WO2009030203A2 - Pile électrolytique ayant une capacité électrique élevée, destinée à produire un mélange ozone-oxygène - Google Patents

Pile électrolytique ayant une capacité électrique élevée, destinée à produire un mélange ozone-oxygène Download PDF

Info

Publication number
WO2009030203A2
WO2009030203A2 PCT/DE2008/001443 DE2008001443W WO2009030203A2 WO 2009030203 A2 WO2009030203 A2 WO 2009030203A2 DE 2008001443 W DE2008001443 W DE 2008001443W WO 2009030203 A2 WO2009030203 A2 WO 2009030203A2
Authority
WO
WIPO (PCT)
Prior art keywords
anode
plates
cell according
anode plates
solid electrolyte
Prior art date
Application number
PCT/DE2008/001443
Other languages
German (de)
English (en)
Other versions
WO2009030203A3 (fr
Inventor
Wolfgang Thiele
Hans-Jürgen FÖRSTER
Anja FLÜGGE
Original Assignee
Eilenburger Elektrolyse- Und Umwelttechnik Gmbh
Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eilenburger Elektrolyse- Und Umwelttechnik Gmbh, Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Eilenburger Elektrolyse- Und Umwelttechnik Gmbh
Publication of WO2009030203A2 publication Critical patent/WO2009030203A2/fr
Publication of WO2009030203A3 publication Critical patent/WO2009030203A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the present invention relates to a device for the electrolytic production of highly concentrated ozone, which in particular makes it possible to realize bipolar electrolysis cells with high current capacities.
  • electrolysis cells are of interest for a variety of applications, such as wastewater treatment, drinking water disinfection and ultrapure water production.
  • the state of the art in electrochemical ozone generators based on electrolysis cells with solid electrolytes is characterized by monopolar electrolysis cells with relatively low ozone capacity of 1 to 5 g / h.
  • Cells with anodes are predominant, which are coated with ⁇ -lead dioxide, since they have a sufficiently high oxygen overvoltage in aqueous solution.
  • high three-phase interfaces are an important prerequisite both for achieving high ozone current yields and low cell voltages.
  • anodes coated with ⁇ -lead dioxide As a more favorable alternative to the use of anodes coated with ⁇ -lead dioxide, anodes made of doped diamond-coated niobium (DE 198 42 396) or silicon (EP 103 16 45), which have a comparatively high oxygen overvoltage, are increasingly being used. These anodes are stable over a very wide potential range in aqueous media, non-toxic and also allow high yields of ozone.
  • it is disadvantageous that, for diamond-coated electrodes no porous surface structures comparable to lead-dioxide-coated electrodes are available for forming large three-phase interfaces.
  • diamond-coated expanded metal electrodes eg DE 10 2004 015 680
  • specially structured open-cut diamond-coated silicon electrodes eg DE 10025 167) are preferably used.
  • the object of the present invention was therefore to develop an electrolysis cell whose integrated pressure device allows a series connection of a plurality of bipolar single cells with an enlarged anode surface.
  • FIG. 1 shows, by way of example, a construction variant of the electrolysis cell according to the invention, with which the construction principle on which it is based is to be clarified below. Shown are longitudinal sections through a consisting of three electrode plates bipolar electrolytic cell.
  • A represents the anode edge plate with the contact plate for power supply and the ip this edge plate integrated or arranged on the anode side anodic assemblies.
  • the electrode plate C is the cathode edge plate with the contact plate for the power supply and the integrated into this edge plate or arranged on the cathode side cathodic assemblies.
  • the electrode plate B represents a bipolar electrode plate with all anodic and cathodic assemblies. Between the electrode plates, the solid electrolyte membranes are arranged. All three electrode plates are pressed against each other by means of a clamping frame, not shown in the picture, so that both the sealing of the individual assemblies is achieved with each other and also to the outside and thereby the electrical contact is ensured.
  • the electrolysis cell consists of the electrode main bodies (1) of impregnated graphite. On the cathode sides of the cathode chambers in the form of vertical cathode channels (2) are incorporated, which are connected to each other at the top and bottom by a respective transverse channel for distributing the catholyte. In the illustrated variant, the cathode channels are traversed by air from top to bottom. The ribs between the cathode channels simultaneously convey the current contact to the gas diffusion layers (3) (GDL) pressed thereon. With appropriate activation of the GDL, cathodic oxygen reduction occurs.
  • the lateral sealing of the GDL serve sealing frame (4) made of a flexible plastic, for. From Viton. These protrude laterally beyond the electrode base plates to avoid short circuits.
  • the separation between the anode and cathode spaces serve the solid electrolyte cation exchange membranes (5). These are either laminated directly to the GDL (3) or be pressed against them. On the anode sides, the perforated structured anode plates (6) are pressed against the solid electrolyte membranes (5). Shown are, for example, usable expanded metal anode plates made of diamond-coated niobium. However, other perforated structured anode plates according to claims 3 and 4 can be incorporated into this cell construction according to the invention, which can also consist of alternative anode materials or active layers according to claims 5 and 6.
