WO2009003460A2 - Co2-umsetzer - Google Patents

Co2-umsetzer Download PDF

Info

Publication number
WO2009003460A2
WO2009003460A2 PCT/DE2008/001095 DE2008001095W WO2009003460A2 WO 2009003460 A2 WO2009003460 A2 WO 2009003460A2 DE 2008001095 W DE2008001095 W DE 2008001095W WO 2009003460 A2 WO2009003460 A2 WO 2009003460A2
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalysis
photolysis
carbon dioxide
gas
reactor
Prior art date
Application number
PCT/DE2008/001095
Other languages
English (en)
French (fr)
Other versions
WO2009003460A3 (de
WO2009003460A4 (de
Inventor
Georg Josef Uphoff
Heinrich Josef Uphoff
Original Assignee
Georg Fritzmeier Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Fritzmeier Gmbh & Co. Kg filed Critical Georg Fritzmeier Gmbh & Co. Kg
Priority to DE112008002413T priority Critical patent/DE112008002413A5/de
Publication of WO2009003460A2 publication Critical patent/WO2009003460A2/de
Publication of WO2009003460A3 publication Critical patent/WO2009003460A3/de
Publication of WO2009003460A4 publication Critical patent/WO2009003460A4/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/04Bioreactors or fermenters combined with combustion devices or plants, e.g. for carbon dioxide removal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/95Specific microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Definitions

