WO2009016767A1 - 熱鋼板の冷却装置、熱鋼板の冷却方法及びプログラム - Google Patents

熱鋼板の冷却装置、熱鋼板の冷却方法及びプログラム Download PDF

Info

Publication number
WO2009016767A1
WO2009016767A1 PCT/JP2007/065307 JP2007065307W WO2009016767A1 WO 2009016767 A1 WO2009016767 A1 WO 2009016767A1 JP 2007065307 W JP2007065307 W JP 2007065307W WO 2009016767 A1 WO2009016767 A1 WO 2009016767A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
spray nozzle
cooling water
collision pressure
hot steel
Prior art date
Application number
PCT/JP2007/065307
Other languages
English (en)
French (fr)
Inventor
Ryuji Yamamoto
Yoshihiro Serizawa
Shigeru Ogawa
Hironori Ueno
Masahiro Doki
Yasuhiro Nishiyama
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to PCT/JP2007/065307 priority Critical patent/WO2009016767A1/ja
Priority to US12/086,728 priority patent/US7981358B2/en
Priority to BRPI0702831-8A priority patent/BRPI0702831A2/pt
Priority to KR1020087014839A priority patent/KR101039174B1/ko
Priority to CN2007800016417A priority patent/CN101557886B/zh
Priority to EP07791980A priority patent/EP2047921B1/en
Publication of WO2009016767A1 publication Critical patent/WO2009016767A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems

Definitions

  • the present invention relates to an apparatus for controlling and cooling a hot steel sheet obtained by hot rolling while horizontally restraining it with a restraining roll, and more specifically, a hot steel sheet capable of continuously controlling a wide range of cooling capacity.
  • a cooling device, a cooling method and program for a hot steel sheet We propose a cooling device, a cooling method and program for a hot steel sheet.
  • a steel material in a high-temperature state immediately after being hot rolled is accelerated and cooled while passing through a rolling line, and the steel material has a predetermined cooling history. Is generally done.
  • the cooling capacity required varies depending on the type and application of the steel material, and it is desired to develop a cooling system that can select a wide range of cooling capacity control with high accuracy.
  • the cooling device As a cooling device capable of controlling the cooling capacity over a wide range, there is a cooling device using a two-fluid (air and water) nozzle.
  • the two-fluid nozzle has a complicated nozzle structure and is prone to clogging, which increases equipment manufacturing costs and maintenance costs.
  • air-water pressure control is complicated and it is difficult to keep the air-water ratio constant, and the cooling capacity changes depending on this air-water ratio.
  • the above cooling device has a problem that it requires advanced control and equipment maintenance in order to perform accurate cooling capacity control.
  • No. 1 shows a method in which the cooling device is partitioned into a plurality of cooling blocks in the direction of steel sheet transfer, and the supply of cooling water to each cooling block is controlled on and off for each cooling block or for each cooling block. .
  • Japanese Patent Laid-Open No. Hei 10-29 10 19 discloses a cooling device that cools water by flowing cooling water along the longitudinal direction of the steel sheet. By moving the point where the cooling water contacts the steel sheet in the longitudinal direction of the steel sheet, A method for controlling the cooling capacity by changing the contact length between the steel plate and the steel sheet is shown. However, this is a method in which a gas is injected between the steel plate and the cooling water to move the contact point, so a gas with a lower density than water requires a very large flow rate. Running costs will be high.
  • JP-A-7-157826 discloses a method for controlling the cooling performance over a wide range by adjusting the cooling water injection pitch from the cooling water nozzles arranged in the steel material conveyance direction. In this case, however, the pitch adjustment mechanism of the cooling water nozzle is required, which causes a problem that the manufacturing cost and maintenance cost of the cooling device are high. Disclosure of the invention The present invention is for solving the above-mentioned problems, and its purpose is related to an apparatus for controlling and cooling a hot steel sheet while being restrained by a restraining roll horizontally, and continuously controlling a wide range of cooling capacity. It is to propose an inexpensive hot steel plate cooling device, a hot steel plate cooling method, and a program that make it possible.
  • the cooling device of the present invention includes a plurality of pairs of constraining rolls that horizontally restrain the hot steel plates, and supplies cooling water from a plurality of rows of spray nozzles to the upper and lower surfaces of the hot steel plates between adjacent pairs of constraining rolls.
  • the cooling water collision pressure integral value which is the value obtained by integrating the nth power of the cooling water collision pressure in the direction of the passing plate between the pair of restraining rolls, is a slow cooling spray nozzle array
  • a strong cooling spray nozzle row having a large integrated value of the cooling water collision pressure, a maximum cooling water collision pressure value of the slow cooling spray nozzle row, and a minimum cooling water collision pressure integral value of the strong cooling spray nozzle row.
  • the thermal steel sheet cooling device is characterized in that the fluctuating regions of the cooling water collision pressure integral values of both spray nozzle arrays are made continuous. However, 0. 05 ⁇ n ⁇ 0.
  • a strong cooling spray nozzle row may be disposed on the hot steel plate entrance side between the pair of restraining rolls, and further, the maximum cooling water collision pressure integrated value of the strong cooling spray nozzle row and the slow cooling spray nozzle.
  • the integral values of the minimum cooling water collision pressures when the row and the strong cooling spray nozzle row are used simultaneously may be made equal.
  • the hot steel plate is horizontally restrained by a plurality of pairs of restraining rolls, and is cooled from a plurality of rows of spray nozzles on the upper and lower surfaces of the hot steel plates between adjacent pairs of restraining rolls.
  • the cooling device that performs this cooling method is a cooling water that is a value obtained by integrating the nth power of the cooling water collision pressure in the plate passing direction between the pair of restraining rolls.
  • a slow cooling spray nozzle array having a small collision pressure integral value A strong cooling spray nozzle array having a large cooling water collision pressure integral value, a maximum cooling water collision pressure integral value of the strong cooling spray nozzle array, the slow cooling spray nozzle array, and the strong cooling spray nozzle array.
  • a method for cooling a hot steel sheet characterized in that the minimum cooling water collision pressure integrated value when used simultaneously is set equal.
  • Fig. 1 is a graph showing the relationship between the amount of water and the cooling capacity in the injection region of one nozzle.
  • FIG. 2 is an explanatory diagram showing the nozzle and its injection region.
  • Figure 3 is a table showing the amount of water, nozzle load pressure, injection range, and cooling water collision pressure for eight types of nozzles.
  • FIG. 4 (a) is an explanatory diagram showing an injection region of an oval nozzle
  • FIG. 4 (b) is an explanatory diagram showing an injection region of a full cone nozzle
  • Fig. 5 is a graph showing the relationship between cooling water collision pressure and cooling capacity for the eight nozzles in Fig. 3.
  • Fig. 6 is a graph showing the relationship between cooling water collision pressure and cooling capacity in the injection region of one nozzle.
  • FIG. 7 is an explanatory diagram showing an outline of the configuration of the cooling device according to the present invention.
  • FIG. 8 is a plan view showing a nozzle arrangement between a pair of restraining rolls in the cooling device.
  • FIG. 9 is an explanatory diagram of the inside of the cooling device when only the slow cooling spray nozzle row is used.
  • FIG. 10 is an explanatory diagram of the inside of the cooling device when only the strong cooling spray nozzle row is used.
  • Fig. 11 is an explanatory diagram of the inside of the cooling device when the slow cooling spray nozzle row and the strong cooling spray nozzle row are used at the same time.
  • Fig. 12 is a graph showing the relationship between the water density, nozzle load pressure, and cooling water collision pressure integral.
  • Figure 13 is a graph showing the relationship between the cooling water volume density and the heat transfer coefficient when the steel surface temperature is 300.
  • the cooling capacity distribution in the spray injection area is investigated. As shown in Fig. 1, the water amount difference in the single nozzle injection range is within 2%. However, it was found that a cooling capacity difference of 4% or more occurred. In other words, in the case of spray cooling, the factors that contribute to the cooling capacity are not limited to the amount of water, but various factors such as droplet velocity, droplet diameter, and droplet impact angle to the cooled object are acting in a complex manner. It seems to be.
  • Fig. 1 shows cooling water from an oval nozzle (spray nozzle 1) with a flow rate of 100 L / min and a nozzle load pressure of 0.3 MPa, which is arranged at a position where the distance L from the cooling surface shown in Fig. 2 is 150 mm.
  • the figure shows the dimensionless (normalized) divided by the value.
  • cooling capacity rolled steel for general structure with a thickness of 20 mm heated to 900 as the object to be cooled. A cooling test was performed using the material (SS400), and the heat transfer coefficient measured when the steel surface temperature was 300 was used as the cooling capacity for evaluation.
  • the present inventors have found that a cooling factor that can comprehensively represent various cooling factors including these water amounts is the collision pressure of the cooling water.
  • the present inventors investigated the relationship between the cooling water collision pressure directly below the nozzle and the cooling capacity using eight types (A to H) of nozzles with different water amounts, nozzle load pressures, and injection ranges shown in the table of FIG.
  • the oval nozzle 1 has an oval shape in which the spray injection region 2 is long in the negative direction
