WO2009021449A1 - Atténuateur variable - Google Patents

Atténuateur variable Download PDF

Info

Publication number
WO2009021449A1
WO2009021449A1 PCT/CN2008/071940 CN2008071940W WO2009021449A1 WO 2009021449 A1 WO2009021449 A1 WO 2009021449A1 CN 2008071940 W CN2008071940 W CN 2008071940W WO 2009021449 A1 WO2009021449 A1 WO 2009021449A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
series
switch
parallel
attenuator
Prior art date
Application number
PCT/CN2008/071940
Other languages
English (en)
French (fr)
Inventor
Yuejun Yan
Yuepeng Yan
Original Assignee
Yuejun Yan
Yuepeng Yan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42111893&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009021449(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from CNA2008100807176A external-priority patent/CN101471638A/zh
Application filed by Yuejun Yan, Yuepeng Yan filed Critical Yuejun Yan
Priority to JP2010522171A priority Critical patent/JP2010538505A/ja
Priority to EP08783933.8A priority patent/EP2190116B1/en
Priority to CN2008800011117A priority patent/CN101558559B/zh
Publication of WO2009021449A1 publication Critical patent/WO2009021449A1/zh
Priority to US12/703,859 priority patent/US8212648B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • H01C13/02Structural combinations of resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/16Resistor networks not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/24Frequency- independent attenuators