  • the anode plates (6) are in hard frame (7), z. B.
  • the contacting of the anode plates (6) with the electrode main bodies (1) are flexible contact elements (8), z. B. in the form of platinum foils. These are contacted laterally under the sealing frame 4 with the electrode main bodies (not visible in the picture).
  • insulating films (9) made of a flexible, ozone-resistant material, eg. B. PTFE between the electrode main bodies and the anode plates (6) positioned thereon including the contact platinum foils (8).
  • the pressure mechanisms for the anode plates are integrated into the electrode main body on the anode sides. They consist of flexible intermediate layers (10), z. B. soft Teflon, the rigid pressure plates (11) made of a hard plastic, eg. B. PVC-C and the Andruckschläuchen (12), z. B. of silicone rubber.
  • the pressure hoses of all individual cells are connected to a hydraulic or pneumatic system, so that they are "inflated” to a degree required for pressure, thus ensuring that the pressure plates (11) are pressed against the anode plates with the flexible intermediate layers (10)
  • the flexible intermediate layers serve to distribute the pressure as evenly as possible over the entire surface of the anode plates (6) and thereby compensate for possible starch tolerances.
  • the supply and discharge of the electrolysis media is carried out through holes and channels within the electrode body.
  • the electrode body (1) below the electrochemically active areas inlet segments (13) made of an ozone-resistant plastic, z. B. PVC-C 1 , within which run the feed holes for the anolyte.
  • the anolyte passes through inlet channels (14) within the hard frame (7) in the anode chambers.
  • outlet segments (15) made of the same material are embedded with the discharge bores for the deionized and the formed ozone-oxygen gas mixture.
  • the power supply to the electrode edge plates takes place through the cathode and An oden contact plates (19, 20), which consist for example of copper.
  • the openings consist of slots (22) arranged in the flow direction, which simultaneously serve as flow channels for the supply and removal of the electrolysis media.
  • the top of the electrode provided with the catalyst layer, against which the solid electrolyte membrane rests, is structured by transverse grooves (23), which has an advantageous effect on the formation of the three-phase boundary.
  • corresponding milled slots (21) are arranged at the top and bottom, by means of which transverse channels are formed in the operating state.
  • the areas of the anode plates and the number of bipolar single cells can be chosen arbitrarily. Preferably, however, 4 to 10 bipolar single cells are used, are incorporated into the anode plates with base areas between 100 and 1000 cm 2 . At usual current densities in the range between 0.3 and 0.5 A / cm 2 , this results in power capacities of between 200 and 4,000 A per electrolyzer. Thus, ozone flow rates in the range 10 to 250 g / h can be realized.
  • they can be subdivided into a plurality of subsections, which are arranged one after the other in flow direction and flowed through. This makes it easier to achieve a uniform contact pressure by means of the pressure mechanisms according to the invention.
  • a pilot cell constructed according to the design principle shown in FIG. 1 consisted of 3 bipolar electrode plates and the two edge plates with power supply lines, clamped together with a stainless steel clamping frame, each with an EPDM insulating plate between frame and contact plate.
  • the diamond-coated niobium expanded metal had four anode plates measuring 300 x 60 mm.
  • This ozone cell consisting of a total of 4 single cells connected in series was operated with a maximum current of 90 A, corresponding to a current density of 0.5 A / cm 2 .
  • As solid electrolyte membranes National N450 cation exchange membranes were used, which were laminated on the cathode side with the platinum activated gas diffusion electrodes.
  • the contact pressure in the pneumatic system was set to 4 bar. As a result, a uniform pressure of the electrodes on the membranes was achieved in all four individual cells and maintained during operation.
  • the cathode compartments were charged with air.
  • Deionate was circulated via the anode chambers by means of a circulation pump via a gas separator and heat exchanger.
  • the Anolyttemperatur was adjusted to about 20 0 C.
  • the separated in the gas separator ozone-oxygen mixture was analyzed. There was obtained an amount of ozone of 22.5 g / h, corresponding to a current efficiency of 20.9%.
  • One of the anode plates was replaced by a perforated titanium anode plate according to claim 4 (FIG. 3), electroplated with about 5 ⁇ m platinum.
  • the separately outwardly directed ozone-air mixture was analyzed.
  • a current density of 0.3 A / cm 2 (54 A) a current efficiency of ozone formation of 16.5% was achieved.
  • FIG. 1 A first figure.
  • perforated structured anode plate eg niobium expanded metal, diamond coated
  • Flexible intermediate layer eg made of soft Teflon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

