WO2009009948A1 - Brûleur allumé par plasma - Google Patents

Brûleur allumé par plasma Download PDF

Info

Publication number
WO2009009948A1
WO2009009948A1 PCT/CN2008/000521 CN2008000521W WO2009009948A1 WO 2009009948 A1 WO2009009948 A1 WO 2009009948A1 CN 2008000521 W CN2008000521 W CN 2008000521W WO 2009009948 A1 WO2009009948 A1 WO 2009009948A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion cylinder
pulverized coal
cylinder
plasma
stage
Prior art date
Application number
PCT/CN2008/000521
Other languages
English (en)
French (fr)
Inventor
Peng Liu
Xiaoyong Zhang
Yingjie Qian
Xinguang Wang
Wenbo Yu
Fei Cai
Yuwang Miao
Tao Niu
Yupeng Wang
Original Assignee
Yantai Longyuan Power Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNU2007201462446U external-priority patent/CN201126192Y/zh
Priority claimed from CN2007101370082A external-priority patent/CN101349435B/zh
Application filed by Yantai Longyuan Power Technology Co., Ltd. filed Critical Yantai Longyuan Power Technology Co., Ltd.
Priority to EP08714974A priority Critical patent/EP2172706A4/en
Priority to JP2010516350A priority patent/JP2010533833A/ja
Priority to AU2008278159A priority patent/AU2008278159B2/en
Publication of WO2009009948A1 publication Critical patent/WO2009009948A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q13/00Igniters not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/10Nozzle tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/20Fuel flow guiding devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2207/00Ignition devices associated with burner