Definitions

  • the present invention belongs to the field of communication electronics, and more particularly to a variable attenuator.
  • variable attenuators are one of the basic components commonly used in circuits and systems. The existence of a variable attenuator makes circuit fabrication and system debugging more flexible and convenient. Variable attenuators have been widely used in circuits and systems below a few hundred MHz.
  • Variable attenuators typically provide continuous attenuator values over a fixed range, while in some practical applications, the user only needs to use several fixed values of the continuous attenuator values.
  • a variable attenuator is cascaded by one or more passive fixed attenuators to form a segmented variable attenuator.
  • At the side of each attenuator there is a signal line passing through the switch between the attenuator and the signal line. Switching is performed. When the signal passes through the signal line, that is, without passing through the attenuator, the attenuation is zero, and vice versa. This method achieves a change in the amount of attenuation by switching the main circuit of the signal.
  • one or more passive fixed attenuators are segmented by a conductive sheet or an electronically controlled switch, and the variable attenuator is quantitatively adjustable.
  • this method does not completely separate the attenuator from the signal main circuit, and does not achieve a good change in the amount of attenuation.
  • the embodiment of the present invention aims to solve the problem of adjusting the attenuation amount ⁇ by the existing segmented variable attenuator, in the process of switching the signal main circuit, the signal main circuit is reflected, and the attenuator cannot be completely separated from the signal main circuit. , causing a problem that the change in the amount of attenuation is not well achieved.
  • variable attenuator comprising at least one stage attenuator circuit, the attenuator circuit comprising at least a signal input end, a signal output end, a common ground end, the signal input a first series resistor is connected between the terminal and the signal output terminal to form a signal main circuit; A first parallel resistor is connected between a point on the main circuit and the common ground, and the attenuator circuit further includes:
  • Another object of the present invention is to provide a variable attenuator including at least a primary bridge attenuator circuit, the bridge attenuator circuit including at least a signal input end, a signal output end, and a common ground end, A series resistor is connected between the signal input end and the signal output end to form a signal main circuit; two ends of the series resistor are respectively connected to a bridge arm resistor, and the other ends of the two bridge arm resistors are connected to one a junction, a parallel resistance is connected between the node and the common ground, and the attenuator circuit further comprises:
  • the parallel switch is connected in parallel at the two ends of the series resistor of the variable attenuator, and the series switch is connected in series at both ends of the parallel resistor, and the parallel switch is closed to disable the attenuation of the certain level, and the series switch is controlled to be broken.
  • Open to eliminate the influence of the parallel resistance on the main circuit of the signal, so that the attenuation of the attenuator is more stable, the precision is higher, and the frequency range is wider; since the invention does not need to switch the signal main circuit, that is, the signal is always transmitted on the signal main circuit , the signal main circuit does not appear a strong reflection signal (abrupt pulse), will not cause damage to the circuit of the previous stage.
  • FIG. 1 is a basic circuit diagram of a variable attenuator according to a first embodiment of the present invention
  • FIG 2 is a diagram illustrating a circuit configuration of the base surface of the variable attenuator according to a first embodiment of the present invention
  • FIG. 3 is a diagram showing a circuit configuration of a variable attenuator of the underlying substrate according to a first embodiment of the present invention
  • FIG. 4 is a section according to the present invention A schematic diagram of a variable attenuator switch structure provided by an embodiment
  • Figure 5 is a schematic view showing the combined structure of the substrate of the variable attenuator of Figure 4 ;
  • FIG. 6 is a basic circuit diagram of a variable attenuator according to a second embodiment of the present invention.
  • FIG. 7 is a circuit structural diagram of a first aforesaid surface layer of a variable attenuator according to a second embodiment of the present invention
  • FIG. 8 is a structural diagram of a first switch surface of a variable attenuator according to a second embodiment of the present invention
  • 9 is a structural diagram of a bottom layer of a first switch of a variable attenuator according to a second embodiment of the present invention
  • Figure 10 is a structural diagram showing the first combined state of the first substrate surface of the variable attenuator of Figures 8 and 9 and the second embodiment of the present invention.
  • Figure 11 is a structural view showing a second combined state of the first substrate surface of the variable attenuator of Figures 8 and 9 and the second embodiment of the present invention
  • FIG. 12 is a circuit structural diagram of a second base surface layer of a variable attenuator according to a second embodiment of the present invention.
  • FIG. 13 is a structural diagram of a surface layer of a second switch of a variable attenuator according to a second embodiment of the present invention.
  • FIG. 14 is a structural diagram of a second switch bottom layer of a variable attenuator according to a second embodiment of the present invention.
  • Figure 26 is a structural diagram of the first combined state of the surface layer of the second substrate of the variable attenuator of Figures 13 and 14;
  • Figure 16 is a structural diagram of the second combined state of the second substrate surface of the variable attenuator of Figures 13 and 14;
  • 17 is a basic circuit diagram of a variable attenuator according to a third embodiment of the present invention.
  • FIG. 18 is a schematic diagram of the attenuation amount improving circuit added in FIG. 17;
  • FIG. 19 is a basic circuit diagram of a variable attenuator according to a fourth embodiment of the present invention.
  • FIG. 20 is a schematic circuit diagram of a surface layer of a variable attenuator base according to a fourth embodiment of the present invention.
  • 21 is a schematic circuit diagram of a bottom layer of a variable attenuator base according to a fourth embodiment of the present invention.
  • FIG. 22 is a schematic structural diagram of a variable attenuator switch according to a fourth embodiment of the present invention.
  • Figure 23 is a schematic view showing the combined structure of the substrate of Figure 22 and the variable attenuator;
  • FIG. 24 is a basic circuit diagram of a variable attenuator according to a fifth embodiment of the present invention.
  • 25 is a basic circuit diagram of a variable attenuator according to a sixth embodiment of the present invention.
  • 26 is a schematic circuit diagram of a surface layer of a variable attenuator base according to a sixth embodiment of the present invention.
  • FIG. 27 is a schematic structural diagram of a variable attenuator switch according to a sixth embodiment of the present invention.
  • FIG. 28 is a schematic view showing the combined structure of the matrix of the variable attenuator of FIG. 27;
  • 29 is a schematic circuit diagram of a surface layer of a variable attenuator base according to a seventh embodiment of the present invention.
  • FIG. 30 is a schematic circuit diagram of a bottom layer of a variable attenuator base according to a seventh embodiment of the present invention.
  • FIG. 31 is a schematic structural diagram of a variable attenuator switch according to a seventh embodiment of the present invention.
  • FIG. 32 is a schematic diagram showing the combined structure of the matrix of the variable attenuator of FIG. 31;
  • FIG. 33 is a schematic circuit diagram of a surface layer of a variable attenuator base according to an eighth embodiment of the present invention.
  • 34 is a schematic circuit diagram of a bottom layer of a variable attenuator base according to an eighth embodiment of the present invention
  • 35 is a schematic structural diagram of a variable attenuator switch according to an eighth embodiment of the present invention
  • FIG. 36 is a schematic view showing the combined structure of the matrix of the variable attenuator of FIG. 35;
  • FIG. 37 is a schematic structural view of a metal shell coaxial connector of a toggle switch of a variable attenuator according to an embodiment of the present invention.
  • Figure 38 is the internal structure of Figure 37;
  • 39 is a schematic diagram showing the appearance of an integrated coaxial connector type of a toggle switch of a variable attenuator according to an embodiment of the present invention.
  • the parallel switch is connected in parallel at both ends of the series resistor in each stage of the attenuator circuit of the variable attenuator, and the series switch is connected in series at either end of the parallel resistor, and the parallel switch is closed in the control If the attenuation of a certain level of attenuation is invalid, the series switch is turned off to eliminate the influence of the parallel resistance on the main circuit of the signal.
  • the attenuator circuit may be any one of the existing typical attenuator circuits, such as a ⁇ -type attenuator circuit, a ⁇ -type attenuator circuit, a bridge attenuator circuit, and the like.
  • FIG. 1 shows a basic circuit of a variable attenuator provided by a first embodiment of the present invention.
  • a first parallel switch 104 is connected in parallel between the two terminals 106a and 106b of the first series resistor 101.
  • the resistor connected to the signal main circuit formed by the attenuator signal input end and the signal output end is referred to as a series resistor, and one end is connected to the signal main circuit directly or through other components, and
  • the resistor connected to one end of the common ground is called a shunt resistor.
  • the series resistor and the shunt resistor can be combined with one or a combination of a chip resistor, a thick film or a thin film resistor, an embedded resistor, and a printed resistor.
  • the first shunt resistor 102 and the common ground terminal are connected in series to the first series switch 105a, and the second shunt resistor 103 and the common ground terminal 110 are connected in series to the second series switch 105a.
  • the first parallel switch 104 is turned off (OFF)
  • the first series switch 105a and the second string The switch 105b is closed (ON) ⁇
  • the variable attenuator is a ⁇ -type attenuator circuit, and according to the design requirements of the attenuator, a required amount of attenuation can be obtained;
  • a series switch 105a is disconnected (OFF) from the second series switch 105b, and the variable attenuator has an attenuation of 0d B, whereby the amount of attenuation can be varied.
  • the attenuation amount is OdB ⁇ , although the first shunt resistor 102 and the second shunt resistor 103 are equivalent to being suspended from the input/output circuit (signal main circuit), but for the radio frequency circuit, they exhibit a high impedance state, generally for the signal main circuit. The impact can be ignored. In some special cases, such effects are still to be noted, and the solution is to propose a solution in other embodiments.
  • FIG. 2 shows a circuit structure of a variable attenuator base surface layer according to a first embodiment of the present invention, and for convenience of explanation, only parts related to the embodiment of the present invention are shown.
  • the substrate 11 is an RF PCB board.
  • the substrate 11 may also be a material having other dielectric constants, such as a ceramic substrate or the like, and the heat dissipation and heat resistance of the ceramic substrate are better.
  • the wiring is easy, and the RF signal transmission is easy, in the embodiment of the present invention, the base 11 is selected from a four-layer PCB board.
  • the base 11 may also be a single layer, a double layer or more according to actual conditions. Floor.
  • the first layer of the substrate 11 is a surface layer on which the signal input terminal 108, the signal output terminal 109, the signal microstrip line 1 11 , the two terminals 106a and 106b of the first series resistor 101, and the terminals of the first parallel resistor 102 are disposed. 107a, a terminal 107b of the second shunt resistor 103, and a common ground terminal 110.
  • the middle two layers are metal ground planes that are connected to the common ground terminal 110 of the surface layer and the bottom layer through ground vias 112.
  • the signal input terminal 108 is connected to the terminal 106a through the signal microstrip line 111, the terminal 106a is connected to the bottom terminal 106a through the signal via 113; the signal output terminal 109 is connected to the terminal 106b through the signal microstrip line 111, and the terminal 106b is passed.
  • the signal signal via 113 is connected to the bottom terminal 106b.
  • the terminals 107a, 107b are connected to the respective terminals 107a, 107b of the bottom layer through respective signal vias 113.
  • the signal via 113 is not connected to the intermediate metal ground plane.
  • the first series resistor, the first shunt resistor, and the second shunt resistor are both mounted on the bottom layer.
  • FIG. 3 shows a circuit structure of a bottom layer of a variable attenuator base according to a first embodiment of the present invention, and for convenience of explanation, only parts related to the embodiment of the present invention are shown.
  • the map of each layer in the substrate 11 is a plan view looking down from the surface layer.
  • the bottom layer of the substrate 11 has a first series resistor 101, and the two ends of the first series resistor 101 are respectively connected to the terminals 106a and 106b of the bottom layer.
  • the bottom layer of the base 11 further has two first parallel resistors 102 and 103. One end of the first parallel resistor 102 is connected to the terminal 106a , and the other end is connected to the terminal 107a.
  • One end of the second parallel resistor 103 is The terminals 106b are connected and the other end is connected to the terminal 107b.
  • the solder or solder oil infiltration signal via 113 or the ground via 112 has a high and low unevenness on the surface of the surface layer, and the via hole is intentionally used to coat the via hole on the underlying via hole.
  • FIG. 4 shows a variable attenuator switch structure provided by a first embodiment of the present invention.
  • the variable attenuator switch uses a conductive switch to realize a toggle switch, and the width of the conductive sheet is kept as equal as the bandwidth to obtain an optimal attenuation amount, and in specific applications,
  • the rotary type can be realized by using a conductive sheet, and the conductive sheet can also be made of other conductive materials such as wires.
  • the conductive sheets are formed on the same insulator 12.
  • the switches can also be fabricated on different insulators.
  • the insulator 12 is a single-layer PCB, but the insulation is not limited to PCB, but may be plastic, ceramic, or the like.
  • the insulator 12 has three conductive sheets, and the conductive sheets 114 function as switches for the first series resistor 101, and the conductive sheets 115a, 115b serve as switches for the first parallel resistor 102 and the second parallel resistor 103, respectively.
  • the shift hole 116 is used to move the PCB.
  • the variable attenuator switch uses a conductive switch to realize a toggle switch, and the width of the conductive sheet is kept as equal as the bandwidth to obtain an optimal attenuation amount, and in specific applications,
  • the rotary type can be realized by using a conductive sheet, and the conductive sheet can also be made of other conductive materials such as wires.
  • the conductive sheets are formed on the same insulator 12.
  • the switches can also be fabricated on different insulators.
  • the insulator 12 is a single-layer PCB, but the insulation is not limited to PCB, but may be plastic, ceramic, or the like.
  • the insulator 12 has three conductive sheets, and the conductive sheets 114 function as switches for the first series resistor 101, and the conductive sheets 115a, 115b serve as switches for the first parallel resistor 102 and the second parallel resistor 103, respectively.
  • the shift hole 116 is used to move the PCB.
  • Figure 5 shows the combined structure of Figure 4 and the variable attenuator base.
  • the first parallel switch on the PCB, the first series switch, and the second series switch are on the bottom of the substrate
  • a shunt resistor, a second shunt resistor, and a first series resistor can be placed in the same layer or in different layers.
  • the first parallel switch, the first series switch, and the second series switch on the PCB board are disposed with the first parallel resistor, the second parallel resistor, and the first series resistor on the base layer
  • the broken line in FIG. 5 is a combined schematic view of the PCB board of FIG. 4 disposed on the substrate 11.
  • FIG. 4 One side of the PCB having a metal conductive sheet is in contact with the surface layer of the substrate 11, i.e., the broken line in the figure is a diagram in which FIG. 4 is reversed by 180 degrees.
  • the state of the figure is:
  • the first series resistor 101 is short-circuited by the conductive sheet 114, that is, the first parallel switch 104 connected in parallel with the first series resistor 101 in FIG.
  • the conductive sheet 115a 115b is not in contact with the terminals 107a, 107b, and corresponds to a state in which the first series switch 105a and the second series switch 105b, which are respectively connected in series with the first parallel resistor 102 and the second parallel resistor 103, are in an OFF state;
  • the attenuation of the variable attenuator is OdB; the PC B board 12 is toggled to leave the conductive strip 114 away from the terminal 106a of the first series resistor, and the first parallel switch 104 connected in parallel with the first series resistor 101 is broken.
  • the conductive sheet 115a connects the terminal 107a to the common ground terminal 110, and the first series switch 105a connected in series with the first parallel resistor 102 is in a closed state.
  • the chip 115b connects the terminal 107b to the common ground terminal 110, and the second series switch 105a connected in series with the second parallel resistor 103 is in a closed state. Therefore, the attenuation of the variable attenuator is preset. Value, i.e. from zero to complete some amount of attenuation change, and change is reversible.
  • FIG. 6 shows a basic circuit of a variable attenuator provided by a second embodiment of the present invention.
  • the first series switch 205a and the second series switch 205b of the first parallel resistor 202 and the second parallel resistor 203 are not disposed on the first parallel resistor 202 and the second parallel resistor 203 and are commonly grounded. Between the terminals 210, but at the other end of the parallel resistor 202 and the second parallel resistor 203, the attenuation of the attenuator can also be changed.
  • FIG. 7 shows a circuit structure of a first attenuator surface of a variable attenuator according to a second embodiment of the present invention. For convenience of explanation, only parts related to the embodiment of the present invention are shown.
  • the attenuator is fabricated on the substrate 21 and the insulator functioning as a switch.
  • the base body 21 is made of a ceramic substrate.
  • the ceramic substrate is characterized by better radio frequency characteristics and better heat resistance. It is easy to fabricate a film-like resistor (thick film or film resistor) on the ceramic substrate, and other types can be used in concrete implementation.