La présente invention concerne une pile électrolytique qui se compose de corps de base d'électrode (1) en graphite imprégné sur le côté cathodique desquels les espaces cathodiques ont été formés à l'intérieur sous la forme de canaux cathodiques verticaux (2) qui sont respectivement reliés en haut et en bas à un canal transversal. Les nervures assurent simultanément le contact électrique avec les couches de diffusion gazeuse (3) (GDL) qui sont fixées par pression à cet emplacement. Lors de l'activation correspondante des GDL a lieu une réduction d'oxygène cathodique. L'étanchéité latérale des GDL est assurée par des cadres d'étanchéité (4) en matière plastique souple. La séparation entre les espaces anodiques et cathodiques est assurée par des membranes échangeuses de cations à électrolyte solide (5). Sur le côté anodique, les plaques anodiques (6) à structure discontinue qui se composent par ex. d'un métal déployé de niobium revêtu de diamant, sont comprimées contre la membrane. Elles sont encastrées dans des cadres rigides (7), par ex. en PVC-C, et sont mises en contact par des éléments de contact (8) avec le corps de base en graphite adjacent qui est protégé de la corrosion par l'ozone par des feuillets isolants (9) en PTFE. Les mécanismes d'appui destinés aux plaques anodiques sont intégrés aux côtés anodiques des corps de base d'électrode. Ils se composent de couches intermédiaires souples (10) et de plaques d'appui rigides (11) ainsi que de tubes d'appui (12).
PCT/DE2008/001443 2007-09-05 2008-09-02 Pile électrolytique ayant une capacité électrique élevée, destinée à produire un mélange ozone-oxygène WO2009030203A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007042171A DE102007042171A1 (de) 2007-09-05 2007-09-05 Elektrolysezelle mit hoher Stromkapazität zur Herstellung eines Ozon-Sauerstoffgemisches
DE102007042171.2 2007-09-05

Publications (2)

Publication Number Publication Date
WO2009030203A2 true WO2009030203A2 (fr) 2009-03-12
WO2009030203A3 WO2009030203A3 (fr) 2009-07-23

Family

ID=40339878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/001443 WO2009030203A2 (fr) 2007-09-05 2008-09-02 Pile électrolytique ayant une capacité électrique élevée, destinée à produire un mélange ozone-oxygène

Country Status (2)