  • the invention relates to a device for converting carbon dioxide and a reactor for photolysis or photocatalysis.
  • Carbon dioxide accumulates in large quantities in all combustion and fermentation processes; In particular, in biogas it constitutes a major non-utilisable and climate-damaging component. Carbon dioxide emissions are therefore either strictly regulated by limits and tradable or non-tradable emission rights worldwide or taxed as in Norway.
  • Potential CO 2 reservoirs include geological fermations such as oil and gas deposits, saline aquifers, coal seams, or deep-sea deposits.
  • a disadvantage of this method is that the conversion rates are still very low and therefore a large part of the introduced CO 2 is still excreted as a waste product again.
  • Object of the present invention is therefore to solve the problem of hitherto uneconomical processing of carbonaceous gases, in particular carbon dioxide.
  • a gas separation process is used on catalytic semiconducting surfaces, wherein the charge energy required for this purpose comes from simultaneously occurring biological processes.
  • the gas is passed to a photocatalyst reactor, which converts carbon dioxide in a biological dark reaction.
  • Carbon dioxide-containing gas is also produced in all fermentation processes; Biogas, for example, contains up to 45% carbon dioxide, which until now has only served to increase the knock resistance of the biogas, but otherwise poses a major emission problem.
  • the process according to the invention for the rapid processing of carbon dioxide can also be used for processes with high carbon dioxide emissions be run much more efficiently, ie without having to go through a process several times to achieve a slight reduction in carbon dioxide content.
  • a C0 2 -containing gas By means of the method according to the invention 30% to 50% of the carbon content of a C0 2 -containing gas can be converted into fuels.
  • carbonaceous gas of any quality in particular with a high content of carbon dioxide gas, can be converted into first-generation biofuels, such as butanol, ethanol, usable methane, high-purity hydrogen or short-chain fatty acids.
  • first-generation biofuels such as butanol, ethanol, usable methane, high-purity hydrogen or short-chain fatty acids.
  • metal chlorides as a catalyst, there is the proven possibility of producing basic chemicals such as HMF (5-hydroxymethylfurfural), a precursor to second generation fuels such as DMF. It can be biophysically ensured that disturbing substances, such as organosilicates, meet the requirements of fuel cells and engine manufacturers.
  • the single FIGURE shows a schematic representation of the process according to the invention for the reduction of carbon dioxide.
  • the carbon-containing gas such as a biogas or combustion exhaust gases
  • a self-cleaning ceramic honeycomb reactor 2 The toxic gases such as NO ⁇ are synthesized into harmless compounds even at low temperatures.
  • the honeycomb reactor 2 has a catalytically active surface for preventing a potential drop in the reactor.
  • the required charge energy is slowly and continuously provided by biological systems in situ.
  • the pre-catalyzed by the honeycomb reactor 2 gas mixture or gas is fed via the line 1.1 to the reactor for photolysis and photocatalysis 4.
  • Contained in the reactor for photolysis and photocatalysis 4 is a semiconductive coating of, for example, diamond, magnetite and titanium dioxide. By means of a technical biological dark reaction, carbon dioxide or the carbon-containing gas is converted.
  • additional application of a weak current leads to charge separations, which are preferably carried out at high speed, with the formation of microbiologically galvanic elements upon interruption of the applied weak current, which form a voltage. The unneeded nitrogen oxides are significantly reduced in photocatalysis.
  • a microbiotic mixture 6 which contains light-emitting, in particular phosphorescent and luminescent microorganisms.
  • the microbiotic mixture may contain 6 photochromic, especially optionally photochromic microorganisms.
  • the mixture may contain 6 organisms that form hydrogen and ethane.
  • magnetites and / or magnetotactic microorganisms may be included in the mixture.
  • the mixture described above also provides cell and cell membrane protecting molecules promptly in the required concentration.
  • the microorganism strains used can preferably be combined with other strains and / or functional microorganisms.
  • the produced and passed through in the reactor for photocatalyst 4 gases 1.5 can be bound carbon monoxide, sulfur sulfide and nitrogen oxide, and carbon dioxide, hydrogen, ethane, methane singly or in combination, also called synthesis or product gas are passed into a gas fermenter 8 and there for example, converted to ethanol, butanol, HMF, DMF and hydrogen. This is done either via a biological water gas shift reaction [CO + H 2 O ⁇ CO 2 + H 2 ], wherein the resulting carbon dioxide is fed back to the photocatalyst reactor 4.
  • the hydrogen is highly pure and can be fed directly to the fuel cell.
  • the second important reaction is [6CO + 3H 2 O ⁇ C 2 H 5 OH + 4CO 2 ] to ethanol and carbon dioxide.
  • carbon dioxide can be consumed in the ethane production by the following conversion 6H 2 + 2CO 2 -> C 2 H 5 OH + 3H 2 O.
  • gas fermenter 8 the following biological strains of microorganisms are contained, for example, individually or in combination for the biological water gas shift reaction:
  • Carboxydothermus hydrogenoformans Carboxydibrachium pacificus Carboxydocella sporoproducens Carboxydocella thermoautotrophica Thermincola carboxydiphila Thermincola ferriacetica Thermolithobacter carboxydivorans Thermosinus carboxydivorans Desulfotomaculum kuznetsovii Desulfotomaculum thermobenzoicum subsp.thermosyntrophicum
  • microorganisms can be combined by further microorganisms and / or functional nanoparticles, such as titanium dioxide.
  • a mixture of light-emitting and phototropic microorganisms can also be supplied.
  • the gas fermenter 8 is also preferably added a mixture of microorganisms containing phosphorescent and luminescent microorganisms, wherein the light emission has a proportion in the UV spectrum. Due to the UV light emitted by the microorganisms, and optionally contained titanium dioxide, the mixture of microorganisms (1.6) acts on antibiotics and antimycotia to disruptive and inhibiting bacteria. Furthermore, magnetites and / or magnetotactic microorganisms are preferably contained in the mixture.
  • the gas fermentation products produced are passed via a line 2.1 in a settling fermenter 10.
  • a submerged membrane 12 which acts as a separation membrane, can be deducted at the high purity hydrogen and / or ethanol / water.
  • the permeate 14 can be passed into a vacuum distillation 16, in which the absolution takes place to about 95% ethanol, which in turn can be cleaned over a molecular sieve 18 for example. This results in a hydrophobic ethanol 20 with 99.5%.
  • Non-carbon monoxide and reactive oxygen-cleaved carbon dioxide compounds can be converted to larger carbon compounds via fixed autotrophic biological processes.
  • the energy required for the process according to the invention for reducing carbon dioxide by reuse of the gas / carbon fraction with the aid of reactive oxygen can largely be provided from the downstream fermentation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)
  • Catalysts (AREA)