  • the substrate On the base 21, a first series resistor 211 is formed, and both ends of the first series resistor 211 are divided. It is not connected to the signal input terminal 212 and the signal output terminal 213. There is also a common ground terminal 214 on the base 21.
  • the thickness of the first series resistor can be made slightly lower than the signal microstrip line.
  • the first series resistor 211 can also be formed on the bottom layer of the substrate 21 with reference to the first substrate.
  • FIG. 8 shows a first switch surface structure of a variable attenuator according to a second embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • the first shunt resistor and the second shunt resistor are formed on the same insulator 22 as the conductive sheet.
  • the insulator 22 is a two-layer ceramic substrate, and the heat dissipation of the ceramic substrate is much better than that of the PCB.
  • the insulator 22 is not limited to a ceramic substrate, and may be a plastic or a PCB.
  • the surface layer of the ceramic substrate includes a first parallel resistor 217 and a second parallel resistor 218, and one end of the first parallel resistor 217 is connected to a conductive strip 215 as a first series switch; one end of the second parallel resistor 218 A 216 is connected as a second series switch.
  • the other end of the first shunt resistor 217 and the other end of the second shunt resistor 218 are connected to a common ground terminal 219.
  • FIG. 9 is a view showing a first switch bottom structure of a variable attenuator according to a second embodiment of the present invention, and FIG. 8 is a plan view of FIG.
  • the underlayer of the ceramic substrate includes a conductive sheet 221 for short-circuiting the first series resistor 211, conductive sheets 215 and 216 connected through the via holes, and a displacement hole 220 of the ceramic substrate.
  • Figure 10 is a diagram showing the structure of the first combined state of the first abutment surface of the variable attenuator of Figures 8 and 9 and the second embodiment of the present invention.
  • the bottom layer of the ceramic substrate is in contact with the surface layer of the substrate 21 of FIG. 7.
  • the conductive sheet 221 shorts the first series resistor 211, and the first parallel resistor 217 and the second parallel resistor 218 together with the corresponding The first series switch 215 and the second series switch 216 are completely out of the signal main circuit.
  • the variable attenuator has an attenuation of 0 dB.
  • Figure 11 is a diagram showing the structure of the second combined state of the variable attenuator first base surface layer of Figures 8 and 9 and the second embodiment of the present invention.
  • the ceramic substrate in the first combined state is moved by the shift hole 220, the conductive sheet 221 is separated from the first series resistor 211, and the signal microstrip of the base 21 is connected to one end of the conductive sheet 215.
  • a line 22 2 (b) is connected to one end of the first series resistor 211; one end of the conductive sheet 216 is connected to the base 21
  • the signal microstrip line 222 (a) is coupled to the other end of the first series resistor 211 to form a typical ⁇ -type attenuator circuit.
  • Fig. 12 is a view showing the circuit structure of a second base surface layer of a variable attenuator according to a second embodiment of the present invention. For convenience of explanation, only parts related to the embodiment of the present invention are shown.
  • the attenuator is fabricated on the base 23 and the insulator functioning as a switch.
  • the substrate 23 is made of a ceramic substrate.
  • the ceramic substrate is characterized by better radio frequency characteristics, and it is easy to fabricate a film-like resistor (thick film or film resistor) on the ceramic substrate. In the specific implementation, other types of substrates can also be used.
  • a signal input terminal 223 and a signal output terminal 224 are formed.
  • FIG. 13 shows a second aperture surface structure of a variable attenuator according to a second embodiment of the present invention, and for convenience of explanation, only parts related to the embodiment of the present invention are shown.
  • the first shunt resistor, the second shunt resistor, the first series resistor, and the conductive sheet are formed on the same insulator 24.
  • the insulator 24 is a double-layer ceramic substrate or a double-layer PCB, but the insulator 24 is not limited to a ceramic substrate or a double-layer PCB, and may be plastic or the like.
  • the surface layer of the insulator 24 includes a first series resistor 229, a first parallel resistor 230, and a second parallel resistor 231.
  • the first parallel resistor 230 has one end connected to a conductive strip 226.
  • the second shunt resistor 231 One conductive piece 227 is connected to one end.
  • first shunt resistor 230 and the other end of the second shunt resistor 231 are connected to a common ground terminal 232. Both ends of the first series resistor 2 29 are connected to the conductive sheet 226 and the conductive sheet 227, respectively.
  • FIG. 14 shows a second embodiment of a variable attenuator second switch provided by a second embodiment of the present invention
  • FIG. 13 is a plan view of FIG.
  • the underlayer of the insulator 24 includes a conductive sheet 233 for shorting the first series resistor 229, conductive sheets 226, 227 connected through the via holes, and a displacement hole 234 of the ceramic substrate.
  • Figure 15 shows the structure of the first combined state of Figures 13 and 14 and the variable attenuator second substrate skin.
  • Figure 16 shows the second substrate surface of the variable attenuator provided by Figure 13 and Figure 14 and the second embodiment of the present invention. The structure of the second combined state.
  • the insulator 24 in the first combined state is moved by the shift hole 234, so that the conductive sheet 233 is separated from the signal main circuit, and one end of the conductive sheet 226 is connected to the signal microstrip line of the base 23.
  • one end of the conductive sheet 227 is connected to the signal microstrip line 234 of the base 23, so that the first series resistor 211 is transmitted to the signal main circuit, and the first parallel resistor 230 and the second parallel resistor 231 are integrated into the signal main circuit to form a A typical ⁇ -type attenuator circuit.
  • the conductive sheet is Prior to exiting signal microstrip lines 234 and 235, conductive strip 226 is coupled to signal microstrip line 235 such that conductive strip 227 is coupled to signal microstrip line 234.
  • the first embodiment of the present invention has a good heat dissipation characteristic of the first embodiment on the basis of the same substrate material, but the radio frequency characteristics and the attenuation characteristics are not as good as the second embodiment. .
  • the position of the resistor and the material of the substrate can be selected according to actual needs.
  • a thermal adhesive is added near the signal input and output terminals of the attenuator or between the signal main circuit and the ground terminal to provide heat dissipation without significantly affecting the radio frequency characteristics.
  • a plurality of ⁇ -type attenuator circuits as described above are connected in series to obtain a multi-stage ⁇ -type attenuator circuit, and the step amount of each stage can be freely set.
  • the switches of the multi-stage ⁇ -type attenuator circuit can be independent of each other, and the switches of the various stages can be fabricated on at least one insulator (such as a PCB). However, each stage of the switch in parallel with the series resistor and the switch in series with the parallel resistor are preferably fabricated on the same insulator.
  • the three identical ⁇ -type attenuator circuits I, ⁇ , m are connected in series to form a basic circuit diagram of a variable attenuator (three stages), including a first stage first series resistor 201 (I), a second a first series resistor 201 ( ⁇ ), a third series resistor 201 (m), and a parallel connection between the two terminals 2 06a(I) and 206b(I) of the first series first series resistor 201 (I)
  • the first parallel switch 204(1) is connected in parallel with the first parallel switch 204 ( ⁇ ) between the two terminals of the first series resistor 201 ( ⁇ ) of the second stage 206a(n) and 206b(n), and is connected in parallel to the third stage.
  • the first series switch 207a (I) and the second series switch 207b (I) between the first stage first parallel resistor 202 (1) and the second parallel resistor 203 (1) and the common ground terminal 210 are respectively connected in series a first series switch 207a(n) and a second series switch 207b(n) between the second first shunt resistor 202 ( ⁇ ) and the second shunt resistor 203 ( ⁇ ) and the common ground terminal 210 are respectively connected in series in the third A first series switch 207a(m) and a second series switch 207
  • each stage can be independent of each other, the attenuation amount can be set freely, or can be designed according to the same fixed step amount, and all switches can also be fabricated on the same insulator (such as PCB board). on.
  • the switches of each level can also be made on different insulations.
  • variable attenuators are often used for system power regulation, OdB can have too much impact on the system.
  • a front end, a back end or a level between variable levels can be added as described above. Fixed attenuator.
  • the first parallel resistor, the second parallel resistor, the first series switch, the second series switch, and the first parallel switch may be commonly formed on the insulator, and the first series resistor is
  • the principle of the combination is as described in the first embodiment of the present invention, and will not be described here.
  • FIG. 18 is a schematic diagram showing the attenuation amount improving circuit added in FIG. 17, and for the convenience of description, only the parts related to the embodiment of the present invention are shown.
  • the attenuation amount improving circuit may be added to other variable attenuators.
  • an improvement circuit is added to one or both ends of at least one stage attenuator (three stages in this embodiment).
  • the improvement circuit is composed of a third parallel resistor Rx and a circuit switch Kx, the third One end of the parallel resistor Rx is connected in series with the circuit switch Kx, and the other end of the third parallel resistor Rx is connected to a microstrip terminal or directly grounded, and the microstrip terminal is not connected to other circuits, and the microstrip terminals of different sizes are
  • the RF can be equivalent to a capacitor or an inductor.
  • the other end of the circuit switch Kx is connected to the signal input terminal of the attenuator, the signal output terminal or the cascade of the attenuators of the signal main circuit, and the switch of the circuit switch Kx is connected thereto.
  • the series switches of the attenuator operate together.
  • the improvement circuit may also be composed of a third parallel resistor Rx, a circuit switch Kx, and a capacitor (or inductor). One end of the improvement circuit is connected to the signal input terminal, the signal output terminal or the signal main circuit through the circuit switch Kx.
  • the improvement circuit is fabricated on an insulator (such as a circuit on a PCB), and the other end is connected to a microstrip terminal (such as a microstrip line on a PCB), and moves along with the insulator, of course, in a specific implementation. ⁇ , the other end can also be connected to other circuits or directly grounded.
  • the circuit switch Kx of the improvement circuit When the parallel switch of the attenuator is turned off (OFF), the circuit switch Kx of the improvement circuit is connected to the signal main circuit, and the microstrip terminal connected thereto is not connected to other circuits, from the viewpoint of the radio frequency circuit,
  • the microstrip terminal is equivalent to a radio frequency capacitor or inductor.
  • the improved circuit can improve the frequency characteristics of the attenuator and increase the amount of attenuation to improve the overall attenuation.
  • the attenuator is a bidirectional symmetrical circuit
  • the improved circuit is typically connected across the attenuator of a certain stage intermediate the segmented variable attenuator.
  • the improvement circuit in Fig. 18 is composed of a circuit switch ⁇ , a third parallel resistor Rx, and a capacitor, and is an equivalent circuit diagram.
  • FIG. 19 shows a basic circuit of a variable attenuator according to a fourth embodiment of the present invention.
  • the first parallel switch is connected in parallel to the two terminals 406(a) and 406(b) of the first series resistor 401(a).
  • 403 (a) a second parallel switch 403 (b) is connected in parallel to the two terminals 406 (b) and 406 (c) of the second series resistor 401 (b), at the terminal 405 of the first shunt resistor 402
  • a circuit diagram of the first series switch 404 is connected in series between the common ground terminals 409 .
  • the first series switch 404 can also be connected in series at the other end of the first shunt resistor 402.
  • FIG. 20 shows a circuit structure of a variable attenuator base surface layer according to a fourth embodiment of the present invention.
  • the substrate 41 is a radio frequency four-layer PCB board, but is not limited to four layers, and may be a single layer, a double layer, and a plurality of layers. In addition, the substrate 41 may be other dielectric constant materials, such as a ceramic substrate. .
  • the first layer of the four-layer PCB board is a surface layer, the signal input terminal 407 on the surface layer is connected to the terminal 406 (a) through the signal microstrip line 416, and the signal output end 408 is passed through the signal microstrip line 416 and the terminal 406 (c).
  • Terminals 406(a), 406(b) 406(c) 405 are respectively connected to respective terminals of the bottom layer through respective signal vias 410, and the common ground terminal 409 passes through the ground via 411 and the common ground of the bottom layer and the middle two The metal ground planes of the layers are connected.
  • FIG. 21 shows a circuit structure of a bottom layer of a variable attenuator substrate according to a fourth embodiment of the present invention.
  • a first series resistor 401 (a) and a second series 401 (b) one end of the first series resistor 410 (a) is connected to the terminal 406 (a), the other end Connected to 406(b); one end of the second series resistor 401(b) is connected to the terminal 406 (b), and the other end is connected to the terminal 406(c); one end of the first shunt resistor 402 is connected to the terminal 406 (b) Connected, the other end of the first shunt resistor 402 is connected to the terminal 405; the bottom layer also has a common ground terminal 409.
  • FIG. 22 shows a variable attenuator switch structure according to a fourth embodiment of the present invention.
  • the variable attenuator switch uses a conductive switch to realize a toggle switch, and the width of the conductive sheet is kept as equal as the bandwidth to obtain an optimal attenuation amount, and in specific applications,
  • the rotary type can be realized by using a conductive sheet, and the conductive sheet can also be made of other conductive materials such as wires.
  • the conductive sheets are formed on the same insulator 42.
  • the switches can also be fabricated on different insulators.
  • the insulator 42 in this example is a single-layer PCB board, but is not limited to a PCB, and may be a plastic, metal sheet or ceramic substrate.
  • the single-layer PCB has three conductive sheets, and the conductive sheet 413 functions as a first parallel switch of the first series resistor 401(a), and the conductive sheet 412 functions as the second series resistor 401(b).
  • the second parallel switch, the conductive strip 414 serves as the first series switch of the first shunt resistor 402.
  • the shift hole 415 is used to move the PCB.
  • the width of the conductive sheets 412, 413 is preferably designed to be the same as the width of the signal microstrip line. The length is such that the respective first series resistance and the second series resistance can be shorted.
  • Figure 23 shows the combined structure of Figure 22 and a variable attenuator base.
  • the first parallel switch, the second parallel switch, and the first series switch on the PCB board may be placed on the same layer as the first parallel resistor, the first series resistor, and the second series resistor on the bottom layer of the substrate, or may be placed Different layers.
  • the first parallel switch, the second parallel switch, and the first series switch on the PCB board are disposed with the first parallel resistor, the first series resistor, and the second series resistor on the base layer On different layers.
  • the broken line in the figure is a combined schematic view of the PCB board of FIG. 22 disposed on the base 41.
  • the side of the PCB having the metal conductive sheet is in contact with the surface layer of the substrate 41, that is, the broken line in the figure is a diagram in which FIG. 22 is reversed by 180 degrees.
  • the state of the figure is:
  • the conductive sheet 413 shorts the terminal 406 (a) and 406 (b), that is, the phase
  • the conductive strip 412 shorts the terminal 406 (b) and 406 (c), corresponding to the second series resistor 401 (b)
  • the parallel switch is in a closed state.
  • the conductive piece 414 is not in contact with the terminal 405, and the series switch 404 of the first parallel resistor 402 is in an OFF state;
  • the attenuation of the variable attenuator is 0d B; the PCB board is toggled to move the conductive strip 413 away from the terminal 406(a), and the conductive strip 412 is separated from the terminal 406(b), which is equivalent to the first series resistor 401(a).
  • the switches on the second series resistor 401(b) are in an OFF state; therefore, the conductive strip 414 is in contact with the terminal 405, and the series switch corresponding to the first shunt resistor 402 is closed (ON). Therefore, the attenuation of the variable attenuator is from OdB to yes.
  • the attenuator of the required step amount can be designed, so that the attenuation amount can be obtained from OdB to the required attenuation. The change. This change is reversible.
  • a plurality of such T-type attenuators are connected in series to obtain a multi-stage variable attenuator (variable attenuator).
  • the switches between the stages can be independent of each other, or all of the switches can be made on at least one of the insulators (PCB boards).
  • the method is similar to the second embodiment.
  • the first parallel resistor, the first series switch, and the first parallel switch and the second parallel switch may be commonly formed on the insulator, and the first series resistor and the second The series resistor is formed on the substrate, and the combination principle is as described in the first embodiment of the present invention, and will not be described here.
  • FIG. 24 shows a basic circuit of a variable attenuator according to a fifth embodiment of the present invention.
  • a plurality of such T-type attenuators are connected in series to obtain a multi-stage variable attenuator, and the attenuation of each stage can be freely set.
  • the switches between the stages can be independent of each other, or all of the switches can be made on at least one insulator (PCB).
  • the first parallel resistor, the first series switch, and the first parallel switch may be commonly formed on the insulator, and the first series resistor and the second series resistor are formed on the substrate.
  • the combination principle is as described in the first embodiment of the present invention, and is not mentioned here.
  • 25 is a basic circuit of a variable attenuator according to a sixth embodiment of the present invention.
  • a parallel switch 618 is connected in parallel between the two terminals 601 and 602 of the series resistor 609.
