯水部 1 j 上に溜ま り集積される。 する とその雨水は貯水 部 1 j の中央が低く 窪んだ空間部 1 I 内へと どんどん溜まっていく 。 そ してその 水で浮力蓋体 2 Aが水没すると、 その浮力蓋体 2 Aの浮力の働きで若干浮き、 その際に浮力蓋体 2 A と開口 した流入部 1 m との間に隙間ができるため、 図 8 ( d ) に示すよう に雨水はその隙間から下方の貯水室 1 A内へと どんどん流入し いき、 雨水が窪んだ空間部 1 I 内に流入 していき溜まる間は、 浮力蓋体 2 Aの 孚力の作用が働き、 雨水が開口 した流入部 1 mから下方の貯水室 1 A内へと どん ビん流入していく ことになる。 この浮力蓋体 2 Aの浮力は、 浮力蓋体 2 Aの比重 i 水の比重よ り小さければ浮力作用が働く ため、 そして水の比重が 1 立方 c mあ た り約 1 gであるから、 例えば浮力蓋体 2 Aを 2 0 0立方 c mで重量 1 9 9 g で 構成すれば、 浮力蓋体 2 Aが水没した際、 理 上浮力が若干働いて浮力蓋体 2 A と開口 した流入部 1 mとの間に若干隙間ができて、 水が下方に流入するこ とにな る。 比重が水よ り小さい浮力蓋体 2 A と しては、 例えばゴ厶材でなる浮力蓋体 2 Aで実施することができる。
次に、 雨が止んで雨が雨受け部 1 a上に降 なく なると、 雨水は貯水部 1 j の 窪みの空間部 1 I に流入しなく なリ 、 そ して 力蓋体 2 Aの自重によって開口 し た流入部 1 mが塞力 れ、 窪みの空間部 1 1 まった雨水は流入部 1 mから下方 の貯水室 1 A内へと流入 しなく なる 。 そ して んだ空間部 1 I 内に溜まった雨水 が蒸発して無く なると、 浮力蓋体 2 Aの自重 よって流入部 1 mが塞がれて、 貯 水室 1 A内は完全に密封状態になリ 、 図 2 0 ( c ) ( d ) と同 じ状態で、 貯水室 1
A内に溜まつた水は貯水室 1 A内から蒸発する となく 、 総て導水管 3 内に流入 していきながら搬送し、 吸水材 5の表面から蒸発していく ことになる。
本実施例の構成で図 8 ( a ) は、 貯水室 11 AAの底面の仕切り部 1 h に、 分室 1 B内へと水が流入する適当な大きさの開口部部 1 b を形成し、 その開口部 1 b に図 のような導水材 1 k を揷入して設けたものでであある。 その構成によって貯水室 1 A 内の水は、 その導水材 1 kの表面を表面張力の作用で伝わりながら分室 1 B内に 注がれていき、 分室 1 B内に注がれた水が溜まると導水管 3内に流入して 送さ れる。 その際、 分室 1 B内の空気はその流出する水量分開口部 1 bから貯水室 1 A内へと抜けていく 。 この構成によ り、 導水材 1 kの表面を表面張力の作用で伝 わっていく水量のみ、 分室 1 B内へと水を流出させるこ とができ、 貯水室 1 A内 に溜まった水量によって、 その流出する水量は影響されない。 尚、 特に導水材 1 k を開口部 1 b に設けなく ても、 開口部 1 bの形状を例えば一部分を下方に長く 延ばして構成するなどで、 貯水室 1 A内の水が分室 1 B内へと適当に流入するよ う に構成してもよい。
尚、 この構成で分室 1 B内に外から僅かな空気が流入するよつ 、 分室 1 Bの上 方にピンホールの孔を開けて構成してもよい。 また導水材 1 k は 、 吸水しない素 材で構成してもよいが、 吸水する素材で吸水しながら水が販送する構成に しても よい。 図 8 ( b ) は、 貯水室 1 Aの底面に形成した開口部 1 b に直接導水管 3 を揷入 して設けて構成したものである。 図 1 7 に示すように給水管 4に接続した吸水材 5の表面張力の作用で、 吸水する水量の分が貯水室 1 A内から直接導水管 3 内へ と流れ、 必要量の水量が給水管 4内へと搬送される。 この構成でも貯水室 1 A内 に外から僅かな空気が流入するよ う、 貯水室 1 Aの上方にピンホールの孔を設け て構成してもよい。
図 9は、開口部 1 b に吸水材 5 を隙間無く設けて構成したものである。図 9 ( a ) において、 貯水室 1 A内にある水は開口部 1 b に設けた吸水材 5の表面張力の作 用で、 その吸水した水量分が貯水室 1 A内から分室 1 B内へと注がれる。 この注 がれる水 は吸水材 5の断面積に比例して増減する。 この構成でも分室 1 B内に 外から僅かな空気が流入するよう 、 分室 "! Bの上方に ピンホールの孔を設けて構 成してもよい。 図 9 ( b ) は、 図 9 ( a ) の構成で更に分室 1 B内に浮力体 2 を 設けて構成したものである 。 分室 1 B内にある程度水が溜まると、 浮力体 2の浮 力によつて開口部 1 b を塞いで水が流入して く るのを防ぐため、 水の給水量を微 妙に調整できる。 図 9 ( c ) は、 図 9 ( a ) の構成で分室 1 B内に図の様に n形 に曲げた導水管 3 を設けて構成したものである。 この構成であれば、 前実施例と 同様に分室 1 B内に溜まる水が、 n形に曲げた導水管 3の最高点よ り も下方の d の高さの時には、 その水は導水管 3内に流れることはないが、 その水が n形に 曲げた導水管 3の最高点よ リ も上方の d 2 の高さになった時には、 分室 1 B内の 水は導水管 3 内に流入して流れ出 し、 その水は水の高さが Π形に曲げた導水管 3 の入リ ロの高さになるまで流れ fesける。
図 1 0は 、 図 8の構成において、 貯水タ ンク 1 内に分室 1 Bを設けず、 貯水室
1 Aのみで構成したものである。 この図 1 0の構成のよ う に非常に簡単な構成で
^発明を実施するこ とができる。 そ して図 8から図 1 0に示す構成で、 貯水室 1
A内の密封された密室内にある空気には、 貯水タ ンク 1 内に溜まった雨水の重 こよ り負の圧力が加わるため、 流入部 1 mの開口を塞ぐ浮力蓋体 2 Aには、 掃除 幾で吸引 したのと同 じよ ラな吸引作用による負圧力が加わり 、 その吸引する圧力 ま貯水室 1 A内に溜まった水量が多いほど、 その水量の重量分が密室内の空気に
1ロわるため、 その負圧分浮力蓋体 2 Aに加わる吸引力が大きく な リ、 従って水量 が多いほど貯水タ ンク 1 内の密封状態は強く なる。 そのため貯水室 1 A内に溜ま つた雨水が、 排出口 1 d から自然に流出 して しまう ことが無い。 従来の灌水シス テムの構成では、 貯水タ ンク内に溜まる水量が多ければ多いほど、 貯水タ ンクの 排出口に加わる水圧が大き く なるため、 その排出口から流出する水量は比例 して 多く なつて しまう。 また本発明の構成では、 貯水室 1 A内の水が気化してその水 蒸気が浮力蓋体 2 Aと流入部 1 mの接する面に付着するため、 その水分の湿り で 密封状態は非常に強く なる。 また浮力蓋体 2 A又は流入部 1 mの接する面に光触 媒の酸化チタ ン膜を成膜しておいてもよ く 、 その部分に紫外光が当たるこ とで自 浄 してその面上に水の膜ができるため、 密着度が増す構成になる。 また浮力蓋体 2 Aの重心を中心からずら して偏心した構成にするこ ともでき、 その浮力蓋体 2 Aの構成であれば、 その重心に近い側面を滑らかな面に仕上げておけば、 その側 面は必ず下側を向 く ため、 その面を必ず流入部 1 mの面と接するよ うに構成する こ とができる。
各実施例の構成で、 貯水室 1 A及び分室 1 Bに外から僅かな空気が流入するよ う、 ピンホールの孔を設けて構成してもよ く 、 また前記した各実施例の構成及び 後述する図 1 1 〜図 1 3の各実施例の構成で、 図 1 5 ( θ ) に示すよ うに図 1 5