Abstract

Offenbart wird ein Verfahren zum Umsetzen von Kohlendioxid in Gasen, insbesondere in Bio- oder Verbrennungsabgasen, mit den Schritten - Vorkatalysieren des Gasgemischs in einem Reaktor (2), - Photolyse oder Photokatalyse des vorkatalysierten Gemisches (4) und - Zuführen des nach der Photolyse oder Photokatalyse vorliegenden Gasgemisches zu einem Gasfermenter (8) und Umsetzen zu Produkten, wie beispielsweise Ethanol, Butanol, HMF, DMF, H2 oder dergleichen.

Description

CO2-Umsetzer
Die Erfindung betrifft eine Vorrichtung zum Umsetzen von Kohlendioxid und einen Reaktor zur Photolyse oder Photokatalyse.
Die Reduktion des Kohlendioxidausstoßes ist ein anerkanntes Klimaziel. Zugleich herrscht weltweit ein großer Bedarf an Treibstoffen, die alternativ aus Biomasse als auch aus fossilen Treibstoffen erzeugt werden.
Der vorhandene Ausstoß von Kohlendioxid wird zumeist als schädliches Klimagas wahrgenommen und nicht mehr genutzt. Kohlendioxid fällt in großen Mengen bei allen Verbrennungs- und Gärprozessen an; er stellt insbesondere im Biogas einen großen nicht nutzbaren und als klimaschädlich deklarierten Bestandteil dar. Der Kohlendioxidausstoß wird deshalb entweder streng über Grenzwerte und handelbare bzw. nicht handelbare Emissionsrechte weltweit reguliert bzw. wie in Norwegen besteuert.
Um die wirtschaftlichen Belastungen, die mit dieser Regulierung verbunden sind, zu vermeiden, werden bereits Kraftwerke geplant, die ohne Emissionen von Kohlendioxid auskommen, bei denen Kohlendioxid abgetrennt und eingelagert wird. Die Abtrennung kann mit unterschiedlichen Verfahren erfolgen, z.B. nach einer Kohlevergasung, einer Verbrennung in Sauerstoffatmosphäre oder einer Cθ2-Wäsche des Abgases.
Als mögliche CO2 Speicher gelten geologische Fermationen wie Erdöl- /Erdgaslagerstätten, salzhaltige Grundwasserleiter, Kohleflöze, oder Lagerstätten in der Tiefsee.
Nachteilig an dieser CO2-Sequestrierung ist jedoch, dass zum Einen die Lagerung noch ungeklärt ist und damit teuer und aufwendig ist und zum Anderen die Leistung solcher CO2-Sequestrierungsanlagen noch zu gering ist. Eine weitere Möglichkeit der Reduktion von Kohlenmonoxid ist seine Umwandlung. Aus dem Stand der Technik, beispielsweise der WO 02/08438, ist bekannt, mit Hilfe von Mikroorganismen Kohlenmonoxid, Kohlendioxid und Wasserstoff in Essigsäure und Ethanol zu wandeln.
Nachteilig an diesem Verfahren ist jedoch, dass die Umsetzungsraten noch sehr gering sind und deshalb ein Großteil des eingebrachten CO2 noch als Abfallprodukt wieder ausgeschieden wird.
Aufgabe vorliegender Erfindung ist es deshalb, das Problem der bis dato unwirtschaftlichen Verarbeitung von kohlenstoffhaltigen Gasen, insbesondere Kohlendioxid, zu lösen.
Diese Aufgabe wird durch ein Verfahren und eine Vorrichtung nach den Patentansprüchen gelöst.
In den meisten Verbrennungs- und Vergasungsprozessen entstehen kohlenstoffhaltige Gase, insbesondere Kohlendioxid zu einem großen Anteil. Mittels der erfindungsgemäßen Vorrichtung des erfindungsgemäßen Verfahrens können diese Gase genutzt, und beispielsweise zu Ethanol umgewandelt werden.
Dazu wird ein Gasstofftrennverfahren an katalytischen halbleitenden Oberflächen verwendet, wobei die dazu benötigte Ladungsenergie aus gleichzeitig ablaufenden biologischen Prozessen stammt. Nach der Gasstofftrennung wird das Gas einem Reaktor zur Photokatalyse zugeleitet, der in einer biologischen Dunkelreaktion Kohlendioxid umsetzt.
Kohlendioxidhaltiges Gas entsteht auch bei allen Fermentationsverfahren; so enthält Biogas bis zu 45 % Kohlendioxid, das bis jetzt nur dazu dient, die Klopffestigkeit des Biogases zu erhöhen, aber ansonsten ein großes Emissionsproblem darstellt.
Mit dem erfindungsgemäßen Verfahren zur schnellen Verarbeitung des Kohlendioxids können auch solche Prozesse mit großem Kohlendioxidausstoß wesentlich effizienter gefahren werden, d.h. ohne mehrmaliges Durchlaufen eines Prozesses um eine geringfügige Verringerung des Kohlendioxidgehalts zu erreichen.
