WO2009036865A2 - Steckverbinder mit modifiziertem isolatorkanal zur abschirmung elektromagnetischer strahlung - Google Patents

Steckverbinder mit modifiziertem isolatorkanal zur abschirmung elektromagnetischer strahlung Download PDF

Info

Publication number
WO2009036865A2
WO2009036865A2 PCT/EP2008/006985 EP2008006985W WO2009036865A2 WO 2009036865 A2 WO2009036865 A2 WO 2009036865A2 EP 2008006985 W EP2008006985 W EP 2008006985W WO 2009036865 A2 WO2009036865 A2 WO 2009036865A2
Authority
WO
WIPO (PCT)
Prior art keywords
connector
conductive
insulator
connector according
housing
Prior art date
Application number
PCT/EP2008/006985
Other languages
English (en)
French (fr)
Other versions
WO2009036865A3 (de
Inventor
Friedhelm BETHÄUSER
Original Assignee
Rohde & Schwarz Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde & Schwarz Gmbh & Co. Kg filed Critical Rohde & Schwarz Gmbh & Co. Kg
Priority to EP08801714A priority Critical patent/EP2188871A2/de
Priority to US12/678,624 priority patent/US7980866B2/en
Publication of WO2009036865A2 publication Critical patent/WO2009036865A2/de
Publication of WO2009036865A3 publication Critical patent/WO2009036865A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6591Specific features or arrangements of connection of shield to conductive members
    • H01R13/6594Specific features or arrangements of connection of shield to conductive members the shield being mounted on a PCB and connected to conductive members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/73Means for mounting coupling parts to apparatus or structures, e.g. to a wall
    • H01R13/74Means for mounting coupling parts in openings of a panel
    • H01R13/748Means for mounting coupling parts in openings of a panel using one or more screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/40Securing contact members in or to a base or case; Insulating of contact members
    • H01R13/405Securing in non-demountable manner, e.g. moulding, riveting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections

Definitions

  • the invention relates to a connector with an at least partially disposed in a housing insulator channel.
  • Connectors are mechanical components that realize a conductive connection on the physical level.
  • the individual connectors are usually specially adapted to the physical characteristics of the cables, their transmission parameters and their services.
  • connector includes both plugs and sockets.
  • Connectors are fixed for a variety of purposes in reducing electromagnetic radiation conductive housings or more generally in or on conductive connector supports, which can also serve as a ground connection. Fixed in or on such plug carriers, the fixed plug can be connected to loose and / or otherwise also fixed complementary plugs.
  • standardized connectors for connecting computers to peripheral devices known as trapezoidal connectors, D-sub connectors, USB A or B connectors, EURO network connectors or TMC connectors are known , LAN, TAE, SFP housings and connectors for optical transmitters, CF (Compact flash) are further examples.
  • the invention is applicable to almost all connectors except e.g. Use coaxial connector.
  • a connector is known in which an existing of a plastic body insulator channel, which forms a plurality of bushings for conductive connections, eg electrical lines, and at least two outer surfaces of a conductive connector housing is surrounded, which leaves open at least two outer surfaces of the insulator channel. It is also known from this utility model to use an insulator body made of electrical insulating material to form the insulator channel.
  • a non-conductive cross-sectional area is formed in a channel between first and second outer surfaces, the conductive connection being formed in said insulator channel between the first and second outer surfaces.
  • electromagnetic radiation can penetrate from one contact surface to the other.
  • the larger the non-conductive cross-sectional area in the channel the smaller the radiation frequency at which the radiation can penetrate said non-conductive cross-sectional area to pass from one outer surface to the other outer surface and finally radiate.
  • the known from the prior art plugs have the disadvantage that they have large non-conductive cross-sectional areas and thereby pass a wide range of electromagnetic radiation.
  • a housing with plugs fixed in housing cutouts can not offer optimum shielding from escaping electromagnetic radiation.
  • more stringent test conditions at high frequencies it becomes difficult to comply with the limits.
  • the connector according to the invention has an insulator channel, which at least two outer surfaces and forms at least one implementation for a conductive connection.
  • a conductor arrangement is formed, which reduces the minimum non-conductive cross-sectional area of the insulator channel and which is conductively connected to a conductive connector housing.
  • the insulator channel is at least partially disposed in the connector housing of the connector.
  • the insulator channel includes an insulator body, since by this insulator body e.g. a mechanical and electrically insulating stabilization or fixation of the conductive connection, which form the contact pins of the connector at one end, is made possible.
  • the conductor arrangement consists of a plurality of preferably not directly conductively interconnected conductor parts, so the various indirectly, for example via the conductive housing of the connector, conductively interconnected conductor parts can be arranged in an advantageous relative position and orientation to the Simplify manufacturing process.
  • two coarse-meshed metallic grids can be arranged one behind the other in a manner offset relative to one another in such a way that the non-conductive cross-sectional area is minimized overall, for example when viewing a projection of the insulator channel.
  • two metallic grids or plates each covering only one half of the nonconducting cross section of the insulator channel may be arranged such that both in combination cover the entire nonconducting cross section of the insulator channel, even if they lie in different planes, respectively. If both grids lie in different planes, electrical lines can be routed through the gap formed by them.
  • a ladder part can also be a provided with holes for the implementation of the contact pins sheet metal can be used.
  • planar, planar configuration of a conductor part of the conductor arrangement By a planar, planar configuration of a conductor part of the conductor arrangement, this can be arranged, for example, space and material saving and geometrically favorable.
  • a fine-meshed wire mesh saves material over a metal plate that is just as thick and still shields a large portion of the electromagnetic radiation. Also, the passage of electrical lines through the grid is facilitated.
  • a conductor part of the conductor arrangement may, for example, also be arranged on the flat outer surface. Then the presence of a conductor arrangement on the connector is externally visible.
  • Isolator channel can because of the optical recognizability of the
  • the conductor arrangement individually encloses the feedthroughs of the conductive connections, the minimum non-conductive cross-sectional area of the insulator channel is optimally reduced.
  • the enclosing can take place in a conductor arrangement formed from only one conductor part or else by the interaction of a plurality of conductor parts which in each case enclose a plurality of feedthroughs.
  • At least part of the conductor arrangement is designed as a grid, which with a very small amount of conductor material requires a large-area conductor arrangement allows, which acts as a Faraday cage.
  • grids as purchased parts are easy to obtain, which reduces the logistical effort in a production.
  • Fig. 1 shows a perspective view of a connector according to the invention
  • Fig. 2A is a front view of a second connector according to the invention.
  • Fig. 2B is a front view of the connector according to the invention of Fig. 1;
  • Fig. 3 is a perspective top view of a third connector according to the invention.