( d ) に示す導水管 3内に吸水材を充填しておき、 その吸水材の吸水作用によつ て水を導水 (搬送) するように構成してもよい。 また図 1 5 ( f ) に示すよ うに、 導水管 3 内に適当な太さで紐状の吸水材 5 c を通しておき、 その導水管 3 内に適 当な隙間を空けておき、 その紐状の吸水材 5 cの吸水作用で導水していく のと、 適当な隙間を空けた空間部分を流れる水流によって、 導水管 3 内を水が導水 (搬 ϋ ) するように構成してもよい。 また導水管 3内に適当な太さで紐状の導水材 1 k を通しておき、 その導水材 1 kの表面を水の表面張力の作用で、 水が導水管 3
¾の適当な隙間を伝わっていく よ うに してもよい。 これによ リ導水管 3内で水が 帯って しまう ことがない。 また導水管 3 内を通す紐状の吸水材 5 c や紐状の導水 は 1 kや充填する吸水材 5 を、 給水管 4内にまで通して実施してもよ く 、 さ らに 洽水管 4内から水を吸水するシー ト状の吸水材 5 に接続又は一体化して設けても い。 導水管 3内を流れる水量は、 導水管 3 内の内径や紐状の吸水材 5 c や紐状
0導水材 1 kの太さによって適当に設定できる。 図 1 1 〜図 1 4 は、 本発明の水が重力によって高い位置から低い位置に流れる 流動性の作用を利用 した実施例の構成を示したものである 。 図 1 1 〜図 1 4の各 構成において、 貯水タ ンク 1 の上部で雨受け部 1 a の下方に、 図の様に中央を低 く 形成した貯水部 1 j を設け 、 その貯水部 1 〗 の中央部に開口する流入部 1 mを 形成し、 その流入部 1 mから雨水が都度流入する偏心容器 1 1 を図のよう に回動 自在に軸支して設け、 その偏心容器 1 1 内に水が満杯状態に溜まると、 その偏心 容器 1 1 全体の重心が (図の右方向へ) 移動するため、 支軸 1 1 a を中心に回転 し、 そして偏心容器 1 1 内に溜まった水を仕切り部 1 h上に放水するよ う に した 構成である。
この構成の本発明の原理をさ らに図 1 1 の図 ( b ) 〜図 ( f ) で詳述すると、 偏心容器 1 1 は仕切 り部 1 h上に設けた支持部 1 1 b上に支軸 1 1 a で回動自在 に軸支してあり、 その支軸 1 1 a を中心に回動自在になつている。 偏心容器 1 1 内は筒状に形成してあ 、 流入部 1 mから流入した雨水は図のよ うにその偏心容 器 1 1 内に流入する構成になつている。 偏心容器 1 1 の後端部は重量部 1 1 c を 設けてお り、 図 ( b ) の偏心容器 1 1 内に水が流入してない状態では、 偏心容器
1 1 全体の重心が支軸 1 1 aから後端側 (図で支軸 1 1 a から左側) に位置し、 その状態では偏心容器 1 1 の後端部は仕切 り部 1 h に形成した流入部 1 mを密封 伏態に塞いだ状態にな ている。 そ してこの塞いだ状態では前記の図 8 〜図 1 0 構成と同様に、 貯水室 1 A内は負圧になった密封状態に保たれるため、 その状
¾では貯水室 1 A内の水が排出 Π 1 d から自然に流出することはない 0
次に図 ( c ) に示すよ うに、 偏心容器 1 1 内に雨水が流入してその容器内の水 匱が増すと、 偏心容器 1 1 全体の重心の位置が支軸 1 1 a へと (図の左から右方
¾に ) に移動 していき、 図 ( d ) に示すよ う に偏心容器 1 1 内の水が ― t里の;
^状態になる と、 偏心容器 1 1 全体の重心の位置は、 図の支軸 1 1 a の右方向に 多動するため 、 その重心位置の移動によ り偏心容器 1 1 は矢印の方向に回転し、 a ( e ) の状態になリ偏心容器 1 1 内の水が一気に仕切り部 1 h上に流れ出す。 tの流れ出 した水はその流動性で重力によって高い位置から低い iu. mに移動する め 、 その水が最も低い位置に開口する流入部 1 mから貯水室 1 A内へと流れ込
- J、 o そ して図 ( f ) に示すよ うに偏心容器 1 1 内の水が空になると、 再び偏心容 器 " I 1 の後端側の方が重く なリ 、 重心が図の支軸 1 1 a よ り左方向に移動するた め、 図の矢印方向に回転して再び図 ( b ) の状態に戻り 、 流入部 1 mが塞がれて 貯水室 1 A内は密封状態に保たれる。 この図 ( b ) から図 ( f ) の繰り返しは雨 が降ってる間中、 偏心容器 1 1 内に雨水が流入して自動的に繰り返され、 次に雨 が止むと図 ( b ) の状態になって貯水室 1 A内は密封されて密封状態が保たれる こ とになる。 そ して前実施例の構成と同様に 、 貯水室 1 A内は密封されて負圧状 態になるため 、 貯水室 1 A内の水は排出口 1 d から導水管 3 を通リ 、 図 1 7 に示 す吸水材 5で吸水されながら導水されるこ とで、 自動的に貯水室 1 A内の水を給 水 (供給) できる。
図 1 2は、 偏心容器 1 1 とは别体の球体の蓋体 1 2によって f]口する流入部
1 mを密封状態に塞いで密封する構成に したもので 0 。図 ( d ) に示すよ う に、 偏心容器 1 1 の後端部に蓋体 1 2 を動かす環状の作動部 1 1 d を設け、 そ して蓋 体 1 2はその蓋体 1 2 よ り いく らか内径が小さい作動部 1 1 d 内に載 IEさせてお y 、 図 ( b ) に示すよ う に 、 偏心容器 1 1 全体の重心位置が支軸 1 1 a よ リ後端 側にある場合は、 その後端部は仕切リ部 1 h上に着いてお y 同時に作動部 1 1 d と偏心容器 1 1 との間はく の字に曲がリ、 図 ( b ) のよ うに屈曲 して蓋体 1 2 は作動部 1 1 d上から外れて完全に自由な状態になリ、 その蓋体 1 2の白重で流 入部 1 mを密封状態に塞ぐこ とができる の構成であれば偏心容器 1 1 の後端 部の位置精度が若干ラフになつてても 、 作動部 1 1 d上に載置した蓋体 1 2が完 全に自由な状態になるため、 その自重で流入部 1 mを完全に密封状態に塞ぐこ と ができる。 前実施例で示した構成では、 浮力蓋体 2 Aは水よ り比重が小さ く て水 に浮く条件であつたが、 本実施例の構成では蓋体 1 2が水よ り比重が大き く て水 に浮かない条件でも実施できるため、 雨が止んだ後の貯水室 1 A内の密封状態は 司 じ体積であれば、 比重の大きい蓋体 1 2でさ らに大きく なる。 図 ( C ) は偏心 器 1 1 内に溜まった雨水が満杯状態になって、 偏心容器 1 1 が図のよ う に傾い t状態で、 蓋体 1 2 は作動部 1 1 d によって上に持ち上げられ、 同時に偏心容器 1 1 内の水が流動 して、 その水は低い位置に開口する流入部 1 mから貯水室 1 A ¾へと流れ込んでいく 。 この図 ( b ) ( c ) の状態が雨が降ってる間中自動的に繰 リ返し行われ、 貯水室 1 A内には本発明の構成で流れ込む雨水が溜まっていく こ とになる。 そ して雨が止むと蓋体 1 2によって貯水室 1 A内は密封状態に保たれ る。 図 1 4 ( a ) ( b ) は、 他の実施例の構成を示したものである。 図 ( a ) に示 すよ うに偏心容器 1 1 の後端部に支軸 1 1 a を中心に回動自在なアーム (腕) 状 の作動部 1 1 d を設けたもので、 偏心容器 1 1 の後端部が仕切 y部 1 h上に着い てる状態では、 その作動部 1 1 d は蓋体 1 2に接してなく 作動せず、 貯水室 1 A 内は蓋体 1 2によって密封状態に塞がれている。 次に偏心容器 1 1 内の水が満杯 になって図 ( b ) のよ う に傾く と、 前記の作動部 1 1 d はその自重で矢印方向に 回転し、 ス ト ッパー 1 1 e で止められると共に蓋体 1 2の側面を押し上げる。 そ のためその蓋体 1 2は流入部 1 mを塞いだ位置から離れ、 流入部 1 mに図のよ う に開口ができて偏心容器 1 1 内の水が貯水室 1 A内へと流れ込むようになつてい る。 そして図 ( a ) と図 ( b ) の状態を繰り返すこ とで、 貯水室 1 A内に雨水が どんどん流入される。 こ こで蓋体 1 2の形状は球体に限らず錐体や他の形状でも よい し、 また作動部 1 1 d の形状も環状やアーム (腕) 状の形状や他の形状で実 施してもよい。