  • the full cone nozzle 1 has a circular shape in the spray injection region 2.
  • the cooling water collision pressure and the cooling capacity regardless of the type, specification, and injection area of the nozzle, and the following relational expression (1) can be derived.
  • the heat transfer rate h [W / (m 2 ⁇ K)] (cooling capacity) can be obtained.
  • h 33300 XP ° 1 (1)
  • the heat transfer coefficient was proportional to the 0.1th power of the cooling water collision pressure.
  • the heat transfer coefficient is considered to be proportional to the ⁇ power of the cooling water collision pressure.
  • the value of ⁇ is considered to be in the range of 0.05 to 0.2.
  • the cooling capacity can be controlled continuously by continuously changing the amount of cooling water supplied in this section.
  • the nozzle load pressure is in the range of about 0.04 MPa to 0.3 MPa, and the flow rate adjustment range is about 1: 3 when expressed as a ratio of the minimum water amount to the maximum water amount.
  • the collision pressure of the cooling water is about 1:10 to 1:20 when expressed as the ratio of the collision pressure at the minimum water volume and the collision pressure at the maximum water volume.
  • a cooling control range with a wide cooling control range in which two types of spray nozzle arrays with different orifice shapes such that each cooling capacity range is continuous is arranged.
  • Propose equipment a nozzle with a large integrated value of the cooling water collision pressure within the spray injection range at a nozzle load pressure of 0.3 MPa is defined as a strong cooling spray nozzle, and a small nozzle as a slow cooling spray nozzle.
  • the integrated value of the cooling water collision pressure is the value obtained by integrating the nth power of the cooling water collision pressure in the direction of the plate in the pair of restraining rolls, and the unit is [MPa] n ⁇ m, (0. 05 ⁇ n ⁇ 0. 2) It becomes.
  • Cooling uniformity is improved. This is thought to be because strong cooling immediately after the start of cooling can shorten the cooling time of the film boiling region, which tends to be non-uniform cooling.
  • the cooling device 10 includes a plurality of constraining roll pairs 11 arranged in the horizontal direction along the plate passing direction of the hot steel plate 3, for example, as shown in FIG.
  • Each pair of constraining rolls 11 is composed of two constraining rolls arranged above and below, and the hot steel plate 3 is transported while being sandwiched between the top and bottom constraining rolls.
  • the strong cooling spray nozzle row J and the slow cooling spray nozzle row K are arranged vertically so as to sandwich the hot steel plate 3 on the conveyance path, respectively, and cooling water can be jetted onto the upper and lower surfaces of the hot steel plate 3. Further, as shown in FIG. 8, the strong cooling spray nozzles 12 and 13 and the slow cooling spray nozzles 13 are arranged in a line in the width direction orthogonal to the passing plate direction.
  • the strong cooling spray nozzles 12 and the slow cooling spray nozzles 13 are not limited to one row, and may be a plurality of rows.
  • FIG. 9 is an explanatory diagram showing a state in which only the strong cooling spray nozzle row J sprays cooling water between the adjacent restraint roll pairs 11 of the cooling device 10, and FIG. 10 shows the slow cooling spray nozzle row K
  • Fig. 11 is an explanatory diagram showing a state in which the slow cooling spray nozzle row K and the strong cooling spray nozzle row J simultaneously inject the cooling water. is there.
  • the nozzles 12 and 13 are arranged in each row J and K so that the integral value of the cooling water jet collision pressure in the plate direction is uniform in the width direction. Has been.
  • the strong cooling spray spray area where the cooling water sprayed from the strong cooling spray nozzle 12 collides with the hot steel plate 3 is indicated by 12a and sprayed from the slow cooling spray nozzle 13
  • the slow cooling spray spray area where the cooling water collides with the hot steel sheet 3 is shown by 13a.
  • the nozzles 12 and 13 of the strong cooling spray nozzle row J and the slow cooling spray nozzle row K are used within the nozzle load pressure range set by the cooling water supply pump capacity as shown in Fig. 12.
  • the nozzles 12 and 13 represent the cooling water collision pressure integral value of the slow cooling spray nozzle row K at the maximum value of the nozzle load pressure range of each slow cooling spray nozzle 13 (the maximum cooling water of the slow cooling spray nozzle row K).
  • the collision pressure integral value is selected to be the same.
  • the lower limit of the cooling water collision pressure integral value of the entire spray nozzle row K, J is the nozzle load pressure of the strong cooling spray nozzle 12.
  • the cooling water collision pressure integral value of the strong cooling spray nozzle row J at the maximum value in the range (maximum cooling water collision pressure integral value of the strong cooling spray nozzle row J) was set to be equal.
  • the strong cooling spray nozzle 12 and A continuous cooling capacity control range can be obtained when the cooling water is sprayed simultaneously using the slow cooling spray nozzle 13 and when the cooling water is sprayed using only the strong cooling spray nozzle 12.
  • the setting to make the values equal is performed, for example, by a control unit 30 (shown in FIG. 7) that controls the cooling water collision pressure of the spray nozzles 12 and 13.
  • the control unit 30 is a computer and has a program storage unit, and the cooling water collision pressure integrated value is set by executing the program P stored in the program storage unit.
  • the control unit 30 is connected to some spray nozzle rows K and J by dotted lines for convenience, but can control the cooling water collision pressure of all the spray nozzles 12 and 13.
  • the slow nozzle spray nozzle 13 is kept constant at the maximum nozzle load pressure, the strong cooling spray nozzle 12 is adjusted, and the spray nozzle row K, when the strong cooling spray nozzle 12 and the slow cooling spray nozzle 13 are used simultaneously.
  • the lower limit value of the cooling water collision pressure integral value for J as a whole was set to be equal to the maximum cooling water collision pressure integral value for the strong cooling spray nozzle array J.
  • the slow cooling spray nozzle 13 is set to the maximum nozzle load pressure, so adjust the strong cooling spray nozzle 12 to a value greater than the lower limit value.
  • the cooling capacity range of the slow cooling spray nozzle row K the cooling capacity range of the strong cooling spray nozzle row J, and the cooling capacity range when using the strong cooling spray nozzle row J and the slow cooling spray nozzle row K at the same time.
  • the water usage range does not necessarily have to be continuous.
  • discontinuous parts of water consumption As an example, there are parts where the water density is discontinuous at 0.5 and 1.5 in Figure 12.
  • the flow rate adjustment range when the present invention is applied is expressed as a ratio of the minimum water amount and the maximum water amount
  • the slow cooling spray nozzle 13 and the strong cooling spray nozzle 12 each have a control range of about 1: 3.
  • the flow rate adjustment range is 1: 9 to 1:10, which is the same range as that of the two-fluid spray described above.
  • the cooling capacity control range when this invention is applied can be added as a cooling capacity control factor by selecting nozzles with different injection ranges, so 1: 3 to 1: 5 degree. And a wide cooling capacity control range.
  • FIG. 13 shows the cooling capacity control range measured by the plate cooling test using the cooling device 10 of the present invention.
  • a test piece use a general structural rolled steel (SS400) with a thickness of 20 dragon X width 300 M1 X length 200 M and a thermocouple placed at a depth of 1 mm from the cooling surface at the center of the test piece. Then, the plate was cooled from about 900 to about 1 oo: the heat transfer coefficient was calculated from the temperature history, and the heat transfer coefficient at each water density when the surface temperature was 300 was evaluated.
  • SS400 general structural rolled steel
  • the cooling capacity control range of the slow cooling spray nozzle 13 and the strong cooling spray nozzle 12 is continuous, the cooling capacity control range of the strong cooling spray nozzle 12, and the slow cooling spray nozzle 13
  • the cooling capacity control range when using the strong cooling spray nozzle 12 simultaneously is continuous.
  • the overall cooling capacity control range has achieved a wide range of 4 Industrial applicability
  • a plurality of pairs of restraining holes for horizontally restraining the hot steel plate and the cooling water is sprayed from a plurality of rows of spray nozzles onto the upper and lower surfaces of the hot steel plate between the pair of restraining rolls.
  • a cooling system for hot steel plates that cools steel plates, a slow cooling spray nozzle row and a strong cooling spray nozzle row are arranged, the maximum cooling water collision pressure integral value of the slow cooling spray nozzle row and the minimum cooling water of the strong cooling spray nozzle row.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