  • Fig. 4 is a view of a functioning as a plug carrier electronic device housing.
  • Fig. 1 shows a perspective view of a connector according to the invention 1.
  • An insulator channel 2 which consists in the illustrated embodiment of a plastic insulator body, connects a first and a second outer surface 5.1 and 5.2.
  • the second outer surface 5.2 which is not visible, lies in a plane which is parallel to the plane in which the illustrated first outer surface is 5.1.
  • the insulator channel 2 is surrounded by the outer surfaces 5.1 and 5.2 of an electrically conductive housing 8.
  • the insulator channel 2 is filled by the insulator body 7 made of plastic, which bushings 3 for guiding and fixing of conductive connections such as the illustrated pins 4 is formed.
  • the insulator channel 2 forms between the outer surfaces 5.1 and 5.2, a non-conductive cross-sectional area which electromagnetic radiation through the first outer surface 5.1, through the insulator channel 2 and through a second outer surface 5.2 or in the opposite direction fürläset.
  • a grid of conductive wires 10 is formed on the first outer surface 5.1, which is fixed electrically conductively via solder joints 9 to the conductive housing 8. Solder joints 9 are also formed at intersections 13 of wires 10 to ensure electrical connection between the wires 10 and the mechanical stability of the grid.
  • the grid forms a ladder part.
  • One or more such conductor parts which may also be designed differently, form the conductor arrangement, which is conductively connected to the connector housing.
  • a commercially available mesh grid can be used in which the contact is made through the weave structure.
  • FIG. 2A shows a front view of a second connector 1 'according to the invention.
  • This connector like the connector of Figure 1 on an insulator channel 2.
  • This connects the outer surfaces 5.1 'and 5.2', which are not parallel to each other in this embodiment but perpendicular to each other, since the connector shown 1 'is provided for mounting on a circuit board.
  • the first outer surface 5.1 ' is surrounded by the electrically conductive housing 8'.
  • the second outer surface 5.2 ' which is arranged perpendicular to the first outer surface 5, lies in a plane parallel to the plane defined by the tips of the ends of the conductive connections 4', from which the ends of the electrical leads 4 'emerge.
  • the conductive connections 4 ' connect the areas near the outer surfaces 5.1' and 5.2 'electrically conductive with each other.
  • the insulator channel 2 ' is filled with an insulator body 7' made of plastic. This also forms bushings 3 'for guiding the conductive connections 4'.
  • the non-conductive cross-sectional area, the insulator channel 2 between the outer surfaces 5.1 'and 5.2' is reduced by a grid of conductive wires 10 ', which is electrically conductively fixed via solder joints 9' to the conductive housing 8 '. Solder joints 9 'at intersections 13' of wires 10 'ensure electrical connection between the wires 10' and the mechanical stability of the grid.
  • the 2A has two snap-in elements 14 and 14 ', which are mounted in the conductive housing, for mechanical attachment of the connector 1, for example in a circuit board.
  • the ends of the conductive connections 4 ', which protrude from the contact surface 5.2', are arranged so that they can be introduced, for example, into corresponding receptacles, for example a circuit board.
  • Fig. 2B shows a front view of the connector 1 according to the invention from Fig. 1.
  • Reference numerals and contents correspond to those of Fig.l. On a repeated description of the figures is therefore omitted.
  • FIG. 3 shows a perspective view of a third connector 1 'according to the invention.
  • 1 '' surrounds the conductive housing 8 '', which the insulator channel 2 '', which leads to the insulator body 7 '', the insulator channel 2 '' and the insulator body 7 '' only partially.
  • a grid of wires 10 is formed as a conductor arrangement, which is formed at the intersections 13" formed by the wires 10 "and at the contact points of the wires 10 '' with the conductive housing 8 '' solder joints 9 '' have.
  • the wire grid defines a plane whose non-conductive cross-section is reduced by the wire grid.
  • This grid acts as part of a Faraday cage, which shields grid-specific frequencies of the electromagnetic radiation. The entrance of Electromagnetic radiation from a device in the insulator channel is thus prevented.
  • FIG. 4 shows a view of a rear wall of an electronic device housing 15 functioning as a plug carrier 12.
  • the electronic device housing 15 forms openings 16, 16 'on the illustrated side acting as plug carrier 12, through which parts of, for example, plug-in connectors 1'"according to the invention can protrude.
  • the plug carrier 12 is connected to an electrical ground.
  • connector support 12 fixed by screws connector 1 '''with conductive connector housing 8''' form between the conductive connector housing 8 '''and the connector carrier 12 is a conductive contact.
  • a conductor arrangement 6 which makes conductive contact with the conductive plug housing Q ''', whether it is mounted on or in the insulator channel 2''' and on or in an insulator body 1 ', is thus connected to the ground and thus forms at least part of a Faraday's the cage.
  • Such a conductor arrangement 6 is not shown in FIG. 4, since it is arranged in the insulator body of the respective plug-in connector penetrating the rear wall.
  • a respectively formed on the plug housing flange may be conductively connected by means of a Leitschaumelements with the plug carrier.
  • spring tabs are formed, which touch the plug carrier when the connector is mounted and thus establish a ground connection of the connector housing.
  • a contact element for contacting a conductor of a ground potential can be additionally provided on the circuit board, on which the connector is arranged.
  • the insulator channel 2 may also have a non-filled with the insulator body portion.
  • the conductor arrangement can also be arranged in the remaining air gap between the insulator partial bodies.