図 1 3 は、 貯水タ ンク 1 内を仕切 y部 1 h で仕切 り 、 その仕切 y部 1 h に形成 した流入部 1 mの開口に搬送管 1 3 を設け、 その搬送管 1 3 を通して雨水を貯水 室 1 A内に移動するよ う に構成したものである。 図のよう に雨受け部 1 a から貯 水部 1 j 上に流れ込んだ雨水は、 その中央部が低く なつてる貯水部 1 j に形成し た流入部 1 mへと流れ込み、 その流れ込んだ雨水は下方に位置する偏心容器 1 1 内へと注ぎ込まれる。 図 ( b ) ( c ) に示すよ うに、 搬送管 1 3 内にはばね 1 3 b の復元力で上方に動く 作動棒 1 3 a と、 その作動棒 1 3 a の先端部に封止弁 1 3 cが封止口 1 3 d を封止するように設けている。 そ して図 ( b ) の状態では、 偏 心容器 1 1 の後端部にその自重で押される作動棒 1 3 a によって、 その先端に設 けた封止弁 1 3 cが封止口 1 3 d を密封状態に封じるため、 この状態で仕切り部
1 h上に注がれた雨水は、 貯水室 1 A内に流入するこ とはない。 次に偏心容器 1
1 内に注ぎ込まれた雨水で、 偏心容器 1 1 全体の重心位置が移動し、 図 ( c ) の よ うに偏心容器 1 1 が回転して傾く と、 その偏心容器 1 1 内の水が一気に仕切 り 部 1 h上に流れ出 し、 同時に偏心容器 1 1 の後端部に押さえられてた作動棒 1 3 aが、 自由な状態になつてばね 1 3 bの復元力で上方へと動く 。 その時図のよ う に搬送管 1 3 内には上から下へ通じる隙間ができるため、 その隙間から仕切 リ部
1 h上に流れた雨水が貯水室 1 A内へと どんどん流入 していく 。 そして前実施例 と同様に図 ( b ) と図 ( c ) の状態を繰り返すことによって、 貯水タ ンク 1 上に 降った雨水を貯水室 1 A内へと どんどん流入できる。 次に雨が完全に止むと図
( b )の状態になって、貯水室 1 A内は封止弁 1 3 c によって密封状態に保たれ、 貯水室 1 A内は負圧状態になる。 図 1 4 ( c ) ( d ) は、 図 1 3 ( b ) ( c ) と同 様の原理で実施する構成であ り 、 搬送管 1 3 を図のよ うに折り返し曲げた構成に したもので、 万が一搬送管 1 3 内に小さな異物が入ったと しても、 封止弁 1 3 c の下側に溜まるため、 貯水室 1 A内へと入り にく く なる。 またこの搬送管 1 3 を 取り外し可能に して、 中の異物を取り除く よ うにもできる。 図 1 3 ( b ) と図 1
4 ( c ) の状態では、 前述のよ うに貯水室 1 A内は負圧状態になるため、 封止弁
1 3 c は貯水室 1 A内に溜まった水の重量で吸引された状態にな り、 密封状態が 保たれる。
尚、 図 1 1 〜図 1 4で示した構成にあっては、 前記の図 8 、 図 9で示した各構 成と同様に、 貯水室 1 Aの下側に同 じ構成の分室 1 Bを設け 、 貯水室 1 A内に溜 まった 水を一旦分室 1 B内に溜めて、 その水を徐々に流出させたり 、 間欠的に 流出するように構成してもよい
図 1 5 ( a ) 〜 ( c )、 図 1 6 は、 本発明を構成する給水管 4の拡大した図を示 したものである。 図 1 5 ( a ) ~ ( c ) において、 給水管 4 を図のよ うに適当長 の筒状に形成し、 その給水管 4に適当な空間にした中空部 4 a を形成し、 その中 空部 4 a の空間とつながる適当な幅の隙間に した隙間部 4 b を形成し 、 その中空 部 4 a 内に水を注入する給水 □ 4 d を端部に設けて構成したものである。 この構 成で図 1 7 ( b ) に示すように 、 隙間部 4 b に吸水材 5 を嵌入 して挟んだ状態に して、 留め具 4 e で しつかり固定する。 その状態で給水口 4 d に導水管 3 を嵌合 し導水管 3から水を供給すると 、 その供給された水は次第に中空部 4 a 内に〗ム力 つていき、 そ してその水は接する吸水材 5へと水の表面張力による毛細管現象で 適当量常時吸水されていく 。 それでパスカルの原理によって、 密閉された中空部 4 a 内に加わる圧力 (水圧) はどこでも一定で同 じであるため、 水が接する吸水 材 5 内へと どの位置でも水が均一に浸透して吸水されていき、 吸水材 5全体が均 一になるまで浸透していく 。 給水管 4 に適当な幅 t の隙間部 4 b を形成するこ と で、 その幅 t の部分は水が蒸発するこ となく 水が浸透するのみで密な状態になつ ており 、 この隙間部 4 bの幅 t によって中空部 4 a 内に水が満た していく ように でき、 必要な給水量を微妙に調整する ことができる。 こ こで給水管 4の長さは吸 水材 5の大きさに応じて適当長に形成して実施してよ く 、 また実施例では直状の みを示 したが、 L字状に曲げて構成してもよ く 、 コの字状や口の字状に四角に囲 んで構成してもよい。 またジョ イ ン ト式に接続できるように構成してもよい。 図 1 6 は、 給水管 4の他の実施例の構成を示した のである □ 給水管 4 を図の よ うに中空で適当長の筒状に形成し 、 その給水管 4の側面に適当数の開口 4 c 、
4 c · - ' 4 c を形成し、 給水管 4内に適当な中空の中空部 4 a を形成して構成 したものである。 この構成で給水管 4に形成した各開口 4 c を下側に向け、 吸水 材 5の面上に当接させた状態に して 、 口水口 4 d に導水管 3 を嵌合させ、 導水管
3から水を供給すると、 その供給されて く る水は中 •fa部 4 a 内で次第に広がつて いき、 同様にパスカルの原理で密閉状態の中空部 4 a 内に加わる圧力 (水圧) は どこでも一定で同 じであり、 その中空部 4 a 内にある水は各開 □ 4 cから当接す る吸水材 5の面へと均一に浸透してい < ため、 この構成でも同様に実施可能であ る。 図 1 6 ( c ) は本構成の他の実施例の構成を示したものであ リ 、 給水管 4 を く し状に連結形成して広域に水を 水できるように した構成であ y 、 吸水材 5の 囬積に応 じて適当数連結して構成できるよ う に して よい。 尚 、 各開口 4 cの穴 の大きさは、 給水する水の量に応じて適当に設定 してよい。
図 1 7 、 図 1 8 は、 本発明によつ -r m際の植物を栽培する構成を示したもので ある。自治体によっては建物の屋上に緑化するこ とを義務付けてると ころもあり 、 建物の屋上を綠化するために観賞用の綺麗な草花を生育すれば、 ヒー トァイラン ド現象の低減や光合成作用による C O 2 削減の効果が得られる。 然しながらそれ を実現するには、 次の幾つかのハー ドルがあり、 その実現は容易ではなかった。
1 ) 生育するのに土が必要であり、 吸水材 5上に土を盛って構成しなければなら ない。
2 ) 観賞用の草花は、 雨水だけでは生育できなく 、 定期的に給水する上水 (水道) »設備や肥料の供給が必要である。 3 ) 建物の屋上は強固な造リになってなく 、 屋上緑化には軽量化が条件で、 1 平 方メー トルあた リ 6 0 k gまでの制限がある。 ( T B Sの番組で放映した内容)
4 ) 定期的なメ ンテナンス (水や肥料をやつた り雑草を抜いた り) が必要で、 設 備費や維持費がかなりかかる。