Definitions

  • the present invention relates to the field of pulverized coal combustion technology, and more particularly to a plasma ignition burner. Background technique
  • Coal-fired thermal power generation is the main power generation method adopted by countries. Ignition is a major aspect of the boiler combustion process. As the boiler capacity increases, how to quickly and economically complete the boiler start-up process is a major problem that needs to be solved urgently.
  • the pre-combustion chamber is constructed by insulating the combustion tube, usually by lining a layer of refractory material in the combustion chamber. By initial heating, the wall of the pre-combustion chamber has a very high temperature, which helps (even independently). Ignite the fuel.
  • the pre-combustion chamber is long (about 2m), and the pulverized coal in the pulverized coal-containing air stream entering the pre-chamber is gasified by the action of plasma, and a large amount of combustible gas is generated, mainly CO, etc.
  • the heat released by the combustion of the combustible gas to ignite the subsequent coal powder is also a staged ignition method. However, since the temperature in the pre-combustion chamber is too high, the coal powder is easily slag in the inside, so that the application cannot be continued.
  • the plasma ignition burner includes a multi-stage combustion cylinder, such as a first-stage combustion cylinder 104, a second-stage combustion cylinder 106, a third-stage combustion cylinder 108, a fourth-stage combustion cylinder 110, etc. (according to power Size and space size, can be more than four or less than 4).
  • the pulverized coal-containing air stream (shown by the wide arrow in Fig. 1) entering from the pulverized coal air inlet 102 is divided into two passages by the partition 116 into the first stage combustion cylinder 104 and the second stage. Burning cylinder 106.
  • the plasma generator is inserted into the first stage combustion cylinder 104 along the axial direction of the multistage combustion cylinder, igniting the pulverized coal air flow entering the first stage combustion cylinder 104, and generating a primary pulverized coal flame A, which further ignites
  • the pulverized coal air flow in the secondary combustion cylinder forms a secondary pulverized coal flame B.
  • the air flow from the air inlet 1143 ⁇ 4 enters the third-stage combustion tube 108 through the third inlet 120, and supplements the oxygen of the insufficiently burned secondary coal powder flame to form the third-stage coal powder.
  • Flame C The air can also enter the fourth stage combustion cylinder through the fourth inlet 122 to further replenish oxygen.
  • the air flow flows in the space between the outer wall of the first stage combustion cylinder and the outer cylinder 118 of the burner before entering the lower stage combustion cylinder, thereby functioning to cool the combustion cylinder and prevent slagging.
  • the plasma generator is inserted along the axial direction of the combustion cylinder, and the pulverized coal air inlet and the air flow are arranged perpendicular to the combustion cylinder axis. That is, the direction of the plasma flame is perpendicular to the direction of the gas flow entering the primary combustion cylinder, and it is necessary to convert the gas flow into parallel by adding a baffle (not shown).
  • the direction of the second-stage pulverized coal entering the second-stage combustion cylinder is also perpendicular to the direction of the flame ejected from the first-stage combustion cylinder, and also needs to be made parallel by the baffles.
  • the deflector is unable to fully steer the airflow. Since the two streams are not completely parallel, the incoming gas stream will blow the plasma flame (or the previous stage flame), causing the temperature of the barrel wall to rise, causing the coal powder to slag.
  • a plasma ignition burner of the structure shown in Fig. 2 was used.
  • the pulverized coal air inlet 102, the first stage combustion cylinder 104 and the second stage combustion cylinder 106 are illustrated, and the air inlet 114 and the burner outer cylinder 118 of FIG. 1 are not shown.
  • the corresponding structure of the third-stage combustion cylinder and the fourth-stage combustion cylinder was not shown.
  • the pulverized coal-containing air stream enters the inlet 102 and is subjected to the wall of the first-stage combustion cylinder Divided into two parts, the central part enters the first stage combustion cylinder 104, and the surrounding part advances along the space between the first stage combustion cylinder and the outer cylinder (with the pulverized coal gas flow inlet 102) 202 in the second stage combustion cylinder
  • the second inlet 204 enters the second stage combustion cylinder as shown, the plasma generator is inserted in the radial direction of the burner, and the pulverized coal air stream is blown in the axial direction of the combustion cylinder, which are still vertical. Under the action of the air flow containing coal powder, the plasma flame is blown off, causing the temperature on the blow side to be over temperature, forming slagging.
  • the gist of the present invention is to rearrange the pulverized coal-containing air inlet and the plasma generator so that the direction in which the pulverized coal-containing air stream enters the first-stage combustion cylinder coincides with the direction of the plasma flame.
  • the present invention provides a plasma ignition burner comprising at least a two-stage combustion cylinder and a plasma generator for igniting pulverized coal in the first stage combustion cylinder of the at least two-stage combustion cylinder, wherein The combustion flame of the combustion tube ignites the pulverized coal in the lower combustion cylinder or is further combusted with the supplemental air in the lower combustion cylinder, characterized in that the axial direction of the plasma generator and the air flow containing pulverized coal enter the first The stages of the burner tubes are parallel and parallel to the axis of the combustion cylinder.
  • FIG. 1 is a schematic cross-sectional view of a plasma ignition burner of the prior art
  • FIG. 2 is a partial schematic cross-sectional view of another plasma ignition burner of the prior art
  • Figure 3 is a partial schematic cross-sectional view showing a first embodiment of the plasma ignition burner of the present invention
  • Figure 4 is a cross-sectional view taken along line A - A of Figure 3;
  • Figure 5 is a partial schematic cross-sectional view showing a second embodiment of the plasma ignition burner of the present invention.
  • Figure 6 is a cross-sectional view showing the structure of a prior art axial vortex swirling pulverized coal burner. detailed description
  • Fig. 3 is a fragmentary schematic cross-sectional view showing a first embodiment of the plasma ignition burner of the first aspect of the invention.
  • the figure also shows only the pulverized coal air inlet 102, the first stage combustion cylinder 104 and the second stage combustion cylinder 106 similar to those of Fig. 2. Since the multi-stage combustion tube structure has also been described above, it will not be repeated here. It should be clarified that, as described in the background section, there is no limit to the number of combustion cylinder stages into which the pulverized coal air stream enters, the combustion cylinder technology in which the air directly enters, and the total number of combustion cylinder stages, which may be based on power requirements and space size. The total number of stages varies from two to three, four or more. Depending on the application, the air flow as shown in Figure 1 may also be a pulverized coal air stream.
  • the key to the present invention is to have the insertion direction of the plasma generator 302 parallel to the direction in which the pulverized coal-containing air stream enters the first stage combustion cylinder 104 while being parallel to the axis of the combustion cylinder.
  • the air flow containing pulverized coal enters the combustion cylinder parallel to the axis of the combustion cylinder
  • the distribution of pulverized coal in the cross section of the combustion cylinder is asymmetrical due to the inertia of the pulverized coal air flow.
  • the plasma flame exiting direction of the plasma generator is consistent with the direction in which the pulverized coal air stream enters the combustion cylinder so that the plasma flame is not deflected to the combustion cylinder wall.
  • the above technical solution is to insert the elbow 308 into which the pulverized coal air flow is introduced and insert the plasma generator 302 through the elbow wall in the axial direction of the combustion cylinder.