本発明は、熱鋼板を水平に拘束ロールで拘束通板しながら制御冷却する装置に関し、連続的に広範囲な冷却能力制御を可能とする安価な熱鋼板の冷却装置を提供するもので、熱間圧延され、拘束ロール11対間を移送される熱鋼板3に複数列のスプレーノズルから冷却水を噴射して冷却する冷却装置において、オリフィス形状の異なる緩冷却スプレーノズル列Kと強冷却スプレーノズル列Jを有し、かつ緩冷却スプレーノズル列Kの最大冷却水衝突圧力積分値と強冷却スプレーノズル列Jの最小冷却水衝突圧力積分値が連続することで、連続的に広範囲な冷却能力制御が可能である。

Description

明 細 書 熱鋼板の冷却装置、 熱鋼板の冷却方法及びプログラム 技術分野
本発明は、 熱間圧延して得られた熱鋼板を水平に拘束ロールで拘 束通板しながら制御冷却する装置に関し、 より詳しくは、 連続的に 広範囲な冷却能力制御を可能とする熱鋼板の冷却装置、 熱鋼板の冷 却方法及びプログラムを提案するものである。 背景技術
鋼材の機械的性質、 加工性、 溶接性を向上させるために、 例えば 熱間圧延された直後の高温状態の鋼材を圧延ライ ン上で通板させな がら加速冷却し、 鋼材に所定の冷却履歴を与えることは一般的に行 われている。 鋼材の種類、 用途などによって要求される冷却能力は 異なり、 精度良くかつ冷却能力制御範囲を広範囲に選択できる冷却 装置の開発が望まれている。
冷却能力を広範囲に制御可能な冷却装置として、 2流体 (空気と 水) ノズルを用いた冷却装置がある。 しかし、 2流体ノズルは、 ノ ズル構造が複雑で目詰まり しやすいため、 装置の製造コス トおよび メンテナンス費用が高くなる。 また、 空気 · 水の圧力制御が複雑で 気水比を一定に保つことが困難であり、 この気水比によって冷却能 力が変化する。 このように、 上記冷却装置は、 正確な冷却能力制御 を行うために高度な制御と設備維持が必要であるという問題点があ る。
一方、 スプレーノズルを用いた場合はノズル水量を調整すること で冷却能力を制御することができるが、 ノズル負荷圧力が小さ くな ると多様な噴射パターンを確保することができなくなるため、 冷却 能力制御範囲は 2流体ノズルを用いた場合に比べて狭い範囲となる さ らに冷却能力を制御する方法として特開平 10— 2 1682 1号公報に 冷却装置を鋼板の移送方向に複数の冷却ブロックに区画し、 各冷却 ブロックに対する冷却水の供給を、 各冷却ブロック単位または複数 の冷却プロック単位でオンオフ制御する方法が示されている。 しか しながら、 この場合、 冷却水の供給がオンの冷却ブロックにおいて は鋼材表面付近の冷却速度が瞬間的に非常に大きくなるため、 表面 付近の硬度が上昇し、 鋼材の種類によっては必要な鋼材伸び量が確 保できなくなる。
また、 特開平 10— 29 10 19号公報には鋼板長手方向に沿って冷却水 を流して冷却する冷却装置において、 冷却水が鋼板と接触する点を 鋼板長手方向に移動させることによって、 冷却水と鋼板との接触長 さを変化させて冷却能力を制御する方法が示されている。 しかしな がら、 これは、 鋼板と冷却水の間に気体を噴射して接触点を移動さ せる方法であるため、 水に比べて密度が小さい気体では非常に大き な流量を必要とすることから、 ランニングコス 卜が高くなつてしま う。
形鋼の冷却能力制御方法として、 特開平 7 — 157826号公報に鋼材 搬送方向に配列した冷却水ノズルからの冷却水噴射ピッチを調整す ることにより冷却性能を広範囲に制御する方法が示されているが、 この場合も冷却水ノズルのピッチ調整機構が必要となるため、 冷却 装置の製造コス ト、 メンテナンス費用が高くなるという問題点があ る。 発明の開示 本発明は、 前述のような問題点を解消するためのもので、 その目 的は、 熱鋼板を水平に拘束ロールで拘束通板しながら制御冷却する 装置に関し、 連続的に広範囲な冷却能力制御を可能とする安価な熱 鋼板の冷却装置、 熱鋼板の冷却方法及びプログラムを提案すること にある。
本発明の冷却装置は、 熱鋼板を水平に拘束通板させる複数対の拘 束ロールを備え、 隣り合う拘束ロール対間で熱鋼板の上下面それぞ れに複数列のスプレーノズルから冷却水を噴射して熱鋼板を冷却す る冷却装置において、 冷却水衝突圧力の n乗を拘束ロール対間内で 通板方向に積分した値である冷却水衝突圧力積分値が小さい緩冷却 スプレーノズル列と、 前記冷却水衝突圧力積分値が大きい強冷却ス プレーノズル列を有し、 前記緩冷却スプレーノズル列の最大冷却水 衝突圧力積分値と前記強冷却スプレーノズル列の最小冷却水衝突圧 力積分値を等しく し、 その両方のスプレーノズル列の冷却水衝突圧 力積分値の変動領域を連続させることを特徴とする熱鋼板の冷却装 置である。 但し、 0. 05≤ n≤0. 2。
また、 拘束ロール対間の熱鋼板入り側に強冷却スプレーノズル列 を配置してもよく、 さ らに、 前記強冷却スプレーノズル列の最大冷 却水衝突圧力積分値と、 前記緩冷却スプレーノズル列と前記強冷却 スプレーノズル列を同時使用した場合の最小冷却水衝突圧力積分値 を等しく してもよい。
さ らに、 本発明によれば、 複数対の拘束ロールにより熱鋼板を水 平に拘束通板させ、 隣り合う拘束ロール対間で熱鋼板の上下面それ ぞれに複数列のスプレーノズルから冷却水を噴射して熱鋼板を冷却 する冷却方法において、 この冷却方法を実施する冷却装置は、 冷却 水衝突圧力の n乗を拘束ロール対間内で通板方向に積分した値であ る冷却水衝突圧力積分値が小さい緩冷却スプレーノズル列と、 前記 冷却水衝突圧力積分値が大きい強冷却スプレーノズル列とを有して おり、 前記強冷却スプレーノズル列の最大冷却水衝突圧力積分値と 、 前記緩冷却スプレーノズル列と前記強冷却スプレーノズル列を同 時使用した場合の最小冷却水衝突圧力積分値とを等しく設定するこ とを特徴とする熱鋼板の冷却方法が提供される。
但し、 0· 05≤ n≤0. 2
また、 本発明によれば、 前記熱鋼板の冷却方法をコンピュータに 実現させるためのプログラムが提供される。 図面の簡単な説明
図 1 は、 一つのノズルの噴射領域における水量と冷却能力の関係 を示すグラフである。
図 2は、 ノズルとその噴射領域を示す説明図である。
図 3は、 8種類のノズルの水量、 ノズル負荷圧力、 噴射範囲及び 冷却水衝突圧を示す表である。
図 4 ( a ) は、 オーバルノズルの噴射領域を示す説明図であり、 図 4 ( b ) は、 フルコーンノズルの噴射領域を示す説明図である。 図 5は、 図 3の 8種類のノズルについて冷却水衝突圧力と冷却能 力の関係を示すグラフである。
図 6は、 一つのノズルの噴射領域における冷却水衝突圧力と冷却 能力の関係を示すグラフである。
図 7は、 本発明にかかる冷却装置の構成の概略を示す説明図であ る。
図 8は、 冷却装置の拘束ロール対間のノズル配置を示す平面図で ある。
図 9は、 緩冷却スプレーノズル列のみを使用した場合の冷却装置 内の説明図である。 図 1 0は、 強冷却スプレーノズル列のみを使用した場合の冷却装置 内の説明図である。