Mittels des erfindungsgemäßen Verfahrens können 30% bis 50% des Kohlenstoffanteiles eines C02-haltigen Gases zu Treibstoffen umgewandelt werden. Dabei kann insbesondere kohlenstoffhaltiges Gas jeder Qualität, insbesondere mit hohem Gehalt an Kohlendioxidgas, in Biotreibstoffe der ersten Generation wie Butanol, Ethanol, nutzbares Methan, hochreiner Wasserstoff oder kurzkettige Fettsäuren umgewandelt werden. In weiteren Schritten besteht durch Einsatz von Metallchloriden als Katalysator die nachgewiesene Möglichkeit der Herstellung von Basischemikalien wie HMF (5-Hydroxymethylfurfural), ein Vorprodukt für Treibstoffe der 2. Generation wie DMF. Dabei kann biophysikalisch sichergestellt werden, dass störende Stoffe, wie Organosilikate, den Anforderungen der Brennstoffzellen und Motorenhersteller entsprechen. Begleitendes Kohlenmonoxid, Stickoxid und Schwefelsulfid aus den Verbrennungs- und Biogasen, die für jetzige bio- und metallkatalytische Systeme ab minimalen Konzentrationen toxisch sind, können entweder in unschädliche Verbindungen synthetisiert werden, oder werden durch temporäre Bindung und späteren Umbau voll dem System wieder zur Verfügung gestellt.
Im Folgenden wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels näher beschrieben.
Die einzige Figur zeigt eine schematische Darstellung des erfindungsgemäßen Verfahrens zur Reduktion von Kohlendioxid.
Für das Gasstofftrennen des erfindungsgemäßen Verfahrens wird das kohlenstoffhaltige Gas, wie beispielsweise ein Biogas oder Verbrennungsabgase über einen selbstreinigenden keramischen Wabenreaktor 2 geleitet. Die toxisch wirkenden Gase wie NOχ werden dabei in unschädliche Verbindungen auch bei niedrigen Temperaturen synthetisiert. Der Wabenreaktor 2 hat eine katalytisch aktive Oberfläche zur Verhinderung eines Potentialabfalls im Reaktor. Die dazu benötigte Ladungsenergie wird langsam und kontinuierlich von biologischen Systemen in-situ bereitgestellt. Das durch den Wabenreaktor 2 vorkatalysierte Gasgemisch oder Gas wird über die Leitung 1.1 dem Reaktor zur Photolyse und Photokatalyse 4 zugeleitet.
Enthalten im Reaktor zur Photolyse und Photokatalyse 4 ist eine halbleitende Beschichtung aus beispielsweise Diamant-, Magnetit- und Titandioxid. Durch eine technischbiologische Dunkelreaktion wird Kohlendioxid bzw. das kohlenstoffhaltige Gas umgesetzt. Im Reaktor zur Photolyse und Photokatalyse kommt es durch zusätzliches Anlegen eines schwachen Stroms zu Ladungstrennungen, die vorzugsweise mit hoher Geschwindigkeit vollzogen werden, wobei sich mikrobiologisch galvanische Elemente, bei Unterbrechung des angelegten schwachen Stroms, ausbilden, die eine Spannung ausbilden. Die nicht benötigten Stickoxide werden bei der Photokatalyse deutlich reduziert.
Zudem wird vorzugsweise eine mikrobiotische Mischung 6 zugegeben, die lichtemittierende, insbesondere phosphorisierende und lumineszierende Mikroorganismen enthält. Darüber hinaus kann die mikrobiotische Mischung 6 phototrope, insbesondere fakultativ phototrope Mikroorganismen enthalten. Zusätzlich kann die Mischung 6 Organismen enthalten, die Wasserstoff und Ethan bilden. Weiterhin können Magnetite und/oder magnetotaktische Mikroorganismen in der Mischung enthalten sein. Die oben beschriebene Mischung stellt zudem Zell- und Zellmembranschützende Moleküle zeitnah in der benötigten Konzentration bereit. Die eingesetzten Mikroorganismenstämme können vorzugsweise mit weiteren Stämmen und/oder funktionalen Mikroorganismen kombiniert werden.