以上の諸事情から、 建物の屋上の緑化は容易ではないが、 実際に緑化できれば、 緑化による断熱効果で冷房費や暖房費を削減でき、 実際に年間の電気使用料を 1 0 %削減できた実例もある。 ( T B Sの番組で放映した内容) また綠化するこ とで 美化や気持ちの安らぎを得られるといった効果 ¾ある。 そこで本発明の自動灌水 システムの構成によつて苔を栽培することで 、 建物の屋上や壁面や屋根に 、 自然 の恵みの雨だけで維持費もかからず簡単に綠化でさ 、 しかも地球温暖化対策にか なり貢献できる。
苔について苔の持つ特性 (性質) を詳述すると 、 苔は 4億年も前に海から地上 に上がった最初の植物であり 、 その当時の地球の環境は二酸化炭素が現在の 2 0 の環境であり 、 その厳しい環境で生き抜いてさた苔は、 非常に生命力の強い生 吻で、 現在世界に 2万 4千種、 日本に 2千 5百種ほど生育 している。 また苔は他
»植物と違つて発達した根を持たない植物で 、 口は葉から霧や雨、 空気中に
^分を吸収して生育できる。また苔は乾燥すると葉を縮めて休眠状態になるため、
^の状態でも半年位は緑色を保ち、 その後黄色や茶色に変色しても数ケ月から 1
^位はそのまま生き続けるこ とができ、 その後水分を与えれば再生します。 その tめ自然の恵みの雨でも十分生育できます。 (但し、 乾燥して水が無い状態である 休眠するため、 その状態では光合成は行われない。) それに一般の樹木が枯れて 葛敗する と 、 吸収した C 0 2 以上の C 0 2 を発生するのに対して 、 苔は光合成で 収した C o 2 を完全固定化できます。
苔植物は蘇類と苔類に大別でき、 蘇類にはスギゴケ 、 スナゴケ、 /ヽィゴケ 、 ぐゴケ、 苔類にはゼニゴケ等があ y ます。 そ して生育の仕方によつて 、 半曰陰性
)乾燥性、 半日陰性の湿潤性、 好曰性の湿潤性に大别できます。
苔植物の中で地球温暖化防止のために特に注目すベきスナゴケは 、 白重の約 2
)倍もの水分を保つこ とができ、 乾燥に強く 曰当た yの良い場所で育ち 、 暑さや
^さの気温の変化に強く 、 そ して土や肥料が不要で無機質 (砂、 石 、 ガラス 、 3
9 ンク リー ト等) の基板でも育つため、 本発明を実施する上で苔植物ではスナゴケ が好適である。 それで苔は水分が無い乾燥した状態であれば休眠状態とな り 、 そ の間は光合成も休止して しまうが 、 本発明の構成によつて雨が降らない間も適度 に水分を補給し続ける こ とがでさ 、 苔による光合成を長く継続できます。 そのた め地球温暖化対策のひとつの鍵となる屋上の緑化において、 本発明の構成によつ て苔植物を栽培するこ とで、 維持費やメ ンテナンスの必要がなぐ 、 光合成を半永 久的に継続して栽培でさます。
本発明によって実施する苔植物の栽培方法について 、 図 1 7 に基づいてその実 施例を詳述する。 図 1 7 ( a ) ( C ) は設置面に吸水材 5のみ敷いて構成したもの である。 苔の栽培においては土が要らなく 、 水が蒸散する吸水材 5上に直接苔を 栽培するこ とがでさます。 図 1 7 ( d ) は吸水材 5の上層を吸水性の吸水材 5 a で形成し、 その下層を植物の根の進入を防ぎ透水する吸水材 5 bで構成したもの である。 吸水材 5及び吸水材 5 a の実施例と しては、 東洋紡績社の微細ポリ エス テル繊維でなるジャームガー ド (登録商標) で実施でき、 その商品の吸水能力に ついては図 1 9 に示すよ うに時間と共に吸水していき、 給水管 4 と吸水材 5 bが 同一水位上にあれば、 吸水材 5 b全体はやがて均一に吸水した状態になる。 また 吸水材 5 b については、 東洋紡績社のポリ エステル複合シー トでなる底面給水マ ッ ト (登録商標) や、 ポリ エステル高密度繊維でなる防根透水シー ト (登録商標) さる。図 1 7 ( e ) は吸水材 5の下面に防水材 6 を具備したものであ 。 ンク リー ト面に直接吸水材 5 を敷いた場合、 そのコ ンク リ一 ト面から水 透していく ため、 その浸透を防ぐためシリ コ ン材等でなる防水材 6 を とができる。 図 1 7 ( f ) はその防水材 6の下面に接着材 7 を具備し ある。 台風や強風によって吸水材 5が捲り あがって しまう こ と も考えら 接着材 7 でコ ンク リー ト面に適当に接着することで捲 あがるこ とがな かリ 固定できる。 また図 1 8 ( a ) のよ うに建物の壁面に設ける場合は、
'に接着材等で固定しなければならない。 接着材 7 と してはシリ コ ン系の 接着材等で実施でき、また剥離紙を剥いで貼る方式の接着材 7 で構成してもよい。 図 1 7 ( g ) は吸水材 5の面上に立体網材 8 を具備したものである。 立体網材 8 内に吸水性の素材を充填して、 その吸水性の素材にも苔を栽培するこ とができま す。 その構成によつて立体的に栽培できるため、 それだけ栽培面積が広がリその 光合成作用の効果も大き く 実施できます o 立体網材 8 と しては東洋紡績社のコス モジォ (登録商 ) や 、 吸水性の素材と しては東洋紡績社のランシール (登録 商標) で実施できます。
図 1 8は 、 実際の建物に本発明を設けて実施した状態を示したものである 。 図
1 8 ( b ) は 物 1 0の屋上 1 O Aに実施したもので 0¾る o 度上 1 0 Aが無電源 で無上水 (無水道水) の状態でも、 本発明の構成によつて自然の恵みの雨だけで 苔の生育がでぎ 、 しかも維持費ゃメ ンテナンスの必要があ りませ 。 植物の光合 成作用が活発に行われる条件と しては 、 光 (太陽光) が十分あること 、 皿が高 いこ と、 そして周 りの C O 2 の濃度が高いこ とが必要です。 そのため建物の屋上 はまさにこの諸条件を満た しており 、 発明を特に利用されてない余剰スぺ ―ス の屋上で実施するこ とは最適な環境となリます。
本発明者は白宅の風呂の浴槽 (縦 5 4 c m X横 9 7 c m X深さ 5 0 c m に、 水道水をボタ 、 ポタ 、 ボタの間隔で垂ら して注いだが 、 その浴槽力 ' 杯になるの に約 4 日半を要した。そのため逆に浴槽に溜まった水をその分づっ流し続ければ、
4 曰半流し続けられるこ とになります。 しかし実際には浴槽に溜ま た水の水圧 は、 排出口にもろに全水圧が加わるため、 その水圧によって排出 □から常時水が 排出されるため、 いく ら排出口の開口を狭めても数 1 0分から数時間で浴槽の水 は全部排水しきって しまう。 そこで本発明の自動灌水システムでは 、 必要分のみ 水を給水できるため 、 4 曰半流し続けるこ と も可能とな り ます o
栽培する苔は 記したよ う に、 日当たりの良い場所で育ち、 暑さや寒さの気温 の変化に強いスナゴケが好適でぁリ 、 また貯水タ ンク 1 の設置については、 屋上 にはアンテナ設備や空調設備の何らかの設備が必ずといってあるため 、 その設備 と一緒に しつか y固定するこ と もできる。 図 1 8 ( a ) は建物 1 0の壁面 1 0 B に実施したもので、 吸水材 5 に給水された水は、 水の表面張力による毛細管現象 で吸水材 5内に吸水していく のと同時に、 下方への重力が加わるため 、 吸水材 5 内に吸水する水は、 上方から下方へとまんべんな く 浸透しながら下降していく こ とになる。 図 1 8 ( c ) は建物 1 0の屋根 1 0 Cに実施したもので 、 屋根 1 0 C は適度に斜めに傾斜してるため、 同様に重力で水が吸水材 5内に浸透して下降し 易 く なる。 屋根 1 0 C上に苔 9 を栽培することで緑化 (美化) にもなるが、 断熱 効果によ り冬は保温し、 夏は熱を遮断する作用があるため、 冷暖房の稼動を抑え て省エネ効果にもなる。 特に各家庭で C 0 2 の排出量は年々増えてお り 、 各家庭 で C O 2 を削減できる こ とが望まれる。