図 1 1は、 緩冷却スプレーノズル列と強冷却スプレーノズル列を同 時に使用した場合の冷却装置内の説明図である。
図 1 2は、 水量密度とノズル負荷圧力および冷却水衝突圧力積分値 の関係を示すグラフである。
図 1 3は、 鋼材表面温度が 300でのときの冷却水水量密度と熱伝達 率の関係を示すグラフである。 発明を実施するための最良の形態
この発明をさらに詳しく以下に述べる。 まず、 本発明者らが、 ス プレー冷却において冷却に寄与する因子を調査、 研究した研究開発 実験結果を図に従って説明する。
静止中の被冷却媒体を単一ノズルによって冷却する場合において 、 スプレー噴射域内の冷却能力分布について調査すると、 図 1 に示 すように単一ノズル噴射範囲内の水量差が 2 %以内の位置において も、 4 %以上の冷却能力差が発生していることが判明した。 つまり 、 スプレー冷却の場合において、 冷却能力に寄与する因子は水量の みではなく、 液滴速度、 液滴径、 被冷却体への液滴衝突角度など、 さまざまな因子が複雑に作用しているものと思われる。
図 1 は、 図 2に示す冷却面との間隔 Lが 1 50mmとなる位置に配置 した流量 1 00リ ツ トル/ m i n、 ノズル負荷圧力 0. 3MP aのオーバルノズ ル (スプレーノズル 1 ) から冷却水を 300mm X 40 mmの範囲 (スプレ —噴射域 2 ) に噴射したものを 20 mm X 20 mmの範囲 M 1 , M 2 , M 3 で水量および冷却能力の平均値を測定し、 測定値の最大値で除して 無次元化 (正規化) したものを示している。 なお冷却能力について は被冷却体として 900 に加熱された板厚 20mmの一般構造用圧延鋼 材 (SS400) を用いて冷却試験を行い、 鋼材表面温度 300での時に測 定された熱伝達率を冷却能力として評価に用いた。
本発明者らは、 これらの水量を含めたさまざまな冷却因子を包括 的に表すことが可能な冷却因子が、 冷却水の衝突圧力であることを 見出した。
本発明者らは図 3 の表に示す水量、 ノズル負荷圧力および噴射域 の異なる 8種類 (A〜H) のノズルを用いて、 ノズル直下の冷却水 衝突圧力と冷却能力の関係について調査した。 なお、 図 4に示すよ うにオーバルノズル 1 は、 スプレー噴射域 2がー方向に長い長円形 になるものであり、 フルコーンノズル 1 は、 スプレー噴射域 2が円 形になるものである。 その結果図 5に示すようにノズルの種類、 仕 様、 噴射域にかかわらず冷却水衝突圧力と冷却能力が一定の関係を 有し、 下記の関係式 ( 1 ) を導く ことができる。 そして、 その関係 式 ( 1 ) に冷却水衝突圧力 P [MPa] を代入することにより、 熱伝 達率 h [W/ (m2 · K) ] (冷却能力) を求めることができる。 h = 33300 X P °· 1 ( 1 )
このことはノズル種類、 仕様つまりオリフィス形状の異なるノズ ルにおいても、 冷却水衝突圧力を測定することにより、 冷却能力が 予測可能であることを示している。
また、 本試験では熱伝達率は冷却水衝突圧力の 0. 1乗に比例する という結果になったが、 測定誤差等を考慮すると、 熱伝達率は冷却 水衝突圧力の η乗に比例すると考えられ、 ηの値は 0.05〜0.2の範 囲内であると考えられる。
前述の図 1 に用いたもの (スプレーノズル 1 ) と同一のノズル、 同一の配置において、 20mmX20niniの範囲で平均した冷却水の衝突圧 力分布を測定し、 衝突圧力測定値の最大値で除して無次元化 (正規 化) したものを 0. 1乗した値と、 冷却能力分布を併記したものを図 6 に示す。 このように関係式 ( 1 ) は単一ノズル噴射範囲内の各位 置においても適用可能であり、 冷却水の衝突圧力によって冷却能力 を予測することが可能である。
ところで、 熱鋼板を水平に拘束通板させる複数の拘束ロール対を 備えた冷却装置の場合は、 板の上面に滞留している冷却水の流れを 拘束ロール対によって遮断しているため、 冷却制御を行う最小区間 は 1拘束ロール対間となる。 通常はこの区間内で冷却水供給水量を 連続的に変化させることにより、 冷却能力を連続的に制御可能とし ている。
しかしながら、 1種類のノズルへの冷却水供給水量を連続的に変 化させる方法では、 ノズルへの供給水量を少なく し、 ノズル負荷圧 力が小さ くなると、 適正な噴射パターンを確保できずに冷却均一性 が悪化する。 このため、 実用上はノズル負荷圧力が約 0. 04MPa〜0. 3 MP aの範囲となり、 流量調整範囲は最小水量と最大水量の比で表す と、 1 : 3程度が制御可能範囲となる。 このとき冷却水の衝突圧力 は最小水量での衝突圧力と最大水量での衝突圧力の比で表すと 1 : 10〜 1 : 20程度となるので、 冷却能力制御範囲は例えば鋼材表面温 度が 300 のときの冷却能力比を関係式 ( 1 ) から算出すると 1 : 1 . 5程度が限界となる。
そこで本発明者らが導いた関係式 ( 1 ) を用いて、 それぞれの冷 却能力範囲が連続するようなオリ フィス形状の異なる 2種類のスプ レーノズル列を配置した冷却制御範囲が広範囲である冷却装置を提 案する。 ここで、 ノズル負荷圧力 0. 3MP aでのスプレー噴射範囲内の 冷却水衝突圧力積分値が大きいノズルを強冷却スプレーノズル、 小 さいノズルを緩冷却スプレーノズルと定義する。 また、 冷却水衝突 圧力積分値とは冷却水衝突圧力の n乗を拘束ロール対間内で通板方 向に積分した値であり、 単位は [ MPa] n · m、 ( 0. 05≤ n≤0. 2 ) となる。
さらに強冷却スプレーノズル列を拘束ロール対間の熱鋼板入り側 に配置することで、 緩冷却スプレーノズル列を拘束ロール対間の熱 鋼板入り側に配置した場合に比べて、 通板直交方向の冷却均一性が 向上する。 これは冷却開始直後に強冷却することにより、 不均一冷 却となりやすい膜沸騰領域の冷却時間を短くすることができるから だと考えられる。
図 7 〜 1 1を用いて本発明にかかる冷却装置 1 0の概要を述べる。 冷却装置 1 0は、 例えば図 7に示すように熱鋼板 3の通板方向に沿 つて水平方向に並べた複数の拘束ロール対 1 1を備えている。 各拘束 ロール対 1 1は、 上下に配置された 2つの拘束ロールにより構成され 、 熱鋼板 3は、 この上下の拘束ロールの間に挟み込まれた状態で搬 送される。 隣り合う各拘束ロール対 1 1の間には、 複数の強冷却スプ レーノズル 1 2からなる強冷却スプレーノズル列 J と、 複数の緩冷却 スプレーノズル 1 3からなる緩冷却スプレーノズル列 Kが通板方向に 向けてこの順で並設されている。 強冷却スプレーノズル列 J と緩冷 却スプレーノズル列 Kは、 それぞれ搬送路上の熱鋼板 3 を挟むよう に上下に配置され、 熱鋼板 3の上下面に冷却水を噴出できる。 また 、 強冷却スプレーノズル 1 2と緩冷却スプレーノズル 1 3は、 図 8に示 すようにそれぞれを通板方向に直交する幅方向に一列に並べられて いる。 なお、 強冷却スプレーノズル 1 2と緩冷却スプレーノズル 1 3は 、 1列に限られず、 複数列であってもよい。