  • the terminal 601 of the series resistor 609 is connected to a bridge arm resistor 605, the terminal 602 of the series resistor 609 is connected to a bridge arm resistor 607, and the other end of the bridge arm resistor 605 and the bridge arm resistor 607 is connected to a node, a node and a
  • the series connection switch 617 is connected to the closed contact 608, the other end of the series switch 617 is connected to a parallel resistor 609, and the other end of the parallel resistor 609 is connected to the common ground terminal 612.
  • the series switch 617 can also be placed.
  • the shunt resistor 609 is connected to the common ground terminal 612.
  • 26 shows a circuit structure of a surface layer of a variable attenuator base according to a sixth embodiment of the present invention.
  • the base 61 is a double-sided PCB board, but is not limited to a double-sided PCB board. Further, the base 61 may be other dielectric constant materials such as a ceramic substrate or the like.
  • On the surface of the double-sided PCB board there is a signal input terminal 603, a signal output terminal 604, and a series resistor 606. Both ends of the series resistor 606 are connected to the signal input terminal 603 and the signal output terminal 604 through signal microstrip lines, respectively.
  • a 50 ohm resistor 605 has one end connected to the input terminal 603 and the other end connected to the 611 end.
  • Another 50 ohm resistor 607 has one end connected to the output end 604 and the other end connected to the 611 end.
  • a terminal 608 of a shunt resistor 609 is connected in series with a switch and connected to the 611 terminal.
  • the other end of the shunt resistor 609 is connected to the common ground terminal 612.
  • the switch can also be connected to the other end of the shunt resistor 609, that is, between the shunt resistor 609 and the common ground terminal 612.
  • a switch can be connected to each of the two 50 ohm resistors instead of the switch in series with the shunt resistor 609.
  • a switch is connected in parallel between the two ends of the series resistor 606.
  • This circuit is a circuit in which a switch is connected in parallel between a series resistor on a typical bridge attenuator circuit, and a switch is connected in series on the parallel resistor.
  • the common ground terminal 612 is connected to the metal backplane of the bottom surface of the substrate through the ground via 610.
  • the two terminals of the series resistor 706 in this figure are 601 and 602.
  • Figure 27 is a diagram showing a variable attenuator switch structure according to a sixth embodiment of the present invention.
  • the parallel switch and the series switch are realized by a conductive sheet or a microstrip line formed on a dielectric substrate, and in order to save cost, the parallel switch and the series switch ⁇ , the parallel resistance and the series connection are made at the same time.
  • the resistor can be connected to the main circuit of the signal more smoothly.
  • the variable attenuator switch uses a conductive switch to realize the toggle switch, and the width of the conductive strip is kept as equal as the bandwidth. The best amount of attenuation can be obtained.
  • a rotating type realized by a conductive sheet can also be used.
  • the conductive sheet can also be made of other conductive materials such as wires.
  • the conductive sheets are formed on the same insulator 62.
  • the switches can also be fabricated on different insulators.
  • the insulator 62 is a PCB board.
  • the conductive strip 613 is a parallel switch as a series resistor 606, preferably having the same width as the width of the signal microstrip line and having a length to short the terminals 601 and 602.
  • the conductive sheet 615 serves as a series switch of the parallel resistor 609.
  • the side having the conductive sheet is in contact with the surface of the base 61, and in order to prevent the conductive sheet from moving, the single-sided PCB collides with the series resistor 606 and the 50 ohm resistor, and a slot 614 is formed on the single-sided PCB. . There is also a displacement hole 6 16 on the single-sided PCB.
  • Figure 28 shows the combined structure of Figure 27 and the variable attenuator base.
  • the dashed line in the figure is a combined schematic view of the PCB board 62 of Fig. 27 disposed on the base 61.
  • the dotted line in the figure is a graph in which Figure 27 is reversed by 180 degrees.
  • the series resistor 606 is short-circuited (ON;) by the conductive strip 613, and the shunt resistor 609 is not connected (OFF) to the signal main circuit, that is, the signal is straight-through from the input end to the output end, so the variable The attenuation of the attenuator is OdB.
  • the circuit in this state is a typical bridge attenuator circuit.
  • a variable attenuator with the required amount of attenuation can be designed. For example, select series resistor 606 with a resistance of 21 ohms and shunt resistor 609 with a resistance of 121 ohms, which is a variable attenuator that changes from OdB to 3dB. This change is reversible.
  • a plurality of such attenuators are connected in series to obtain a multi-stage variable attenuator, and the attenuation amount of each stage can be freely set.
  • the switches between the stages can be independent of each other, or all switches can be made on at least one insulator (PCB).
  • multi-stage attenuators are connected in series, not limited to the series connection of the same type of attenuators.
  • the parallel resistor, the series switch, and the parallel switch may be jointly formed on the insulator, and the series resistor is formed on the base body.
  • the combination principle is as shown in the first embodiment of the present invention. Description
  • 29 shows a circuit structure of a surface layer of a variable attenuator base according to a seventh embodiment of the present invention.
  • the substrate 71 is a two-layer ceramic substrate of radio frequency, but is not limited to a double layer. Further, the substrate 71 may be a material having other dielectric constants, such as a PCB board.
  • the surface layer has four terminals 701, 702, 703, 704 which are connected to respective terminals on the bottom layer via respective signal vias 705. There is also a common ground terminal 707 on the surface which is connected to the ground terminal of the bottom layer via a ground via 706.
  • FIG. 30 shows a circuit structure of a bottom layer of a variable attenuator substrate according to a seventh embodiment of the present invention.
  • the substrate 71 has a signal input terminal 708, a signal output terminal 709, a (membrane-like) first series resistor 712,
  • the film-like resistor refers to a resistor made by a thick film process or a thin film process. Before the protective layer is applied, in principle, the four sides of the film-shaped resistor can be electrically connected.
  • the signal input terminal 708 is connected to the terminal 703 through the signal microstrip line 713, and the terminal 703 is further connected to one side (left side) FL of the (membrane-like) first series resistor 712 of the attenuator composed of the film resistor.
  • the other side (right side) FR of the resistor 712 is connected to the terminal 704, and the terminal 704 is connected to the output terminal 709 via the signal microstrip line 713;
  • the upper side of the first series resistor 712 is connected to one end of the first parallel resistor 710, and the juxtaposition
  • the other end FT (upper end) of the resistor 710 is connected to the terminal 701;
  • the bottom side of the first series resistor 712 is connected to one end of the second parallel resistor 711, and the other end FB (lower end) of the second parallel resistor 711 is connected to the terminal 702 is connected; for convenience of description and understanding, we refer to both ends of the input signal input and output terminals as both ends of the first series resistor 712.
  • the first series resistor 712, the first shunt resistor 710, and the second shunt resistor 711 can be integrated as one, and are formed at one time according to the requirements of the film attenuator resistance design, and do not need to be separately fabricated. .
  • variable attenuator switch structure according to a seventh embodiment of the present invention.
  • the variable attenuator switch uses a conductive switch to realize a toggle switch, and the width of the conductive sheet is kept as equal as the bandwidth to obtain an optimal attenuation amount, and in specific applications,
  • the rotary type can be realized by using a conductive sheet, and the conductive sheet can also be made of other conductive materials such as wires.
  • the conductive sheets are formed on the same insulator 72.
  • the switches can also be made. Made on different insulations.
  • the insulator 72 is a PCB board, and the conductive sheet 715 is used for connecting the terminals 703 and 704 to function as a parallel switch of the first series resistor 712; the conductive sheet 714 is used for connecting the terminal 701 and the common ground terminal 707, A parallel resistor 701 acts in conjunction with a common ground terminal 707 for switching.
  • the conductive sheet 716 is used to connect the terminal 702 and the common ground 707 to function as a switch for connecting the second parallel resistor 702 in series with the common ground terminal 707.
  • the shift hole 707 is used to move the PCB.
  • Figure 32 is the combined structure of Figure 31 and the variable attenuator base.
  • the dashed line in the figure is a combined schematic view of the PCB board of Fig. 31 disposed on the surface of the substrate 71.
  • the side of the PCB having the conductive sheet is in contact with the surface layer of the substrate, and the figure 31 corresponds to a reverse of 180 degrees on the pattern.
  • the conductive strip 714 connects the terminal 701 of the first shunt resistor 710 to the common ground terminal 707, which corresponds to the series switch on the first shunt resistor 710 is closed (ON), and the conductive strip 716 connects the terminal of the second shunt resistor 711.
  • 702 is connected to the common ground terminal 709, and is equivalent to the series switch on the second parallel resistor 711 is closed (ON).
  • the variable attenuator is a typical film attenuator.
  • the amount of attenuation can be designed according to the design requirements for film attenuation.
  • the conductive strip 715 shorts the two ends 703 and 70 4 (FL and FR terminals) of the series resistor, which is equivalent to the parallel switch on the first series resistor 712 (ON).
  • the conductive strip 714 leaves the terminal 701, which corresponds to the series switch disconnection (OF F) on the first shunt resistor 710, and the conductive strip 716 leaves the terminal 702, which is equivalent to disconnecting the series switch on the second shunt resistor 711. (0 FF)
  • the variable attenuator has an attenuation of 0 dB. In this way, the amount of attenuation can be varied, that is, the amount of attenuation changes from one step to 0 dB.
  • a plurality of such attenuators are connected in series to form a multi-stage variable attenuator, and the attenuation of each stage can be set freely.
  • the switches between the stages can be independent of each other, or all of the switches can be made on at least one insulator (PCB).
  • PCB insulator
  • the first series resistor 712 and the first parallel resistor 710 and the second shunt resistor 711 are one film-shaped resistor formed at one time, and the design principle is a film attenuator design.
  • Its equivalent circuit can be equivalent to the series connection of multiple ⁇ -type networks according to the distribution parameters, and finally can be equivalent to a ⁇ -type network ( ⁇ -type attenuator circuit).
  • the first parallel resistor, the second parallel resistor, the first series switch, the second series switch, and the first parallel switch may be jointly formed on the insulator, and the first The series resistor is formed on the substrate, and the combination principle is as described in the first embodiment of the present invention, and will not be described here.
  • 33 shows a circuit structure of a variable attenuator base surface layer according to an eighth embodiment of the present invention.
  • the substrate 81 is a double-layer ceramic substrate of radio frequency. Further, the substrate 81 may be other dielectric constant materials such as a PCB board.
  • the surface has three terminals 801, 802, 803 which are connected to respective terminals on the bottom layer via respective signal vias 806. There is also a common ground 805 on the surface which is connected to the ground of the bottom layer via ground via 804.
  • FIG. 34 shows a circuit structure of a bottom layer of a variable attenuator substrate according to an eighth embodiment of the present invention.
  • the substrate 81 has a signal input terminal 807, a signal output terminal 808, a (membrane-like) first series resistor 809, a (membrane-like) first parallel resistor 811, and a common ground terminal 805.
  • the film The resistance refers to a resistor made by a thick film process or a thin film process. In principle, the four sides of the film resistor can be electrically connected before the protective layer is applied.
  • the signal input terminal 807 is connected to the terminal 801 through the signal microstrip line 810, and the terminal 801 is further connected to one side (left side) of the (membrane-like) first series resistor 809 of the attenuator composed of the film resistor, the first series resistor 809.
  • the other side (right side) is connected to the terminal 802, and the terminal 802 is connected to the output terminal 808 through the signal microstrip line 810; the bottom side of the first series resistor 809 is connected to one end of the first parallel resistor 811, and the first parallel resistor The other end (lower end) of 811 is connected to terminal 803; for convenience of description and understanding, the two ends of the input signal input and output terminals are referred to as both ends of the first series resistor 809.
  • the first series resistor 809 and the first parallel resistor 811 can be integrated, and the molding is performed at one time according to the design of the attenuator resistance value, and does not need to be separately manufactured.
  • 35 shows a variable attenuator switch structure provided by an eighth embodiment of the present invention.
  • the variable attenuator switch uses a conductive switch to realize the toggle type switch.
  • the width of the conductive sheet is kept the same as the bandwidth to obtain the best attenuation.
  • the rotary type can be realized by using the conductive sheet.
  • the conductive sheet can also use other conductive materials such as wires.
  • the conductive sheets are formed on the same insulator 82.
  • the switches can also be fabricated on different insulators.
  • the insulator 82 is a PCB board.
  • the conductive sheet can be fabricated on a PCB, and the conductive sheet 812 is used to connect the terminals 801 and 802 to function as a parallel switch of the first series resistor 809; the conductive sheet 813 is used to connect the terminal 803 and the common ground 805, A switch for connecting the first parallel resistor 811 in series with the common ground terminal 805 acts. Shift hole 814 is used to move the PCB board is used.
  • Figure 36 shows the combined structure of Figure 35 and the variable attenuator base.
  • the dashed line in the figure is a combined schematic view of the PCB board of Fig. 35 disposed on the surface of the substrate 81.
  • the side of the PCB having the conductive sheet is in contact with the surface layer of the substrate, and the figure 35 corresponds to a reverse of 180 degrees on the pattern.
  • the conductive strip 813 connects the terminal 803 of the first shunt resistor 811 to the common ground terminal 805, which is equivalent to the series switch on the first shunt resistor 811 (ON). Thereafter, the parallel switch on the first series resistor 809 It is in the OFF state, in which the variable attenuator is a typical film attenuator.
  • the amount of attenuation can be designed according to the design requirements of the film attenuation.
  • the conductive strip 812 shorts the two terminals 801 and 802 of the first series resistor 809, which corresponds to the parallel switch on the first series resistor 809 is closed (ON), and then, conductive The strip 813 leaves the terminal 803, which corresponds to the series switch on the first shunt resistor 8 11 being turned OFF. Therefore, the variable attenuator has an attenuation of 0 dB. This process is reversible. This completes the variable amount of attenuation.
  • a plurality of such attenuators are connected in series to form a multi-stage variable attenuator, and the attenuation of each stage can be set freely.
  • the switches between the stages can be independent of each other, or all of the switches can be made on at least one insulator (PCB).
  • the first series resistor 809 and the first parallel resistor 811 are one film-shaped resistor that can be formed at one time.
  • the film resistance is designed according to the design principle of the attenuator. of. Its equivalent circuit can be equivalent to the series connection of multiple T-type attenuators according to the distribution parameter, and finally equivalent to a T-type attenuator.
  • the first parallel resistor, the first series switch, and the first parallel switch may be jointly formed on the insulator, and the first series resistor is formed on the base body, and the combination principle thereof As described in the first embodiment of the present invention, it is not mentioned here.
  • the housing package can be a metal-clad coaxial connector package, a coaxial connector package or a plastic SMD package. It can be adjusted by using a toggle switch or a step rotary switch.
  • the coaxial connector can be a coaxial connector such as an SMA type or an N type.
  • FIG. 37 is a schematic view showing the appearance of a metal shell coaxial connector type of a toggle switch of a variable attenuator according to an embodiment of the present invention.
  • the housing of the variable attenuator is a metal housing 91, which is SMA coaxial cable connector at both ends, and has four toggle switches K1, ⁇ 2, ⁇ 3 and ⁇ 4 on its surface for changing Amount of attenuation. 38 shows the internal structure of FIG. 37.
  • the inside of the metal casing 91 is a base body 92.
  • the upper part of the base body 92 is an insulator 93 made of a switch, and the insulator 93 is a dial column 931.
  • the two ends of the dial column 931 are a silicone crucible 9311, a silicone crucible.
  • the function of the 9311 is to tightly hold the insulator 93 against the surface of the substrate to keep it in close contact.
  • the uppermost part is a metal cover 94 which is clamped by a screw.
  • FIG. 39 shows an integrated coaxial connector type appearance of a toggle switch provided by an embodiment of the present invention.
  • the coaxial connector was modified and replaced with a coaxial connector instead of a metal casing, and its internal structure was the same as that of Fig. 38.
  • the coaxial connector can be a coaxial connector such as an SMA type or an N type. The advantages of this production are ease of use, compact size, and low cost in mass production.
  • the parallel switch is connected in parallel to the series resistor of the variable attenuator, and the series switch is connected in series at both ends of the parallel resistor, and the parallel switch is closed to invalidate the attenuation of the certain level.
  • the control series switch is opened to eliminate the influence of the parallel resistance on the main circuit of the signal, so that the attenuation of the attenuator is more stable, the precision is higher, and the frequency range is wider; since the invention does not need to switch the signal main circuit, the signal is always When the signal is transmitted on the main circuit, the signal main circuit does not have a strong reflected signal (abrupt pulse), which will not cause damage to the circuit of the previous stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Attenuators (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Description