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

Die Erfindung betrifft einen Steckverbinder (1, 1', 1'', 1''') mit Isolatorkanal (2, 2', 2'' 2'''), welcher ein oder mehrere weitere Öffnungen (3, 3', 3''' ) für leitende Verbindungen (4, 4', 4'', 4''') und zumindest zwei Kontaktflächen (5.1, 5.1', 5.1'' 5.1''', 5.2, 5.2') ausbildet, wobei in und/oder an dem Isolatorkanal (2, 2', 2'' 2''') eine Leiteranordnung (6, 6', 6'' ) ausgebildet ist, welche die minimale nichtleitende Querschnittsfläche des Isolatorkanals (2, 2', 2'' 2''') verkleinert und leitend mit dem Gehäuse (8, 8', 8'') verbunden ist.

Description

Steckverbinder mit modifiziertem Isolatorkanal zur Abschirmung elektromagnetischer Strahlung
Die Erfindung betrifft einen Steckverbinder mit einem zumindest teilweise in einem Gehäuse angeordneten Isolatorkanal.
Steckverbinder sind mechanische Komponenten, die auf der physikalischen Ebene eine leitende Verbindung realisieren. Die einzelnen Steckverbinder sind üblicherweise speziell an die physikalischen Eigenschaften der Kabel, an deren übertragungstechnische Parameter und an deren Dienste angepasst. Nachfolgend umfasst „Steckverbinder" sowohl Stecker als auch Buchsen.
Steckverbinder werden für vielfältige Zwecke in zur Verringerung elektromagnetischer Abstrahlung leitenden Gehäusen oder allgemeiner in oder auf leitenden Steckerträgern fixiert, die auch als Masseverbindung dienen können. In oder auf solchen Steckerträgern fixiert, können die fixierten Stecker mit losen und/oder mit ebenfalls anderweitig fixierten Komplementärsteckern verbunden werden. Insbesondere aus der Computertechnik sind genormte Stecker bzw. Steckverbinder zum Verbinden von Computern mit Peripheriegeräten bekannt, die als Trapez-Steckverbinder, D-Sub-Steckverbinder, USB-A- oder - B-Steckverbinder, EURO-Netzsteckverbinder oder als TMC- Steckverbinder bekannt sind. LAN, TAE, SFP Gehäuse und Stecker für optische Transmitter, CF (Compact flash) sind weitere Beispiele. Grundsätzlich ist die Erfindung auf fast alle Steckverbinder bis auf z.B. Koaxialsteckverbinder anzuwenden .
Aus der Gebrauchsmusterschrift DE 20 2006 015 908 Ul ist ein Steckverbinder bekannt, bei dem ein aus einem Kunststoffkörper bestehender Isolatorkanal, welcher mehrere Durchführungen für leitende Verbindungen, z.B. elektrische Leitungen, und zumindest zwei Außenflächen ausbildet, von einem leitenden Steckverbindergehäuse umgeben ist, welches zumindest zwei Außenflächen des Isolatorkanals offen lässt. Aus dieser Gebrauchsmusterschrift ist auch das Verwenden eines aus elektrischem Isoliermaterial hergestellten Isolatorkörpers zum Bilden des Isolatorkanals bekannt.
In dem bekannten Steckverbinder selbst ist eine nichtleitende Querschnittsfläche in einem Kanal zwischen einer ersten und einer zweiten Außenfläche ausgebildet, wobei die leitende Verbindung in besagtem Isolatorkanal zwischen der ersten und der zweiten Außenfläche ausgebildet ist. Durch diese nichtleitende Querschnittsfläche des Isolatorkanals kann elektromagnetische Strahlung von der einen Kontaktfläche zu der anderen durchdringen. Je größer die nichtleitende Querschnittsfläche in dem Kanal ist, desto kleiner ist die Strahlungsfrequenz, ab der die Strahlung besagte nichtleitende Querschnittsfläche durchdringen kann, um von einer Außenfläche zu der anderen Außenfläche zu gelangen, und schließlich abgestrahlt wird. Die aus dem Stand der Technik bekannten Stecker haben den Nachteil, dass sie große nichtleitende Querschnittsflächen besitzen und dadurch ein breites Spektrum an elektromagnetischer Strahlung durchlassen. So kann beispielsweise ein Gehäuse mit in Gehäuseausschnitten fixierten Steckern keine optimale Abschirmung vor austretender elektromagnetischer Strahlung bieten. Insbesondere wird es bei künftigen, verschärften Prüfbedingungen zu hohen Frequenzen hin schwierig, die Grenzwerte einzuhalten.
Es ist daher die Aufgabe der Erfindung, einen Steckverbinder zu schaffen, welcher elektromagnetische Strahlung besser abschirmt.
Die Aufgabe wird durch den Steckverbinder mit den Merkmalen nach Anspruch 1 gelöst.
Der erfindungsgemäße Steckverbinder weist einen Isolatorkanal auf, welcher zumindest zwei Außenflächen und zumindest eine Durchführung für eine leitende Verbindung ausbildet. In und/oder an dem Isolatorkanal ist eine Leiteranordnung ausgebildet, welche die minimale nichtleitende Querschnittsfläche des Isolatorkanals verkleinert und die leitend mit einem leitenden Steckverbindergehäuse verbunden ist. Der Isolatorkanal ist zumindest teilweise in dem Steckverbindergehäuse des Steckverbinders angeordnet. Durch Minimierung der nichtleitenden Querschnittsfläche des Isolatorkanals wird der Isolatorkanal für zunehmend hohe Frequenzen der elektromagnetischen Strahlung undurchlässig. Eine Abstrahlung von elektromagnetischer Strahlung aus beispielsweise einem Messgerät wird damit verringert. Der erfindungsgemäße Steckverbinder hat insbesondere den Vorteil, dass auch bei offenem Steckverbinder eine Abschirmung erfolgt. Das Aufsetzen von leitenden Abdeckkappen auf nicht genutzte Steckverbinder eines Geräts kann damit entfallen. Dies wirkt sich bereits bei Frequenzen von z.B. 1-10 MHz deutlich aus, die typisch für Schaltnetzteile sind.
In den Unteransprüchen sind vorteilhafte Weiterbildungen des erfindungsgemäßen Steckverbinders mit modifiziertem Isolatorkanal zur Abschirmung elektromagnetischer Strahlung dargestellt.
Es ist vorteilhaft, wenn zumindest ein Abschnitt des Isolatorkanals einen Isolatorkörper beinhaltet, da durch diesen Isolatorkörper z.B. eine mechanische und elektrisch isolierende Stabilisierung bzw. Fixierung der leitenden Verbindung, die an einem Ende die Kontaktpins des Steckverbinders ausbilden, ermöglicht ist.