図 9は、 冷却装置 1 0の隣り合う拘束ロール対 1 1間において、 強冷 却スプレーノズル列 Jのみが冷却水を噴射した状態を示す説明図で あり、 図 10は緩冷却スプレーノズル列 Kのみが冷却水を噴射した状 態を示す説明図であり、 図 1 1は緩冷却スプレーノズル列 Kと強冷却 スプレーノズル列 Jが同時に冷却水を噴射した状態を示す説明図で ある。 熱鋼板 3の幅方向の冷却均一性を保っために、 それぞれの列 J, Kは冷却水噴射衝突圧力の通板方向積分値が幅方向で均一とな るように各ノズル 12, 13が配置されている。 なお、 図 9〜図 1 1にお いて、 強冷却スプレーノズル 12から噴射された冷却水が熱鋼板 3 に 衝突する強冷却スプレー噴射域を 12 aで示し、 緩冷却スプレーノズ ル 13から噴射された冷却水が熱鋼板 3 に衝突する緩冷却スプレー噴 射域を 13 aで示す。
強冷却スプレーノズル列 J と緩冷却スプレーノズル列 Kのそれぞ れのノズル 12, 13は、 図 12に示されるように、 冷却水供給ポンプ能 力から設定されるノズル負荷圧力範囲内で使用される。 そして各ノ ズル 12 , 13は、 各緩冷却スプレーノズル 13のノズル負荷圧力範囲の 最大値における緩冷却スプレーノズル列 K全体の冷却水衝突圧力積 分値 (緩冷却スプレーノズル列 Kの最大冷却水衝突圧力積分値) と 、 各強冷却スプレーノズル 12のノズル負荷圧力範囲の最小値におけ る強冷却スプレーノズル列 J 全体の冷却水衝突圧力積分値 (強冷却 スプレーノズル列 J の'最小冷却水衝突圧力積分値) が同一となるよ うに選定されている。 これにより、 緩冷却スプレーノズル列 Kと強 冷却スプレーノズル列 J の冷却水衝突圧力積分値の変動領域を連続 させることができ、 この結果、 緩冷却スプレーノズル 13を用いた場 合と、 強冷却スプレーノズル 12を用いた場合とで、 連続した冷却能 力制御範囲を得ることができる。
さ らに、 強冷却スプレーノズル 12と緩冷却スプレーノズル 13を同 時に噴射する場合のスプレーノズル列 K, J 全体の冷却水衝突圧力 積分値の下限値が、 強冷却スプレーノズル 12のノズル負荷圧力範囲 の最大値における強冷却スプレーノズル列 J の冷却水衝突圧力積分 値 (強冷却スプレーノズル列 J の最大冷却水衝突圧力積分値) と等 しくなるように設定した。 これにより、 強冷却スプレーノズル 12と 緩冷却スプレーノズル 13を用いて同時に冷却水を噴射する場合と、 強冷却スプレーノズル 12のみを用いて冷却水を噴射する場合とで、 連続した冷却能力制御範囲を得ることができる。 なお、 この強冷却 スプレーノズル 12と緩冷却スプレーノズル 13を同時に噴射する場合 のスプレーノズル列 K , J全体の最小冷却水衝突圧力積分値と、 強 冷却スプレーノズル列 J の最大冷却水衝突圧力積分値を等しくする 設定は、 例えばスプレーノズル 12 , 13の冷却水衝突圧力を制御する 制御部 30 (図 7 に示す) により行われている。 例えば制御部 30は、 コンピュータであり、 プログラム格納部を有し、 そのプログラム格 納部に格納されたプログラム Pを実行することにより上記冷却水衝 突圧力積分値の設定が行われる。 なお、 図 7 において、 制御部 30は 、 便宜上点線によって一部のスプレーノズル列 K, J に接続されて いるが、 総てのスプレーノズル 12 , 13の冷却水衝突圧力を制御でき る。
図 12では、 緩冷却スプレーノズル 13を最大ノズル負荷圧力で一定 とし、 強冷却スプレーノズル 12を調節して、 強冷却スプレーノズル 12と緩冷却スプレーノズル 13が同時に使用する場合のスプレーノズ ル列 K, J 全体の冷却水衝突圧力積分値の下限値を、 強冷却スプレ 一ノズル列 J の最大冷却水衝突圧力積分値と等しくなるように設定 した。 この下限値以上に冷却能力 (熱伝達率) を上げるときは、 緩 冷却スプレーノズル 13を最大ノズル負荷圧力としているので、 強冷 却スプレーノズル 12を下限値以上の値で調節する。
ここで重要なのは、 緩冷却スプレーノズル列 Kの冷却能力範囲、 強冷却スプレーノズル列 J の冷却能力範囲、 および強冷却スプレー ノズル列 J と緩冷却スプレーノズル列 Kを同時に用いる場合の冷却 能力範囲が連続していることであり、 使用水量範囲が必ずしも連続 している必要はないという ことである。 使用水量の不連続な部分の 例としては、 図 12において 0. 5と 1. 5の部分で水量密度の不連続とな つている部分がある。
この発明を適用した場合の流量調整範囲を最小水量と最大水量の 比で表すと、 緩冷却スプレーノズル 13、 強冷却スプレーノズル 12そ れぞれが 1 : 3程度の制御範囲となるので、 全体の流量調整範囲は 1 : 9〜 1 : 10となり、 前記した 2流体スプレーの場合のそれと同 等の範囲となる。 また、 この発明を適用した場合の冷却能力制御範 囲は噴射範囲の異なるノズルを選定することにより、 冷却面積も冷 却能力制御因子として加えることができるため、 1 : 3〜 1 : 5程 度と広範囲の冷却能力制御範囲となる。
以上、 添付図面を参照しながら本発明の好適な実施の形態につい て説明したが、 本発明はかかる例に限定されない。 当業者であれば 、 特許請求の範囲に記載された思想の範疇内において、 各種の変更 例または修正例に想到し得ることは明らかであり、 それらについて も当然に本発明の技術的範囲に属するものと了解される。 実施例
図 13に本発明の冷却装儻 10により通板冷却試験を行い、 測定した 冷却能力制御範囲を示す。 試験片として厚さ 20龍 X幅 3 00 M1 X長さ 2 00Mの一般構造用圧延鋼材 (SS400) に、 試験片中央の冷却面から 深さ 1 Μの位置に熱電対を配置したものを使用し、 約 900でから約 1 oo :まで通板冷却させ、 その温度履歴から熱伝達率を算出し、 表面 温度が 300での時の各水量密度での熱伝達率で評価を行つた。
図 13で明らかなように、 緩冷却スプレーノズル 13と強冷却スプレ 一ノズル 12の冷却能力制御範囲が連続し、 また、 強冷却スプレーノ ズル 12の冷却能力制御範囲と、 緩冷却スプレーノズル 13と強冷却ス プレーノズル 12の同時使用時の冷却能力制御範囲が連続しており、 全体の冷却能力制御範囲は 4 という広い範囲を達成している 産業上の利用可能性
本発明によれば、 熱鋼板を水平に拘束通板させる複数対の拘束口 ールを備え、 拘束ロール対間で熱鋼板の上下面それぞれに複数列の スプレーノズルから冷却水を噴射して熱鋼板を冷却する熱鋼板の冷 却装置において、 緩冷却スプレーノズル列と強冷却スプレーノズル 列を配置し、 緩冷却スプレーノズル列の最大冷却水衝突圧力積分値 と強冷却スプレーノズル列の最小冷却水衝突圧力積分値が連続する ようノズルオリ フィス形状を選定することにより、 安価でなおかつ 広範囲の冷却能力制御が可能である冷却装置を提供できる。