说明书 一种可变衰减器
技术领域
[1] 本发明属于通信电子领域, 尤其涉及一种可变衰减器。
背景技术
[2] 在电子部件家族里, 可变衰减器是电路和系统中常用的基本部件之一。 可变衰 减器的存在, 使电路制作和系统的调试变得更加灵活, 方便。 在几百 MHz以下 的电路和系统中, 可变衰减器已得到广泛地应用。
[3] 可变衰减器一般提供固定范围内的连续衰减器值, 而在某些实际场合, 用户只 需使用连续衰减器值中的几个固定值。 现有技术通过可变衰减器级联一个或多 个无源固定衰减器构成分段可变衰减器, 在各衰减器的并排处, 有一个信号线 , 通过开关在衰减器与该信号线间进行切换, 当信号通过该信号线吋, 即不经 过该衰减器吋, 衰减量为零, 反之可有一个步进衰减量。 这一方法是通过切换 信号主电路来实现衰减量的改变。 但在切换吋, 尤其靠机械或手动切换吋, 信 号主电路上会出现一个强烈的反射 (突变) , 有吋这个反射会烧坏前一级的功 率管。 还有一种方法, 通过导电片或电控开关将一个或多个无源固定衰减器分 段无效掉, 实现可变衰减器的分段定量可调。 但该方法没有完全将衰减器从信 号主电路分离掉, 不能很好地实现衰减量的改变。
对发明的公开
技术问题
[4] 本发明实施例旨在解决通过现有分段可变衰减器调节衰减量吋, 在切换信号主 电路过程中, 信号主电路出现反射, 以及不能完全将衰减器从信号主电路分离 掉, 造成不能很好地实现衰减量的改变的问题。
技术解决方案
[5] 本发明实施例是这样实现的, 一种可变衰减器, 包括至少一级衰减器电路, 所 述衰减器电路至少包括信号输入端、 信号输出端、 共同接地端, 所述信号输入 端和所述信号输出端之间连接有第一串联电阻, 形成一信号主电路; 所述信号 主电路上的一点与所述共同接地端之间连接有第一并联电阻, 所述衰减器电路 进一步包括:
与所述第一串联电阻并联的第一并联开关;
与所述第一并联电阻串联的第一串联开关。
本发明实施例的另一目的在于提供一种可变衰减器, 包括至少一级桥型衰减器 电路, 所述桥型衰减器电路至少包括信号输入端、 信号输出端、 共同接地端, 所述信号输入端和所述信号输出端之间连接有一串联电阻, 形成一信号主电路 ; 所述串联电阻的两端分别各自连接一桥臂电阻, 所述两个桥臂电阻的另一端 连接于一结点, 所述结点与所述共同接地端之间连接有一并联电阻, 所述衰减 器电路进一步包括:
与所述串联电阻并联的并联开关;
与所述并联电阻串联的串联开关。
有益效果
本发明实施例在可变衰减器的串联电阻两端并联接入并联开关, 在并联电阻两 端串联接入串联开关, 在控制并联开关闭合以无效某级衰减量的同吋, 控制串 联开关断开, 以消除并联电阻对信号主电路的影响, 使得衰减器的衰减量更稳 定, 精度更高, 频率范围更宽; 由于本发明不需切换信号主电路, 即信号始终 在信号主电路上传输, 信号主电路不会出现一个强烈的反射信号 (突变脉冲) , 对前一级的电路不会造成破坏。
附图说明
图 1是本发明第一实施例提供的可变衰减器的基本电路图;
图 2是本发明第一实施例提供的可变衰减器基体表层的电路结构示意图; 图 3是本发明第一实施例提供的可变衰减器基体底层的电路结构示意图; 图 4是本发明第一实施例提供的可变衰减器开关结构示意图;
5是图 4与可变衰减器基体组合结构示意图;
图 6是本发明第二实施例提供的可变衰减器的基本电路图;
图 7是本发明第二实施例提供的可变衰减器第一基体表层的电路结构图; 图 8是本发明第二实施例提供的可变衰减器第一开关表层结构图; [20] 图 9是本发明第二实施例提供的可变衰减器第一开关底层结构图;
[21] 图 10是图 8以及图 9与本发明第二实施例提供的可变衰减器第一基体表层的第一 组合状态的结构图;
[22] 图 11是图 8以及图 9与本发明第二实施例提供的可变衰减器第一基体表层的第二 组合状态的结构图;
[23] 图 12是本发明第二实施例提供的可变衰减器第二基体表层的电路结构图;
[24] 图 13是本发明第二实施例提供的可变衰减器第二开关表层结构图;
[25] 图 14是本发明第二实施例提供的可变衰减器第二开关底层结构图;
[26] 图 15是图 13以及图 14与可变衰减器第二基体表层的第一组合状态的结构图;
[27] 图 16是图 13以及图 14与可变衰减器第二基体表层的第二组合状态的结构图;
[28] 图 17是本发明第三实施例提供的可变衰减器的基本电路图;
[29] 图 18是图 17中加入衰减量改善电路的示意图;
[30] 图 19是本发明第四实施例提供的可变衰减器的基本电路图;
[31] 图 20是本发明第四实施例提供的可变衰减器基体表层的电路结构示意图;
[32] 图 21是本发明第四实施例提供的可变衰减器基体底层的电路结构示意图;
[33] 图 22是本发明第四实施例提供的可变衰减器开关结构示意图;
[34] 图 23是图 22与可变衰减器基体组合结构示意图;
[35] 图 24是本发明第五实施例提供的可变衰减器的基本电路图;
[36] 图 25是本发明第六实施例提供的可变衰减器的基本电路图;
[37] 图 26是本发明第六实施例提供的可变衰减器基体表层的电路结构示意图;
[38] 图 27是本发明第六实施例提供的可变衰减器开关结构示意图;
[39] 图 28是图 27与可变衰减器基体组合结构示意图;
[40] 图 29是本发明第七实施例提供的可变衰减器基体表层的电路结构示意图;
[41] 图 30是本发明第七实施例提供的可变衰减器基体底层的电路结构示意图;
[42] 图 31是本发明第七实施例提供的可变衰减器开关结构示意图;
[43] 图 32是图 31与可变衰减器基体组合结构示意图;
[44] 图 33是本发明第八实施例提供的可变衰减器基体表层的电路结构示意图;
[45] 图 34是本发明第八实施例提供的可变衰减器基体底层的电路结构示意图; [46] 图 35是本发明第八实施例提供的可变衰减器开关结构示意图;
[47] 图 36是图 35与可变衰减器基体组合结构示意图;
[48] 图 37是本发明实施例提供的可变衰减器的拨动开关的金属壳同轴连接器型外观 结构示意图;
[49] 图 38是图 37的内部结构;
[50] 图 39是本发明实施例提供的可变衰减器的拨动开关的一体同轴连接器型外观结 构示意图。
本发明的最佳实施方式
[51]
本发明的实施方式
[52] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[53] 本发明实施例中, 在可变衰减器的各级衰减器电路中的串联电阻两端并联接入 并联开关, 在并联电阻的任一端串联接入串联开关, 在控制并联开关闭合以无 效某级衰减量的同吋, 控制串联开关断开, 以消除并联电阻对信号主电路的影 响。
[54] 本发明实施例中, 衰减器电路可以为现有典型衰减器电路中的任一种, 如 π型 衰减器电路、 Τ型衰减器电路、 桥型衰减器电路等。
[55] 图 1示出了本发明第一实施例提供的可变衰减器的基本电路。
[56] 对于一个典型的 π型衰减器电路, 在第一串联电阻 101的两端子 106a与 106b之间 并联第一并联开关 104。 为了理解方便, 在本发明实施例中, 把连接于衰减器信 号输入端与信号输出端所构成信号主电路上的电阻称为串联电阻, 把一端直接 或通过其它元件与信号主电路连接, 另一端与共同接地端相连的电阻称为并联 电阻, 其中, 串联电阻和并联电阻均可以釆用贴片电阻、 厚膜或薄膜电阻、 嵌 入电阻、 印刷电阻中的一种或几种的组合。 第一并联电阻 102与共同接地端之间 串联接入第一串联开关 105a, 第二并联电阻 103与共同接地端 110间串联接入第二 串联开关 105a。 当第一并联开关 104断开 (OFF) , 第一串联开关 105a与第二串 联开关 105b闭合 (ON) 吋, 该可变衰减器是一个 π型衰减器电路, 按衰减器的 设计要求, 可得到一个所需要的衰减量; 当第一并联开关 104闭合 (ON) , 第一 串联开关 105a与第二串联开关 105b断开 (OFF) 吋, 该可变衰减器的衰减量为 0d B, 以此可以完成衰减量的可变。 衰减量为 OdB吋, 尽管第一并联电阻 102与第二 并联电阻 103相当于悬挂在输入输出电路 (信号主电路) 上, 但对于射频电路来 讲, 它们显高阻抗状态, 一般对信号主电路的影响可忽略。 在一些特殊情况下 , 这样的影响还是要注意的, 其解决办法在其它实施例中, 会提出解决方案。
[57] 图 2示出了本发明第一实施例提供的可变衰减器基体表层的电路结构, 为了便 于说明, 仅示出了与本发明实施例相关的部分。
[58] 基体 11是一个射频 PCB板,当然, 基体 11也可以是其它介电常数的材料, 比如陶 瓷基板等材料做基板, 陶瓷基板的散热、 耐热性能更好。 为了方便调节、 易于 布线且易于射频信号传输, 在本发明实施例中, 基体 11选用四层 PCB板, 当然, 在具体应用吋, 根据实际情况, 基体 11也可以选用单层、 双层或多层。 基体 11 的第一层是表层, 该表层上布有信号输入端 108、 信号输出端 109、 信号微带线 1 11、 第一串联电阻 101的两端子 106a和 106b、 第一并联电阻 102的端子 107a、 第二 并联电阻 103的端子 107b、 共同接地端 110。 中间的两层是金属接地层, 该金属 接地层通过接地过孔 112与表层和底层的共同接地端 110相连接。 信号输入端 108 通过信号微带线 111与端子 106a相连接、 端子 106a通过信号过孔 113与底层的端子 106a相连接; 信号输出端 109通过信号微带线 111与端子 106b相连接、 端子 106b通 过信号信号过孔 113与底层的端子 106b相连接。 端子 107a、 107b通过各自的信号 过孔 113与底层的各自端子 107a、 107b相连接。 信号过孔 113不与中间的金属接地 层相连接。 第一串联电阻、 第一并联电阻以及第二并联电阻都安装在底层。
[59] 图 3示出了本发明第一实施例提供的可变衰减器基体底层的电路结构, 为了便 于说明, 仅示出了与本发明实施例相关的部分。
[60] 在本发明实施例中, 基体 11中每层的图都是从表层向下看的俯视图。 基体 11的 底层有一个第一串联电阻 101, 第一串联电阻 101的两端分别连接在底层的端子 1 06a和 106b上。 基体 11底层还有两个第一并联电阻 102和 103, 第一并联电阻 102的 一端与端子 l06a相连接, 另一端与端子 107a相连接; 第二并联电阻 103的一端与 端子 106b相连接, 另一端与端子 107b相连接。 另外, 为了防止自动焊接吋, 焊 锡或焊油渗透信号过孔 113或接地过孔 112对表层的端子造成高低不平的影响, 在底层的过孔上有意用阻焊漆将过孔塞孔。
[61] 图 4示出了本发明第一实施例提供的可变衰减器开关结构。
[62] 为了节约成本, 同吋使得在切换第一并联开关、 第一串联开关以及第二串联开 关吋, 第一并联电阻、 第二并联电阻以及第一串联电阻可以更加平滑的接入信 号主电路, 在本发明实施例中, 可变衰减器开关釆用一导电片实现的拨动型开 关, 导电片的宽度尽量与带宽保持相同, 以获得最佳的衰减量, 在具体应用吋 , 还可以釆用导电片实现的旋转式, 其中, 导电片还可以釆用其它导电材料, 如导线等。 为了使得第一并联开关、 第一串联开关以及第二串联开关同吋完成 动作, 导电片制作在同一个绝缘物 12上, 当然, 各开关也可以制作在不同绝缘 物上。 绝缘物 12是一个单层 PCB板, 但绝缘物不限于 PCB , 也可以是塑胶、 陶瓷 等。 绝缘物 12上有三个导电片, 导电片 114的作用是用来作为第一串联电阻 101 的开关的, 导电片 115a、 115b分别作为第一并联电阻 102和第二并联电阻 103的开 关。 移位孔 116是用来移动该 PCB板吋用的。
[63] 为了节约成本, 同吋使得在切换第一并联开关、 第一串联开关以及第二串联开 关吋, 第一并联电阻、 第二并联电阻以及第一串联电阻可以更加平滑的接入信 号主电路, 在本发明实施例中, 可变衰减器开关釆用一导电片实现的拨动型开 关, 导电片的宽度尽量与带宽保持相同, 以获得最佳的衰减量, 在具体应用吋 , 还可以釆用导电片实现的旋转式, 其中, 导电片还可以釆用其它导电材料, 如导线等。 为了使得第一并联开关、 第一串联开关以及第二串联开关同吋完成 动作, 导电片制作在同一个绝缘物 12上, 当然, 各开关也可以制作在不同绝缘 物上。 绝缘物 12是一个单层 PCB板, 但绝缘物不限于 PCB , 也可以是塑胶、 陶瓷 等。 绝缘物 12上有三个导电片, 导电片 114的作用是用来作为第一串联电阻 101 的开关的, 导电片 115a、 115b分别作为第一并联电阻 102和第二并联电阻 103的开 关。 移位孔 116是用来移动该 PCB板吋用的。
[64] 图 5示出了图 4与可变衰减器基体组合结构。
[65] PCB板上的第一并联开关、 第一串联开关以及第二串联开关与基体底层上的第 一并联电阻、 第二并联电阻以及第一串联电阻可以置于同一层, 也可以置于不 同层。 在本发明实施例中, 为了易于操作, 将 PCB板上的第一并联开关、 第一串 联开关以及第二串联开关与基体底层上的第一并联电阻、 第二并联电阻以及第 一串联电阻置于不同层。 结合图 1和图 5, 图 5中虚线是图 4的 PCB板设置在基体 11 上的组合示意图。 PCB板上有金属导电片的一面与基体 11的表层相接触, 即图中 的虚线是图 4反转了 180度的图。 该图的状态是: 第一串联电阻 101被导电片 114 短路, 即相当于图 1中与第一串联电阻 101并联的第一并联开关 104处于闭合 (ON ) 的状态, 此吋, 导电片 115a, 115b没有与端子 107a、 107b相接触, 相当于与第 一并联电阻 102和第二并联电阻 103分别串联的第一串联开关 105a、 第二串联开关 105b处于断开 (OFF) 的状态; 此吋, 该可变衰减器的衰减量为 OdB; 拨动该 PC B板 12, 使导电片 114离开第一串联电阻的端子 106a, 相当于与第一串联电阻 101 并联的第一并联开关 104处于断开 (OFF) 的状态, 同吋使导电片 115a将端子 107 a与共同接地端 110连接, 相当于与第一并联电阻 102串联的第一串联开关 105a处 于闭合 (ON) 的状态, 同吋导电片 115b将端子 107b与共同接地端 110连接, 相当 于与第二并联电阻 103串联的第二串联开关 105a处于闭合 (ON) 的状态, 此吋, 该可变衰减器的衰减量为一预先设定值, 即完成衰减量从零到有的变化, 且变 化是可逆的。
[66] 图 6示出了本发明第二实施例提供的可变衰减器的基本电路。
[67] 与图 1不同的是, 第一并联电阻 202与第二并联电阻 203的第一串联开关 205a以 及第二串联开关 205b不是设置在第一并联电阻 202以及第二并联电阻 203与共同 接地端 210之间, 而是设置在一并联电阻 202与第二并联电阻 203的另一端, 同样 可以改变衰减器的衰减量。
[68] 图 7示出了本发明第二实施例提供的可变衰减器第一基体表层的电路结构, 为 了便于说明, 仅示出了与本发明实施例相关的部分。
[69] 在本发明实施例中, 衰减器同吋制作于基体 21以及起开关作用的绝缘物上。 基 体 21选用陶瓷基板, 陶瓷基板的特点是射频特性更好、 耐热性更好, 易于在陶 瓷基板上制作膜状电阻 (厚膜或薄膜电阻) ,在具体实现吋, 也可以釆用其它类 型的基板。 在基体 21上, 制作有第一串联电阻 211, 第一串联电阻 211的两端分 别与信号输入端 212以及信号输出端 213相连接。 基体 21上还有共同接地端 214。 该第一串联电阻的厚度可制作的略低于信号微带线。 当然, 参照第一基体的做 法, 也可以将第一串联电阻 211制作在基体 21的底层。
[70] 图 8示出了本发明第二实施例提供的可变衰减器第一开关表层结构, 为了便于 说明, 仅示出了与本发明实施例相关的部分。
[71] 为了提高衰减器的精度并且使得第一并联电阻以及第二并联电阻对信号主电路 的影响降至最小, 将第一并联电阻以及第二并联电阻与导电片制作在同一绝缘 物 22上。 绝缘物 22是一个双层陶瓷基板, 陶瓷基板的散热要比 PCB板好的多。 但 绝缘物 22不限于陶瓷基板, 也可以是塑胶、 PCB板等。 该陶瓷基板的表层包括烧 制于其上的第一并联电阻 217以及第二并联电阻 218, 第一并联电阻 217的一端连 接一作为第一串联开关的导电片 215; 第二并联电阻 218的一端连接一作为第二 串联开关的 216。 第一并联电阻 217的另一端以及第二并联电阻 218的另一端连接 至共同接地端 219。
[72] 图 9示出了本发明第二实施例提供的可变衰减器第一开关底层结构, 且该图为 图 8的俯视图。
[73] 该陶瓷基板的底层包括一用于短路第一串联电阻 211的导电片 221、 通过过孔连 接的导电片 215、 216以及陶瓷基板的移位孔 220。
[74] 图 10示出了图 8以及图 9与本发明第二实施例提供的可变衰减器第一基体表层的 第一组合状态的结构。
[75] 陶瓷基板的底层与图 7的基体 21的表层相接触, 在第一组合状态下, 导电片 221 将第一串联电阻 211短路, 第一并联电阻 217以及第二并联电阻 218连同相应的第 一串联开关 215以及第二串联开关 216则完全脱离信号主电路。 此状态下, 可变 衰减器的衰减量为 0dB。
[76] 图 11示出了图 8以及图 9与本发明第二实施例提供的可变衰减器第一基体表层的 第二组合状态的结构。
[77] 在第二组合状态下, 通过移位孔 220移动第一组合状态下的陶瓷基板, 使导电 片 221离开第一串联电阻 211, 同吋导电片 215的一端连接基体 21的信号微带线 22 2 (b) , 从而与第一串联电阻 211的一端相连接; 导电片 216的一端连接基体 21 的信号微带线 222 (a) , 从而与第一串联电阻 211的另一端相连, 形成一个典型 的 π型衰减器电路。
[78] 图 12示出了本发明第二实施例提供的可变衰减器第二基体表层的电路结构, 为 了便于说明, 仅示出了与本发明实施例相关的部分。
[79] 在本发明实施例中, 衰减器同吋制作于基体 23以及起开关作用的绝缘物上。 基 体 23选用陶瓷基板, 陶瓷基板的特点是射频特性更好, 易于在陶瓷基板上制作 膜状电阻 (厚膜或薄膜电阻) ,在具体实现吋, 也可以釆用其它类型的基板。 在 基体 23上, 制作有信号输入端 223以及信号输出端 224。 基体 23上还有共同接地 端 225。
[80] 图 13示出了本发明第二实施例提供的可变衰减器第二开关表层结构,为了便于说 明, 仅示出了与本发明实施例相关的部分。