  • the first stage combustion cylinder 104 is realized.
  • the distribution in the cross section is as uniform as possible without being biased to one side by the centrifugal force, and the curvature of the elbow 308 should be as gentle as possible.
  • centrifugal force is always unavoidable, so that the coal powder is biased to one side in the combustion cylinder.
  • the baffle 306 is arranged along the axis of the elbow 308, and the end of the baffle on the side of the combustion cylinder is parallel to the axis of the plasma generator, even extending to the The first stage combustion tube 104 is adjacent to the inlet 310.
  • both the plasma generator 302 and the end of the baffle 306 are arranged on the axis of the combustion cylinder (of course, the position of the end of the deflector 306 can also be offset from the axis of the combustion cylinder).
  • the deflector 306 not only changes the flow direction of the pulverized coal air stream, but also parallels it with the plasma flame, and also concentrates part of the pulverized coal near the central axis of the burner and the plasma flame by means of centrifugal separation, so that the center is entered.
  • the pulverized coal concentration of the cylinder is increased to facilitate ignition.
  • only one baffle can be used to simultaneously change the flow of the pulverized coal-containing air stream entering the combustion cylinders of each stage, and the structure is simple and the resistance is small.
  • the shape of the curved plate can be flat, or it can be various curved faces (an example is shown in Fig. 4) to further increase the concentration of pulverized coal entering the center cylinder.
  • the plasma generator 302 As shown in Figure 3, a significant portion of the plasma generator 302 is exposed to the pulverized coal-containing air stream.
  • the plasma generator can be protected with a wear resistant sheath (e.g., a ceramic jacket).
  • a wear resistant sheath e.g., a ceramic jacket.
  • the windward side of the jacket can be made V-shaped.
  • the burner has a stronger ignition capability than the slagging problem, in particular because: the plasma flame is at the centerline of the burner due to The center cylinder is circular, the plasma flame has the same ignition ability in all directions, the flame is uniform, and the propagation ability is strong. If the plasma flame is arranged on one side of the burner center cylinder, the plasma flame side flame is caused. The temperature is high, and the flame temperature on the other side is low. If you burn low-quality coal, you may not even catch fire.
  • the pulverized coal concentration of the burner center cylinder is dependent on the concentration of the deflector 306 in the elbow 308.
  • the concentration of the center cylinder cannot be increased indefinitely, which affects the ignition effect.
  • a second embodiment of the present invention as shown in Fig. 5 is provided.
  • Figure 5 shows only the first stage combustion cylinder 104 and the burner inner cylinder 202 corresponding to those of Figures 2 and 3.
  • first stage of combustion can 104 after the first stage of combustion can 104, more stages of combustion can be placed in the inner barrel 202 of the burner.
  • combustor inner cylinder 202 there may be corresponding components corresponding to the combustor outer cylinder 118 of Fig. 1 and the multistage combustion cylinders within the combustor outer cylinder 118 after the inner cylinder of the combustor.
  • the line supplying the pulverized coal air stream is bifurcated into two lines, a main pipe 508 and a furcation pipe 502.
  • the main pipe 508 can be coupled to the combustor inner cylinder 202 in a conventional manner or using the elbow 308 in the first embodiment.
  • the center cylinder 510 is drawn from the first stage combustion cylinder 104 to the furcation pipe 502.
  • the connection of the branching pipe 502 and the center cylinder 510 may be in a conventional manner or a second elbow 512 similar to the elbow 308 in the first embodiment, and the guide in the first embodiment may also be used.
  • the flow plate 306 (not shown in FIG. 5), the arrangement of the plasma generator 302 can also be similar to the first embodiment.
  • the concentration of pulverized coal entering the center cylinder and entering the first stage combustion cylinder can be made higher, thereby facilitating ignition.
  • a regulator can be provided at the branch of the main pipe and the furcation pipe to flexibly adjust the amount of coal powder entering the furcation pipe.
  • the combustion cylinders of each stage can be arbitrarily distributed between the center cylinder and the inner cylinder of the burner.
  • the pulverized coal of the first-stage combustion cylinder and the second-stage combustion cylinder of the plasma ignition burner can be simultaneously introduced through the center cylinder and the furcation pipe (in this case, the center cylinder and The internal structure is similar to that shown in Fig. 2 except that the burner inner cylinder of Fig. 2 becomes the center cylinder of Fig. 5, and the pulverized coal of the third stage combustion cylinder enters from the main line.
  • the pulverized coal of the first stage combustion cylinder of the plasma ignition burner is introduced through the center cylinder and the furcation tube, and the pulverized coal of the second and third stage combustion cylinders enters from the main line.
  • a switch 504 can be provided in the furcation tube.
  • the switch opens during burner ignition and low load steady combustion.
  • the switch 504 can be turned off after the ignition is completed and the burner is stabilized.
  • the switch 504 can also be designed to be combined with the regulator 506 such that the regulator acts as both a regulator and a furcation switch.
  • the gist of the embodiment is to increase the pulverized coal concentration of the first-stage combustion tube by using the furcation tube, and is not limited to ignition with a plasma generator, nor is it limited to the plasma generator.
  • the combustion cylinder is arranged axially. Therefore, various aspects of the details of the second embodiment may or may not be combined with the various details of the aspects of the first embodiment.
  • the ignition device may be an oil gun in addition to the plasma generator, the arrangement of which may be in any direction other than axial insertion, including radial insertion and oblique insertion.
  • the use of the second embodiment described above can provide a convenient, low cost retrofit means to enable the application of the present invention.
  • cyclone pulverized coal burners used in coal-fired power plants have a central cylinder, and a mixture of pulverized coal and wind is fed into the furnace from the outer layer of the central cylinder, for example by Mitsui Babcock Energy Limited.
  • the LNASB axial vortex pulverized coal pulverized coal burner (see Figure 6) developed by the company in the 1980s adopts this structure, in which the oil gun is inserted into the center cylinder 602, and the oil gun flame is ignited from the outer center of the center cylinder into the furnace. Pulverized coal.
  • the second embodiment of the present invention can solve the problem.
  • the central cylinder 602 needs to be modified into the first-stage combustion cylinder 104, the center cylinder 510, and the ignition device as shown in FIG.
  • the plasma generator 302, and the branching pipe 502 connected thereto can be added, and the pulverized coal air flow mechanism of the original burner is not required (that is, the primary air/pulverized coal shown in Fig. 6 has been Perform any modifications to the structure of the tertiary duct to maximize performance consistent with the original burner.
  • the above modification forms a three-stage burner (first stage combustion cylinder, center cylinder and outer cylinder).
  • first stage combustion cylinder may not be added, so that only the central cylinder and the outer cylinder constitute a secondary burner.
  • more burner stages can be added to the center barrel, or more burner stages can be added to the outer tube.
  • the ignition device can be any ignition device, including the oil gun and the plasma ignition device, both in the original burner and in the modified burner.
  • the preferred embodiments of the invention have been described above in connection with the drawings. It is apparent that the invention is not limited to the specific details described, and various changes and alternatives are possible, which are within the scope of the invention.