本発明の構成において、 前記の開口部 1 bや導水管 3の開口面積や、 浮力体 2 や浮力蓋体 2 Aの大きさは、 必要な給水する水量に応じて適当に設定してよ く 、 浮力体 2や浮力蓋体 2 Aは中空構造でも発泡構造ゃ密な構造でもよ く 、 またその 表面をゴム質で形成し、 開口部 1 b との密閉状態を上げるこ と もできる。 またそ の形状も球体の他に断面が円状の錐体でもよい。 浮力体 2の断面は円状が望ま し く 、 円状にするこ とで浮力による力を開口部 1 bの開口面に均等に加えるこ とが できる。 また吸水材 5 は前記の微細ポリ エステル繊維以外に、 高分子吸収体ゃポ リ グルタ ミ ン酸架橋体のプラスチック材ゃ、 ガラス繊維やグラスウールゃ不織布 やポリアミ ド繊維等で実施できる。 また貯水タ ンク 1 の構成も、 貯水室 1 Aとは 别体の分室 1 Bを合体して仕切り部 1 h を形成して構成してもよいし、 また貯水 室 1 Aとは别体の分室 1 B と别体の一時貯水室 1 Cを各合体して上方と下方の仕 切 り部 1 h を各形成して構成してもよい。 また各実施例の構成で、 貯水タ ンク 1 の適所に外から若干空気が流入するよ うにピンホールの孔を開けて構成してもよ いし、 また導水管 3 内に吸水材を充填してまたは紐状の吸水材 5 c を通して、 そ の吸水材によって水を導水するように構成してもよい。 また各実施例の構成で、 貯水室 1 Aや分室 1 Bや一時貯水室 1 Cの排出口 1 d に揷入して設けた導水管 3 の代わり に、 適当幅に形成した排出口 1 d に適当長幅の吸水材 5 を直接挿入して 構成してもよい。 また貯水タ ンク 1 の雨水を溜める容量も、 降水量が違う地域に よって適当に設計でき、 例えば東京の例年の降雨日数の平均は、 少ない 1 月 と 1
2月で 5 日間、 多い 6 月で 1 2 日間となっており 、 その降雨日数に降水量や気温 や湿度をふまえて十分な容量を設計するこ とができる。 また本発明は、 降雨する 雨水のみに限らず、上水(水道水) を貯水タ ンク 1 に溜めて実施する こ と もでき、 それによつて必要量に応 じた適量の水を供給できるため、 無駄な上水の消費も無 く なる。 図 2 1 は本発明の貯製タ ンク 1 の実施例の写真を示す。 尚、 本発明の各 実施例の構成で、 雨受け部 1 a と貯水部 1 j の間にろ過するフィルタ を設けて雨 水を通すように してもよ く 、 そのフィルタによつて貯水タ ンク 1 内に異物 (鳥の ふんや浮遊物) が入るのを防止できる また本発明は、 貯水タ ンク 1 内に溜める 水が雨水のみに限らず 般の水 it水を めて実施する こ と もでき 、 例えば貯水タ ンク 1 内の水量を監視するセ ンサを設けておき 、 水が無く なった時点で自動的に 貯水タ ンク 1 内に給水するよ ラにする » ともでぎ 、 その場合従来のセンサを使つ た灌水システムと比べて 、 植物の生育のための 駄な水が余分に給水されるこ と がないため、 本発明は従来の濯水システムと比ベて節水効果があ ¾)
尚、 貯水タ ンク 1 に太陽光が当たつても 貯水タ ンク 1 内の温度が上が 難 < するために、 例えば貯水タ ンク 1 を 2重構造や断熱構造に した り 、 外装を鏡面や 白色処理又は反射塗料を塗布して、 赤外線を反射するよラ に構成してもよい 本発明は自然の恵みの雨水のみで実施でぎて c o 2 を全 < 排出せず、 ヒ ―卜ァ イ ラン ド現象の低減や光合成作用による C o 2 削減と 、 その断熱作用による O 房の消費電力を低減して省エネによる c o 2 削減が白動でできます。 また植物が 光合成を活発に行う条件は、 光が十分あるこ と、 気温が高いこ と、 高濃度の C O 2 があるこ とであリ 、 物の屋上は陽がよ く 当た り、 地面よ り も気温が高く 、 度の C O 2 も に ¾>つて、 植物 (苔) の生育を阻害するものが全く 無いため 、 本発明の r自動灌水システム J で植物 (苔) を生育して、 その光合成で大 中の c o 2 を削減するのに絶好の場所です。 また雨水 1 k g ( = 1 リ ッ トル) を 化 させると 5 3 2 K a I の熱量を奪いますが、 これは水 k g を 0 °Cから 1 0 0 C まで温度を上げるのに必要な熱量が 1 0 0 k c a I であるため、 それと比 ても かな y効率 Λ < 多 く の熱量を奪えます。 その水の気化作用は物理変化であつて 、 氷 ( =氷河) →水→水蒸気の変化は同 じ水の系の間で循環して変化するため 、 そ の効果はすぐに現れて北極の氷河はすぐに凍結していく はずです。
図 2 2〜図 2 7 は、 本発明の 「自動灌水システム J の実証試験の結果を示 した もので、 図 2 2 〜図 2 4 は図 2 0に示す原理を示す実証 験であり、 図 2 5 図
2 7 は図 1 7 に示す実証試験の結果である。
図 2 2 〜図 2 4において、 (試験方法) 2 0 0 m l の容器の瓶を用意し、 赤 <着 色 した水を 9分目まで入れて逆さまに し、 次の 3 つの状態での経過を見る
• (写真図の左 ) 容器の蓋に 2 m mの開口を空けてねヽ • (写真図の真中) 容器の蓋に "! 5 m mの開口を空けて、 丁 イ ツ ンュぺ 挿入 してね
• (写真図の右) 容器の蓋に 2 m mの開口を空けて、 ティ ッシュペーパーを揷入 しておぐ
(試験曰 ) 2 0 0 8 . 1 . 1 8 - - 1 . 2 5
( qS ¾ 果)
誊左の容器の水は全く 減らなし、。
參右の容器の水が 5 日間で完全に無く なる。
攀真ん中の容器の水が 7 曰間で完全に無く なる。
、結 S冊 )
容 内の水をその水が持つ表面張力の力で無動力で移動させる こ とができ、 この 原理を応用 して 「自動灌水システム J は、 自動的に灌水して給水できる
図 2 5 ( a )、 図 2 6 において、 (試験方法) 円筒形の密封した容器の 面に 2 m mの開口を空け、 容器内に水を 9分目まで入れる。 容器と吸水材と を ユーブ で連結し、 チューブ内には紐状の吸水材を揷入する。 容器内の水がその のチュ
—ブ内を搬送され、吸水材へと吸水されていく経過を見る。吸水材は縦 1 c m、 横 2 5 G m、厚さ 3 m mで、東洋紡社の吸水材であるジャームガー ドを使用する
ヽ 。
Figure imgf000025_0001
を (試験結果)
スター ト時に容器内の水が 9分目 あったものが、 僅か 6 5分で完全に空になる 吸水材から余分な水が常時溢れ出て流れ出 している。
(結論)
容器内にある水量に比例した水圧が、 排出口及び搬送チユーブ内に加わるため、 その水圧で給水する水量を制御 (コ ン トロール) できなく 、 容器内の水がどんど ん給水されて しまう。 従って、 従来の濯水シス亍ムでは、 給水を制御する制御装 置と電源設備と上水を適当量給水する設備が必要になる
図 2 5 ( b )、 図 2 7 において、 (試験方法) 円筒形の密封 した容器の上面に 2 m mの開口を空け、 その開口上にゴムボールを載せて開口を塞ぎ、 容器内に水を
9分目まで入れる。 容器と吸水材とをチューブで連結し チューブ内には紐状の 吸水材を揷入する。 容器内の水がそのそのチューブ内を 送され 吸水材へと吸 水されていく 経 を見る。 吸水材は、 縦 " I 9 G m 、 横 2 5 C m x 厚さ 3 m で 、 東洋紡社のジャ ―ムガー ドを使用する 。 ゴムホールは 、 水に浮く 直径 6 0 m mの 岸ゴム社のポールを使用する。
(試験曰 2 0 0 8 . 1 . 1 2 〜 1 . 2 5
5式験結果
スター ト時に容器内の水が 9分目 あつたものが約 2週間で無く なる
吸水材から ? 発する水量分のみ容器内の水が表面張力によ て常時 れ^ )
(結論)
