WO2009009982A1 - Procédé de purification de silicium polycristallin et dispositif de solidification utilisé dans ce procédé - Google Patents

Procédé de purification de silicium polycristallin et dispositif de solidification utilisé dans ce procédé Download PDF

Info

Publication number
WO2009009982A1
WO2009009982A1 PCT/CN2008/071410 CN2008071410W WO2009009982A1 WO 2009009982 A1 WO2009009982 A1 WO 2009009982A1 CN 2008071410 W CN2008071410 W CN 2008071410W WO 2009009982 A1 WO2009009982 A1 WO 2009009982A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
coke
temperature
silicon
graphite container
Prior art date
Application number
PCT/CN2008/071410
Other languages
English (en)
Chinese (zh)
Inventor
Jirong Yang
Kunze Sun
Yongqiang Hong
Original Assignee
Jaco Solarsi Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jaco Solarsi Limited filed Critical Jaco Solarsi Limited
Publication of WO2009009982A1 publication Critical patent/WO2009009982A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a polycrystalline silicon, and more particularly to a method and apparatus for simply achieving directional solidification of a silicon liquid for purification purposes.
  • Another object of the present invention is to provide a method for purifying polycrystalline silicon which is simple in equipment, low in input, and low in energy consumption.
  • the technical solution of the present invention is based on the principle of near-balance solidification, and the coke oven which precisely controls the change of the furnace temperature with the turn-to-turn is used as a directional solidification device for the directionally slow solidification of the metal silicon to efficiently remove the metal silicon.
  • Metal elements such as Fe, Al, Ca, Ti, Ni.
  • the polycrystalline silicon directional solidification device that is, a coke oven that precisely controls the change of the furnace temperature with the turn of the furnace, is provided with a furnace body, a furnace cover, a refractory thermal insulation layer, a coke combustion chamber, a graphite container, and a temperature control system, and a furnace
  • the body is composed of an outer casing and an inner liner, and an air inlet is arranged under the outer casing, and the inner liner is arranged inside the outer casing;
  • the furnace cover is located in the furnace body Above, the furnace cover is provided with a hook, an exhaust port and a feeding port;
  • the coke combustion chamber is disposed in an inner region of the refractory thermal insulation layer, and a furnace bridge is constructed below the coke combustion chamber, and the lower side of the furnace bridge communicates with the air inlet of the side of the furnace body;
  • the container is located in the middle of the coke combustion chamber, and the graphite container is used for solidification of the silicon liquid.
  • the furnace body is preferably a square structure, and the outer casing can be welded and formed by angle iron and steel plate, and the inner lining can be insulated with an asbestos board.
  • the furnace cover may be composed of an inner layer and an outer layer, the inner layer being a steel layer and the outer layer being a refractory mud layer.
  • the refractory insulation layer may be a refractory brick insulation layer made of refractory bricks, and the coke combustion chamber may have a square shape.
  • the graphite container is preferably a square graphite container, which can be processed by graphite; or a square graphite container assembled from 5 square graphite plates, the stone blackboard around the square graphite container is connected by a toothed hoe, and between 5 square graphite plates The inner corner of the joint surface is bonded with a sintering adhesive to ensure that the long liquid of the liquid is in a liquid state and does not leak, and another square graphite plate is used as the container lid of the square graphite container.
  • the temperature control system can be equipped with a thermocouple, a signal processing module, an analog/digital conversion module, a programmable controller, a microcomputer, an output control module, and a blower.
  • the thermocouple is installed in the middle of the side of the furnace body, and the thermocouple is connected to the input end of the signal processing module; the output end of the signal processing module is connected to the input end of the analog/digital conversion module, and the analog/digital conversion module is connected to the input end of the programmable controller.
  • the output control module is connected to the output end of the programmable controller, and the output end of the output control module is connected to the blower, and the blower is located at the air inlet on both sides of the furnace body.
  • Thermocouples can be used with platinum-iridium thermocouples. Thermocouples are used to detect the temperature of the coke combustor and indirectly detect the temperature of the silicon in the graphite container.
  • the method for purifying polycrystalline silicon according to the present invention has the following steps:
  • 3N metal silicon silicon powder 100 ⁇ 250kg is put into medium frequency induction furnace to melt into silicon water to remove impurities;