[81] 将第一并联电阻、 第二并联电阻、 第一串联电阻以及导电片制作在同一绝缘物 24上。 绝缘物 24是釆用双层陶瓷基板或双层 PCB板, 但绝缘物 24不限于陶瓷基板 或双层 PCB板, 也可以是塑胶等。 该绝缘物 24的表层包括烧制于其上的第一串联 电阻 229、 第一并联电阻 230以及第二并联电阻 231, 第一并联电阻 230的一端连 接一导电片 226; 第二并联电阻 231的一端连接一导电片 227。 第一并联电阻 230 的另一端以及第二并联电阻 231的另一端连接至共同接地端 232。 第一串联电阻 2 29的两端分别连接导电片 226以及导电片 227。
[82] 图 14示出了本发明第二实施例提供的可变衰减器第二开关底层结构,且该图为图 13的俯视图。
[83] 该绝缘物 24的底层包括一用于短路第一串联电阻 229的导电片 233、 通过过孔连 接的导电片 226、 227以及陶瓷基板的移位孔 234。
[84] 图 15示出了图 13以及图 14与可变衰减器第二基体表层的第一组合状态的结构。
[85] 绝缘物 24的底层与图 12的基体 23的表层相接触, 在第一组合状态下, 导电片 23
3将第一串联电阻 229短路, 且第一串联电阻 229、 第一并联电阻 230以及第二并 联电阻 231连同相应的第一串联开关 226以及第二串联开关 227完全脱离信号主电 路。
[86] 图 16示出了图 13以及图 14与本发明第二实施例提供的可变衰减器第二基体表层 的第二组合状态的结构。
[87] 在第二组合状态下, 通过移位孔 234移动第一组合状态下的绝缘物 24, 使导电 片 233离开信号主电路, 同吋导电片 226的一端连接基体 23的信号微带线 235, 导 电片 227的一端连接基体 23的信号微带线 234, 使得第一串联电阻 211传入信号主 电路, 并使得第一并联电阻 230以及第二并联电阻 231并入信号主电路, 形成一 个典型的π型衰减器电路。 另外, 为了在改变衰减器的衰减量吋不会产生信号的 突然中断, 不会突然有很大的信号反射产生, 且不会烧坏前一级电路, 在本发 明实施例中, 在导电片 233离开信号微带线 234以及 235之前, 使得导电片 226与 信号微带线 235相连, 使得导电片 227与信号微带线 234相连。
[88] 本发明第一实施例与第二实施例相比, 在同样基板材料的基础上, 从结构上讲 第一实施例的散热特性好, 但射频特性和衰减特性不如第二实施例好。 可根据 实际需要选择电阻的位置以及基体的材料。 另外, 为了达到更好的散热, 在衰 减器的信号输入输出端附近或信号主电路与接地端之间加入导热胶, 可起到散 热作用, 不会对射频特性产生明显的影响。
[89] 将多个如上所述的 π型衰减器电路相串联, 可得到一多级 π型衰减器电路, 且每 级的步进量可自由地设定。 多级 π型衰减器电路各级开关可以是相互独立的, 也 可以将各级开关制作在至少一个绝缘物 (如 PCB板) 上。 但每一级的与串联电阻 并联的开关和与并联电阻串联的开关最好制作在同一个绝缘物上。 以三级 π型衰 减器电路为例, 如图 17示出了本发明第三实施例提供的可变衰减器的基本电路 图。
[90] 将三个相同的 π型衰减器电路 I、 Π、 m串联后, 制成可变衰减器 (三级) 的基 本电路图, 包括第一级第一串联电阻 201 (I) 、 第二级第一串联电阻 201 (Π) 、 第三级第一串联电阻 201 (m) ; 并联在第一级第一串联电阻 201 (I) 两端子 2 06a(I)和 206b(I)之间的第一并联开关 204(1), 并联在第二级第一串联电阻 201 (Π ) 两端子 206a(n)和 206b(n)之间的第一并联开关 204(Π), 并联在第三级第一串联 电阻 201 (m) 两端子 206a(m)和 206b(m)之间的第一并联开关 204(m); 第一级第 一并联电阻 202(1)和第二并联电阻 203(1), 第二级第一并联电阻 202(Π)和第二并联 电阻 203(Π), 第三级第一并联电阻 202(m)和第二并联电阻 203(m); 分别串联在 第一级第一并联电阻 202(1)和第二并联电阻 203(1)与共同接地端 210之间的第一串 联开关 207a(I)和第二串联开关 207b(I), 分别串联在第二级第一并联电阻 202(Π)和 第二并联电阻 203(Π)与共同接地端 210之间的第一串联开关 207a(n)和第二串联开 关 207b(n), 分别串联在第三级第一并联电阻 202(m)和第二并联电阻 203(m)与共 同接地端 210之间的第一串联开关 207a(m)和第二串联开关 207b(m)。 其中, 每一 级电路原理如第一实施例所述, 在此不再赞述。 在本发明实施例中, 每一级可 相互独立、 衰减量可自由设定、 也可以按同一个固定的步进量来设计, 且所有 开关也可制作在同一个绝缘物 (如 PCB板) 上。 当然各级的开关也可以制作在不 同的绝缘物上。
[91] 由于可变衰减器经常用于系统的功率调节, OdB使会对系统影响太大, 特别地 , 可以在如上所述的可变衰减器的前端、 后端或各级之间加入一固定衰减器。
[92] 在本发明实施例中, 还可以将第一并联电阻、 第二并联电阻、 第一串联开关、 第二串联开关以及第一并联开关共同制于绝缘物上, 而将第一串联电阻制于基 体上, 其组合原理如本发明第一实施例所述, 在此不再赞述。
[93] 另外, 在如图 17的可变衰减器中, 对于大衰减量的衰减器来讲, 比如 0-60dB的 衰减量, 其射频特性在 4GHz以下吋, 其衰减量会保持平坦, 但超过 4GHz吋, 其 衰减量会减少, 为了改善衰减量的减少, 图 18示出了图 17中加入衰减量改善电 路的示意图, 为了便于描述, 仅示出了与本发明实施例相关的部分, 另外, 具 体实现吋, 也可以在其它可变衰减器中加入该衰减量改善电路。
[94] 在至少一级衰减器 (本实施例是三级) 的一端或两端加入改善电路, 在本发明 实施例中, 改善电路由第三并联电阻 Rx、 电路开关 Kx组成, 该第三并联电阻 Rx 的一端与电路开关 Kx相串联, 该第三并联电阻 Rx的另一端与一个微带端子相连 或直接接地, 该微带端子不与其它电路相连接, 不同尺寸的该微带端子在射频 上可等效为电容或电感。 该电路开关 Kx的另一端与衰减器的信号输入端、 信号 输出端或, 或信号主电路上的各级衰减器的级联间相连接, 该电路开关 Kx的开 关是随该被接入的衰减器的串联开关一起动作。 另外, 在具体实现吋, 该改善 电路还可以由第三并联电阻 Rx、 电路开关 Kx和电容 (或电感) 组成。 该改善电 路的一端通过电路开关 Kx连接于信号输入端、 信号输出端或信号主电路上各级 衰减器的级联之间, 另一端通过电容 (或电感) 与接地端相连接, 第三并联电 阻 Rx连接于电路开关 Kx以及电容 (或电感) 之间, 该电路开关 Κχ的开与关 (0 N/OFF) 是随该被接入的衰减器的串联开关一起动作。 比如, 该改善电路制作在 绝缘物 (如 PCB板的电路) 上, 其另一端与一个微带端子 (如 PCB板上的微带线 ) 相连接, 随绝缘物一起移动, 当然, 在具体实现吋, 其另一端也可以连接其 它电路或直接接地。 当该级衰减器的并联开关断开 (OFF) 吋, 该改善电路的电 路开关 Kx与信号主电路相连接, 与其相连的微带端子不与其它电路相连接, 从 射频电路的观点来看, 该微带端子相当于一个射频电容或电感。 该改善电路可 以改善衰减器的频率特性,可增大衰减量, 从而改善总体的衰减量。 考虑到衰减 器是双向对称电路, 该改善电路一般接在该分段可变衰减器中间某一级衰减器 的两端。 图 18中的改善电路是由电路开关 Κχ、 第三并联电阻 Rx以及电容组成, 且其为一等效电路图。
[95] 图 19示出了本发明第四实施例提供的可变衰减器的基本电路。
[96] 它是在一个用电阻组成的典型的 T型衰减器电路上, 在第一串联电阻 401(a)的两 端子 406(a)与 406(b)上并联接入了第一并联开关 403(a) , 在第二串联电阻 401(b)的 两端子 406(b)与 406(c)上并联接入了第二并联开关 403(b) , 在第一并联电阻 402的 端子 405与共同接地端 409间串联接入有第一串联开关 404的电路图。 第一串联开 关 404也可以串联接入在第一并联电阻 402的另一端。
[97] 图 20示出了本发明第四实施例提供的可变衰减器基体表层的电路结构。
[98] 基体 41是一个射频的四层 PCB板, 但不限于四层, 也可以是单层、 双层和多层 , 另外, 基体 41也可以是其它介电常数的材料, 比如陶瓷基板等。 该四层 PCB板 的第一层是表层, 该表层上信号输入端 407通过信号微带线 416与端子 406(a)相连 接, 信号输出端 408通过信号微带线 416与端子 406(c)相连接; 还有第一串联电阻 401 (a)的两端子 406(a)和 406(b)、 第二串联电阻 401 (b)的两端子 406(b)和 406(c)、 第 一并联电阻 402的端子 405、 共同接地端 409。 端子 406(a)、 406(b) 406(c) 405分 别通过各自的信号过孔 410与底层的各自的端子相连接, 共同接地端 409通过接 地过孔 411与底层的共同接地端以及中间两层的金属接地层相连接。
[99] 图 21示出了本发明第四实施例提供的可变衰减器基体底层的电路结构。 [100] 在该基体 41的底层有第一串联电阻 401(a)和第二串联 401(b)、 该第一串联电阻 4 01(a)的一端与端子 406(a)相连接, 另一端与 406(b)相连接; 第二串联电阻 401(b) 的一端与端子 406(b)相连接, 另一端与端子 406(c)相连接; 第一并联电阻 402的一 端与端子 406(b)相连接, 第一并联电阻 402的另一端与端子 405相连接; 底层还有 共同接地端 409。
[101] 图 22示出了本发明第四实施例提供的可变衰减器开关结构。
[102] 为了节约成本, 同吋使得在切换第一并联开关、 第二并联开关和第一串联开关 吋, 第一并联电阻、 第一串联电阻和第二串联电阻可以更加平滑的接入信号主 电路, 在本发明实施例中, 可变衰减器开关釆用一导电片实现的拨动型开关, 导电片的宽度尽量与带宽保持相同, 以获得最佳的衰减量, 在具体应用吋, 还 可以釆用导电片实现的旋转式, 其中, 导电片还可以釆用其它导电材料, 如导 线等。 为了使得第一串联电阻以及第二串联电阻的开关和第一并联电阻的开关 同吋完成动作, 导电片制作在同一个绝缘物 42上, 当然, 各开关也可以制作在 不同绝缘物上。 本例中的绝缘物 42是一个单层 PCB板, 但不限于 PCB , 也可以是 塑胶、 金属片或陶瓷基板等。 该单层 PCB上有三个导电片, 导电片 413的作用是 用来作为第一串联电阻 401(a)的第一并联开关, 导电片 412的作用是用来作为第 二串联电阻 401(b)的第二并联开关, 导电片 414作为第一并联电阻 402的第一串联 开关。 移位孔 415是用来移动该 PCB板吋用的。 导电片 412、 413的宽度最好设计 的与信号微带线的宽度相同。 其长度要能短路各自的第一串联电阻以及第二串 联电阻。
[103] 图 23示出了图 22与可变衰减器基体组合结构。
[104] PCB板上的第一并联开关、 第二并联开关以及第一串联开关与基体底层上的第 一并联电阻、 第一串联电阻以及第二串联电阻可以置于同一层, 也可以置于不 同层。 在本发明实施例中, 为了易于操作, 将 PCB板上的第一并联开关、 第二并 联开关以及第一串联开关与基体底层上的第一并联电阻、 第一串联电阻以及第 二串联电阻置于不同层。 图中虚线是图 22的 PCB板设置在基体 41上的组合示意图 。 该 PCB板上有金属导电片的那一面与基体 41的表层接触, 即图中的虚线是图 22 反转了 180度的图。 该图的状态是: 导电片 413将端子 406(a)与 406(b)短路, 即相 当于第一串联电阻 40l(a)上的并联用开关处于闭合 (0N) 的状态, 导电片 412将 端子 406(b)与 406(c)短路, 相当于第二串联电阻 401(b)上的并联用开关处于闭合 ( ON) 的状态, 此吋, 导电片 414没有与端子 405相接触, 相当于第一并联电阻 402 的串联用开关 404处于断开 (OFF) 的状态; 此吋, 该可变衰减器的衰减量为 0d B ; 拨动该 PCB板, 使导电片 413离开端子 406(a)、 使导电片 412离开端子 406(b) , 相当于第一串联电阻 401(a)、 第二串联电阻 401(b)上的各开关处于断开 (OFF) 状态; 此吋, 导电片 414与端子 405相接触, 相当于第一并联电阻 402的串联用开 关出于闭合 (ON) ; 此吋, 该可变衰减器的衰减量从 OdB到有, 根据 T型衰减器 的设计要求, 可设计出所需步进量的衰减器, 从而可得到衰减量从 OdB到所需衰 减量的变化。 此变化是可逆的。
[105] 将多个这样的 T型衰减器相串联, 可得到一个多级的可变衰减器 (可变衰减器 ) 。 其各级间的开关可以是相互独立的, 也可以将所有开关制作在至少一个绝 缘物 (PCB板) 上。 其方法与第二实施例相似。
[106] 另外, 在本发明实施例中, 还可以将第一并联电阻、 第一串联开关以及第一并 联开关、 第二并联开关共同制于绝缘物上, 而将第一串联电阻以及第二串联电 阻制于基体上, 其组合原理如本发明第一实施例所述, 在此不再赞述。
[107] 图 24示出了本发明第五实施例提供的可变衰减器的基本电路。
[108] 它是在一个用电阻组成的典型 T型衰减器电路上, 在第一串联电阻 501a与第二 串联电阻 501b串联后的两端 (输入端与输出端) 上并联有第一并联开关 503, 实 际上第一并联开关 503的作用与图 19中的开关 413和 412同吋动作是相同的。 在第 一并联电阻 502的端子 509与端子 508间串联接入有第一串联开关 504的电路图。 开关 504也可以串联接入在第一并联电阻 502的另一端。
[109] 将多个这样的 T型衰减器相串联, 可得到一个多级可变衰减器, 并且每级的衰 减量可自由设定。 其各级间的开关可以是相互独立的, 也可以将所有开关制作 在至少一个绝缘物 (PCB板) 上。
[110] 另外, 在本发明实施例中, 还可以将第一并联电阻、 第一串联开关以及第一并 联开关共同制于绝缘物上, 而将第一串联电阻以及第二串联电阻制于基体上, 其组合原理如本发明第一实施例所述, 在此不再赞述。 [111] 图 25是本发明第六实施例提供的可变衰减器的基本电路。
[112] 对于一个典型的桥型衰减器电路, 在串联电阻 609的两端子 601与 602之间并联 一并联开关 618。 串联电阻 609的端子 601连接一桥臂电阻 605, 串连电阻 609的端 子 602连接一桥臂电阻 607, 桥臂电阻 605和桥臂电阻 607的另一端子连接于一结 点, 结点与一串连开关 617—端的闭合触头 608连接, 串联开关 617的另一端连接 一并联电阻 609, 并联电阻 609的另一端接至共同接地端 612, 当然, 具体应用吋 , 串联开关 617也可以置于并联电阻 609与共同接地端 612之间。
[113] 图 26示出了本发明第六实施例提供的可变衰减器基体表层的电路结构。
[114] 基体 61是一个双面 PCB板, 但不限于双面 PCB板, 另外, 基体 61也可以是其它 介电常数的材料, 比如陶瓷基板等。 在该双面 PCB板的表面, 有信号输入端 603 、 信号输出端 604、 有一个串联电阻 606。 串联电阻 606的两端分别通过信号微带 线与信号输入端 603和该信号输出端 604相连接。 一个 50欧姆电阻 605, 一端与输 入端 603相连接, 另一端与 611端相连接; 另有一个 50欧姆的电阻 607, 一端与输 出端 604相连接, 另一端与 611端相连接。 一个并联电阻 609的一端子 608与一个 开关串联后与 611端相连, 并联电阻 609的另一端与共同接地端 612相连接。 开关 也可以接在并联电阻 609的另一端, 即并联电阻 609与共同接地端 612间。 或者在 两个 50欧姆电阻上分别接入一个开关, 来代替与并联电阻 609串联的开关的作用 。 在串联电阻 606的两端间并联接入一个开关。 此电路是在一个典型的桥型衰减 器电路上在串联电阻间并联接入开关、 在并联电阻上串联接入开关的电路。 共 同接地端 612通过接地过孔 610与基体底面的金属底板相接。 本图中的串联电阻 6 06的两端子是 601和 602。 当然, 也可以参照第一实施例或第二实施例, 将所有 的电阻制作在基体的底层, 或将部分的电阻制作在基体的底层, 部分电阻制作 绝缘物的表层。
[115] 图 27是本发明第六实施例提供的可变衰减器开关结构。
[116] 在本发明实施例中, 并联开关以及串联开关由导电片或制作在介质基板上的微 带线实现, 为了节约成本, 同吋使得在切换并联开关和串联开关吋, 并联电阻 和串联电阻可以更加平滑的接入信号主电路, 在本发明实施例中, 可变衰减器 开关釆用一导电片实现的拨动型开关, 导电片的宽度尽量与带宽保持相同, 以 获得最佳的衰减量, 在具体应用吋, 还可以釆用导电片实现的旋转式, 其中, 导电片还可以釆用其它导电材料, 如导线等。 为了使得串联电阻的开关以及并 联电阻的开关同吋完成动作, 导电片制作在同一个绝缘物 62上, 当然, 各开关 也可以制作在不同绝缘物上。 绝缘物 62是一个 PCB板。 导电片 613是作为串联电 阻 606的并联开关, 其宽度最好与信号微带线的宽度相同, 其长度要能短路端子 601和 602。 导电片 615作为并联电阻 609的串联开关。 有导电片的那一面与基体 6 1的表面相接触, 为了避免导电片移动吋, 该单面 PCB板与串联电阻 606以及 50欧 姆电阻相碰撞, 在该单面 PCB板上开了一个槽 614。 在该单面 PCB上还有移位孔 6 16。
[117] 图 28示出了图 27与可变衰减器基体组合结构。
[118] 图中虚线是图 27的 PCB板 62设置在基体 61上的组合示意图。 图中的虚线是图 27 反转了 180度的图。 从图中可以看到, 串联电阻 606被导电片 613短路 (ON;), 并联 电阻 609没有与信号主电路连接 (OFF), 即信号从输入端到输出端是直通的,这吋 该可变衰减器的衰减量为 OdB ; 通过向左拨动 PCB板 62, 使导电片 613离开串联 电阻 606的端子 602 (OFF) , 同吋, 导电片 615将并联电阻 609的端子 611接通 ( ON) , 这种状态下的电路是一个典型的桥型衰减器电路。 根据桥型衰减器的设 计参数, 可设计出所需衰减量的可变衰减器。 比如, 选择串联电阻 606的阻值为 21欧姆, 并联电阻 609的阻值为 121欧姆, 它就是一个从 OdB变为 3dB的可变衰减 器。 此变化是可逆的。
[119] 将多个这样的衰减器相串联, 可得到一个多级可变衰减器, 并且各级的衰减量 可自由设定。 其各级间的开关可以是相互独立的, 也可以将所有开关制作在至 少一个绝缘物 (PCB板) 上。
[120] 这里要强调说明的是, 多级衰减器相串联吋, 不限于相同类型的衰减器的串联
, 它也可以是不同类型的衰减器的相互串联, 比如 π型衰减器电路与 T型衰减器 的串联、 Τ型衰减器与 π型衰减器电路的串联等。