容器内の水量に関係なく 、 吸水材の蒸発する水量分 (需要分) のみ給水でき、 r自 水システム 」 は、 水の表面張力を利用 して挺 源、 無上水、 無動力で雨水を 自動的に給水できる。 また r白動灌水シス ム J は 、 水の表面張力を利用するた め、 容器内から給水させる水 は 、 連結するナ ュ一ブの太さや揷入する紐状の吸 水材 に敷く 吸水材の面積 、 その厚さを 当に設定 して給水できる。 容器内の 白
水が無く なる水 は、 吸水材表面から蒸発する水 に比例し、 蒸発する水量は気 曰 B
/皿 比例 して増 る。 そのため 5¾ /皿が低い冬幸は 発量が少く 、 s 温力 ι¾レ、夏 は蒸発量が多いため、 その余分に蒸発する水が気化熱を奪い、 自動的に建物を冷 やす冷媒効果がある。 そのため本発明の 「自動洚水システム」 は、 夏季にあって は自動的に港水して自動的に建物を冷やす一挙両得の 2重の効果が得られる。 図 2 8 は、 本発明の原理を示す斜視図である。 図 ( a ) において熱した鉄塊は、 その表面から矢印に示すよう に赤外線放射で熱が放射され、 この場合熱した鉄塊 はなかなか冷めない。 と ころが図 ( b ) に示すよ うに熱した鉄塊表面に水を浸す と、 熱した鉄塊から水の気化熱が奪われ一瞬'で冷やされる。 この原理を地球上の 熱を宇宙空間に放出する場合にあてはめる と、 地球上の熱は次の 3通りの方法で 宇宙空間に放出されます。 1 . (赤外線の) 熱放射 2 . (大気による) 対流 3 .
(大気への) 伝導 そこで現在大気中の C 0 2の濃度が増えてるため、 1 .の赤外 線による宇宙空間への熱放射が減って地球温暖化の原因になってますが、 本発明 の自動灌水システムは 2 .の対流の水の気化 (蒸発) によって、 水を媒介に地球上 の熱を大気圏を介 して効率良く宇宙空間へと放出できるため、 C 0 2 を全く 排出 せずに地球温暖化対策ができます。
図 2 9は、 予言師が書いた文言 ( 2 0 0 7 . 3 . 1 0 に予言) の写真図です。 本発 明者が自動灌水システムの発明を して出願したのは、 2 0 0 7 . 1 0 . 1 (優先曰) であり、 この予言が書かれた 7 ヶ月後にまさに発明 したものです。 その英語訳は M a n y p e o p l e o n t h e E a r t h n e e d K o z o s b r a i n s . D o n ' t f o e t t h e f a c t a n d t h e m i s s i o n e n t r u s t e d t o K o z o .
【図面の簡単な説明】
図 1 ( a ) は本発明の 1 実施例を実施した一部の縦断面図 ( b ) は本発明の 1 実施例を実施した一部の斜視図
図 2 ( a ) ( c ) は本発明の 1 実施例を実施した一部の縦断面図 ( b ) は本発明 の 1 実施例を実施した一部の斜視図
図 3 ( a ) ( b ) ( c ) は本発明の 1 実施例を実施した一部の縦断面図
図 4 ( a ) ( b ) は本発明の 1 実施例を実施した一部の縦断面図
図 5 本発明の 1 実施例を実施した一部の縦断面図
図 6 ( a ) ( b ) ( c ) は本発明の 1 実施例を実施した一部の縦断面図
図 7 本発明の 1 実施例を実施した一部の縦断面図
図 8 ( a ) ( b ) ( c ) ( d ) は本発明の 1 実施例を実施した一部の縦断面図 図 9 ( a ) ( b ) ( c ) は本発明の 1 実施例を実施した一部の縦断面図
図 1 0 本発明の 1 実施例を実施した一部の縦断面図
図 1 1 ( a ) ( c ) ( d ) ( e ) は本発明の 1 実施例を実施した一部の縦断面図 ( b )
( f ) は本発明の 1 実施例を実施した一部の側面図
図 1 2 ( a ) は本発明の 1 実施例を実施した一部の縦断面図 ( b ) ( c ) は本発 明の 1 実施例を実施した一部の側面図 ( d ) は本発明の 1 実施例を実施した一 部の上面図
図 1 3 ( a ) ( b ) ( c ) は本発明の 1 実施例を実施した一部の縦断面図
図 1 4 ( a ) ( b ) ( c ) ( d ) は本発明の 1 実施例を実施した一部の縦断面図 図 1 5 ( a ) ( b ) は本発明の 1 実施例の一部斜視図 ( c ) 本発明の 1 実施例の 一部 X — Y方向の縦断面図 ( d ) ( e ) ( f ) 本発明の 1 実施例の一部縦断面図 図 1 6 ( a ) ( c ) は本発明の 1 実施例の一部の斜視図 ( b ) は本発明の 1 実施 例を実施した一部の縦断面図
図 1 7 ( a ) は本発明の 1 実施例の斜視図 ( b ) は本発明の 1 実施例の X — Y 方向の縦断面図 ( c ) ( d ) ( e ) ( f ) ( g ) は本発明の 1 実施例の一部斜視図 図 1 8 ( a ) ( b ) ( c ) は本発明を実施した実施例の斜視図
図 1 9 本発明の一部の吸水能力を示すデータの概略図
図 2 0 ( a ) ( b ) ( c ) ( d ) は本発明の原理を示す縦断面図
図 2 1 ( a ) は本発明の貯水タ ンクの実施例の斜視からの写真図 ( b ) は本発 明の貯水タ ンクの実施例の正面からの写真図
図 2 2 本発明の自動灌水シス丁ムの原理を示す実証試験の正面からの写真図 図 2 3 本発明の自動灌水シス丁ムの原理を示す実証試験の正面からの写真図 図 2 4 本発明の自動灌水シス丁ムの原理を示す実証試験の正面からの写真図 図 2 5 ( a ) ( b ) は本発明の自動港水システムの実証試験①②の上面から写真図 図 2 6 本発明の自動灌水シス亍ムの実証試験①の斜視からの写真図
図 2 7 本発明の自動灌水システムの実証試験②の上面からの写真図
図 2 8 本発明の自動港水システムの原理を示す斜視図
図 2 9 本発明の自動灌水シス亍ムに関連する写真図
【符号の説明】
1 : 貯水タ ンク 1 A : 貯水室 1 B : 分室 1 C : 一時貯水室 1 a : 雨受け 部 1 b : 開口部 1 c : 囲い部 1 d : 排出口 1 e : バルブ 1 f : フィ ル タ 1 g : スタ ン ド 1 h : 仕切 り部 1 i : 浮きシー ト 1 j :貯水部 1 k : 導水材 1 I : 空間部 1 m : 流入部 2 : 浮力体 2 A : 浮力蓋体 2 a : て こ腕 2 b : 支軸部 2 c : 閉栓部 3 : 導水管 4 : 給水管 4 a : 中空部 b ·· 隙間部 4 c : 開口 4 d : 給水口 4 e : 留め具 5 : 吸水材 5 a : (吸 水性の) 吸水材 5 b : (防根透水の) 吸水材 5 c : 紐状の吸水材 6 : 防水材 7 : 接着材 8 : 立体網材 9 : 苔 1 0 : 建物 1 0 A : 屋上 1 0 B : 壁面 1 0 C : 屋根 1 1 : 偏心容器 1 1 a : 支軸 1 1 b : 支持部 1 1 c : 重量 部 1 1 d : 作動部 1 1 e : ス トッパー 1 2 : 蓋体 1 3 : 搬送管 1 3 a : 作動棒 1 3 b : ばね 1 3 c : 封止弁 1 3 d : 封止口

Claims

請求の範囲
請求項 1 . 降雨する雨水や水道水を溜める貯水タンクにおいて、 該貯水タ ンク内に上槽に水を溜める貯水室 ( 1 A ) と下檣に分室 ( 1 B ) を設け、 該貯 水室 ( 1 A ) の底面に開口部 ( 1 b ) を形成し、 貯水室 ( 1 A ) に溜まる水が 該開口部 ( 1 b ) から分室 ( 1 B ) 内に流入し、 該分室 ( 1 B ) 内に流入する水 で上方に浮動する浮力体 ( 2 ) を設け、 貯水室 ( 1 A ) から分室 ( I B ) 内に 流入する水で該浮力体 ( 2 ) が浮動して前記開口部 ( 1 b ) を密封状態に塞ぐ ことで貯水室 ( 1 A ) 内に水が溜まっていく ようにし、 該分室 ( 1 B ) に分室