Die im Reaktor für Photokatalyse 4 erzeugten und durchgeleiteten Gase 1.5, diese können gebundenes Kohlenmonoxid, Schwefelsulfid und Stickoxid, sowie Kohlendioxid, Wasserstoff, Ethan, Methan einzeln oder in Kombination sein, auch Synthese- oder Produktgas genannt, werden in einen Gasfermenter 8 geleitet und dort beispielsweise zu Ethanol, Butanol, HMF, DMF und Wasserstoff umgesetzt. Dieses erfolgt entweder über eine biologische Wassergas-Shift-Reaktion [CO + H2O → CO2 + H2], wobei das entstehende Kohlendioxid wieder dem Photokatalysereaktor 4 zugeleitet wird. Der Wasserstoff ist hochrein und kann den Brennstoffzellen direkt zugeleitet werden. Die zweite wichtige Reaktion ist [6CO+ 3H2O → C2H5OH +4CO2] zu Ethanol und Kohlendioxid. Zudem kann Kohlendioxid bei der Ethanproduktion verbraucht werden durch folgende Umwandlung 6H2 + 2CO2 -> C2H5OH + 3H2O.
Im Gasfermenter 8 sind für die biologische Wassergas-Shift-Reaktion beispielweise einzeln oder in Kombination folgende Stämme von Mikroorganismen enthalten:
Clostridium autoethanogenum Clostridium ljungdahlii Clostridium carboxidivorans Oxobacter pfennigii Peptostreptococcus productus Acetobacterium woodii Eubacterium limosum Butyribacterium methylotrophicum Rubrivivax gelatinosus Rhodopseudomonas palustris Rhodospirillum rubrum Citrobacter sp Methanosarcina barkeri Methanosarcina acetivorans Thermophilic bacteria Moorella thermoacetica Moorella thermoautotrophica Moorella strain
Carboxydothermus hydrogenoformans Carboxydibrachium pacificus Carboxydocella sporoproducens Carboxydocella thermoautotrophica Thermincola carboxydiphila Thermincola ferriacetica Thermolithobacter carboxydivorans Thermosinus carboxydivorans Desulfotomaculum kuznetsovii Desulfotomaculum thermobenzoicum subsp.thermosyntrophicum
Desulfotomaculum carboxydivorans
Thermophilic archaea
Methanothermobacterthermoautotrophicus
Thermococcus strain
Archaeoglobus fulgidus
Die genannten Mikroorganismen können durch weitere Mikroorganismen und/oder funktionalen Nanopartikeln, wie Titandioxid, kombiniert werden. Insbesondere kann ebenfalls eine Mischung aus lichtemittierenden und phototropen Mikroorganismen zugeführt werden.
Dem Gasfermenter 8 wird vorzugsweise zudem eine Mischung von Mikroorganismen zugegeben, die phosphorisierenden und luminisierenden Mikroorganismen enthalten, wobei die Lichtemission einen Anteil im UV-Spektrum hat. Durch das von den Mikroorganismen abgegebene UV-Licht, und gegebenenfalls enthaltenes Titandioxid wirkt die Mischung von Mikroorganismen (1.6) auf störende und hemmende Keime antibiotisch und antimykotisch. Weiter sind vorzugsweise Magnetite und/oder magnetotaktische Mikroorganismen in der Mischung enthalten.
Die erzeugten Produkte der Gasfermentation werden über eine Leitung 2.1 in einem Absetzfermenter 10 geleitet. In diesem befindet sich eine getauchte Membran 12, die als Trennmembran wirkt, an der hochreiner Wasserstoff und/oder Ethanol/Wasser abgezogen werden kann.
Aus dem Absetzfermenter 10 wird Wasserstoff über eine Leitung 4.3 abgegeben. Dieser kann in den Gasfermenter 8 zur Unterstützung der Fermentation zurückgeführt oder als hochreiner Wasserstoff für den Betrieb einer Brennstoffzelle aus dem System entnommen werden. Reststoffe können in den Gasfermenter 8 rückgeführt oder aus dem System entnommen werden. Zugleich zum vorhergehenden Schritt oder alternativ kann ein Ethanol- Wassergemisch 14 (Permeat), das vorzugweise 65 - 86 % Prozent Ethanol enthält abgezogen werden, das einer weiteren Ethanolaufbereitung 16 zugeführt werden kann.
Bespielweise kann das Permeat 14 in eine Vakuumdestillation 16 geführt werden, in der die Absolution zu ca. 95 % Ethanol erfolgt, das wiederum bespielsweise über ein Molekularsieb 18 aufgereinigt werden kann. Damit ergibt sich ein hydrophobes Ethanol 20 mit 99,5 %.
Überschüssiges Ethanol 22 kann verdünnt wieder in die Vakuumdestillation 16 rückgeführt werden.
Nicht zu Kohlenmonoxid und reaktivem Sauerstoff aufgespaltete Kohlendioxidverbindung können über fixierende autotrope biologische Prozesse zu größeren Kohlenstoffverbindungen umgebaut werden.
Die für das erfindungsgemäße Verfahren zur Kohlendioxidreduktion durch Wiederverwendung des Gas-Kohlenstoffanteiles mithilfe reaktiven Sauerstoffes benötigte Energie kann größtenteils aus der nachgeschalteten Fermentation bereitgestellt werden.