Description

Figure imgf000003_0001
技术领域
本发明涉及煤粉燃烧技术领域,尤其涉及一种等离子体点火 燃烧器。 背景技术
燃煤火力发电是目前各国所采用的主要发电方式。点火是锅 炉燃烧过程的一个主要方面。 随着锅炉容量的增大, 如何快速经 济地完成锅炉的启动过程. 是一个亟待解决的重大问题。
为取代消耗大量燃油的油点火方式,近年来发展了等离子体 点火技术。
传统的等离子点火系统为了能够点燃劣质煤, 采用了 "预燃 室"技术。 预燃室的构成是将燃烧筒进行保温, 通常是在燃烧室 内衬一层耐火材料, 通过初期的加热, 预燃室的筒壁已经有很高 的温度,有助于(甚至独立地)将燃料点燃。预燃室较长(约 2m ), 通过等离子的作用, 将进入预燃室的含煤粉空气流中的煤粉进行 了气化, 生成了大量的可燃气体, 主要有 CO等, 再利用这些可 燃气体燃烧时释放的热量去点燃后续的煤粉, 也是一种分级点火 方式, 但由于预燃室内温度过高, 煤粉很容易在里面结渣, 从而 无法继续应用。
为克服上述问题, 已经提出了一种新的分级燃烧筒结构。如 图 1所示, 该等离子体点火燃烧器包括多级燃烧筒, 例如第一级 燃烧筒 104、 第二级燃烧筒 106、 第三级燃烧筒 108、 第四级燃烧 筒 110等(根据功率大小和空间大小, 可以多于四级也可以少于 4 级) 。 从含煤粉空气流入口 102进入的含煤粉空气流(图 1中宽箭 头所示)被隔板 116分为两路分别进入笫一级燃烧筒 104和第二级 燃烧筒 106。 等离子体发生器沿着多级燃烧筒的轴向插入第一级 燃烧筒 104中, 点燃进入第一级燃烧筒 104的含煤粉空气流, 产生 一级煤粉火焰 A, 后者进一步点燃第二级燃烧筒中的含煤粉空气 流,形成二级煤粉火焰 B。同时,从空气入口 114¾入的空气流(图 1中窄箭头所示)通过第三入口 120进入第三级燃烧筒 108, 对燃 烧不充分的二级煤粉火焰补充氧气, 形成三级煤粉火焰 C。 空气 还可以通过第四入口 122进入第四级燃烧筒进一步补氧。 与此同 时, 空气流在进入下一级燃烧筒之前在前一级燃烧筒外壁和燃烧 器外筒 118之间的空间中流动, 从而起到了冷却燃烧筒的作用, 防止结渣。
在上述技术中,等离子体发生器沿着燃烧筒的轴向插入, 而 含煤粉空气流入口和空气流均垂直于燃烧筒轴线布置。 也就是, 等离子体火焰的方向与进入一级燃烧筒的气流方向相垂直, 需要 通过添加导流板(未图示)将气流转为平行。 同样, 第二级煤粉 进入第二级燃烧筒的方向与第一级燃烧筒喷出的火焰方向也是 垂直的, 也需要通过导流板使其变为平行。 但由于受到空间的限 制, 导流板无法将气流完全转向。 由于两股气流不能完全平行, 就会造成进入的气流将等离子体火焰(或前一级火焰)吹偏, 从 而使得筒壁温度升高, 使得煤粉结渣。
此外, 该技术中, 由于含煤粉空气流和空气流都是在垂直于 燃烧筒的方向进入, 所以, 在垂直于燃烧筒的横截面上, 煤粉密 度以及气流的速度等都不是均一的, 从而影响燃烧质量。
后来, 为了现场便于布置, 使用了如图 2结构的等离子体点 火燃烧器。 为简明起见, 图中仅图示了含煤粉空气流入口 102、 第一级燃烧筒 104和第二级燃烧筒 106, 而未示出与图 1中的空气 入口 114、 燃烧器外筒 118以及第三级燃烧筒、 第四级燃烧筒相应 的结构。 含煤粉空气流进入入口 102之后被第一级燃烧筒的筒壁 分为两部分, 中央部分进入第一级燃烧筒 104, 周围部分沿第一 级燃烧筒和外筒(上有含煤粉气流入口 102 ) 202之间的空间前进 而在第二级燃烧筒的第二入口 204进入第二级燃烧筒如图所示, 等离子发生器沿燃烧器的径向插入, 而含煤粉空气流沿燃烧筒的 轴向吹入, 二者仍然是垂直的。 受到含煤粉空气流的作用, 等离 子体火焰被吹偏, 造成吹偏侧的温度超温, 形成结渣。
因此,需要一种新的技术进一步防止燃烧筒壁上煤粉结渣的 问题。 发明内容
因此,本发明的一个目的是提供一种尽量緩解结渣问题的等 离子体发生器。 从以上对现有技术的描述可以看出, 等离子体发 生器插入方向 (也就是等离子体火焰的方向)与含煤粉气流的方 向之间有角度是造成结渣问题的原因之一。 因此, 针对前目的, 本发明的要点在于重新布置含煤粉空气流入口和等离子体发生 器, 使得含煤粉空气流进入第一级燃烧筒的方向和等离子体火焰 的方向一致。
此外, 为了进一步改善结渣问题, 需要使下一级的含煤粉空 气流或者空气流与前一级煤粉火焰的方向尽量一致。
为此, 本发明提供了一种等离子体点火燃烧器, 包括至少两 级燃烧筒以及用于点燃所述至少两级燃烧筒中的第一级燃烧筒 中的煤粉的等离子体发生器, 其中上一级燃烧筒的燃烧火焰点燃 下一级燃烧筒中的煤粉或者在下一级燃烧筒中与补充的空气进 一步燃烧, 其特征在于, 所述等离子体发生器的轴线方向与含煤 粉空气流进入第一级燃烧筒的方向平行, 同时平行于燃烧筒的轴 线。 附图说明
下面结合附图具体描述本发明。 附图中,相同或者对应的技 术特征在各图中使用相同的附图标记。
图 1是现有技术的一种等离子体点火燃烧器的示意剖面图; 图 2是现有技术的另一种等离子体点火燃烧器的局部示意剖 面图;
图 3是本发明的等离子体点火燃烧器的第一实施方式的局部 示意剖面图;
图 4是沿图 3中 A - A线的剖视图;
图 5是本发明的等离子体点火燃烧器的第二实施方式的局部 示意剖面图;
图 6是一种现有技术的轴向涡流旋流煤粉燃烧器的结构剖面 图。 具体实施方式
图 3图示了本发明第一方面的等离子体点火燃烧器的第一实 施方式的局部示意剖面图。 为简明起见, 该图同样只示出了与图 2类似的含煤粉空气流入口 102、 第一级燃烧筒 104和第二级燃烧 筒 106。 由于前文也已描述了多级燃烧筒结构, 在此也不再重复。 需要明确的是, 如背景技术部分所述, 含煤粉空气流进入的燃烧 筒级数、 空气直接进入的燃烧筒技术和总的燃烧筒级数都没有限 制, 可以根据功率要求和空间大小而定, 总级数从二级到三级、 四级或者更多级不等, 根据应用的场合, 如图 1所示的空气流也 可以是含煤粉空气流。
本发明的关键在于使等离子体发生器 302的插入方向与含煤 粉空气流进入第一级燃烧筒 104的方向平行, 同时平行于燃烧筒 的轴线。 这样, 含煤粉空气流平行于燃烧筒轴线进入燃烧筒, 不 会由于含煤粉空气流的惯性而使煤粉在燃烧筒的横截面上的分 布不对称。 同时, 等离子体发生器的等离子体火焰的喷出方向与 含煤粉空气流进入燃烧筒时的方向是一致的, 从而不会将等离子 体火焰吹偏到燃烧筒壁上。 以上两点有效緩解了燃烧筒壁结渣的 问题。