  • the temperature of the graphite container of the coke oven is heated to above 1100 °C (the graphite container is red to white), and the medium frequency induction furnace heats the temperature of the metal silicon liquid to 1550 ⁇ 1800 °C, and transports the whole coke oven to the intermediate frequency induction furnace.
  • the furnace cover pour the metal silicon liquid into the graphite container, pour the silicon water to the port 15-20 cm away from the graphite container, cover the rice husk above the silicon water, and then cover the container lid of the graphite container.
  • step 1) 100 ⁇ 250kg of 3N metal silicon silicon powder is put into the medium frequency induction furnace to be melted into silicon water, and some impurities are removed by controlling the temperature of the silicon water and venting slag refining means.
  • step 3 the entire coke oven can be transported using a road or forklift.
  • step 4 transport the entire coke oven from the front of the intermediate frequency induction furnace back to the original position, install the connection thermocouple, fill the coke combustion chamber with coke, place the blower and align the air outlet with the furnace
  • a refractory sealing layer is placed on the joint between the furnace body and the furnace cover, the furnace cover is covered, and the temperature control circuit is started, so that the temperature of the coke oven is raised to 1300 ⁇ 1450 ° C, and the heat preservation time is 1 ⁇ 2h.
  • the temperature of the coke oven is lowered, and the temperature control requires a positive or negative deviation of less than 1 °C.
  • the entire coke oven described above can be transported from the intermediate frequency induction furnace to use a road or forklift.
  • the purified polycrystalline silicon can be finished as required, that is, the parts which are peeled, crushed, and concentrated to remove impurities, and the polycrystalline silicon material is obtained after inspection, and the whole process is completed.
  • the invention pours liquid silicon of 1550 ⁇ 1800 °C into a graphite container in a coke oven, and heats it outside the graphite container with coke to control the temperature to slowly decrease, so that the silicon liquid is slowly solidified from the outside to the inside. Since the segregation coefficient of metal elements such as Fe, Al, C a, Ti, Ni in silicon liquid is much smaller than 1, the metal impurities are concentrated in the post-solidified portion during the slow solidification of the metal silicon.
  • the metal silicon (that is, the solidified metal silicon) with good crystal surface is removed by finishing, and the metal silicon with good crystal surface (that is, the first solidified metal silicon) is tested by a foreign authority, and the purity reaches 99.999% or more, wherein Fe ⁇ 0.05ppm, Al ⁇ lppm, Ca, Ni, Ti and other metal elements ⁇ 0.5ppm°
  • FIG. 1 is a schematic top plan view of a polysilicon directional solidification apparatus according to an embodiment of the present invention.
  • FIG. 2 is a side view showing a structure of a polysilicon directional solidification apparatus according to an embodiment of the present invention.
  • the polysilicon directional solidification device of the present invention precisely controls the temperature of the furnace as a function of daytime
  • the coke oven has a square furnace body, a furnace cover, a refractory brick insulation layer, a coke combustion chamber, a graphite container, and a temperature control system.
  • the furnace body has a square structure, the furnace body is composed of the outer casing 1 and the inner liner 2, the outer casing 1 is welded and formed by angle iron and steel plate, the inner liner 2 is covered with an asbestos board insulation lining, and the outer casing 1 is provided with an air inlet, the inner lining 2 is disposed inside the outer casing 1.
  • the furnace cover is located directly above the furnace body, the furnace cover is composed of an inner layer and an outer layer, the inner layer is a steel layer, the outer layer is a refractory mud layer, and the furnace cover is provided with a hook, an exhaust port and a feeding port.
  • the coke combustion chamber has a square shape, and the coke combustion chamber 3 is disposed in an inner region of the refractory brick insulation layer.
  • the furnace bridge is constructed below the coke combustion chamber 3, and the lower portion of the furnace bridge communicates with the side inlet of the furnace body.
  • the square graphite container 4 is located in the middle of the coke combustion chamber 3, the square graphite container 4 is used for solidification of the silicon liquid, the square graphite container 4 can be processed by graphite, or assembled by 5 square graphite plates, and the graphite around the square graphite container
  • the slabs are connected by a toothed hoe, and the joints between the five square graphite plates are bonded to the side angles by a sintering adhesive to ensure that the long liquid between the liquids is not leaking, and another square graphite plate is used.