Country Link
DE (1) DE102007042171A1 (fr)
WO (1) WO2009030203A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109371415A (zh) * 2018-11-29 2019-02-22 深圳康诚博信科技有限公司 一种臭氧制取方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009039290A1 (de) * 2009-08-31 2011-03-03 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Verfahren und Vorrichtung zur Herstellung von Ozon und/oder zum oxidativen Abbau von Wasserinhaltsstoffen in natürlichen, elektrisch leitenden Wässern
GB201017346D0 (en) * 2010-10-14 2010-11-24 Advanced Oxidation Ltd A bipolar cell for a reactor for treatment of waste water and effluent
DE102012011314A1 (de) * 2012-06-06 2013-12-12 Manfred Völker Elektrochemischer Ozonerzeuger undWasserstoff-Generator
DE102014203376B4 (de) * 2014-02-25 2018-05-03 Condias Gmbh Verfahren und Elektrodenanordnung zum Herstellen von ozonisiertem Wasser
DE102018209520A1 (de) 2018-06-14 2019-12-19 Thyssenkrupp Uhde Chlorine Engineers Gmbh Elektrolysezelle
DE102019129202A1 (de) * 2019-10-29 2021-04-29 Condias Gmbh Elektrochemische Zelle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020261A1 (fr) * 1992-04-06 1993-10-14 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Cellule bipolaire de type filtre-presse pour fabriquer des sulfates peroxodiques
WO1996035006A1 (fr) * 1995-05-01 1996-11-07 E.I. Du Pont De Nemours And Company Element electrochimique a element gonflable
DE10025167A1 (de) * 2000-05-24 2001-12-06 Dirk Schulze Elektrode für die elektrolytische Erzeugung von Ozon und/oder Sauerstoff, dieseenthaltende Elektrolysezelle sowie Verfahren zur Herstellung einer solchen Elektrode
US6391183B1 (en) * 1997-12-10 2002-05-21 Shinko Plant Construction Co., Ltd. Apparatus for producing ozone water and method of producing ozone water by using the same apparatus
EP1777323A2 (fr) * 1997-03-21 2007-04-25 Lynntech, Inc. Système integré de génération d'ozone.

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068522B1 (fr) 1981-05-11 1984-10-24 BBC Aktiengesellschaft Brown, Boveri & Cie. Procédé et installation pour la préparation synthétique d'ozone par electrolyse et son application
DE4227732C2 (de) 1992-08-21 1996-05-02 Fischer Labor Und Verfahrenste Elektrolysezelle, insbesondere zur Erzeugung von Ozon, mit einer den Anoden- und Kathodenraum voneinander trennenden Feststoffelektrolytmembran
DE29504323U1 (de) 1995-03-17 1996-07-25 Schulze Dirk Elektrolysezelle zum Herstellen von Ozon bzw. Sauerstoff
DE29613308U1 (de) 1996-08-01 1996-09-26 Fischer Labor Und Verfahrenste Elektrolysezelle, insbesondere zur Erzeugung von Ozon für die Abwasserbehandlung
DE19842396A1 (de) 1998-09-16 2000-04-13 Fraunhofer Ges Forschung Elektrode für elektrochemische Prozesse
FR2790268B1 (fr) 1999-02-25 2001-05-11 Suisse Electronique Microtech Cellule d'electrolyse a electrode bipolaire comportant du diamant
AU3222901A (en) * 2000-02-17 2001-08-27 Shinko Plant Construction Co., Ltd. Electrolytic ozone water production method and device therefor and solid polymerelectrolyte membrane regenerating method
WO2003062494A1 (fr) * 2002-01-23 2003-07-31 Lynntech Inc. Dispositif electrochimique
DE102004015680A1 (de) 2004-03-26 2005-11-03 Condias Gmbh Elektrodenanordnung für eine elektrochemische Behandlung von Flüssigkeiten mit einer geringen Leitfähigkeit
DE102005006555A1 (de) * 2005-02-11 2006-08-17 Uhdenora S.P.A. Elektrode für Elektrolysezellen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020261A1 (fr) * 1992-04-06 1993-10-14 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Cellule bipolaire de type filtre-presse pour fabriquer des sulfates peroxodiques
WO1996035006A1 (fr) * 1995-05-01 1996-11-07 E.I. Du Pont De Nemours And Company Element electrochimique a element gonflable
EP1777323A2 (fr) * 1997-03-21 2007-04-25 Lynntech, Inc. Système integré de génération d'ozone.
US6391183B1 (en) * 1997-12-10 2002-05-21 Shinko Plant Construction Co., Ltd. Apparatus for producing ozone water and method of producing ozone water by using the same apparatus
DE10025167A1 (de) * 2000-05-24 2001-12-06 Dirk Schulze Elektrode für die elektrolytische Erzeugung von Ozon und/oder Sauerstoff, dieseenthaltende Elektrolysezelle sowie Verfahren zur Herstellung einer solchen Elektrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109371415A (zh) * 2018-11-29 2019-02-22 深圳康诚博信科技有限公司 一种臭氧制取方法