Besteht die Leiteranordnung aus mehreren vorzugsweise nicht direkt leitend miteinander verbundenen Leiterteilen, so können die verschiedenen indirekt z.B. über das leitende Gehäuse des Steckverbinders, leitend miteinander verbundenen Leiterteile in vorteilhafter relativer Lage und Orientierung angeordnet werden, um den Fertigungsprozess zu vereinfachen. So können beispielsweise zwei grobmaschige metallische Gitter hintereinander derart relativ zueinander versetzt angeordnet werden, dass die nichtleitende Querschnittsfläche insgesamt z.B. bei Betrachten einer Projektion des Isolatorkanals minimiert wird. Es können auch zwei metallische Gitter oder Platten, welche jeweils nur eine Hälfte des nichtleitenden Querschnitts des Isolatorkanals abdecken, derart angeordnet werden, dass beide in Kombination den gesamten nichtleitenden Querschnitt des Isolatorkanals abdecken, selbst wenn sie jeweils in verschiedenen Ebenen liegen. Liegen beide Gitter in verschiedenen Ebenen so können durch den durch sie gebildeten Spalt z.B. elektrische Leitungen geführt werden. An Stelle der Verwendung von Gitter oder Platten können auch gewisse Bereiche der Außenflächen des Isolatorkanals derart mit Leitendem Material bedampft werden, dass die bedampftem Bereiche auf den Außenflächen zueinander komplementär sind und die minimale nichtleitende Querschnittsfläche des Isolatorkanals minimiert wird. Als Leiterteil kann auch ein mit Löchern zur Durchführung der Kontaktpins versehenes Blech verwendet werden.
Durch eine ebene, flächige Ausgestaltung eines Leiterteils der Leiteranordnung, kann dieser z.B. platz- und materialsparend und geometrisch günstig angeordnet werden. Ein feinmaschiges Drahtgitter z.B. spart gegenüber einer ebenso dicken Metallplatte Material und schirmt dennoch einen großen Teil der elektromagnetischen Strahlung ab. Auch das Durchführen von elektrischen Leitungen durch das Gitter ist erleichtert. Durch die Verwendung von Leiteranordnungen in Steckverbindern wird die Abstrahlung auch bei von einem Gerät abgezogenem Stecker verringert. Ein Leiterteil der Leiteranordnung kann z.B. auch an der ebenen Außenfläche angeordnet sein. Dann ist das Vorhandensein einer Leiteranordnung am Steckverbinder äußerlich erkenntlich. Werden in dem Isolatorkanal in mehreren Ebenen verschiedene Leiterteile der Leiteranordnung angeordnet, kann flexibler auf konstruktive Zwänge reagiert werden und können die verschiedenen Teile räumlich zueinander abgestimmt und/oder platziert werden. Z.B. kann es fertigungstechnisch vorteilhaft sein, als Leiterteile zwei relativ grobmaschige Gitter versetzt zueinander in einem Isolatorkörper zu umspritzen, da auch hier die minimale Querschnittsfläche des Isolatorkanals minimiert wird. Durch das einzelne, relativ grobmaschige Gitter wird dabei gleichzeitig die vollständige Umschließung beim Spritzen des Kunststoffs gewährleistet.
Das Ausbilden zumindest eines Leiterteils der Leiteranordnung an zumindest einer Außenfläche des
Isolatorkanals kann wegen der optischen Erkennbarkeit das
Vorhandensein einer solchen Leiteranordnung in dem verwendeten Steckverbinder signalisieren.
Durch Ausbilden zumindest eines Teils der Leiteranordnung in dem Isolatorkanal kann vorteilhafterweise eine mechanische Beschädigung und/oder eine versehentliche elektrische Kontaktierung des zumindest einen Leiterteils der Leiteranordnung durch z.B. Komplementärstecker beim Aufstecken verhindert werden. Damit wird die Betriebssicherheit des Geräts verbessert.
Indem die Leiteranordnung die Durchführungen der leitenden Verbindungen jeweils einzeln umschließt, wird die minimale nichtleitende Querschnittsfläche des Isolatorkanals optimal verkleinert. Dabei kann das Umschließen in einer aus nur einem Leiterteil gebildeten Leiteranordnung oder aber durch Zusammenwirken von mehreren Leiterteilen, die jeweils für sich mehrere Durchführungen umschließen erfolgen.
Vorzugsweise ist zumindest ein Teil der Leiteranordnung als Gitter ausgebildet, das mit schon geringem Leitermaterialaufwand eine großflächige Leiteranordnung ermöglicht, welche als Faradayscher Käfig fungiert. Zudem sind Gitter als Zukaufteile leicht zu beziehen, was den logistischen Aufwand in einer Fertigung reduziert.
Die Erfindung ist anhand von bevorzugten Ausführungsbeispielen in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung detailliert erläutert. Es zeigen:
Fig. 1 zeigt eine perspektivische Darstellung eines erfindungsgemäßen Steckverbinders;
Fig. 2A eine Frontansicht eines zweiten erfindungsgemäßen Steckverbinders ;
Fig. 2B eine Frontansicht des erfindungsgemäßen Steckverbinders aus Fig. 1;
Fig. 3 eine perspektivische Draufansicht eines dritten erfindungsgemäßen Steckverbinders; und
Fig. 4 eine Ansicht eines als Steckerträger fungierenden Elektronikgerätgehäuses .
Die Fig. 1 zeigt eine perspektivische Darstellung eines erfindungsgemäßen Steckverbinders 1. Ein Isolatorkanal 2, der im dargestellten Ausführungsbeispiel aus einem Kunststoff-Isolatorkörper besteht, verbindet eine erste und eine zweite Außenfläche 5.1 und 5.2. Die zweite Außenfläche 5.2, welche nicht sichtbar ist, liegt in einer Ebene, welche parallel zu jener Ebene liegt, in der die dargestellte erste Außenfläche 5.1 liegt. Der Isolatorkanal 2 ist zwischen den Außenflächen 5.1 und 5.2 von einem elektrisch leitenden Gehäuse 8 umgeben. Der Isolatorkanal 2 ist von dem Isolatorkörper 7 aus Kunststoff gefüllt, welcher Durchführungen 3 zur Führung und Fixierung von leitenden Verbindungen wie den dargestellten Pins 4 ausbildet. Der Isolatorkanal 2 bildet zwischen den Außenflächen 5.1 und 5.2 eine nichtleitende Querschnittsfläche, welche elektromagnetische Strahlung durch die erste Außenfläche 5.1, durch den Isolatorkanal 2 und durch eine zweite Außenfläche 5.2 oder in entgegengesetzte Richtung durchläset . Um diese nichtleitende Querschnittsfläche zu verkleinern, ist auf der ersten Außenfläche 5.1 ein Gitter aus leitenden Drähten 10 ausgebildet, welches über Lötstellen 9 an das leitende Gehäuse 8 elektrisch leitend befestigt ist. Lötstellen 9 sind auch an Kreuzungen 13 von Drähten 10 ausgebildet, um eine elektrische Verbindung zwischen den Drähten 10 und die mechanische Stabilität des Gitters zu gewährleisten. Das Gitter bildet ein Leiterteil. Ein oder mehrere solcher Leiterteile, die auch unterschiedlich ausgebildet sein können, bilden die Leiteranordnung, die mit dem Steckverbindergehäuse leitend verbunden ist. Anstelle des gelöteten Gitters kann auch ein handelsübliches Maschengitter eingesetzt werden, bei dem der Kontakt durch die Webstruktur hergestellt wird.