Claims

請 求 の 範 囲
1 . 熱鋼板を水平に拘束通板させる複数対の拘束ロールを備え、 隣り合う拘束ロール対間で熱鋼板の上下面それぞれに複数列のスプ レーノズルから冷却水を噴射して熱鋼板を冷却する冷却装置におい て、
冷却水衝突圧力の n乗を拘束ロール対間内で通板方向に積分した 値である冷却水衝突圧力積分値が小さい緩冷却スプレーノズル列と 、 前記冷却水衝突圧力積分値が大きい強冷却スプレーノズル列を有 し、
前記緩冷却スプレーノズル列の最大冷却水衝突圧力積分値と前記 強冷却スプレーノズル列の最小冷却水衝突圧力積分値を等しぐし、 その両方のスプレーノズル列の冷却水衝突圧力積分値の変動領域を 連続させることを特徴とする熱鋼板の冷却装置。
但し、 0. 05≤ n≤0. 2
2 . 拘束ロール対間の熱鋼板入り側に強冷却スプレーノズルを配 置した請求項 1 に記載の熱鋼板の冷却装置。
3 . 前記強冷却スプレーノズル列の最大冷却水衝突圧力積分値と 、 前記緩冷却スプレーノズル列と前記強冷却スプレーノズル列を同 時使用した場合の最小冷却水衝突圧力積分値を等しくすることを特 徴とする請求項 1 又は 2 に記載の熱鋼板の冷却装置。
4 . 複数対の拘束ロールによって熱鋼板を水平に拘束通板させ、 隣り合う拘束ロール対間で熱鋼板の上下面それぞれに複数列のスプ レーノズルから冷却水を噴射して熱鋼板を冷却する冷却方法におい て、
この冷却方法を実施する冷却装置は、 冷却水衝突圧力の n乗を拘 束ロール対間内で通板方向に積分した値である冷却水衝突圧力積分 値が小さい緩冷却スプレーノズル列と、 前記冷却水衝突圧力積分値 が大きい強冷却スプレーノズル列とを有しており、
前記強冷却スプレーノズル列の最大冷却水衝突圧力積分値と、 前 記緩冷却スプレーノズル列と前記強冷却スプレーノズル列を同時使 用した場合の最小冷却水衝突圧力積分値とを等しく設定することを 特徴とする、 熱鋼板の冷却方法。
但し、 0. 05≤ n≤0. 2
5 . 請求項 4 に記載の熱鋼板の冷却方法をコンピュータに実現さ せるためのプログラム。
PCT/JP2007/065307 2007-07-30 2007-07-30 熱鋼板の冷却装置、熱鋼板の冷却方法及びプログラム WO2009016767A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2007/065307 WO2009016767A1 (ja) 2007-07-30 2007-07-30 熱鋼板の冷却装置、熱鋼板の冷却方法及びプログラム
US12/086,728 US7981358B2 (en) 2007-07-30 2007-07-30 Cooling apparatus of hot steel plate, cooling method of hot steel plate, and program
BRPI0702831-8A BRPI0702831A2 (pt) 2007-07-30 2007-07-30 aparelho de resfriamento de placa de aço quente, método de resfriamento de placa de aço quente, e programa
KR1020087014839A KR101039174B1 (ko) 2007-07-30 2007-07-30 열 강판의 냉각 장치, 열 강판의 냉각 방법 및 프로그램
CN2007800016417A CN101557886B (zh) 2007-07-30 2007-07-30 热钢板的冷却装置和冷却方法
EP07791980A EP2047921B1 (en) 2007-07-30 2007-07-30 Apparatus for cooling hot steel sheet, method of cooling hot steel sheet and program therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/065307 WO2009016767A1 (ja) 2007-07-30 2007-07-30 熱鋼板の冷却装置、熱鋼板の冷却方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2009016767A1 true WO2009016767A1 (ja) 2009-02-05

Family

ID=40304013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065307 WO2009016767A1 (ja) 2007-07-30 2007-07-30 熱鋼板の冷却装置、熱鋼板の冷却方法及びプログラム

Country Status (6)