[121] 另外, 在本发明实施例中, 还可以将并联电阻、 串联开关以及并联开关共同制 于绝缘物上, 而将串联电阻制于基体上, 其组合原理如本发明第一实施例所述
, 在此不再赞述。 [122] 图 29示出了本发明第七实施例提供的可变衰减器基体表层的电路结构。
[123] 基体 71是一个射频的双层陶瓷基板, 但不限于双层, 另外, 基体 71也可以是其 它介电常数的材料, 比如 PCB板等。 该表层上有四个端子 701、 702、 703、 704, 它们通过各自的信号过孔 705与底层上各自的端子相连接。 该表层上还有共同接 地端 707, 它通过接地过孔 706与底层的接地端相连接。
[124] 图 30示出了本发明第七实施例提供的可变衰减器基体底层的电路结构。
[125] 该基体 71上有信号输入端 708、 信号输出端 709、 (膜状) 第一串联电阻 712、
(膜状) 第一并联电阻 710、 (膜状) 第二并联电阻 711、 共同接地端 707。 在本 发明实施例中, 膜状电阻是指用厚膜工艺或薄膜工艺制作的电阻, 在涂敷保护 层前, 原则上该膜状电阻的四个边是可以电连接的。 信号输入端 708通过信号微 带线 713与端子 703相连接, 端子 703又与膜状电阻组成的衰减器的 (膜状) 第一 串联电阻 712的一边 (左边) FL相连接, 该第一串联电阻 712的另一边 (右边) F R与端子 704相连接, 端子 704通过信号微带线 713与输出端 709相连接; 第一串联 电阻 712的上边与第一并联电阻 710的一端相连接, 该并列电阻 710的另一端 FT ( 上端) 与端子 701相连接; 该第一串联电阻 712的底边与第二并联电阻 711的一端 相连接, 该第二并联电阻 711的另一端 FB (下端) 与端子 702相连接; 为了描述 和理解的方便, 我们把连接信号输入输出端的两端称为第一串联电阻 712的两端 。 在实际制作膜状衰减器吋, 上述第一串联电阻 712、 第一并联电阻 710、 第二 并联电阻 711可作为一体, 按膜状衰减器阻值设计的要求, 一次制作成型, 不需 要分开制作。
[126] 图 31是本发明第七实施例提供的可变衰减器开关结构。
[127] 为了节约成本, 同吋使得在切换第一并联开关、 第一串联开关以及第二串联开 关吋, 第一并联电阻、 第二并联电阻以及第一串联电阻可以更加平滑的接入信 号主电路, 在本发明实施例中, 可变衰减器开关釆用一导电片实现的拨动型开 关, 导电片的宽度尽量与带宽保持相同, 以获得最佳的衰减量, 在具体应用吋 , 还可以釆用导电片实现的旋转式, 其中, 导电片还可以釆用其它导电材料, 如导线等。 为了使得第一串联电阻的开关以及第一并联电阻和第二并联电阻的 开关同吋完成动作, 导电片制作在同一个绝缘物 72上, 当然, 各开关也可以制 作在不同绝缘物上。 绝缘物 72是一个 PCB板, 导电片 715用于连接端子 703和 704 , 起第一串联电阻 712的并联用开关的作用; 导电片 714用于连接端子 701和共同 接地端 707, 起到将第一并联电阻 701与共同接地端 707相串联用的开关作用。 导 电片 716用于连接端子 702和共同接地端 707, 起到将第二并联电阻 702与共同接 地端 707相串联用的开关作用。 移位孔 707是用来移动该 PCB板吋用的。
[128] 图 32是图 31与可变衰减器基体组合结构。
[129] 图中虚线是图 31的 PCB板设置在基体 71表层上的组合示意图。 该 PCB板上有导 电片的那一面与该基体的表层相接触, 在图形上该图 31相当于反转了 180度。 该 导电片 714将第一并联电阻 710的端子 701与共同接地端 707相连接, 相当于第一 并联电阻 710上的串联用开关闭合 (ON) , 该导电片 716将第二并联电阻 711的端 子 702与共同接地端 709相连接, 相当于第二并联电阻 711上的串联用开关闭合 ( ON) , 此吋, 第一串联电阻 712上的并联用开关处于断开 (OFF) 状态, 此状态 下, 该可变衰减器是一个典型的膜状衰减器。 其衰减量可根据膜状衰减的设计 要求来设计。 当从右向左拨动该 PCB板吋, 导电片 715将串联电阻的两端 703和 70 4 (FL与 FR端) 短路, 相当于第一串联电阻 712上的并联用开关闭合 (ON) , 此 吋, 导电片 714离开端子 701, 相当于第一并联电阻 710上的串联用开关断开 (OF F) , 导电片 716离开端子 702, 相当于第二并联电阻 711上的串联用开关断开 (0 FF) , 此吋, 该可变衰减器的衰减量为 0dB。 以此可以完成衰减量的可变, 即衰 减量从一个步进量变化为 0dB。
[130] 将多个这样的衰减器相串联, 可制成多级可变衰减器, 并且各级的衰减量可自 由设定。 其各级间的开关可以是相互独立的, 也可以将所有开关制作在至少一 个绝缘物 (PCB板) 上。 另外, 在膜状衰减器的实际制作中, 第一串联电阻 712 与第一并联电阻 710、 第二并联电阻 711是一次成型的一个膜状电阻, 在设计吋 是按膜状衰减器的设计原理来设计膜状电阻阻值的。 它的等效电路按分布参数 可等效为多个 π型网络的串联, 最终可等效为一个 π型网络 (π型衰减器电路) 。
[131] 另外, 在本发明实施例中, 还可以将第一并联电阻、 第二并联电阻、 第一串联 开关、 第二串联开关以及第一并联开关共同制于绝缘物上, 而将第一串联电阻 制于基体上, 其组合原理如本发明第一实施例所述, 在此不再赞述。 [132] 图 33示出了本发明第八实施例提供的可变衰减器基体表层的电路结构。
[133] 基体 81是一个射频的双层陶瓷基板, 另外, 基体 81也可以是其它介电常数的材 料, 比如 PCB板等。 该表层上有三个端子 801、 802、 803, 它们通过各自的信号 过孔 806与底层上各自的端子相连接。 该表层上还有共同接地端 805, 它通过接 地过孔 804与底层的接地端相连接。
[134] 图 34示出了本发明第八实施例提供的可变衰减器基体底层的电路结构。
[135] 基体 81上有信号输入端 807、 信号输出端 808、 (膜状) 第一串联电阻 809、 ( 膜状) 第一并联电阻 811、 共同接地端 805 ; 在本发明实施例中, 膜状电阻是指 用厚膜工艺或薄膜工艺制作的电阻, 在涂敷保护层前, 原则上该膜状电阻的四 个边是可以电连接的。 信号输入端 807通过信号微带线 810与端子 801相连接, 端 子 801又与膜状电阻组成的衰减器的 (膜状) 第一串联电阻 809的一边 (左边) 相连接, 第一串联电阻 809的另一边 (右边) 与端子 802相连接, 端子 802通过信 号微带线 810与输出端 808相连接; 第一串联电阻 809的底边与第一并联电阻 811 的一端相连接, 第一并联电阻 811的另一端 (下端) 与端子 803相连接; 为了描 述和理解的方便, 我们把连接信号输入输出端的两端称为第一串联电阻 809的两 端。 在实际制作膜状衰减器吋, 上述第一串联电阻 809、 第一并联电阻 811可作 为一体, 按衰减器阻值设计的要求, 一次制作成型, 不需要分开制作。
[136] 图 35示出了本发明第八实施例提供的可变衰减器开关结构。
[137] 为了节约成本, 同吋使得在切换第一并联开关和第一串联开关吋, 第一并联电 阻和第一串联电阻可以更加平滑的接入信号主电路, 在本发明实施例中, 可变 衰减器开关釆用一导电片实现的拨动型开关, 导电片的宽度尽量与带宽保持相 同, 以获得最佳的衰减量, 在具体应用吋, 还可以釆用导电片实现的旋转式, 其中, 导电片还可以釆用其它导电材料, 如导线等。 为了使得第一串联电阻的 开关以及第一并联电阻的开关同吋完成动作, 导电片制作在同一个绝缘物 82上 , 当然, 各开关也可以制作在不同绝缘物上。 绝缘物 82是一个 PCB板。 导电片可 以制作在一个 PCB板上, 导电片 812用于连接端子 801和 802, 起第一串联电阻 809 的并联用开关的作用; 导电片 813用于连接端子 803和共同接地端 805, 起到将第 一并联电阻 811与共同接地端 805相串联用的开关作用。 移位孔 814是用来移动该 PCB板吋用的。
[138] 图 36示出了图 35与可变衰减器基体组合结构。
[139] 图中虚线是图 35的 PCB板设置在基体 81表层上的组合示意图。 该 PCB板上有导 电片的那一面与该基体的表层相接触, 在图形上该图 35相当于反转了 180度。 导 电片 813将第一并联电阻 811的端子 803与共同接地端 805相连接, 相当于第一并 联电阻 811上的串联用开关闭合 (ON) , 此吋, 第一串联电阻 809上的并联用开 关处于断开 (OFF) 状态, 此状态下, 该可变衰减器是一个典型的膜状衰减器。 其衰减量可根据膜状衰减的设计要求来设计。 当从右向左拨动该 PCB板吋, 导电 片 812将第一串联电阻 809的两端子 801和 802短路, 相当于第一串联电阻 809上的 并联用开关闭合 (ON) , 此吋, 导电片 813离开端子 803, 相当于第一并联电阻 8 11上的串联用开关断开 (OFF) 。 此吋, 该可变衰减器的衰减量为 0dB。 此过程 是可逆的。 这样可以完成衰减量的可变。
[140] 用多个这样的衰减器相串联, 可制成多级可变衰减器, 并且各级的衰减量可自 由设定。 其各级间的开关可以是相互独立的, 也可以将所有开关制作在至少一 个绝缘物 (PCB板) 上。 另外, 在膜状衰减器的实际制作中, 第一串联电阻 809 与第一并联电阻 811是可以一次成型的一个膜状电阻, 在设计吋是按衰减器的设 计原理来设计膜状电阻阻值的。 它的等效电路按分布参数可等效为多个 T型衰减 器的串联, 最终可等效为一个 T型衰减器。
[141] 另外, 在本发明实施例中, 还可以将第一并联电阻、 第一串联开关以及第一并 联开关共同制于绝缘物上, 而将第一串联电阻制于基体上, 其组合原理如本发 明第一实施例所述, 在此不再赞述。
[142] 对于本发明的可变衰减器, 其外壳封装可釆用金属壳接同轴连接器封装、 同轴 连接器封装或塑胶 SMD封装。 其调节方式可釆用拨动式开关或步进旋转式开关 。 同轴连接器可以是 SMA型、 N型等同轴连接器。
[143] 图 37示出了本发明实施例提供的可变衰减器的拨动开关的金属壳同轴连接器型 外观结构示意图。
[144] 本可变衰减器的壳体是一个金属壳体 91, 它的两端是 SMA同轴电缆接头, 在它 的表面有 4个拨动开关 Kl、 Κ2、 Κ3以及 Κ4, 用于改变衰减量。 [145] 图 38示出了图 37的内部结构。
[146] 金属壳体 91内是基体 92, 基体 92的上部是制作有开关的绝缘物 93, 绝缘物 93上 是一个拨动柱 931, 拨动柱 931的两端是硅胶圏 9311, 硅胶圏 9311的作用是将绝 缘物 93与基体表层紧密押紧, 使其保持紧密接触, 最上部是金属盖 94, 其通过 螺钉将硅胶圏押紧。
[147] 图 39示出了本发明实施例提供的拨动开关的一体同轴连接器型外观。
[148] 将同轴连接器加工改造, 用同轴连接器代替金属外壳, 其内部构造与图 38的构 造相同。 同轴连接器可以是 SMA型、 N型等同轴连接器。 这样制作的好处是使用 方便, 结构紧凑、 批量生产的成本低。
[149] 本发明实施例中, 在可变衰减器的串联电阻两端并联接入并联开关, 在并联电 阻两端串联接入串联开关, 在控制并联开关闭合以无效某级衰减量的同吋, 控 制串联开关断开, 以消除并联电阻对信号主电路的影响, 使得衰减器的衰减量 更稳定, 精度更高, 频率范围更宽; 由于本发明不需切换信号主电路, 即信号 始终在信号主电路上传输, 信号主电路不会出现一个强烈的反射信号 (突变脉 冲) , 对前一级的电路不会造成破坏。
[150] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
1、 一种可变衰减器, 包括至少一级衰减器电路, 所述衰减器电路至少包括 信号输入端、 信号输出端、 共同接地端, 所述信号输入端和所述信号输出 端之间连接有第一串联电阻, 形成一信号主电路; 所述信号主电路上的一 点与所述共同接地端之间连接有第一并联电阻, 其特征在于, 所述衰减器 电路进一步包括:
与所述第一串联电阻并联的第一并联开关;
与所述第一并联电阻串联的第一串联开关。
2、 如权利要求 1所述的可变衰减器, 其特征在于, 所述第一串联电阻、 第 一并联电阻、 第一串联开关、 第一并联开关、 信号输入端、 信号输出端或 共同接地端制作在不同的基体或起开关作用的绝缘物上。
3、 如权利要求 1所述的可变衰减器, 其特征在于, 所述第一并联开关或第 一串联开关由导电片或制作在介质基板上的微带线实现。
4、 如权利要求 1所述的可变衰减器, 其特征在于, 所述衰减器电路为 π型衰 减器电路, 所述 π型衰减器电路还包括第二并联电阻以及与其串联的第二串 联开关; 所述第一并联电阻连接于所述信号输入端和所述共同接地端之间
, 所述第二并联电阻连接于所述信号输出端和所述共同接地端之间。
5、 如权利要求 4所述的可变衰减器, 其特征在于, 所述可变衰减器包括两 级或两级以上级联的 π型衰减器电路, 上一级 π型衰减器电路的信号输出端 作为下一级 π型衰减器电路的信号输入端, 上一级 π型衰减器电路中连接于 信号输出端和共同接地端之间的第二并联电阻作为下一级 π型衰减器电路中 连接于信号输入端和共同接地端之间的第一并联电阻。
6、 如权利要求 4或 5所述的可变衰减器, 其特征在于, 所述第一串联电阻、 第一并联电阻、 第二并联电阻、 第一串联开关、 第二串联开关、 第一并联 开关、 信号输入端、 信号输出端或共同接地端制作在不同的基体或起开关 作用的绝缘物上。
7、 如权利要求 4或 5所述的可变衰减器, 其特征在于, 所述第一并联开关、 第一串联开关或第二串联开关由导电片或制作在介质基板上的微带线实现
8、 如权利要求 4所述的可变衰减器, 其特征在于, 所述 π型衰减器电路釆用 分布式电阻等效结构设计。
9、 如权利要求 1所述的可变衰减器, 其特征在于, 所述衰减器电路为 Τ型 衰减器电路, 所述 Τ型衰减器电路还包括与所述第一串联电阻串联的第二 串联电阻, 所述第一串联电阻的一端连接所述信号输入端, 所述第二串联 电阻的一端连接所述信号输出端; 所述第一并联开关并联于所述第一串联 电阻两端, 所述 Τ型衰减器电路还包括并联于所述第二串联电阻两端的第 二并联开关; 所述第一并联电阻一端与所述信号主电路相交的结点置于所 述第一串联电阻以及第二串联电阻之间。
10、 如权利要求 1所述的可变衰减器, 其特征在于, 所述衰减器电路为 Τ型 衰减器电路, 所述 Τ型衰减器电路还包括与所述第一串联电阻串联的第二 串联电阻, 所述第一串联电阻的一端连接所述信号输入端, 所述第二串联 电阻的一端连接所述信号输出端; 所述第一并联开关并联于所述第一串联 电阻以及所述第二串联电阻串联后的两个端点之间; 所述第一并联电阻一 端与所述信号主电路相交的结点置于所述第一串联电阻以及第二串联电阻 之间。
11、 如权利要求 9或 10所述的可变衰减器, 其特征在于, 所述第一串联电阻 、 第二串联电阻、 第一并联电阻、 第一串联开关、 第一并联开关、 第二并 联开关、 信号输入端、 信号输出端或共同接地端制作在不同的基体或起开 关作用的绝缘物上。
12、 如权利要求 9或 10所述的可变衰减器, 其特征在于, 所述 Τ型衰减器电 路釆用分布式电阻等效结构设计。
13、 如权利要求 9或 10所述的可变衰减器, 其特征在于: 所述第一并联开关 第二并联开关、 第一串联开关由导电片或制作在介质基板上的微带线实现
14、 如权利要求 1所述的可变衰减器, 其特征在于, 所述第一串联开关置于 所述第一并联电阻和所述共同接地端之间, 或置于所述第一并联电阻与信 号主电路之间。
15、 如权利要求 1所述的可变衰减器, 其特征在于, 所述衰减器电路进一步 包括至少一个改善电路, 所述改善电路包括第三并联电阻以及一电路开关
; 所述电路开关的一端连接于所述衰减器电路的信号输入端、 信号输出端 或信号主电路上的级联间, 其另一端连接所述第三并联电阻的一端; 所述 第三并联电阻的另一端置于微带端子上、 或通过电容或电感接地、 或直接 接地。
16、 如权利要求 1所述的可变衰减器, 其特征在于, 所述至少一级衰减器电 路置于一基体或起开关作用的绝缘物上, 所述第一串联电阻、 第一并联电 阻以及所述第一串联开关、 第一并联开关在所述基体的同一层或不同层。
17、 如权利要求 1所述的可变衰减器, 其特征在于: 所述可变衰减器直接置 于同轴连接器内。
18、 如权利要求 1所述的可变衰减器, 其特征在于, 所述第一串联电阻或第 一并联电阻釆用贴片电阻、 薄膜电阻、 厚膜电阻、 嵌入电阻或印刷电阻中 的一种或几种的组合。
19、 一种可变衰减器, 包括至少一级桥型衰减器电路, 所述桥型衰减器电 路至少包括信号输入端、 信号输出端、 共同接地端, 所述信号输入端和所 述信号输出端之间连接有一串联电阻, 形成一信号主电路; 所述串联电阻 的两端分别各自连接一桥臂电阻, 所述两个桥臂电阻的另一端连接于一结 点, 所述结点与所述共同接地端之间连接有一并联电阻, 其特征在于, 所 述衰减器电路进一步包括:
与所述串联电阻并联的并联开关;
与所述并联电阻串联的串联开关。
20、 如权利要求 19所述的可变衰减器, 其特征在于, 所述串联开关置于所 述并联电阻和所述共同接地端之间。
21、 如权利要求 19所述的可变衰减器, 其特征在于: 所述并联开关或串联 开关由导电片或制作在介质基板上的微带线实现。
22、 如权利要求 19所述的可变衰减器, 其特征在于, 所述至少一级衰减器 电路置于一基体或起开关作用的绝缘物上, 所述串联电阻、 所述并联电阻 以及所述串联开关、 所述并联开关在所述基体的同一层或不同层。
23、 如权利要求 19所述的可变衰减器, 其特征在于, 所述串联电阻或并联 电阻釆用贴片电阻、 薄膜电阻、 厚膜电阻、 嵌入电阻或印刷电阻中的一种 或几种的组合。
PCT/CN2008/071940 2004-10-13 2008-08-11 Atténuateur variable WO2009021449A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010522171A JP2010538505A (ja) 2007-08-11 2008-08-11 可変減衰器
EP08783933.8A EP2190116B1 (en) 2007-08-11 2008-08-11 Variable attenuator
CN2008800011117A CN101558559B (zh) 2007-08-11 2008-08-11 一种可变衰减器
US12/703,859 US8212648B2 (en) 2004-10-13 2010-02-11 Variable attenuator