  • Container lid for square graphite containers is used for solidification of the silicon liquid, the square graphite container 4 can be processed by graphite, or assembled by 5 square graphite plates, and the graphite around the square graphite container
  • the slabs are connected by a toothed hoe, and the joints between the five square graphite plates are bonded to the side angles by a sintering adhesive to ensure that the long liquid between the liquids is not leaking,
  • the temperature control system includes a thermocouple, a signal processing module, an analog-to-digital conversion module, a programmable controller, a microcomputer, an output control module, and a blower to form a temperature closed loop control.
  • the thermocouple is installed in the middle of the side of the furnace body for detecting the temperature of the coke combustion chamber.
  • the blower is located at the air inlet on both sides of the furnace body. Changing the speed and air volume of the blower can adjust the temperature of the coke combustion chamber; the thermocouple is connected to the signal.
  • the output of the output control module is connected to the blower for controlling the on and off, speed and air volume of the blower.
  • the microcomputer communicates with the programmable controller to set, automatically monitor and record the temperature of the coke oven, and accurately control the process curve of the furnace temperature changing with the turn.
  • the temperature control range is between 800 and 1 600 °C.
  • thermocouple See Figure 2, Coke oven base 5, which is convenient for forklift trucks to transport coke ovens.
  • the air inlets 6 on the side of the two furnaces are used to connect the blower to deliver air to assist combustion.
  • Example 1 250 kg of 3N metal silicon powder was put into the medium frequency induction furnace, melted for about 2 hours, oxygen was passed for 10 min, and sodium silicate was added for 1 min for 20 min. The slag was slag, the silicon liquid was heated to 1550 ° C, and the temperature was preheated until the temperature was reached. 1150 ° C polycrystalline silicon directional solidification device in the graphite container 4 . Then, according to the above method, the temperature of the coke oven is raised to 1300 ° C, the holding time is 1 h, and then the temperature of the coke oven is lowered according to the speed of 2 ° C / h by adjusting the blower, and the temperature control requires positive and negative deviation.
  • the temperature of the coke oven is reduced to 900 °C to stop the blast. After the temperature is naturally lowered to 600 °C, the lid is exposed. When the temperature drops below 80 °C, the silicon ingot is taken out, and the purified ingot is obtained. Peel, crush, and remove 115kg of part of polysilicon concentrated by impurities.
  • the temperature of the coke oven is lowered to 700 °C to stop the blast. After the temperature is lowered to 560 °C, the lid is exposed. When the temperature drops below 80 °C, the silicon ingot is taken out, and the purified ingot is obtained. Peeling, crushing, and removing 63 kg of polycrystalline silicon in the concentrated portion of impurities.
  • the deviation is less than 1 °C, the temperature of the coke oven is lowered to 820 °C to stop the blast, and after the temperature is naturally lowered to 500 °C, the lid is exposed.
  • the temperature drops below 80 °C, the silicon ingot is taken out, which is purified. After being peeled, crushed, and removed, 51 kg of polycrystalline silicon was concentrated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention porte sur un procédé de purification de silicium polycristallin et sur un dispositif de solidification pour le silicium polycristallin. La présente invention porte sur un dispositif de solidification orienté pour le silicium polycristallin, qui est doté d'un corps de four, d'un couvercle, d'une couche retardatrice de flamme pour conserver la température, une chambre de combustion de coke, un récipient de graphite et un système de contrôle de température. L'invention porte également sur un procédé de purification de silicium polycristallin qui utilise un simple dispositif et possède un faible coût et une capacité d'économie d'énergie. De la poudre de silicium est placée sur le four et fondue pour donner du silicium liquide. Le récipient de graphite est disposé sur la base au fond de la chambre de combustion de coke et il est juste au-dessus du four. Le coke est placé dans la chambre de combustion de coke et recouvert par le couvercle du four, puis le récipient de graphite est chauffé à 1100 °C au-dessus de telle sorte que le silicium liquide peut être chauffé à 1550~1800 °C. Le four à coke est déplacé près du four et le liquide est versé dans le récipient et couvert au-dessus par de la balle de riz. Un thermocouple est utilisé, et la température du four à coke s'élèveà 1300~1450 °C, puis diminue à 700~900 °C; finalement le lingot de silicium peut être prélevé après que la température est descendue au-dessous de 80 °C dans l'air.
PCT/CN2008/071410 2007-07-17 2008-06-23 Procédé de purification de silicium polycristallin et dispositif de solidification utilisé dans ce procédé WO2009009982A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710009237.6 2007-07-17
CNB2007100092376A CN100570021C (zh) 2007-07-17 2007-07-17 一种多晶硅的提纯方法及其凝固装置