Country Link
US (1) US7981358B2 (ja)
EP (1) EP2047921B1 (ja)
KR (1) KR101039174B1 (ja)
CN (1) CN101557886B (ja)
BR (1) BRPI0702831A2 (ja)
WO (1) WO2009016767A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012406B2 (en) * 2006-09-12 2011-09-06 Nippon Steel Corporation Method of arranging and setting spray cooling nozzles and hot steel plate cooling apparatus
WO2011086676A1 (ja) * 2010-01-14 2011-07-21 トヨタ自動車株式会社 ステータの冷却装置
CN102121063B (zh) * 2010-07-29 2012-09-05 边新孝 一种方扁材生产线喷射冷却系统
TWI524951B (zh) 2012-06-08 2016-03-11 新日鐵住金股份有限公司 熱軋鋼板用冷卻水之水擋裝置及水擋方法
EP2792428A1 (de) * 2013-04-15 2014-10-22 Siemens VAI Metals Technologies GmbH Kühleinrichtung mit breitenabhängiger Kühlwirkung
DE102014001146A1 (de) * 2014-01-31 2015-08-06 Loi Thermprocess Gmbh Einrichtung zum Abkühlen von platten- oder bahnförmigem Blech aus Metall und Verfahren zur Wärmebehandlung
CN105039672A (zh) * 2015-05-26 2015-11-11 安徽安簧机械股份有限公司 一种锻造转向节冷却控温系统
CN105032958B (zh) * 2015-08-24 2018-04-20 东北大学 应用道次间冷却工艺控制轧制的即时冷却系统及冷却方法
DE102017127470A1 (de) 2017-11-21 2019-05-23 Sms Group Gmbh Kühlbalken und Kühlprozess mit variabler Abkühlrate für Stahlbleche
CN111492071A (zh) * 2017-12-20 2020-08-04 杰富意钢铁株式会社 厚钢板的冷却装置及冷却方法以及厚钢板的制造设备及制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157826A (ja) 1993-12-03 1995-06-20 Kawasaki Steel Corp 熱間搬送材の冷却方法及びその装置
JP2007105792A (ja) 2005-09-16 2007-04-26 Nippon Steel Corp スプレー冷却ノズルの配置設定方法および熱鋼板冷却装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4132393A (en) * 1976-06-30 1979-01-02 Nippon Steel Corporation Apparatus for cooling hot steel plate and sheet
JP3406013B2 (ja) 1993-02-18 2003-05-12 川崎製鉄株式会社 スプレー冷却方法
JP3287254B2 (ja) 1997-01-30 2002-06-04 日本鋼管株式会社 高温鋼板の冷却方法および装置
JPH10291019A (ja) 1997-04-17 1998-11-04 Nkk Corp 高温鋼板の冷却方法および高温鋼板の冷却装置
JPH11172401A (ja) * 1997-12-05 1999-06-29 Mitsubishi Heavy Ind Ltd 帯材の冷却方法及び装置
DE19963186B4 (de) * 1999-12-27 2005-04-14 Siemens Ag Verfahren zur Steuerung und/oder Regelung der Kühlstrecke einer Warmbandstrasse zum Walzen von Metallband und zugehörige Vorrichtung
JP4321325B2 (ja) 2004-03-29 2009-08-26 Jfeスチール株式会社 連続鋳造鋳片の二次冷却方法
JP3959744B2 (ja) 2004-10-05 2007-08-15 株式会社新潟ティーエルオー 生体組織中の微量元素分析装置
JP4063813B2 (ja) 2004-10-18 2008-03-19 新日本製鐵株式会社 熱間圧延鋼板のミスト冷却装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157826A (ja) 1993-12-03 1995-06-20 Kawasaki Steel Corp 熱間搬送材の冷却方法及びその装置
JP2007105792A (ja) 2005-09-16 2007-04-26 Nippon Steel Corp スプレー冷却ノズルの配置設定方法および熱鋼板冷却装置

Also Published As

Publication number Publication date
BRPI0702831A2 (pt) 2011-03-15
EP2047921A1 (en) 2009-04-15
KR20090029178A (ko) 2009-03-20
US7981358B2 (en) 2011-07-19
EP2047921B1 (en) 2013-02-13
CN101557886B (zh) 2011-09-14
CN101557886A (zh) 2009-10-14
EP2047921A4 (en) 2010-02-17
KR101039174B1 (ko) 2011-06-03
US20100219565A1 (en) 2010-09-02

Similar Documents

Publication Publication Date Title
WO2009016767A1 (ja) 熱鋼板の冷却装置、熱鋼板の冷却方法及びプログラム
KR100935490B1 (ko) 후강판의 냉각 장치
CN102553950B (zh) 一种薄带连铸生产线轧后冷却系统及其控制方法
JP4903920B1 (ja) 鋼板の冷却装置及び鋼板の冷却方法
JP2008073695A (ja) 鋼板の冷却方法
JP4214134B2 (ja) 厚鋼板の冷却装置
CN102421544A (zh) 热轧钢板的冷却方法及冷却装置
JP5515483B2 (ja) 厚鋼板の冷却設備および冷却方法
JP4047893B2 (ja) 熱鋼板の冷却装置、熱鋼板の冷却方法及びプログラム
WO2008032473A1 (fr) Procédé de réglage de disposition de buses de refroidissement par pulvérisation et système de refroidissement de plaque en acier chaude
JP4256885B2 (ja) スプレー冷却ノズルの配置設定方法および熱鋼板冷却装置
JP4398898B2 (ja) 厚鋼板の冷却装置及び方法
RU2410177C2 (ru) Устройство и способ для охлаждения горячего стального листа
TWI731415B (zh) 熱軋鋼板之冷卻裝置及熱軋鋼板之冷卻方法
JP4091934B2 (ja) 厚鋼板の冷却方法
JP3896094B2 (ja) 厚鋼板の冷却方法および冷却装置
JP5597916B2 (ja) 鋼材の冷却設備
JP4478083B2 (ja) 鋼板の上下面均一冷却装置
JP2020025977A (ja) 熱延鋼板の冷却装置、および熱延鋼板の冷却方法
JP4377832B2 (ja) 鋼板の上下面均一冷却装置
JP5428452B2 (ja) 熱延鋼帯の下面冷却方法および下面冷却装置
JP2010284680A (ja) 厚鋼板の冷却設備およびその冷却方法
JP2009202184A (ja) 熱延鋼帯の下面冷却方法および下面冷却装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001641.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007791980

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4648/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12086728

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008124969

Country of ref document: RU

Ref document number: 1020087014839

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0702831

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20070829