在图 3所示的第一实施方式中, 上述技术方案是通过提供导 入含煤粉空气流的弯管 308并将等离子体发生器 302沿燃烧筒的 轴向穿过所述弯管壁插入第一级燃烧筒 104而实现的。 为使含煤 粉空气流在 A-A截面处进入直燃烧筒时, 在截面上的分布尽量均 衡而不因为离心力偏向一侧, 弯管 308的弧度应尽量平緩。 然而, 只要有弧度, 离心力总是不可避免, 这样, 煤粉就会在燃烧筒中 偏向一侧。 为避免此问题,在一种优选实施方式中, 沿着弯管 308 的轴线布置导流板 306, 并使导流板在燃烧筒一侧的末端与等离 子体发生器轴线平行, 甚至延伸到第一级燃烧筒 104入口 310附 近。 同时, 将等离子体发生器 302和导流板 306末端都布置在燃烧 筒轴线上 (当然, 导流板 306末端的位置也可以相对于燃烧筒轴 线有一定的偏离) 。 这样, 导流板 306不仅改变了含煤粉空气流 的流向, 使其与等离子体火焰平行, 还借助于离心分离作用使部 分煤粉浓缩于燃烧器中轴线及等离子体火焰附近, 使得进入中心 筒的煤粉浓度提高, 有利于点火。 与图 1所示结构相比, 仅使用 一支导流板即可同时改变进入各级燃烧筒的含煤粉空气流的流 向, 结构简单, 阻力较小。 由于弯头内空间较大, 弯板的形状可 以是平的, 也可以是各种弯曲面 (图 4图示了一个例子) , 进一 步提高进入中心筒的煤粉浓度。
如图 3所示,等离子体发生器 302有很大一部分暴露于含煤粉 空气流中。 为了防止等离子体发生器被含煤粉空气流磨损, 可以 用防磨护套(例如陶瓷护套)保护等离子体发生器。 同时, 为了 减小阻力, 护套的迎风面可以做成 V形。
上述燃烧器与图 2的径向插入的燃烧器相比, 除了解决了结 渣问题, 该燃烧器还具有更强的点火能力, 具体来讲是因为: 等 离子体火焰处于燃烧器的中心线, 由于中心筒是圆形的, 等离子 体火焰对于各个方向的点火能力是相同的, 火焰均匀, 传播能力 强, 如果等离子体火焰布置在燃烧器中心筒的一侧, 则会造成等 离子体火焰一侧火焰温度高, 另一侧火焰温度低, 如果燃用劣质 煤, 甚至有可能不着火。
在前面描述的第一实施方式中,燃烧器中心筒的煤粉浓缩依 靠弯管 308中导流板 306的浓缩作用。 但由于受到空间的限制, 中 心筒的浓度不可能无限度的提高, 这影响了点火的效果。 为此, 作为本发明的第二方面, 提供了如图 5所示的本发明的第二实施 方式。
为简明起见, 图 5仅示出了与图 2、 图 3中对应的部件第一级 燃烧筒 104和燃烧器内筒 202。 与前文所描述的实施方案一样, 在 第一级燃烧筒 104之后, 在燃烧器内筒 202中可以布置更多级的燃 烧筒。 在燃烧器内筒 202之外, 还可以有对应于图 1中的燃烧器外 筒 118以及燃烧器内筒之后、 燃烧器外筒 118之内的多级燃烧筒的 相应部件。
在该实施方式中, 供应含煤粉空气流的管路分叉为两个管 路, 即主管 508和分叉管 502。 主管 508可以按照传统方式或者采 用第一实施方式中的弯管 308与燃烧器内筒 202连接。 同时从第一 级燃烧筒 104引出中心筒 510连接到分叉管 502。 同样, 分叉管 502 和中心筒 510的连接可以采用传统方式也可以釆用类似于第一实 施方式中的弯管 308的第二弯管 512, 并且其中也可以使用第一实 施方式中的导流板 306 (图 5中未图示) , 等离子体发生器 302的 布置方式也可以类似于第一种实施方式。 这样,通过用分叉管将含煤粉空气流直接引入中心筒, 可以 使进入中心筒从而进入第一级燃烧筒的煤粉浓度较高, 从而利于 点火。 作为优选实施方案, 需要可以调节进入的含煤粉空气流的 量,并且 /或者需要尽量提高进入等离子点火燃烧器的含煤粉空 流中的煤粉浓度。为此,可以在主管和分叉管分叉处设置调节器, 灵活调节进入分叉管的煤粉量。
作为上述方案的变型,如果燃烧器中引入含煤粉空气流的燃 烧筒具有三级或者三级以上, 则各级燃烧筒可以在中心筒和燃烧 器内筒之间任意分配。 比如, 以三级燃烧筒为例, 可以将等离子 点火燃烧器的第一级燃烧筒、 第二级燃烧筒的煤粉同时通过中心 筒和分叉管引入(在此情况下, 中心筒及其内部结构与图 2所示 是类似的, 只不过图 2中的燃烧器内筒变为图 5中的中心筒) , 第 三级燃烧筒的煤粉从主管路进入。 也可以反过来, 即等离子点火 燃烧器的第一级燃烧筒的煤粉通过中心筒和分叉管引入, 第二级 和第三级燃烧筒的煤粉从主管路进入。
在一种优选实施方式中,可以在分叉管中设置一个开关 504。 在燃烧器点火和低负荷稳燃阶段该开关打开。 点火完成、 燃烧器 燃烧稳定之后则可关闭该开关 504。 该开关 504也可以设计为与调 节器 506合并, 从而使调节器同时用作调节器和分叉管开关。
从前面对第二实施方式的说明可知,该实施方式的要点在于 利用分叉管提高第一级燃烧筒的煤粉浓度, 并不限于用等离子体 发生器点火,也不限于等离子体发生器沿燃烧筒轴向布置。因此, 第二实施方式的各方面细节可以与第一实施方式的方案的各方 面细节结合或者不结合。 具体而言, 点火装置除了等离子发生器 之外也可以是油枪, 其布置方式除了轴向插入之外也可以是任何 方向的插入, 包括径向插入和斜插入。
在上述方案中, 由于布置有分叉管, 并且装有调节器, 可 以独立地调节燃烧器中心筒内的含煤粉空气流速和煤粉浓度, 从 而达到最优的点火工况。
此外,对于已经安装在现场的某些旧式燃烧器, 利用上述第 二实施方案可以提供一种方便、 低成本的改造手段, 使其能够应 用本发明。
例如,很多燃煤火力发电厂所釆用的旋流式煤粉燃烧器带有 中心筒, 煤粉和风的混合物是从中心筒的外层送入炉膛的, 例如 由三井巴布科克能源有限公司于 20世纪 80年代开发的 LNASB轴 向涡流旋流煤粉燃烧器 (见图 6 ) 即采用此结构, 其中在中心筒 602中插入油枪, 油枪火焰点燃从中心筒外层送入炉膛的煤粉。 对于此种类型的燃烧器如果直接进行等离子点火技术的改造需 要将中心筒 602结构拆除, 这样燃烧器内部的煤粉浓度分布、 风 速等会发生很大变化, 将会影响燃烧器的原有性能。 而采用本发 明的第二实施方案即可解决此问题, 在进行等离子技术改造时, 只需要将中心筒 602改造成如图 5所示的第一级燃烧筒 104、 中心 筒 510、 点火装置(例如等离子体发生器 302 ) , 并加上与之相连 的分叉管 502即可,不需要对原有燃烧器的含煤粉空气流机构(即 图 6中所示的一次风 /煤粉一直到三次风管的结构)进行任何改造, 从而最大限度地和原燃烧器做到了性能一致。
上述的改造方式形成了一种三级燃烧器(第一级燃烧筒、 中 心筒和外筒) 。 事实上, 如果情况允许, 可以不增加第一级燃烧 筒, 从而仅由中心筒和外筒构成二级燃烧器。 此外, 在中心筒中 也可以增加更多的燃烧筒级, 或者也可以在外筒中增加更多的燃 烧筒级。
此外, 无论是在原有的燃烧器中, 还是改造后的燃烧器中, 点火装置都可以是任何点火装置, 包括油枪和等离子体点火装置 等。 上面对本发明的优选实施方式结合附图进行了描述。 显然, 本发明不局限于所描述的具体细节, 而可以有各种变化和替代方 式, 这些都在本发明的保护范围之内。