Publications (1)

Publication Number Publication Date
WO2009009982A1 true WO2009009982A1 (fr) 2009-01-22

Family

ID=38991171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071410 WO2009009982A1 (fr) 2007-07-17 2008-06-23 Procédé de purification de silicium polycristallin et dispositif de solidification utilisé dans ce procédé

Country Status (2)

Country Link
CN (1) CN100570021C (fr)
WO (1) WO2009009982A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102808218A (zh) * 2011-05-31 2012-12-05 浙江昱辉阳光能源有限公司 上装料多晶炉
CN107513762A (zh) * 2016-06-16 2017-12-26 陕西盛华冶化有限公司 一种工业硅电炉定向凝固反应器及浇注方法
CN111747415A (zh) * 2020-07-13 2020-10-09 昆明理工大学 一种工业硅中杂质铁的去除方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100570021C (zh) * 2007-07-17 2009-12-16 佳科太阳能硅(厦门)有限公司 一种多晶硅的提纯方法及其凝固装置
JP5178651B2 (ja) * 2009-07-09 2013-04-10 シャープ株式会社 シリコン精製装置およびシリコン精製方法
CN101775649A (zh) * 2010-03-04 2010-07-14 北京中联阳光科技有限公司 多晶硅铸锭或提纯用中频炉组合式方形加热器
CN102071456B (zh) * 2011-01-18 2012-09-05 山东舜亦新能源有限公司 一种多晶硅铸锭炉安全监控装置
CN102605424A (zh) * 2012-03-06 2012-07-25 浙江宏业新能源有限公司 多晶硅铸锭炉控制系统及控制方法
CN103395789B (zh) * 2013-08-06 2015-05-06 青岛隆盛晶硅科技有限公司 多晶硅介质熔炼后初步定向凝固工艺
CN105887190A (zh) * 2016-04-20 2016-08-24 佳科太阳能硅(龙岩)有限公司 一种提纯回收掺镓铸锭顶料的方法
CN111498852A (zh) * 2020-04-23 2020-08-07 北方民族大学 一种生产高纯工业硅的装置及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100529A (zh) * 1985-04-01 1986-08-13 复旦大学 一种定向凝固生长太阳能电池用的多晶硅锭工艺
JPH09263489A (ja) * 1996-03-28 1997-10-07 Kyocera Corp シリコン鋳造用鋳型および鋳造法
CN1192424A (zh) * 1998-01-06 1998-09-09 鞠远峰 生产金属硅的方法及该法所用的还原剂
JP2000290096A (ja) * 1999-04-08 2000-10-17 Mitsubishi Materials Corp 結晶シリコン製造装置
WO2006082085A2 (fr) * 2005-02-03 2006-08-10 Rec Scanwafer As Procede et dispositif pour realiser des blocs solidifies de façon orientee a partir de materiaux semi-conducteurs
CN101092740A (zh) * 2007-07-17 2007-12-26 佳科太阳能硅(厦门)有限公司 一种多晶硅的提纯方法及其凝固装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100529A (zh) * 1985-04-01 1986-08-13 复旦大学 一种定向凝固生长太阳能电池用的多晶硅锭工艺
JPH09263489A (ja) * 1996-03-28 1997-10-07 Kyocera Corp シリコン鋳造用鋳型および鋳造法
CN1192424A (zh) * 1998-01-06 1998-09-09 鞠远峰 生产金属硅的方法及该法所用的还原剂
JP2000290096A (ja) * 1999-04-08 2000-10-17 Mitsubishi Materials Corp 結晶シリコン製造装置
WO2006082085A2 (fr) * 2005-02-03 2006-08-10 Rec Scanwafer As Procede et dispositif pour realiser des blocs solidifies de façon orientee a partir de materiaux semi-conducteurs
CN101092740A (zh) * 2007-07-17 2007-12-26 佳科太阳能硅(厦门)有限公司 一种多晶硅的提纯方法及其凝固装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102808218A (zh) * 2011-05-31 2012-12-05 浙江昱辉阳光能源有限公司 上装料多晶炉
CN102808218B (zh) * 2011-05-31 2015-04-08 浙江昱辉阳光能源有限公司 上装料多晶炉
CN107513762A (zh) * 2016-06-16 2017-12-26 陕西盛华冶化有限公司 一种工业硅电炉定向凝固反应器及浇注方法
CN107513762B (zh) * 2016-06-16 2024-01-09 陕西盛华冶化有限公司 一种工业硅电炉定向凝固反应器及浇注方法
CN111747415A (zh) * 2020-07-13 2020-10-09 昆明理工大学 一种工业硅中杂质铁的去除方法