Fig. 2A zeigt eine Frontansicht eines zweiten erfindungsgemäßen Steckverbinders 1' . Auch dieser Steckverbinder weist wie der Steckverbinder aus der Figur 1 einen Isolatorkanal 2 auf. Dieser verbindet die Außenflächen 5.1' und 5.2', die in diesem Ausführungsbeispiel nicht parallel zueinander sondern senkrecht aufeinander stehen, da der gezeigte Steckverbinder 1' zur Montage auf einer Leiterplatte vorgesehen ist. Die erste Außenfläche 5.1' ist dabei von dem elektrisch leitenden Gehäuse 8' umgeben. Die zweite Außenfläche 5.2', welche senkrecht zu der ersten Außenfläche 5 angeordnet ist, liegt in einer zu der durch die Spitzen der Enden der leitenden Verbindungen 4' definierten Ebene parallelen ebene, aus denen die Enden der elektrischen Leitungen 4' austreten. Die leitenden Verbindungen 4' verbinden dabei die Bereiche nahe den Außenflächen 5.1' und 5.2' elektrisch leitend miteinander. Der Isolatorkanal 2' ist mit einem Isolatorkörper 7' aus Kunststoff gefüllt. Dieser bildet ebenfalls Durchführungen 3' zur Führung der leitenden Verbindungen 4' aus. Die nichtleitende Querschnittsfläche, die der Isolatorkanal 2 zwischen den Außenflächen 5.1' und 5.2' ist durch ein Gitter aus leitenden Drähten 10', welches über Lötstellen 9' an dem leitenden Gehäuse 8' elektrisch leitend befestigt ist, verkleinert. Lötstellen 9' an Kreuzungen 13' von Drähten 10' stellen eine elektrische Verbindung zwischen den Drähten 10' und die mechanische Stabilität des Gitters sicher. Der Steckverbinder 1 aus der Fig. 2A besitzt zwei Einschnappelemente 14 und 14', welche in das leitende Gehäuse montiert sind, zur mechanischen Befestigung des Steckverbinders 1 z.B. in einer Platine. Die Enden der leitenden Verbindungen 4', die aus der Kontaktfläche 5.2' herausragen, sind so angeordnet, dass sie z.B. in entsprechende Aufnahmen, z.B. einer Platine, eingeführt werden können.
Fig. 2B zeigt eine Frontansicht des erfindungsgemäßen Steckverbinders 1 aus Fig. 1. Bezugszeichen und Inhalte entsprechen denen aus Fig.l. Auf eine wiederholte Figurenbeschreibung wird daher verzichtet.
Fig. 3 zeigt eine perspektivische Ansicht eines dritten erfindungsgemäßen Steckverbinders 1' ' . In diesem Ausführungsbeispiel eines erfindungsgemäßen Steckverbinders 1'' umgibt das leitende Gehäuse 8'', welches den Isolatorkanal 2' ' , welcher den Isolatorkörper 7'' führt, den Isolatorkanal 2'' und den Isolatorkörper 7'' nur teilweise. In einem Randbereich des Isolatorkanals 2'' und auf der Oberfläche des Isolatorkörpers 7'' ist ein Gitter aus Drähten 10' ' als Leiteranordnung ausgebildet, welches an den durch die Drähte 10'' ausgebildeten Kreuzungen 13'' und an den Kontaktstellen der Drähte 10'' mit dem leitenden Gehäuse 8'' Lötstellen 9'' aufweisen. Das Drahtgitter definiert eine Ebene, deren nichtleitender Querschnitt durch das Drahtgitter verkleinert wird. Dieses Gitter wirkt als Teil eines Faradayschen Käfigs, welcher gitterparameterspezifische Frequenzen der elektromagnetischen Strahlung abschirmt. Der Eintritt von elektromagnetischer Strahlung aus einem Gerät in den Isolatorkanal wird damit verhindert.
Fig. 4 zeigt eine Ansicht eines als Steckerträger 12 fungierenden Rückwand eines Elektronikgerätgehäuses 15. Das Elektronikgerätgehäuse 15 bildet auf der als Steckerträger 12 fungierenden dargestellten Seite Öffnungen 16, 16' aus, durch welche Teile von z.B. erfindungsgemäßen Steckverbindern 1' ' ' hindurchragen können. Der Steckerträger 12 ist mit einer elektrischen Masse verbunden. In dem Steckerträger 12 durch Schrauben fixierte Steckverbinder 1' ' ' mit leitendem Steckergehäuse 8' ' ' bilden zwischen dem leitenden Steckergehäuse 8' ' ' und dem Steckerträger 12 einen leitenden Kontakt aus. Eine an das leitende Steckergehäuse Q''' leitend kontaktierte Leiteranordnung 6, sei sie an oder in dem Isolatorkanal 2' ' ' und an oder in einem Isolatorkörper l' montiert, ist somit mit der Masse verbunden und bildet so zumindest einen Teil eines Faradayschen Käfigs. Eine solche Leiteranordnung 6 ist in der Figur 4 nicht dargestellt, da sie in dem Isolatorkörper der jeweils die Rückwand durchdringenden Steckverbinder angeordnet ist.
Ein jeweils an dem Steckergehäuse ausgebildeter Flansch kann mittels eines Leitschaumelements mit dem Steckerträger leitend verbunden sein. Alternativ sind Federlaschen ausgebildet, die bei montiertem Steckverbinder den Steckerträger berühren und so eine Masseverbindung des Steckverbindergehäuses herstellen. An dem Steckverbindergehäuse kann zusätzlich ein Kontaktelement zur Kontaktierung einer Leiterbahn eines Massepotentials auf der Leiterplatte vorgesehen sein, auf dem der Steckverbinder angeordnet ist.
Im Unterschied zu den dargestellten Ausführungsbeispielen kann der Isolatorkanal 2 auch einen nicht mit dem Isolatorkörper gefüllten Abschnitt aufweisen. Es können dann z.B. zwei Isolatorteilkörper vorhanden sein, die die leitenden Verbindungen an beiden Enden des Isolatorkanals fixieren. Die Leiteranordnung kann auch in dem verbleibenden Luftspalt zwischen den Isolatorteilkörpern angeordnet sein.
Die Erfindung ist nicht auf das dargestellte Ausführungsbeispiel beschränkt. Vielmehr sind auch Kombinationen einzelner Merkmale des Ausführungsbeispiels in vorteilhafter Weise möglich.

Claims

Ansprüche
1. Steckverbinder (1, 1' , 1" , 1' ' ' ) mit einem zumindest teilweise in einem leitenden Gehäuse angeordneten Isolatorkanal (2, 2' , 2", 2' ' ' ) , welcher ein oder mehrere weitere Durchführungen (3, 3', 3' ' ' ) für leitende Verbindungen (4, 4', 4'', 4''') und zumindest zwei Außenflächen (5.1, 5.1', 5.1", 5.1'", 5.2, 5.2') ausbildet, dadurch gekennzeichnet, dass in und/oder an dem Isolatorkanal (2, 2' , 2", 2"') eine Leiteranordnung (6, 6', 6") ausgebildet ist, welche die minimale nichtleitende Querschnittsfläche des Isolatorkanals (2, 2', 2", 2'") verkleinert und die leitend mit dem Gehäuse (8) verbunden ist.
2. Steckverbinder nach Anspruch 1, dadurch gekennzeichnet, dass der Isolatorkanal (2, 2', 2", 2"') in zumindest einem Abschnitt einen Isolatorkörper (7, 7', 7", 7'") beinhaltet.
3. Steckverbinder nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass die Leiteranordnung (6, 6', 6") aus mehreren Leiterteilen besteht.
4. Steckverbinder nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, dass zumindest ein Leiterteil der Leiteranordnung (6, 6', 6") in einer Ebene liegt.
5. Steckverbinder nach Anspruch 4, dadurch gekennzeichnet, dass mehrere Leiterteile in jeweils beabstandet ausgebildeten Ebenen angeordnet sind.
6. Steckverbinder nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zumindest ein Leiterteil der Leiteranordnung (6, 6', 6") an einer Kontaktfläche (5.1, 5.1', 5.1", 5.1'", 5.2, 5.2') des Isolatorkanals (2) ausgebildet ist.
7. Steckverbinder nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zumindest ein Leiterteil der Leiteranordnung (6, 6', 6") in dem Isolatorkanal (2, 2', 2", 2'") ausgebildet ist .
8. Steckverbinder nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Leiteranordnung 6, 6' , 6" ) zumindest eine Öffnung (3, 3', 3'") für zumindest eine leitende Verbindung (4, 4', 4", 4'") umschließt.
9. Steckverbinder nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Leiteranordnung (6, 6', 6") gegenüber den leitenden Verbindungen (4, 4', 4", 4"') elektrisch isoliert ist.
10. Steckverbinder nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das leitende Gehäuse (8, 8', 8") eine Kontaktstelle für eine leitende Kontaktierung mit einem den Steckverbinder (1, 1', 1", 1"') aufnehmenden Steckerträger ausbildet.
11. Steckverbinder nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das leitende Gehäuse (8, 8', 8") eine leitende Kontaktstelle für eine leitende Kontaktierung mit der Masse des Steckerträgers derart ausbildet, dass die minimale nichtleitende Querschnittsfläche zwischen dem Steckverbinder (1, 1', 1", 1'") und einem den Steckverbinder (1, 1', 1", 1'") aufnehmenden Gerätegehäuse (12) minimiert wird.
12. Steckverbinder nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Leiterteil (6, 6', 6'') als Gitter ausgebildet ist.
PCT/EP2008/006985 2007-09-17 2008-08-26 Steckverbinder mit modifiziertem isolatorkanal zur abschirmung elektromagnetischer strahlung WO2009036865A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08801714A EP2188871A2 (de) 2007-09-17 2008-08-26 Steckverbinder mit modifiziertem isolatorkanal zur abschirmung elektromagnetischer strahlung
US12/678,624 US7980866B2 (en) 2007-09-17 2008-08-26 Plug-in connector comprising a modified insulator duct for shielding electromagnetic radiation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007044338.4 2007-09-17
DE102007044338A DE102007044338A1 (de) 2007-09-17 2007-09-17 Steckverbinder mit modifiziertem Isolatorkanal zur Abschirmung elektromagnetischer Strahlung

Publications (2)

Publication Number Publication Date
WO2009036865A2 true WO2009036865A2 (de) 2009-03-26
WO2009036865A3 WO2009036865A3 (de) 2009-05-07

Family

ID=40121774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/006985 WO2009036865A2 (de) 2007-09-17 2008-08-26 Steckverbinder mit modifiziertem isolatorkanal zur abschirmung elektromagnetischer strahlung

Country Status (4)