Also Published As

Publication number Publication date
DE102007042171A1 (de) 2009-03-12
WO2009030203A3 (fr) 2009-07-23

Similar Documents

Publication Publication Date Title
EP3607111B1 (fr) Structure à deux membranes pour la réduction électrochimique de co2
EP0068522B1 (fr) Procédé et installation pour la préparation synthétique d'ozone par electrolyse et son application
EP0989206B1 (fr) Cellule d'électrolyse et son utilisation
DE2847955C2 (de) Verfahren zum Herstellen von Halogenen durch Elektrolyse wäßriger Alkalimetallhalogenide
WO2009030203A2 (fr) Pile électrolytique ayant une capacité électrique élevée, destinée à produire un mélange ozone-oxygène
EP0428171B1 (fr) Cellule d'électrolyse pour la production de composés peroxo et perhalogénés
EP0717130A1 (fr) Cellule électrochimique à compensation de pression
WO2006092125A1 (fr) Systeme pour desinfecter des liquides a faible conductibilite
EP0095997B1 (fr) Procédé pour la production de l'eau oxygénée et son utilisation
EP2697410B1 (fr) Variante de montage d'une électrode à diffusion gazeuse dans une cellule électrochimique à technologie de percolation
WO2005111271A1 (fr) Cellule electrolytique comprenant des electrodes de metal etire multicouche
EP2029492B1 (fr) Dispositif pour le traitement électrochimique d'eau
DE2856882A1 (de) Vorrichtung zum elektrolysieren und verfahren zum herstellen von chlor durch elektrolysieren
WO2001068953A1 (fr) Procede et dispositif pour reguler la concentration d'ions metalliques dans un electrolyte, mise en oeuvre dudit procede et utilisation dudit dispositif
EP0800853B1 (fr) Procédé et cellule d'électrolyse pour purifier des gaz
DE4211555C1 (de) Bipolare Filterpressenzelle zur Herstellung von Peroxodisulfaten
DE10015209A1 (de) Verfahren und Vorrichtung zur elektrochemischen Desinfektion von Wässern
DE2828621A1 (de) Elektrolysezelle und elektrolyseverfahren
DE102006038557A1 (de) Verfahren und Vorrichtung zur oxidativen elektrochemischen Behandlung wässriger Lösungen
WO1997020966A1 (fr) Cellule electrolytique
DE102009039290A1 (de) Verfahren und Vorrichtung zur Herstellung von Ozon und/oder zum oxidativen Abbau von Wasserinhaltsstoffen in natürlichen, elektrisch leitenden Wässern
DE4419683C2 (de) Bipolare Filterpressenzelle für anodische Oxidationen an Platin
EP0761285A2 (fr) Procédé pour la purification de gaz
DE10306342B4 (de) Elektrolysevorrichtung
EP1409769A2 (fr) Dispositif electrolytique

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 08801250

Country of ref document: EP

Kind code of ref document: A2