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN200710075714 2007-08-11
CN200710075714.9 2007-08-11
CN200710124352 2007-10-31
CN200710124352.8 2007-10-31
CN200710193881.3 2007-11-20
CN200710193881 2007-11-20
CN200810080717.6 2008-02-05
CNA2008100807176A CN101471638A (zh) 2007-11-20 2008-02-05 微带步进衰减器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/733,205 Continuation-In-Part US8089338B2 (en) 2004-10-13 2007-04-10 Variable attenuator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/703,859 Continuation US8212648B2 (en) 2004-10-13 2010-02-11 Variable attenuator

Publications (1)

Publication Number Publication Date
WO2009021449A1 true WO2009021449A1 (fr) 2009-02-19

Family

ID=42111893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071940 WO2009021449A1 (fr) 2004-10-13 2008-08-11 Atténuateur variable

Country Status (4)

Country Link
EP (1) EP2190116B1 (zh)
JP (1) JP2010538505A (zh)
CN (1) CN101558559B (zh)
WO (1) WO2009021449A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101267526B1 (ko) 2012-12-28 2013-05-27 (주)키삭 서로 다른 감쇠 스텝을 가지는 복수 개의 가변감쇠회로가 일체형으로 구비된 계측기용 가변 감쇠기
US10530320B2 (en) * 2016-07-15 2020-01-07 Psemi Corporation Attenuator de-Qing loss improvement and phase balance
US20180062622A1 (en) * 2016-08-30 2018-03-01 Skyworks Solutions, Inc. Binary-weighted attenuator having compensation circuit
CN106788609A (zh) * 2017-01-20 2017-05-31 许昌许继昌南通信设备有限公司 宽带电力线载波信号多级可调衰减器的电路
CN109148062B (zh) * 2018-10-12 2024-06-04 成都前锋电子仪器有限责任公司 一种标准衰减器电阻座块
CN117411458A (zh) * 2022-09-30 2024-01-16 中国移动通信有限公司研究院 一种输入阻抗可调节的衰减器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1111417A (zh) * 1994-03-28 1995-11-08 株式会社东芝 半导体电路
JPH1098306A (ja) * 1996-09-24 1998-04-14 Mitsubishi Electric Corp マイクロ波用可変減衰器
CN1380748A (zh) * 2001-04-10 2002-11-20 株式会社村田制作所 可变衰减器
CN1674351A (zh) * 2004-10-13 2005-09-28 阎跃军 可变衰减器
CN101079606A (zh) * 2007-04-18 2007-11-28 阎跃军 微带分段可变衰减器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3184694A (en) * 1963-05-20 1965-05-18 Weinschel Eng Co Inc Precision variable coaxial attenuator
JPS4426805Y1 (zh) * 1966-10-31 1969-11-10
JPS4724033U (zh) * 1971-04-06 1972-11-17
JPS5428699B2 (zh) * 1972-03-17 1979-09-18
JPS574129B2 (zh) * 1974-04-25 1982-01-25
JPS5535763Y2 (zh) * 1975-12-26 1980-08-23
JPS5288651U (zh) * 1975-12-26 1977-07-02
JPS5740564Y2 (zh) * 1976-11-26 1982-09-06
US4086548A (en) * 1976-12-29 1978-04-25 Western Electric Company, Inc. Switchable attenuator assembly and method of assembling same
JPS55152626U (zh) * 1979-04-19 1980-11-04
JPS63139412A (ja) * 1986-12-01 1988-06-11 Teikoku Tsushin Kogyo Kk プログラマブル可変減衰器
US5339065A (en) * 1993-06-10 1994-08-16 Slenker Stephen A Adjustable microelectronic potentiometer
JPH10242711A (ja) * 1997-02-25 1998-09-11 Miharu Tsushin Kk 筒型可変減衰器
JPH1155059A (ja) * 1997-07-29 1999-02-26 Mitsubishi Electric Corp 可変減衰器
JP2000261209A (ja) * 1999-03-08 2000-09-22 Mitsubishi Electric Corp 可変減衰器
JP2004200953A (ja) * 2002-12-18 2004-07-15 Matsushita Electric Ind Co Ltd 減衰装置
US6903621B2 (en) * 2003-05-20 2005-06-07 Trilithic, Inc. In-line attenuator
JP2005328359A (ja) * 2004-05-14 2005-11-24 Mitsubishi Electric Corp 可変減衰器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1111417A (zh) * 1994-03-28 1995-11-08 株式会社东芝 半导体电路
JPH1098306A (ja) * 1996-09-24 1998-04-14 Mitsubishi Electric Corp マイクロ波用可変減衰器
CN1380748A (zh) * 2001-04-10 2002-11-20 株式会社村田制作所 可变衰减器
CN1674351A (zh) * 2004-10-13 2005-09-28 阎跃军 可变衰减器
CN101079606A (zh) * 2007-04-18 2007-11-28 阎跃军 微带分段可变衰减器

Also Published As

Publication number Publication date
JP2010538505A (ja) 2010-12-09
EP2190116B1 (en) 2018-03-21
EP2190116A4 (en) 2013-08-07
CN101558559A (zh) 2009-10-14
CN101558559B (zh) 2013-01-30
EP2190116A1 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
US8212648B2 (en) Variable attenuator
WO2009021449A1 (fr) Atténuateur variable
US9786973B2 (en) Tunable filter using variable impedance transmission lines
US6861923B2 (en) Power divider/combiner with a multilayer structure
Maity Stepped impedance low pass filter using microstrip line for C-band wireless communication
JP2008516568A (ja) 可変減衰器
JPH04117701A (ja) 抵抗膜減衰器素子及びこれを組み込んだ伝送経路及びカスケード形減衰器
WO1990009040A1 (fr) Terminaison de resistance pelliculaire
US7049905B2 (en) High power directional coupler
US4443772A (en) Switching microwave integrated bridge T group delay equalizer
SE519971C2 (sv) Variabel dämpare, sammansatt variabel dämpare samt en mobil kommunikationsapparat innefattande en variabel dämpare eller en sammansatt variabel dämpare
US6864760B1 (en) Delay line with a parallel capacitance for adjusting the delay time
TWI364132B (zh)
CN101546989A (zh) 可变衰减器
WO2010012195A1 (zh) 电参数的调节装置
JP2000106501A (ja) 電力分配回路、電力合成回路
JP2006121603A (ja) 高周波スイッチ回路装置
JP2000124760A (ja) 可変減衰器及び移動体通信機器
CN218275024U (zh) 一种可控通断的微带耦合电路
CN212991273U (zh) 一种无源非对称双端口网络
TWI396208B (zh) Section adjustable inductor
JP3267864B2 (ja) 集中定数型サーキュレータ
JPH05166611A (ja) チップ状抵抗素子及びチップアッテネータ
JP2000124759A (ja) 可変減衰器及び移動体通信機器
JPH0529808A (ja) 高周波多層回路基板調整法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880001111.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08783933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010522171

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008783933

Country of ref document: EP