( 1 B ) 内の水を導水する適当長の導水管 ( 3 ) を接続し、 該導水管 ( 3 ) か ら導水される水を給水する給水管 ( 4 ) に水の表面張力の毛細管現象の作用で 吸水する適当長幅の吸水材 ( 5 ) を設け、 該吸水材 ( 5 ) の吸水した水が大気 中に蒸発することによって、 その蒸発した水量分が分室 ( 1 B ) 内から導水管
( 3 ) 内に導水され、 その導水された水量分によって該分室 ( 1 B ) 内が負圧状 態になることで、 前記貯水室 ( 1 A ) 内の水が分室 ( 1 B ) 内に開口部 ( 1 b ) から流入するようにした自動濯水システム。
請求項 2. 前記分室 ( 1 B ) の下側に該分室 ( 1 B ) 内に溜まった水を流入 し一時的に溜める一時貯水室 ( 1 C ) を設け、 該一時貯水室 ( 1 C ) に一時貯水 室 ( 1 C ) 内の水を導水する導水管 ( 3 ) を接続した請求項 1 記載の自動濯水 システム。
請求項 3. 降雨する雨水や水道水を溜める貯水タンクにおいて、 該貯水タ ンクに水を溜めて集積する貯水部 ( 1 j ) を設け、 該貯水部 ( 1 j ) に凹状に 形成した空間部 ( 1 I ) と該空間部 ( 1 I ) の下方に開口する流入部 ( 1 m ) を形成し、 該空間部 ( 1 I ) 内に適当な浮力で浮動する浮力蓋体 ( 2 A ) を設 け、 該空間部 ( 1 I ) 内に水が溜まってない状態では、 該浮力蓋体 ( 2 A ) の 自重で開口する流入部 ( 1 m) を密封状態に塞ぎ、 該空間部 ( 1 I ) 内に水が 溜まり該浮力蓋体 ( 2 A ) が水没すると、 浮力蓋体 ( 2 A ) が作用する浮力で 浮動して開口する流入部 ( 1 m ) との間に隙間ができて、 空間部 ( 1 I ) 内の 水が貯水室 ( 1 A ) 内に流入するようになり、 該貯水室 ( 1 A ) に貯水室 ( 1
A ) 内の水を導水する適当長の導水管 ( 3 ) を接続し、 該導水管 ( 3 ) から導 水される水を給水する給水管 ( 4 ) に水の表面張力の毛細管現象の作用で吸水 する適当長幅の吸水材 ( 5 ) を設け、 該吸水材 ( 5 ) の吸水した水が大気中に 蒸発することによって、その蒸発した水量分が貯水室( 1 A )内から導水管( 3 ) 内に導水され、 その導水された水量分によって該貯水室 ( 1 A ) 内が負圧の密封 状態に保たれるようにした自動灌水システム。
請求項 4. 降雨する雨水や水道水を溜める貯水タンクにおいて、 該貯水タ ンクに水を溜めて集積する貯水部 ( 1 j ) を設け、 該貯水部 ( 1 j ) に開口す る流入部 ( 1 m) を形成し、 貯水タンク内に仕切り部 ( 1 h ) を設け、 該仕切 リ部 ( 1 h ) に前記流入部 ( 1 m) から流入する水を溜める偏心容器 ( 1 1 ) を軸支して回動自在に設け、 該偏心容器 ( 1 1 ) 内に水が溜まってない状態で は、 偏心容器 ( 1 1 ) の自重で仕切リ部 ( 1 h ) に開口する流入部 ( 1 m) を 密封状態に塞ぎ、該偏心容器( 1 1 ) 内に水が一定量以上溜まると偏心容器( 1 1 ) 全体の重心位置が移動して偏心容器 ( 1 1 ) が回転し、 その回転によって 該偏心容器 ( 1 1 ) 内の水が仕切り部 ( 1 h ) 上に放水され、 その水が該仕切 リ部 ( 1 h ) に開口する流入部 ( 1 m) から貯水室 ( 1 A ) 内に流入するよう になり 、 該貯水室 ( 1 A ) に貯水室 ( 1 A ) 内の水を導水する適当長の導水管 ( 3 ) を接続し、 該導水管 ( 3 ) から導水される水を給水する給水管 ( 4 ) に 水の表面張力の毛細管現象の作用で吸水する適当長幅の吸水材 ( 5 ) を設け、 該吸水材 ( 5 ) の吸水した水が大気中に蒸発することによって、 その蒸発した 水量分が貯水室 ( 1 A ) 内から導水管 ( 3 ) 内に導水され、 その導水された水 量分によって該貯水室 ( 1 A ) 内が負圧の密封状態に保たれるようにした自動港 水システム。
請求項 5. 前記偏心容器 ( 1 1 ) に作動部 ( 1 1 d ) を設け、 該偏心容器
( 1 1 ) が回転することで作動部 ( 1 1 d ) が蓋体 ( 1 2 ) を動かし、 該蓋体
( 1 2 ) が仕切り部 ( 1 h ) に開口する流入部 ( 1 m) を開いたリ塞いだり し ながら、 該仕切り部 ( 1 h ) 上に放出した水を貯水室 ( 1 A ) 内に流入するよ うにした請求項 4記載の自動灌水システム。
請求項 6. 前記貯水室 ( 1 A ) の下側に該貯水室 ( 1 A ) 内に溜まった水 を流入し一時的に溜める分室 ( 1 B ) を設け、 該分室 ( 1 B ) に分室 ( 1 B ) 内 の水を導水する導水管 ( 3 ) を接続した請求項 3 、 4又は 5記載の自動灌水シ ステム。
請求項 7 . 前記溜まる水内に設ける導水管 ( 3 ) を Π形に形成し、 その n形 の導水管 ( 3 ) の最高点まで水が溜まると、 自動的に水を排出するよ うに した請 求項 2又は 6記載の自動灌水システム
請求項 8 . 前記接続する導水管 ( 3 ) の代わ y に、 排出口 ( 1 d ) に水を吸 水し搬送する適当長幅の吸水材 ( 5 ) を直接設けた請求項 1 〜 6のいずれか 1 項 に記載の自動灌水システム。
請求項 9 . 前記導水管 ( 3 ) と給水管 ( 4 ) を一体に して設けた請求項 1 ~ 7 のいずれか 1 項に記載の自動灌水システム。
PCT/JP2008/068314 2007-10-01 2008-09-29 自動潅水システム WO2009044927A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007257722 2007-10-01
JP2007-257722 2007-10-01

Publications (1)

Publication Number Publication Date
WO2009044927A1 true WO2009044927A1 (ja) 2009-04-09

Family

ID=40526338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068314 WO2009044927A1 (ja) 2007-10-01 2008-09-29 自動潅水システム

Country Status (1)

Country Link
WO (1) WO2009044927A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082674A1 (ja) * 2009-01-16 2010-07-22 Oshio Kozo 自動潅水システムの貯水潅水方法
EP2735665A1 (fr) * 2012-11-23 2014-05-28 Sarl Le Prieure Dispositif d'evacuation d'eau d'un bac de retention
WO2016026836A1 (fr) * 2014-08-22 2016-02-25 Institut De Radioprotection Et De Surete Nucleaire Dispositif de collecte séquentielle d'eau de pluie, notamment en vue de l'étude de l'évolution de la radioactivité des eaux de pluie
CN109121913A (zh) * 2018-08-29 2019-01-04 深圳市夺天工环境建设有限公司 一种用于山地防风节水护苗装置