Claims

Patentansprüche
1. Verfahren zum Umsetzen von Kohlendioxid in Gasen, insbesondere in Bio- oder Verbrennungsabgasen, mit den Schritten
- Vorkatalysieren des Gasgemischs in einem Reaktor (2),
- Photolyse oder Photokatalyse des vorkatalysierten Gemisches (4) und
- Zuführen des nach der Photolyse oder Photokatalyse vorliegenden Gasgemisches zu einem Gasfermenter (8) und Umsetzen zu Produkten, wie beispielsweise Ethanol, Butanol, HMF, DMF, H2 oder dergleichen.
2. Verfahren nach Patentanspruch 1 , wobei die Photolyse oder Photokatalyse unter Zugabe einer Mischung von phosphorisierenden und lumineszierenden Mikroorganismen erfolgt.
3. Verfahren nach Patentanspruch 1 oder 2, wobei die Photolyse oder Photokatalyse in einem Magnetfeld mit extern angeregter Entladung erfolgt.
4. Verfahren nach einem der vorhergehenden Patentansprüche, wobei während des Prozesses entstehendes Kohlendioxid wieder zurück zur Vorkatalyse oder zur Photolyse bzw. Photokatalyse zurückgeführt wird.
5. Verfahren nach Patentanspruch 3 oder 4, wobei die benötigte Ladungsenergie in situ über biologische Systeme bereitgestellt wird.
6. Reaktor für die Photolyse oder Photokatalyse mit katalytisch wirksamen Oberflächen und mit einer Einrichtung zum Aufbau einer elektrochemischen Doppelschicht.
7. Reaktor nach Patentanspruch 6, wobei die Einrichtung derart ausgebildet ist, dass sie ein oberflächennahes Magnetfeld mit extern angeregter schlagartiger Entladung bereitstellt.
PCT/DE2008/001095 2007-07-04 2008-07-04 Co2-umsetzer WO2009003460A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112008002413T DE112008002413A5 (de) 2007-07-04 2008-07-04 CO2-Umsetzer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE102007000911.0 2007-07-04
DE102007000911 2007-07-04
DE102007000984.6 2007-11-12
DE102007000984 2007-11-12
DE102008027985.4 2008-06-12
DE102008027985 2008-06-12