Claims

权 利 要 求
1. 一种等离子体点火燃烧器, 包括至少两级燃烧筒以及用 于点燃所述至少两级燃烧筒中的第一级燃烧筒中的煤粉的等离 子体发生器, 其中上一级燃烧筒的燃烧火焰点燃下一级燃烧筒中 的煤粉或者在下一级燃烧筒中与补充的空气进一步燃烧, 其特征 在于, 所述等离子体发生器的轴线方向与含煤粉空气流进入第一 级燃烧筒的方向平行, 同时平行于燃烧筒的轴线。
2. 如权利要求 1所述的等离子体点火燃烧器,其特征在于还包 括用于向所述至少两级燃烧筒导入含煤粉空气流的弯管, 弯管在 所述燃烧筒一侧的一端平行于燃烧筒的轴线, 所述等离子体发生 器沿燃烧筒的轴向穿过所述弯管壁插入第一级燃烧筒。
3. 如权利要求 2所述的等离子体点火燃烧器, 其特征在于还 包括沿着弯管的轴线布置的导流板, 导流板在燃烧筒一侧的末端 与等离子体发生器轴线平行。
4. 如权利要求 3所述的等离子体点火燃烧器, 其特征在于所 述导流板延伸到第一级燃烧筒的入口附近。
5. 如权利要求 4所述的等离子体点火燃烧器, 其特征在于, 所述等离子体发生器和导流板的末端都布置在燃烧筒轴线上或 者相对于燃烧筒轴线偏移预定距离。
6. 如权利要求 3到 5之一所述的等离子体点火燃烧器, 其特 征在于, 所述导流板的横截面形状是平。
7. 如权利要求 3到 5之一所述的等离子体点火燃烧器, 其特 征在于, 所述导流板的横截面形状是弯曲面。
8. 如权利要求 2到 7之一所述的等离子体点火燃烧器, 其特 征在于, 设置有防磨护套保护等离子体发生器。
9. 如权利要求 8所述的等离子体点火燃烧体, 其特征在于所 述防磨护套的迎风面为 V形。
PCT/CN2008/000521 2007-07-19 2008-03-17 Brûleur allumé par plasma WO2009009948A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08714974A EP2172706A4 (en) 2007-07-19 2008-03-17 MEDIUM PLASMA IGNITED BURNER
JP2010516350A JP2010533833A (ja) 2007-07-19 2008-03-17 プラズマ点火バーナー
AU2008278159A AU2008278159B2 (en) 2007-07-19 2008-03-17 A burner ignited by plasma