Country Link
US (1) US7980866B2 (de)
EP (1) EP2188871A2 (de)
DE (1) DE102007044338A1 (de)
WO (1) WO2009036865A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069339A (zh) * 2016-12-30 2017-08-18 江门市业成轨道设备有限公司 一种磁悬浮列车全电磁屏蔽的电连接器系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711506A (en) 1985-05-28 1987-12-08 Hosiden Electronics Co., Ltd. Socket of electrostatic protection type
US4824377A (en) 1988-02-03 1989-04-25 Americal Telephone And Telegraph Company Unmated pin connector having improved electrostatic discharge protection
EP0563942A2 (de) 1992-04-03 1993-10-06 The Whitaker Corporation Abgeschirmter elektrischer Verbinder
US20020086568A1 (en) 2000-12-28 2002-07-04 Figueroa David G. Socket with embedded conductive structure
DE202006015908U1 (de) 2006-10-13 2007-01-11 Erni-Elektro-Apparate Gmbh Steckverbinder mit wenigstens einem Seitenelement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567169A (en) * 1990-09-27 1996-10-22 The Whitaker Corporation Electrostatic discharge conductor to shell continuity
US5256074A (en) * 1992-05-20 1993-10-26 Foxconn International, Inc. Connector having improved electrostatic discharge protection
DE9217460U1 (de) * 1992-12-21 1993-02-18 Siemens AG, 80333 München Steckverbinder, insbesondere SUB-D-Steckverbinder
EP0718928B1 (de) * 1994-12-22 1999-06-16 Siemens Aktiengesellschaft Elektrische Verbinderanordnung
US5618196A (en) * 1995-08-18 1997-04-08 Lucent Technologies, Inc. Socket connector having improved protection against electrostatic discharges
US6074225A (en) * 1999-04-13 2000-06-13 Hon Hai Precision Ind. Co., Ltd. Electrical connector for input/output port connections
US6447316B1 (en) * 1999-05-28 2002-09-10 Avaya Technology Corp. Method to eliminate or reduce ESD on connectors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711506A (en) 1985-05-28 1987-12-08 Hosiden Electronics Co., Ltd. Socket of electrostatic protection type
US4824377A (en) 1988-02-03 1989-04-25 Americal Telephone And Telegraph Company Unmated pin connector having improved electrostatic discharge protection
EP0563942A2 (de) 1992-04-03 1993-10-06 The Whitaker Corporation Abgeschirmter elektrischer Verbinder
US20020086568A1 (en) 2000-12-28 2002-07-04 Figueroa David G. Socket with embedded conductive structure
DE202006015908U1 (de) 2006-10-13 2007-01-11 Erni-Elektro-Apparate Gmbh Steckverbinder mit wenigstens einem Seitenelement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069339A (zh) * 2016-12-30 2017-08-18 江门市业成轨道设备有限公司 一种磁悬浮列车全电磁屏蔽的电连接器系统

Also Published As

Publication number Publication date
DE102007044338A1 (de) 2009-04-02
US20100240254A1 (en) 2010-09-23
EP2188871A2 (de) 2010-05-26
WO2009036865A3 (de) 2009-05-07
US7980866B2 (en) 2011-07-19

Similar Documents

Publication Publication Date Title
DE69126105T2 (de) Ein Modul-Koaxialsteckverbinder
DE69103652T2 (de) Verbinderanordnung für gedruckte Leiterplatten.
EP2260543B1 (de) Mehrfachkoaxialverbinder
DE69123881T2 (de) Steckverbinder mit Erdungsstruktur
DE69212725T2 (de) Verbinder mit Erdungsanordnung
DE69120688T2 (de) Mehrpoliger abgeschirmter verbinder mit gemeinsamer erdung
DE69206048T2 (de) Elektrische Verbinder.
EP0674363A2 (de) Vielpoliger Steckverbinder mit Filteranordnung
DE69818626T2 (de) Elektrischer Steckverbinder für Leiterplattenaufbauten
EP3244483B1 (de) Schirmgehäuse für hf-anwendungen
EP4014287B1 (de) Buchse xlr 8+2 pcb
DE102018113724B4 (de) Schnittstellenanordnung, Computersystem und Verfahren zum Zusammenbau einer Schnittstellenanordnung
DE60310002T2 (de) Geschirmte Steckeranordnung für die Datenübertragung
EP2064780A1 (de) Abschirmung
WO2018006892A1 (de) Anordnung und verfahren zur masseanbindung einer leiterkarte an ein gehäuse eines elektrischen gerätes
EP0658955B1 (de) Planarfilter für einen vielpoligen Steckverbinder
DE4238746C1 (de) Koaxialer Hochfrequenz-Steckverbinder für den Anschluß mehrerer Koaxialleitungen
DE102012005812A1 (de) Elektrischer Verbinder mit integriertem Impedanzangleichelement
WO2009036865A2 (de) Steckverbinder mit modifiziertem isolatorkanal zur abschirmung elektromagnetischer strahlung
DE102021005368A1 (de) Elektrogerät und Anordnung von Elektrogeräten
DE102014012739B4 (de) Elektrischer Steckverbinder, Verbinderelement und Verwendung
EP0845163B1 (de) Federleiste für steckverbindungen zwischen einer baugruppenleiterplatte und einer rückwandverdrahtungsplatte
DE19815488C1 (de) Elektrischer Steckverbinder
EP3244711A1 (de) Adapterplatte für hf-strukturen
DE2722600B2 (de) Antennensteckdose mit einer Leiterplatte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08801714

Country of ref document: EP

Kind code of ref document: A2

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2008801714

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008801714

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12678624

Country of ref document: US