Publications (3)

Publication Number Publication Date
WO2009003460A2 true WO2009003460A2 (de) 2009-01-08
WO2009003460A3 WO2009003460A3 (de) 2009-07-09
WO2009003460A4 WO2009003460A4 (de) 2009-09-17

Family

ID=40226565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/001095 WO2009003460A2 (de) 2007-07-04 2008-07-04 Co2-umsetzer

Country Status (2)

Country Link
DE (1) DE112008002413A5 (de)
WO (1) WO2009003460A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3048366A1 (fr) * 2016-03-02 2017-09-08 Air Liquide Procede de traitement d'un flux de biogaz

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111974153A (zh) * 2020-07-31 2020-11-24 苏州巨联环保有限公司 一种多种类有机废气的串联处理装置及废气处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4444191C1 (de) * 1994-12-12 1996-06-05 Melkonian Ezekian Michael Prof Verfahren zur Abreicherung oder Entfernung von Kohlendioxid aus Abgasen
EP0878533A2 (de) * 1997-05-14 1998-11-18 Energy of Nature - Projektgesellschaft für umwelttechnische Anlagensysteme Leipzig mbH Verfahren und Vorrichtung zur photobiologischen Trennung von kohlendioxid- und methanhaltigen Gasgemischen
DE19721243A1 (de) * 1997-05-14 1998-11-19 Ufz Leipzighalle Gmbh Anlage zur Erzeugung und Nutzung von Biogas sowie Verfahren zur biotechnologischen Herstellung von Poly-beta-hydroxybuttersäure
US20020072109A1 (en) * 2000-07-18 2002-06-13 Bayless David J. Enhanced practical photosynthetic CO2 mitigation
WO2004033075A1 (de) * 2002-10-05 2004-04-22 Schmack Biogas Ag Verfahren zur biologischen gasaufbereitung
WO2004079847A2 (en) * 2003-03-01 2004-09-16 The University Court Of The University Of Aberdeen Photo-catalytic reactor
DE102005010865A1 (de) * 2005-03-07 2006-09-14 Schmack Biogas Ag Verfahren zur biologischen Gasaufbereitung
WO2006100667A1 (en) * 2005-03-21 2006-09-28 Cargill, Incorporated A Register Delaware Corporation Of A method for the enhanced production of algal biomass
DE102005062727A1 (de) * 2005-12-22 2007-06-28 Mikrobiologisch-Analytisches Labor Gmbh Verfahren zur CO2-Verwertung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4444191C1 (de) * 1994-12-12 1996-06-05 Melkonian Ezekian Michael Prof Verfahren zur Abreicherung oder Entfernung von Kohlendioxid aus Abgasen
EP0878533A2 (de) * 1997-05-14 1998-11-18 Energy of Nature - Projektgesellschaft für umwelttechnische Anlagensysteme Leipzig mbH Verfahren und Vorrichtung zur photobiologischen Trennung von kohlendioxid- und methanhaltigen Gasgemischen
DE19721243A1 (de) * 1997-05-14 1998-11-19 Ufz Leipzighalle Gmbh Anlage zur Erzeugung und Nutzung von Biogas sowie Verfahren zur biotechnologischen Herstellung von Poly-beta-hydroxybuttersäure
US20020072109A1 (en) * 2000-07-18 2002-06-13 Bayless David J. Enhanced practical photosynthetic CO2 mitigation
WO2004033075A1 (de) * 2002-10-05 2004-04-22 Schmack Biogas Ag Verfahren zur biologischen gasaufbereitung
WO2004079847A2 (en) * 2003-03-01 2004-09-16 The University Court Of The University Of Aberdeen Photo-catalytic reactor
DE102005010865A1 (de) * 2005-03-07 2006-09-14 Schmack Biogas Ag Verfahren zur biologischen Gasaufbereitung
WO2006100667A1 (en) * 2005-03-21 2006-09-28 Cargill, Incorporated A Register Delaware Corporation Of A method for the enhanced production of algal biomass
DE102005062727A1 (de) * 2005-12-22 2007-06-28 Mikrobiologisch-Analytisches Labor Gmbh Verfahren zur CO2-Verwertung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3048366A1 (fr) * 2016-03-02 2017-09-08 Air Liquide Procede de traitement d'un flux de biogaz