Also Published As

Publication number Publication date
CN101092740A (zh) 2007-12-26
CN100570021C (zh) 2009-12-16

Similar Documents

Publication Publication Date Title
WO2009009982A1 (fr) Procédé de purification de silicium polycristallin et dispositif de solidification utilisé dans ce procédé
CN101624187B (zh) 一种多晶硅生长铸锭炉
CN102066249A (zh) 通过定向凝固提纯冶金级硅以及获得光电用途的硅锭的方法和装置
JPS6161899B2 (fr)
BRPI0801205A2 (pt) método de manufatura do lingote de polisilìcio de classe solar com o pertinente aparelho de indução
US20150059526A1 (en) System for metal atomisation and method for atomising metal powder
CN109022826B (zh) 还原精炼一体化冶炼系统
CN101706205A (zh) 压流式镁合金熔炼保温炉
CN108568514A (zh) 一种控制真空感应炉熔炼夹杂物及夹渣的装置及其方法
CN106555224A (zh) 一种单晶硅的生产方法和生产设备
CN101928003B (zh) 太阳能多晶硅钟罩式ds提纯炉
CN201575697U (zh) 压流式镁合金熔炼保温炉
CN205014832U (zh) 一种电磁搅拌式铝混合炉
CN106319157B (zh) 一种rh精炼感应加热温度补偿装置及其使用方法
CN113118401A (zh) 一种有色金属半连续铸造装置及铸造方法
CN102407319A (zh) 一种用k465合金熔铸空心涡轮工作叶片的方法
CN205897841U (zh) 一种废铜冶金熔炼炉
CN107699712A (zh) 一种镁冶金炉和镁冶炼方法
CN109382488A (zh) 铜硅铝合金真空铸锭控制缩孔位置的装置
CN213317544U (zh) 一种合金加料装置
US2656278A (en) Zirconia and method of quenching same and articles made therefrom
CN216159617U (zh) 一种真空炉用无落差暗流浇铸的设备
CN108246995A (zh) 一种生产铸锭的滤渣方法及装置
CN100365136C (zh) 用于传送冶金成分改进的熔融金属的方法和设备
CN207592771U (zh) 一种生产铸锭的滤渣装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08757819

Country of ref document: EP

Kind code of ref document: A1