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200720146244.6 2007-07-19
CNU2007201462446U CN201126192Y (zh) 2007-07-19 2007-07-19 一种等离子体点火燃烧器
CN2007101370082A CN101349435B (zh) 2007-07-19 2007-07-19 一种等离子体点火燃烧器
CN200710137008.2 2007-07-19

Publications (1)

Publication Number Publication Date
WO2009009948A1 true WO2009009948A1 (fr) 2009-01-22

Family

ID=40259296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000521 WO2009009948A1 (fr) 2007-07-19 2008-03-17 Brûleur allumé par plasma

Country Status (7)

Country Link
US (1) US20090038518A1 (zh)
EP (1) EP2172706A4 (zh)
JP (1) JP2010533833A (zh)
KR (1) KR101206354B1 (zh)
AU (1) AU2008278159B2 (zh)
RU (1) RU2439434C2 (zh)
WO (1) WO2009009948A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105782965A (zh) * 2016-03-04 2016-07-20 烟台龙源电力技术股份有限公司 一种蓄热式燃烧器

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9857077B2 (en) 2008-12-18 2018-01-02 General Electric Technology Gmbh Coal rope distributor with replaceable wear components
US9151434B2 (en) * 2008-12-18 2015-10-06 Alstom Technology Ltd Coal rope distributor with replaceable wear components
CN101846315B (zh) * 2009-03-24 2012-07-04 烟台龙源电力技术股份有限公司 煤粉浓缩装置和包含该煤粉浓缩装置的内燃式煤粉燃烧器
US9593795B2 (en) 2009-11-02 2017-03-14 General Electric Technology Gmbh Fuel head assembly with replaceable wear components
CN101886816A (zh) * 2010-04-14 2010-11-17 中国电力工程顾问集团华北电力设计院工程有限公司 一种改进的粉煤气化炉等离子点火喷嘴及方式
CN101900330B (zh) * 2010-07-23 2012-03-28 西安交通大学 一种用于无烟煤的等离子体点火燃烧器
CN102454985B (zh) * 2010-11-01 2015-04-08 烟台龙源电力技术股份有限公司 一种煤粉燃烧器及煤粉锅炉
JP5678603B2 (ja) * 2010-11-22 2015-03-04 株式会社Ihi 微粉炭バーナ
JP2014501378A (ja) 2010-12-23 2014-01-20 アルストム テクノロジー リミテッド ボイラからのエミッションを低減するためのシステムおよび方法
RU2460941C1 (ru) * 2011-02-11 2012-09-10 Учреждение Российской Академии наук Институт теплофизики им. С.С. Кутателадзе Сибирского отделения РАН (ИТ СО РАН) Способ сжигания угля микропомола и угля обычного помола в пылеугольной горелке и устройство для его реализации
KR101050511B1 (ko) * 2011-04-26 2011-07-20 한국기계연구원 플라즈마를 이용한 다단계 연소장치
CN102305415B (zh) * 2011-10-18 2013-10-09 上海锅炉厂有限公司 一种富氧环境下的等离子无油点火系统
KR101284290B1 (ko) 2012-08-07 2013-07-08 한국기계연구원 연소장치
RU2543648C1 (ru) * 2014-01-10 2015-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Восточно-Сибирский государственный университет технологий и управления" Плазменная пылеугольная горелка
CN104879780B (zh) * 2014-02-28 2018-10-19 北京大学 一种多通道等离子体区域点火燃烧装置
RU2557969C1 (ru) * 2014-06-24 2015-07-27 Геннадий Саитянович Туктакиев Устройство для сжигания пылевидного топлива
RU2557967C1 (ru) * 2014-06-24 2015-07-27 Геннадий Саитянович Туктакиев Способ сжигания пылевидного топлива
RU2559658C1 (ru) * 2014-06-24 2015-08-10 Геннадий Саитянович Туктакиев Устройство для сжигания пылевидного топлива
JP6188658B2 (ja) * 2014-09-24 2017-08-30 三菱重工業株式会社 燃焼バーナ及びボイラ
DE102015104401A1 (de) 2015-03-24 2015-05-07 Mitsubishi Hitachi Power Systems Europe Gmbh Verfahren zur Verminderung von NOx-Emissionen bei der Verbrennung von staubförmigem Brennstoff
DE102015104406A1 (de) 2015-03-24 2015-05-21 Mitsubishi Hitachi Power Systems Europe Gmbh Verfahren zur Verminderung von NOx-Emissionen bei der Verbrennung von staubförmigem Brennstoff
DE102015111587A1 (de) * 2015-07-16 2017-01-19 Mitsubishi Hitachi Power Systems Europe Gmbh Brenner und Verfahren für eine Zündfeuerung mit staubförmigem Brennstoff
PL3130851T3 (pl) 2015-08-13 2021-08-02 General Electric Technology Gmbh Instalacja i sposób zapewnienia spalania w kotle
US10473327B2 (en) 2016-06-09 2019-11-12 General Electric Technology Gmbh System and method for increasing the concentration of pulverized fuel in a power plant
KR101922933B1 (ko) * 2016-10-11 2018-11-28 한국에너지기술연구원 플라즈마 미분탄 점화용 버너 및 이를 포함하는 석탄화력발전 기동용 플라즈마 미분탄 버너
US10711994B2 (en) 2017-01-19 2020-07-14 General Electric Technology Gmbh System, method and apparatus for solid fuel ignition
CN114440257B (zh) * 2022-01-13 2023-03-21 徐兴国 一种锅炉等离子冷却风装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862814A (en) * 1987-08-13 1989-09-05 The University Of Sydney Pulverized fuel burner
CN1059021A (zh) * 1990-07-13 1992-02-26 伊马特兰福伊马股份公司 各种燃料燃烧时减少氮的氧化物的排放的方法
US5156100A (en) * 1989-01-16 1992-10-20 Imatran Voima Oy Method and apparatus for starting the boiler of a solid-fuel fired power plant and ensuring the burning process of the fuel
CN2526693Y (zh) * 2002-03-01 2002-12-18 洛阳泛华电力工程技术有限公司 一种等离子燃煤点火装置
CN1105874C (zh) * 1995-06-01 2003-04-16 哈萨克斯坦动力研究所 劣质煤炭点燃和燃烧稳定化方法与为实行此方法而用的装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181543U (ja) * 1984-05-07 1985-12-02 三菱重工業株式会社 微粉炭バ−ナ
JPS6391433A (ja) * 1986-10-03 1988-04-22 Babcock Hitachi Kk 微粉炭・搬送気体の点火装置
JP3468984B2 (ja) * 1996-05-02 2003-11-25 三菱重工業株式会社 丸型バーナ
DE60238470D1 (de) * 2001-02-27 2011-01-13 Yantai Longyuan Power Tech Co Plasmazünder mit zusammengesetzter kathode
CN2646575Y (zh) * 2003-08-25 2004-10-06 侯桂林 煤粉锅炉直流燃烧器点火装置
WO2005103568A1 (fr) * 2004-04-26 2005-11-03 Anatoly Timofeevich Neklesa Installation d'allumage au plasma et de stabilisation de brulage d'une torche a poussiere de charbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862814A (en) * 1987-08-13 1989-09-05 The University Of Sydney Pulverized fuel burner
US5156100A (en) * 1989-01-16 1992-10-20 Imatran Voima Oy Method and apparatus for starting the boiler of a solid-fuel fired power plant and ensuring the burning process of the fuel
CN1059021A (zh) * 1990-07-13 1992-02-26 伊马特兰福伊马股份公司 各种燃料燃烧时减少氮的氧化物的排放的方法
CN1105874C (zh) * 1995-06-01 2003-04-16 哈萨克斯坦动力研究所 劣质煤炭点燃和燃烧稳定化方法与为实行此方法而用的装置
CN2526693Y (zh) * 2002-03-01 2002-12-18 洛阳泛华电力工程技术有限公司 一种等离子燃煤点火装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2172706A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105782965A (zh) * 2016-03-04 2016-07-20 烟台龙源电力技术股份有限公司 一种蓄热式燃烧器