Also Published As

Publication number Publication date
WO2009003460A3 (de) 2009-07-09
WO2009003460A4 (de) 2009-09-17
DE112008002413A5 (de) 2010-07-01

Similar Documents

Publication Publication Date Title
KR101317719B1 (ko) 발효시 개선된 탄소 포집 방법
KR102004584B1 (ko) 발효 공정
CA2884542C (en) A process for reducing co2 emissions and increasing alcohol productivity in syngas fermentation
EP2566946B1 (de) Verfahren und anlage zur gasdichten prozessführung von perkolatoren in einem zwei- oder mehrstufigen biogasverfahren
RU2623170C2 (ru) Способ управления процессом ферментации синтез-газа
DE102008007423B4 (de) Verfahren zur Erzeugung von Biogas und Biogasanlage zur Durchführung des Verfahrens
US20130203143A1 (en) Methods and Systems for the Production of Hydrocarbon Products
DE102010043630A1 (de) Verfahren, Anlage und Methanreaktor zur Erhöhung der Methankonzentration des Biogases aus Biogasanlagen
EP3757193A1 (de) Verfahren und anlage zur aufarbeitung von klärschlamm, gärresten und/oder gülle unter gewinnung von wasserstoff
WO2009003460A2 (de) Co2-umsetzer
EP2816096A1 (de) Verfahren zur Speicherung von Überschussenergie
DE4230644C2 (de) Verfahren zur Umwandlung des Kohlendioxids im Rauchgas durch bakterielle Vergärung zu Methan als Endstufe der Rauchgasreinigung in Kohlekraftwerken
CN103402930B (zh) 由来自废水净化设备的污泥制备生物油的集成方法
DE102013009874B4 (de) Vorrichtung und Verfahren zur Biosynthese von Methan
US20220325227A1 (en) Integrated fermentation and electrolysis process for improving carbon capture efficiency
KR102214878B1 (ko) 물 사용을 감소시키는데 효과적인 저 포스페이트 배지 내의 co-함유 가스 기질의 발효 방법
WO2014079921A1 (de) Mikrobiologische biomethan-erzeugung mit wasserstoff aus der thermischen vergasung von kohlenstoffhaltigen einsatzstoffen
EP2438980A1 (de) Verfahren und Vorrichtung zur Bereitstellung und zum Einsetzen von wasserstoff-basiertem Methanol zu Denitrifizierungszwecken
WO2015067813A1 (de) Verfahren zur herstellung von biogas enthaltend eine verringerung der ammoniumkonzentration durch anammox
JP6907112B2 (ja) 一酸化炭素含有基質の発酵の制御方法
DE102013108264B4 (de) Biogaseinrichtung
WO2023077103A1 (en) Green methods of making product from hydrogen enriched synthesis gas
EP3722462A1 (de) Anlage und verfahren zum speichern elektrischer energie
DE102009008563A1 (de) Biotechnologisches Verfahren zur Herstellung von Energieträgern
DE202006014898U1 (de) Unterirdische Biogasanlage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008784283

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1120080024138

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08784283

Country of ref document: EP

Kind code of ref document: A2

REF Corresponds to

Ref document number: 112008002413

Country of ref document: DE

Date of ref document: 20100701

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08784283

Country of ref document: EP

Kind code of ref document: A2