CN112470874A (zh) * 2020-11-24 2021-03-12 中国地质大学(武汉) 一种气候自适应性水田自动灌溉排水系统
JP2021113658A (ja) * 2020-01-21 2021-08-05 大成建設株式会社 送気ダクトの流入水排水構造

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119347U (ja) * 1973-02-09 1974-10-12
JPH0570260U (ja) * 1991-02-13 1993-09-24 英機 岡崎 貯水量調整付き給水機
JP2003023868A (ja) * 2001-07-16 2003-01-28 Kazuo Matsuura 屋上およびビル周囲の緑化のための植物栽培装置
JP2005054520A (ja) * 2003-08-07 2005-03-03 Shoji Takahashi 雨水利用の家庭用中水道システム
JP2005315030A (ja) * 2004-04-30 2005-11-10 Network Service:Kk 雨水貯水装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119347U (ja) * 1973-02-09 1974-10-12
JPH0570260U (ja) * 1991-02-13 1993-09-24 英機 岡崎 貯水量調整付き給水機
JP2003023868A (ja) * 2001-07-16 2003-01-28 Kazuo Matsuura 屋上およびビル周囲の緑化のための植物栽培装置
JP2005054520A (ja) * 2003-08-07 2005-03-03 Shoji Takahashi 雨水利用の家庭用中水道システム
JP2005315030A (ja) * 2004-04-30 2005-11-10 Network Service:Kk 雨水貯水装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082674A1 (ja) * 2009-01-16 2010-07-22 Oshio Kozo 自動潅水システムの貯水潅水方法
EP2735665A1 (fr) * 2012-11-23 2014-05-28 Sarl Le Prieure Dispositif d'evacuation d'eau d'un bac de retention
US9302828B2 (en) 2012-11-23 2016-04-05 Sarl Le Prieure Device for discharging water from a retention pan
WO2016026836A1 (fr) * 2014-08-22 2016-02-25 Institut De Radioprotection Et De Surete Nucleaire Dispositif de collecte séquentielle d'eau de pluie, notamment en vue de l'étude de l'évolution de la radioactivité des eaux de pluie
FR3024987A1 (fr) * 2014-08-22 2016-02-26 Irsn Dispositif de collecte sequentielle d'eau de pluie, notamment en vue de l'etude de l'evolution de la radioactivite des eaux de pluie
JP2017532575A (ja) * 2014-08-22 2017-11-02 アンスティテュ ドゥ ラディオプロテクシオン エ ドゥ シュルテ ニュクレエールInstitut De Radioprotection Et De Surete Nucleaire 雨水の放射能変動の調査を特に目的として雨水を逐次的に収集するためのデバイス
US10234362B2 (en) 2014-08-22 2019-03-19 Institut De Radioprotection Et De Surete Nucleaire Device for sequentially collecting rainwater, in particular with a view to studying the variation in the radioactivity of rainwater
CN109121913A (zh) * 2018-08-29 2019-01-04 深圳市夺天工环境建设有限公司 一种用于山地防风节水护苗装置
JP2021113658A (ja) * 2020-01-21 2021-08-05 大成建設株式会社 送気ダクトの流入水排水構造
JP7324719B2 (ja) 2020-01-21 2023-08-10 大成建設株式会社 送気ダクトの流入水排水構造
CN112470874A (zh) * 2020-11-24 2021-03-12 中国地质大学(武汉) 一种气候自适应性水田自动灌溉排水系统
CN112470874B (zh) * 2020-11-24 2022-07-19 中国地质大学(武汉) 一种气候自适应性水田自动灌溉排水系统

Similar Documents

Publication Publication Date Title
JP5627467B2 (ja) 大気中の水分を回収するための装置及び方法
JP5731791B2 (ja) 灌漑システムおよび灌漑方法
WO2009044927A1 (ja) 自動潅水システム
JP4809380B2 (ja) 自動潅水システム
JP5479829B2 (ja) 自動潅水システムによって地表の温度を自動的に冷却する方法
CN202050734U (zh) 浮式种植盆
CN205179879U (zh) 一种城市景观生态绿化装置
JP2009077665A (ja) 土壌構造
CN108235877A (zh) 一种适用少雨年寒地漏结构的植树存活器
CN200973277Y (zh) 贮水自灌润式植物栽培装置
JP6221334B2 (ja) 植物栽培システム
JP2006304760A (ja) 雨水貯溜層の貯溜水を毛管現象で基盤層が吸水し緑化基盤、放熱基盤とする軽質炭酸カルシウムを主要基盤材に使用した建築物屋上,壁面のヒートアイランド現象軽減工法
JP2009171939A (ja) 壁面緑化システム
CN102715070A (zh) 海洋农业多功能种植盘与防风采水蓄光大棚
JP3421848B2 (ja) 水位調節装置、水位調節可能な水受け器および水位調節可能なプランター
US20080000154A1 (en) Vase for cultivating orchids
JP2010068735A (ja) 自動給水プランター
KR101419123B1 (ko) 수경재배를 이용한 옥상녹화장치
Bures A view beyond traditional growing media uses
CN113982201A (zh) 一种基于雨水净化利用的栖息生境绿色屋顶设计系统
CN202435898U (zh) 一种温室重力地下滴灌加热和微纳米气灌溉系统
JP2008011717A (ja) 塩水逆移動式灌漑装置
JPH10295197A (ja) 土壌加温緑化法
CN201919401U (zh) 屋顶绿化装置
Rajendra et al. Hydroponics farming using IoT

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08836082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08836082

Country of ref document: EP

Kind code of ref document: A1