Also Published As

Publication number Publication date
KR20090009167A (ko) 2009-01-22
RU2439434C2 (ru) 2012-01-10
KR101206354B1 (ko) 2012-11-29
AU2008278159B2 (en) 2011-10-27
EP2172706A1 (en) 2010-04-07
RU2008129851A (ru) 2010-01-27
EP2172706A4 (en) 2012-05-09
JP2010533833A (ja) 2010-10-28
AU2008278159A1 (en) 2009-01-22
US20090038518A1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
WO2009009948A1 (fr) Brûleur allumé par plasma
CN201126192Y (zh) 一种等离子体点火燃烧器
CN109073212B (zh) 燃烧器、炉,以及使用这种炉的蒸汽裂化工艺
EP2294336B1 (en) Low nox burner
BG64878B1 (bg) Горелка за твърдо гориво и метод за регулиране нагоренето, осъществявано от горелката за твърдо гориво
CN102305415A (zh) 一种富氧环境下的等离子无油点火系统
US6145450A (en) Burner assembly with air stabilizer vane
CN101349435B (zh) 一种等离子体点火燃烧器
KR100973414B1 (ko) 예열이 필요없는 미분탄 연소방식의 석탄버너
CN106568079B (zh) 用于在锅炉中提供燃烧的系统和方法
CN101349422B (zh) 一种燃烧器以及改造燃烧器的方法
CN201133645Y (zh) 一种燃烧器
JPH10318504A (ja) 大容量微粉固体燃料燃焼装置
WO2012059038A1 (zh) 一种煤粉燃烧器及煤粉锅炉
RU2642997C2 (ru) Газовая горелка с низким содержанием оксидов азота и способ сжигания топливного газа
RU50280U1 (ru) Вспомогательное горелочное устройство для плазменного воспламенения и стабилизации горения низкореакционного пылеугольного топлива основных горелок теплового агрегата
RU2300053C1 (ru) Вспомогательное горелочное устройство для плазменного воспламенения и стабилизации горения низкореакционного пылеугольного топлива основных горелок теплового агрегата
JP6732960B2 (ja) 燃料を燃焼させる方法及びボイラー
JP7262521B2 (ja) ガスバーナ、及び燃焼設備
CN215765076U (zh) 一种兰炭尾气锅炉低氮燃烧装置及燃烧系统
CN214120018U (zh) 煤粉浓淡分离装置和燃煤锅炉燃烧系统
JP5032071B2 (ja) 中心空気噴出口を有するバーナー
CN102454985B (zh) 一种煤粉燃烧器及煤粉锅炉
JP5443525B2 (ja) 中心空気ジェットバーナーにおけるnox排出削減方法
Basu et al. Design of Novel Burners

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08714974

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1771/KOLNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008714974

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010516350

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008278159

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12009501226

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2008278159

Country of ref document: AU

Date of ref document: 20080317

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE