WO2008149021A2 - Substrats de verre pour ecrans de visualisation - Google Patents

Substrats de verre pour ecrans de visualisation Download PDF

Info

Publication number
WO2008149021A2
WO2008149021A2 PCT/FR2008/050844 FR2008050844W WO2008149021A2 WO 2008149021 A2 WO2008149021 A2 WO 2008149021A2 FR 2008050844 W FR2008050844 W FR 2008050844W WO 2008149021 A2 WO2008149021 A2 WO 2008149021A2
Authority
WO
WIPO (PCT)
Prior art keywords
equal
glass substrate
less
substrate according
glass
Prior art date
Application number
PCT/FR2008/050844
Other languages
English (en)
Other versions
WO2008149021A3 (fr
Inventor
Sylvie Abensour
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Publication of WO2008149021A2 publication Critical patent/WO2008149021A2/fr
Publication of WO2008149021A3 publication Critical patent/WO2008149021A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the present invention relates to glass substrates which can be used for the production of display screens and having aluminosilicate-type compositions containing low alkaline oxide contents.
  • Flat screens can be produced by different technologies, among which the main ones are PDP (Plasma Display Panel) and LCD (Liquid Crystal Display) technologies. These two technologies require the use of glass substrates, but impose extremely different properties on these substrates, so that their chemical composition must be specifically adapted to each of them.
  • LCD technology implements manufacturing processes in which thin glass sheets are used as substrates for the deposition of thin film transistors by techniques used in the semiconductor industry for electronics, among which the techniques high temperature deposition, photolithography, etching by etching. Many requirements in terms of properties of the glass stem from these processes, in particular as regards their mechanical, chemical and thermal resistance.
  • the thermal stability of the glass is essential to avoid any deformation.
  • a lower annealing temperature of at least 600 ° C. and even 650 ° C. is then required depending on the technology employed (amorphous or polycrystalline silicon). This temperature is commonly called “strain point" and corresponds to the temperature at which the glass has a viscosity equal to 10 14 ' 5 poises.
  • Stress point corresponds to the temperature at which the glass has a viscosity equal to 10 14 ' 5 poises.
  • a low coefficient of expansion is also necessary to avoid too large a variation of the dimensions of the glass substrate as a function of temperature.
  • a good agreement between the coefficient of expansion of silicon and that of glass, however, is essential to avoid the generation of mechanical stresses between glass and silicon.
  • the coefficient of expansion of the glass substrate must therefore be between 25 and 37 ⁇ 10 -7 / ° C., preferably between 28 and 33 ⁇ 10 -7 / ° C., measured in the temperature range 25-300 ° C.
  • Some properties of glass are also important in the industrial feasibility of glass substrates.
  • a high temperature viscosity that is too high would have consequences in economic terms since it would increase energy expenditure and reduce the life of glass melting furnaces.
  • the object of the present invention is to propose novel glass compositions having good properties in terms of density, thermal stability, coefficient of expansion, resistance to corrosion in an acidic medium, and which are also economical in terms of cost. resulting from raw materials and the amount of energy to be supplied for the manufacture of glass substrates.
  • the present invention is particularly intended to provide compositions imparting to the glass a very high resistance to hydrochloric acid.
  • the present invention also aims to provide compositions allowing the glass to be formed by a method of floating on a bath of molten tin.
  • the subject of the invention is a glass substrate having a chemical composition substantially free of barium oxide and comprising the following constituents within the limits defined below, expressed in weight percentages:
  • R 2 OO to 1 R 2 O designating the alkaline oxides (mainly oxides of sodium, potassium and lithium).
  • the glass substrate is characterized in that the CaO / MgO ratio is less than or equal to 1.3.
  • Silica (SiO 2 ) is an essential element of the vast majority of industrial glasses. It is a formative element of the vitreous network, which influences all the properties of the glass. Too small amounts of silica (below 60%) would result in both a deterioration of the stability of the glass vis-à-vis the devitrification, a too low resistance to acid corrosion, too high a density and a coefficient of dilation too high. It is preferable that the silica content is greater than or equal to 61%, even 62%, or even 63% or 64%. On the other hand, too high levels (above 68%) result in an unacceptable increase in viscosity, making the glass melting process extremely difficult.
  • the silica content of the glasses according to the invention is therefore advantageously less than or equal to 67%, and even 66% or even 65.5%.
  • Boron oxide (B 2 O 3 ) is also a network forming element, which contributes to the decrease of liquidus temperature, density and coefficient of expansion. It also has the advantage over silica of reducing the viscosity at high temperature and thus to facilitate melting of the glass.
  • the glass substrates according to the invention therefore comprise at least 5% boron oxide, and advantageously at least 6%, even 7% and even 7.5%.
  • too high levels of boron oxide have a negative impact on the cost of the raw materials used, the Strain point and the resistance to hydrochloric acid. For these reasons, the boron oxide content must be less than or equal to 9%, and advantageously 8.5%.
  • Alumina increases the Strain point and the Young's modulus. It has also been found, against all odds, that in this type of composition, alumina makes it possible to improve the resistance to acids, in particular hydrochloric acid, perhaps by reducing the tendency to demixing. Its content is therefore advantageously greater than or equal to 16%, or even 16.5% or 17%.
  • a high alumina content has the disadvantage of greatly increasing the viscosity at high temperature, and decreasing the resistance of the glass to devitrification (in particular by increasing the liquidus temperature).
  • the alumina content of the glasses according to the invention is therefore advantageously less than or equal to 18.5% or even 18%. An alumina content of between 16 and 18% constitutes a good compromise.
  • Lime (CaO) is essential to reduce the viscosity of glass at high temperatures. Its content is therefore preferably greater than or equal to 2% or 3%, or even 3.5%. Too high a content is however detrimental to obtaining a low coefficient of expansion. A content less than or equal to 4.5 or even 4% is preferred.
  • Magnesia is also an indispensable element of the present invention. Its beneficial influence on the Young's modulus is compensated by a degradation of the devitrification properties resulting in an increase in liquidus temperature and crystallization rates. Magnesia has also proved harmful in terms of resistance to hydrochloric acid.
  • the MgO content is therefore preferably less than or equal to 7%, or even less than 6% and even 5% and / or advantageously greater than or equal to 3.5% or even 4%.
  • the sum of the contents of MgO and B 2 O 3 (denoted B 2 O 3 + MgO) is preferably less than or equal to 14%, even 13% or 12.5% and even 12%. They are indeed revealed that this magnitude largely governed the resistance of glass to hydrochloric acid. Without being able to explain the reason, there seems to be a threshold, depending on the other oxides, but roughly situated around 13%, beyond which the resistance to hydrochloric acid deteriorates very clearly. The evolution of this magnitude does not, however, affect the resistance to hydrofluoric acid buffered by ammonium fluoride.
  • the sum of the contents of CaO and MgO is advantageously greater than or equal to 6%, even 7% or even 7.5% or 8%, so as to ensure an adequate high temperature viscosity.
  • the best results were obtained for the glasses having a ratio between the CaO content and the MgO content (denoted CaO / MgO in the rest of the text) advantageously less than or equal to 1, 2.
  • Barium oxide (BaO) has a detrimental influence on the density of glass.
  • the glasses according to the invention therefore do not substantially comprise no barium oxide.
  • substantially free of barium oxide in the sense of the present invention is meant that the compositions may comprise small amounts of barium oxide, but only as impurities, for example provided by certain raw materials.
  • the composition according to the invention contains less than 0.1% of barium oxide, preferably less than 0.05% and, even more preferably, does not contain any barium oxide. quantities that can be analyzed by the analytical techniques commonly used in the technical field in question.
  • strontium oxide may advantageously be present in the glass according to the invention, preferably in contents of greater than or equal to 0.5% or even 1%.
  • Zinc oxide (ZnO) when present, is advantageously at a content of less than or equal to 1%, because of undesirable reactions when the glass sheet is produced by the "float" process, in which the glass is poured onto a bath of molten tin under a reducing atmosphere.
  • the reducing conditions necessary to prevent oxidation of the tin bath cause, for the glasses containing too high levels of ZnO, a reduction of this metal zinc oxide which forms a veil on the glass sheet.
  • the alkaline oxides (R 2 O collectively refer to these oxides, among which are found the oxides of sodium, potassium and lithium) must be limited to very low levels, preferably less than 0.5% and even 0.1 %, 0.05% or 0.01%. Nil quantities of alkaline oxides (with the exception of traces from raw materials) are clearly preferred. The alkaline oxides tend to migrate towards the glass surface and considerably degrade the semiconducting properties of the silicon deposited on the substrate.
  • the glass substrates according to the invention may contain other elements than those listed above. They may be fining agents, introduced voluntarily, or other oxides, generally introduced unintentionally in the form of impurities and not substantially modifying the way in which the substrates according to the invention solve the technical problem at stake. in general, the impurity content of the glasses according to the invention is less than or equal to about 5% and even 3%, or even 2% or 1%.
  • the glass compositions according to the invention preferably comprise chemical agents intended for the refining of the glass, that is to say the elimination of gaseous inclusions contained in the mass of glass during the melting step.
  • the refining agents used are, for example, oxides of arsenic or antimony, halogens such as fluorine or chlorine, tin or cerium oxide, sulphates, or a mixture of such compounds.
  • tin oxide and chlorine has proved particularly effective and is therefore preferred in the context of the present invention.
  • the compositions according to the invention advantageously do not contain oxides of arsenic or antimony, because of their high toxicity and their incompatibility with the "float" process.
  • Another particularly advantageous refining family consists of sulphides, in particular zinc sulphide (ZnS), in particular coupled with an oxidizing agent such as tin oxide.
  • the glass substrates according to the invention contain a content of zinc oxide (ZnO) of between 0.1% and 0.5%
  • ZnO zinc oxide
  • the glass substrates according to the invention may also contain small quantities of other oxides such as zirconium oxide, titanium oxide or rare earth oxides such as lanthanum or yttrium (which make it possible to increase the modulus of Young), but generally do not contain any, with the exception of traces originating from impurities contained in the raw materials or from the dissolution of elements contained in the refractory materials constituting the glass melting furnace. These oxides are present where appropriate at levels generally not exceeding 2% or even 1%.
  • zirconium oxide ZrO 2
  • This oxide strongly degrades the properties of devitrification, its content must however be limited.
  • the glass substrates according to the invention preferably have a coefficient of expansion of less than or equal to 33 ⁇ 10 7 V 0 C, or even 32.5 ⁇ 10 -7 / ° C, or even
  • T4 is preferably less than or equal to 1350 ° C, or 1320 ° C, or even 1300 ° C or 1290 ° C.
  • the glass substrates according to the invention preferably have a weight loss after the HCl test of less than or equal to 4 mg / cm 2 or even 3 mg / cm 2 and even 2.5 mg / cm 2 .
  • the invention also relates to a continuous process for obtaining the substrates according to the invention comprising the steps of melting in a glass furnace a vitrifiable mixture of suitable composition, and of forming a glass sheet by spilling on a bath of molten tin (float process).
  • the melting temperature is advantageously less than 1700 ° C., or even 1650 ° C.
  • the invention finally relates to a flat screen, in particular of the LCD type ("liquid-crystal display”) or OLED ("organic light emitting diodes”), comprising at least one glass substrate according to the invention.
  • LCD liquid-crystal display
  • OLED organic light emitting diodes
  • Examples 1 to 123 correspond to the teaching of the present invention.
  • Tables 1 to 14 indicate, besides the chemical composition expressed in percentages by weight, the or some of the following physical properties: the "Strain point", expressed in 0 C, corresponding approximately to the temperature at which the viscosity is 10 14 ' 5 Poises (1O 13 ' 5 Pa. S), measured according to standard NF B30-105, - the temperature at which the viscosity is 10 4 Poises (10 3 Pa.
  • T4 the latter being measured according to the standard ISO 7884-2 and corresponding approximately to the viscosity at which the glass is poured onto the molten metal bath during the float process, the coefficient of expansion between 25 and 300 0 C, measured according to standard NF B30-103, denoted “ ⁇ ” and expressed as 10 "-7 / ° C, density or" density “(g. cm 3) measured according to the method called” Archimedes ", the resistance to hydrochloric acid (test” HCI "), resistance to the "BHF” test, "BHF” and “HCI” tests Both are characterized by the contacting of polished square-section glass sheets, the dimensions of which are 40mm side and 0.7mm thick, with different solutions.
  • the glass plate previously annealed at 600 ° C. is in contact for 5 minutes at 30 ° C. with a solution of hydrofluoric acid buffered with ammonium fluoride (1 volume of a solution of hydrofluoric acid). 50% with 10 volumes of 40% ammonium fluoride solution).
  • the etching solution is a 5% solution of HCl, the etching being carried out at 95 ° C. for 24 hours. In both tests, the result corresponds to the weight loss of the sample, reduced in mg per cm 2 of sample surface.
  • Comparative Example C1 which does not conform to the invention because of a too high content of boron oxide, exhibits a low resistance to hydrochloric acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

L'invention a pour objet un substrat de verre substrat de verre présentant une composition chimique substantiellement exempte d'oxyde de baryum et comprenant les constituants suivants dans les limites définies ci-après exprimées en pourcentages pondéraux : SiO2 60 à 68; B2O3 5 à 9; Al2O3 15 à 19; CaO 1 à 5; MgO 3 à 8; SrO 0 à 3; R2O 0 à 1; R2O désignant les oxydes alcalins, ledit substrat de verre étant caractérisé en ce que le rapport CaO/MgO est inférieur ou égal à 1,3.

Description

SUBSTRATS DE VERRE POUR ECRANS DE VISUALISATION
La présente invention concerne des substrats de verre susceptibles d'être utilisés pour la fabrication d'écrans de visualisation et présentant des compositions du type aluminosilicates contenant de faibles teneurs en oxydes alcalins. Les écrans plats peuvent être produits par différentes technologies, parmi lesquelles les principales sont les technologies PDP (Plasma Display Panel) et LCD (Liquid Crystal Display, écrans à cristaux liquides). Ces deux technologies requièrent l'utilisation de substrats en verre, mais imposent des propriétés extrêmement différentes à ces substrats, si bien que leur composition chimique doit être spécifiquement adaptée à chacune d'elles.
La technologie LCD met en œuvre des procédés de fabrication dans lesquels des feuilles de verre mince sont utilisées comme substrats pour le dépôt de transistors en couche mince par des techniques utilisées dans l'industrie des semi-conducteurs pour l'électronique, parmi lesquelles les techniques de dépôt à haute température, la photolithographie, la gravure par attaque chimique. De nombreuses exigences en terme de propriétés du verre découlent de ces procédés, notamment quant à leur résistance mécanique, chimique et thermique.
Compte tenu des hautes températures employées pour le dépôt des couches minces de silicium, la stabilité thermique du verre est primordiale pour éviter toute déformation. Une température inférieure de recuit d'au moins 6000C et même 6500C est alors requise selon la technologie employée (silicium amorphe ou polycristallin). Cette température est communément appelée « Strain point » et correspond à la température à laquelle le verre présente une viscosité égale à 1014'5 poises. Un faible coefficient de dilatation est également nécessaire pour éviter une trop forte variation des dimensions du substrat de verre en fonction de la température. Un bon accord entre le coefficient de dilatation du silicium et celui du verre est toutefois indispensable pour éviter la génération de contraintes mécaniques entre le verre et le silicium. Le coefficient de dilatation du substrat de verre doit donc être compris entre 25 et 37.10"7/°C, de préférence entre 28 et 33.10"7/°C, mesuré dans la gamme de température 25-3000C.
Plusieurs étapes de gravure chimique sont employées dans le cadre du procédé de fabrication des écrans. Ces attaques étant réalisées par des acides et ne devant pas dégrader la surface des substrats de verre, il est indispensable que ce substrat présente une résistance à la corrosion acide très élevée, en particulier en terme de résistance à l'acide fluorhydrique tamponné par du fluorure d'ammonium (test dit « BHF ») et de résistance à l'acide chlorhydrique. Compte tenu de l'augmentation constante de la taille des écrans plats, il est également important que le poids du substrat soit minimisé, ce qui se traduit pour le verre employé en une exigence de faible densité (masse volumique). La faible densité, au même titre que le module de Young, joue également un rôle pour éviter la flèche des substrats de grande taille et ainsi faciliter la manipulation desdits substrats pendant toutes les étapes du procédé de fabrication des écrans.
Certaines propriétés du verre sont également importantes quant à la faisabilité industrielle des substrats de verre. En particulier, une viscosité à haute température trop élevée aurait des conséquences en termes économiques puisqu'elle augmenterait les dépenses énergétiques et diminuerait la durée de vie des fours de fusion du verre. Il est également primordial que le verre ne dévitrifie pas à trop haute température (la température de liquidus doit donc être limitée) et/ou avec des vitesses de cristallisation élevées, car cela nuirait à la faisabilité du formage sous forme de feuilles de verre plat.
La présente invention a pour but de proposer de nouvelles compositions de verre présentant de bonnes propriétés en termes de densité, de stabilité thermique, de coefficient de dilatation, de résistance à la corrosion en milieu acide, et qui soient en outre économiques en terme de coût résultant des matières premières et de la quantité d'énergie à fournir pour la fabrication des substrats de verre. La présente invention a en particulier pour but de proposer des compositions conférant au verre une résistance très élevée à l'acide chlorhydrique. La présente invention a également pour but de proposer des compositions permettant au verre d'être formé par un procédé de flottage sur un bain d'étain en fusion.
A cet effet, l'invention a pour objet un substrat de verre présentant une composition chimique substantiellement exempte d'oxyde de baryum et comprenant les constituants suivants dans les limites définies ci-après exprimées en pourcentages pondéraux :
SiO2 60 à 68
B2O3 5 à 9 AI2O3 15 à 19
CaO 1 à 5
MgO 3 à 8
SrO O à 3
R2O O à 1 R2O désignant les oxydes alcalins (principalement oxydes de sodium, de potassium et de lithium). Le substrat de verre est caractérisé en ce que le rapport CaO/MgO est inférieur ou égal à 1 ,3.
La silice (SiO2) est un élément essentiel de la grande majorité des verres industriels. Il s'agit d'un élément formateur du réseau vitreux, qui influe sur toutes les propriétés du verre. De trop faibles quantités de silice (en dessous de 60%) entraîneraient à la fois une dégradation de la stabilité du verre vis-à-vis de la dévitrification, une trop faible résistance à la corrosion acide, une densité trop importante et un coefficient de dilatation trop élevé. Il est préférable que la teneur en silice soit supérieure ou égale à 61 %, voire 62%, ou même 63% ou 64%. En revanche, de trop fortes teneurs (au-dessus de 68%) ont pour conséquence une augmentation inacceptable de la viscosité, rendant extrêmement difficile le processus de fusion du verre. La teneur en silice des verres selon l'invention est donc avantageusement inférieure ou égale à 67%, et même 66%, voire 65,5%.
L'oxyde de bore (B2O3) est également un élément formateur de réseau, qui contribue à la diminution de la température de liquidus, de la densité et du coefficient de dilatation. Il présente également l'avantage par rapport à la silice de diminuer la viscosité à haute température et donc de faciliter la fusion du verre. Les substrats de verre selon l'invention comprennent donc au moins 5% d'oxyde de bore, et avantageusement au moins 6%, voire 7% et même 7,5%. De trop fortes teneurs en oxyde de bore ont cependant un impact négatif sur le coût des matières premières employées, sur le Strain point et sur la résistance à l'acide chlorhydrique. Pour ces raisons, la teneur en oxyde de bore doit être inférieure ou égale à 9%, et avantageusement à 8,5%.
L'alumine (AI2O3) permet d'augmenter le Strain point et le module de Young. Il s'est également révélé, contre toute attente, que dans ce type de compositions, l'alumine permettait d'améliorer la résistance aux acides, en particulier l'acide chlorhydrique, peut-être par un effet de diminution de la tendance à la démixtion. Sa teneur est donc avantageusement supérieure ou égale à 16%, voire 16,5% ou 17%. Une teneur élevée en alumine a cependant comme inconvénient d'augmenter fortement la viscosité à haute température, et de diminuer la résistance du verre à la dévitrification (notamment en augmentant la température de liquidus). La teneur en alumine des verres selon l'invention est donc avantageusement inférieure ou égale à 18,5%, voire 18%. Une teneur en alumine comprise entre 16 et 18% constitue un bon compromis.
La chaux (CaO) est indispensable pour diminuer la viscosité du verre à haute température. Sa teneur est donc de préférence supérieure ou égale à 2% ou 3%, voire 3,5%. Une teneur trop élevée est en revanche préjudiciable à l'obtention d'un faible coefficient de dilatation. Une teneur inférieure ou égale à 4,5, voire 4% est préférée.
La magnésie (MgO) est également un élément indispensable de la présente invention. Son influence bénéfique sur le module de Young est compensée par une dégradation des propriétés de dévitrification se traduisant par une augmentation de la température de liquidus et des vitesses de cristallisation. La magnésie s'est également révélée néfaste en terme de résistance à l'acide chlorhydrique. La teneur en MgO est donc de préférence inférieure ou égale à 7%, voire inférieure à 6% et même 5% et/ou avantageusement supérieure ou égale à 3,5%, voire 4%.
La somme des teneurs en MgO et B2O3 (notée B2O3 + MgO) est de préférence inférieure ou égale à 14%, voire 13% ou 12,5% et même 12%. Il s'est en effet révélé que cette grandeur régissait en grande partie la résistance du verre à l'acide chlorhydrique. Sans que l'on puisse en expliquer la raison, il semble exister un seuil, dépendant des autres oxydes, mais grossièrement situé vers 13%, au-delà duquel la résistance à l'acide chlorhydrique se dégrade très nettement. L'évolution de cette grandeur n'affecte en revanche pas la résistance à l'acide fluorhydrique tamponné par du fluorure d'ammonium.
La somme des teneurs en CaO et MgO (noté CaO+MgO) est avantageusement supérieure ou égale à 6%, voire 7% ou même 7,5% ou 8% de manière à assurer une viscosité à haute température adéquate. Les meilleurs résultats ont été obtenus pour les verres présentant un rapport entre la teneur en CaO et la teneur en MgO (notée CaO/MgO dans la suite du texte) avantageusement inférieur ou égal à 1 ,2.
L'oxyde de baryum (BaO) présente une influence néfaste sur la densité du verre. Les verres selon l'invention ne comprennent donc pas substantiellement pas d'oxyde de baryum. Par « substantiellement exempte d'oxyde de baryum » au sens de la présente invention, il faut entendre que les compositions peuvent comprendre de faibles quantité d'oxyde de baryum, mais uniquement en tant qu'impuretés, par exemple apportées par certaines matières premières. D'une manière générale, la composition selon l'invention contient moins de 0,1 % d'oxyde de baryum, de préférence moins de 0,05% et, de manière encore plus préférée, ne contient pas d'oxyde de baryum en quantités analysables par les techniques d'analyse couramment employées dans le domaine technique en cause.
L'oxyde de strontium (SrO) peut avantageusement être présent dans le verre selon l'invention, de préférence en des teneurs supérieures ou égales à 0,5%, voire 1 %.
L'oxyde de zinc (ZnO), lorsqu'il est présent, l'est avantageusement en une teneur inférieure ou égale à 1 %, du fait de réactions indésirables lorsque la feuille de verre est produite par le procédé « float », dans lequel le verre est déversé sur un bain d'étain en fusion sous atmosphère réductrice. Les conditions réductrices nécessaires pour éviter l'oxydation du bain d'étain entraînent en effet, pour les verres contenant de trop fortes teneurs en ZnO, une réduction de cet oxyde en zinc métallique qui forme un voile sur la feuille de verre.
Les oxydes alcalins (R2O désignant collectivement ces oxydes, parmi lesquels on trouve les oxydes de sodium, de potassium et de lithium) doivent être limités à de très faibles teneurs, de préférence à moins de 0,5% et même 0,1 %, 0,05% ou 0,01 %. Des quantités nulles en oxydes alcalins (à l'exception de traces provenant des matières premières) sont nettement préférées. Les oxydes alcalins ont en effet tendance à migrer vers la surface du verre et à dégrader considérablement les propriétés semi-conductrices du silicium déposé sur le substrat.
Les substrats de verre selon l'invention peuvent contenir d'autres éléments que ceux listés supra. Il peut s'agir d'agents affinants, introduits volontairement, ou d'autres oxydes, introduits généralement involontairement sous forme d'impuretés et ne modifiant pas substantiellement la manière dont les substrats selon l'invention résolvent le problème technique en jeu. D'une manière générale, la teneur en impuretés des verres selon l'invention est inférieure ou égale à environ 5% et même 3%, voire 2% ou 1 %.
Les compositions de verre selon l'invention comprennent de préférence des agents chimiques destinés à l'affinage du verre, c'est-à-dire à l'élimination des inclusions gazeuses contenues dans la masse de verre lors de l'étape de fusion. Les agents affinants utilisés sont par exemple les oxydes d'arsenic ou d'antimoine, les halogènes tels que le fluor ou le chlore, l'oxyde d'étain ou de cérium, les sulfates, ou un mélange de tels composés. L'association d'oxyde d'étain et de chlore s'est révélée particulièrement efficace et est donc préférée dans le cadre de la présente invention. Les compositions selon l'invention ne contiennent avantageusement pas d'oxydes d'arsenic ou d'antimoine, du fait de leur toxicité élevée et de leur incompatibilité avec le procédé « float ». Une autre famille d'affinant particulièrement avantageuse est constituée par les sulfures, en particulier par le sulfure de zinc (ZnS), notamment couplé avec un agent oxydant tel que l'oxyde d'étain. Dans ce dernier cas, les substrats de verre selon l'invention contiennent une teneur en oxyde de zinc (ZnO) comprise entre 0,1 % et 0,5% Les substrats de verre selon l'invention peuvent également contenir de faibles quantités d'autres oxydes tels que l'oxyde de zirconium, de titane ou des oxydes de terres rares comme le lanthane ou l'yttrium (qui permettent d'augmenter le module de Young), mais n'en contiennent généralement pas, à l'exception de traces provenant d'impuretés contenues dans les matières premières ou provenant de la dissolution d'éléments contenus dans les matériaux réfractaires constitutifs du four de fusion du verre. Ces oxydes sont présents le cas échéant à des teneurs ne dépassant pas généralement 2%, voire 1 %.
Il peut être avantageux d'ajouter aux compositions selon l'invention une teneur limitée en oxyde de zirconium (ZrO2), notamment entre 0,4 et 1 ,5% et de préférence entre 0,5 et 1 ,2% pour améliorer la résistance des verres à la corrosion en milieu acide. Cet oxyde dégradant fortement les propriétés de dévitrification, sa teneur doit toutefois être limitée.
Les substrats de verre selon l'invention présentent de préférence un coefficient de dilatation inférieur ou égal à 33.107V0C, voire 32,5.10"7/°C, ou même
32.10"7/°C. Leur Strain point est avantageusement supérieur ou égal à 6300C, et même à 6400C ou 650°C, voire 6600C ou 670°C. La température correspondant à la viscosité à laquelle le verre est formé, soit 10000 Poises, température notée
« T4 » est de préférence inférieure ou égale à 1350°C, voire 13200C, ou même 1300°C ou 1290°C.
Les substrats de verre selon l'invention présentent de préférence une perte de poids après test HCI inférieure ou égale à 4 mg/cm2, voire 3 mg/cm2 et même 2,5 mg/cm2.
L'invention a également pour objet un procédé continu d'obtention des substrats selon l'invention comprenant les étapes de fusion dans un four à verre d'un mélange vitrifiable de composition adéquate, et de formage d'une feuille de verre par déversement sur un bain d'étain en fusion (procédé float). La température de fusion est avantageusement inférieure à 17000C, voire 16500C.
L'invention a enfin pour objet un écran plat, notamment du type LCD (« liquid-crystal display ») ou OLED (« organic light emitting diodes »), comprenant au moins un substrat de verre selon l'invention. Les avantages de l'invention sont illustrés à l'aide des exemples non- limitatifs suivants, présentés dans les tableaux 1 à 14.
Les exemples 1 à 123 correspondent à l'enseignement de la présente invention. Les tableaux 1 à 14 indiquent, outre la composition chimique exprimée en pourcentages massiques, les ou certaines des propriétés physiques suivantes : le « Strain point », exprimé en 0C, correspondant approximativement à la température à laquelle la viscosité vaut 1014'5 Poises (1O13'5 Pa. s), mesuré selon la norme NF B30-105, - la température à laquelle la viscosité est 104 Poises (103 Pa. s), notée « T4 », cette dernière étant mesurée selon la norme ISO 7884-2 et correspondant approximativement à la viscosité à laquelle le verre est déversé sur le bain métallique fondu pendant le procédé float, le coefficient de dilatation entre 25 et 3000C, mesuré selon la norme NF B30-103, noté « α » et exprimé en 10"7/°C, la masse volumique ou « densité » (en g. cm 3), mesurée selon la méthode dite « d'Archimède », la résistance à l'acide chlorhydrique (test « HCI »), la résistance au test « BHF ». Les tests « BHF » et « HCI » sont tous deux caractérisés par la mise en contact de plaques de verres poli de section carrée, dont les dimensions sont de 40mm de côté et de 0,7mm d'épaisseur, avec des solutions différentes. Pour le test BHF, la plaque de verre préalablement recuite à 6000C est en contact pendant 5 minutes à 300C avec une solution d'acide fluorhydrique tamponnée avec du fluorure d'ammonium (1 volume d'une solution d'acide fluorhydrique à 50% avec 10 volumes d'une solution de fluorure d'ammonium à 40%). Dans le cas du test HCI, la solution d'attaque est une solution à 5% d'HCI, l'attaque étant réalisée à 95°C pendant 24 heures. Dans les deux tests, le résultat correspond à la perte de poids de l'échantillon, ramenée en mg par cm2 de surface d'échantillon. L'exemple comparatif C1 , qui n'est pas conforme à l'invention du fait d'une teneur en oxyde de bore trop élevée, manifeste une faible résistance à l'acide chlorhydrique.
Tableau 1
Figure imgf000011_0001
Tableau 2
Figure imgf000011_0002
Tableau 3
Figure imgf000012_0001
Tableau 4
Figure imgf000012_0002
Tableau 5
Figure imgf000013_0001
Tableau 6
Figure imgf000013_0002
Tableau 7
Figure imgf000014_0001
Tableau 8
Figure imgf000014_0002
Tableau 9
Figure imgf000015_0001
Tableau 10
Figure imgf000015_0002
Tableau 11
Figure imgf000016_0001
Tableau 12
Figure imgf000016_0002
Tableau 13
Figure imgf000017_0001
Tableau 14
Figure imgf000017_0002

Claims

REVENDICATIONS
1 . Substrat de verre présentant une composition chimique substantiellement exempte d'oxyde de baryum et comprenant les constituants suivants dans les limites définies ci-après exprimées en pourcentages pondéraux : SiO2 60 à 68
B2O3 5 à 9
AI2O3 15 à 19
CaO 1 à 5
MgO 3 à 8 SrO 0 à 3
R2O O à 1
R2O désignant les oxydes alcalins, ledit substrat de verre étant caractérisé en ce que le rapport CaO/MgO est inférieur ou égal à 1 ,3.
2. Substrat de verre selon la revendication 1 , tel que la teneur massique en silice (SiO2) est supérieure ou égale à 61 %, voire 62% ou même 63% ou 64% et/ou inférieure ou égale à 67%, voire 66% ou 65,5%.
3. Substrat de verre selon l'une des revendications précédentes, tel que la teneur massique en oxyde de bore (B2O3) est supérieure ou égale à 6%, voire 7% et même 7,5% et/ou inférieure ou égale à 8,5%.
4. Substrat de verre selon l'une des revendications précédentes, tel que la teneur massique en alumine (AI2O3) est supérieure ou égale à 16%, voire 16,5% ou 17% et/ou inférieure ou égale à 18,5%, voire 18%.
5. Substrat de verre selon l'une des revendications précédentes, tel que la teneur massique en chaux (CaO) est supérieure ou égale à 2%, notamment 3%, voire 3,5% et/ou inférieure ou égale à 4,5%, voire 4%.
6. Substrat de verre selon l'une des revendications précédentes, tel que la teneur en magnésie (MgO) est supérieure ou égale à 3,5%, notamment 4% et/ou inférieure ou égale à 7%, notamment 6% ou 5%.
7. Substrat de verre selon l'une des revendications précédentes, tel que la somme B2O3+MgO est inférieure ou égale à 14%, voire 13% ou 12,5%, notamment 12%.
8. Substrat de verre selon l'une des revendications précédentes, tel que la somme CaO+MgO est supérieure ou égale à 6%, notamment 7%, 7,5% ou 8%.
9. Substrat de verre selon l'une des revendications précédentes, tel que le rapport CaO/MgO est inférieur ou égal à 1 ,2.
10. Substrat de verre selon l'une des revendications précédentes, tel que la teneur en oxyde de strontium (SrO) est supérieure ou égale à 0,5%, notamment 1 %.
11. Substrat de verre selon l'une des revendications précédentes, présentant un coefficient de dilatation inférieur ou égal à 33.10"7/°C, voire 32,5.10"7/°C, ou même 32.10~7/°C.
12. Substrat de verre selon l'une des revendications précédentes, présentant un Strain point supérieur ou égal à 6300C, et même à 6400C ou 650°C, voire 6600C ou 670°C.
13. Substrat de verre selon l'une des revendications précédentes, présentant une température correspondant à une viscosité de 10000 Poises inférieure ou égale à 1350°C, voire 13200C, ou même 1300°C ou 1290°C.
14. Procédé continu d'obtention des substrats selon l'une des revendications 1 à 13 comprenant les étapes de fusion dans un four à verre d'un mélange vitrifiable de composition adéquate, et de formage d'une feuille de verre par déversement sur un bain d'étain en fusion.
15. Ecran plat comprenant au moins un substrat de verre selon l'une des revendications 1 à 13.
PCT/FR2008/050844 2007-05-16 2008-05-16 Substrats de verre pour ecrans de visualisation WO2008149021A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0755096 2007-05-16
FR0755096A FR2916198A1 (fr) 2007-05-16 2007-05-16 Substrats de verre pour ecrans de visualisation

Publications (2)

Publication Number Publication Date
WO2008149021A2 true WO2008149021A2 (fr) 2008-12-11
WO2008149021A3 WO2008149021A3 (fr) 2009-02-12

Family

ID=38754656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050844 WO2008149021A2 (fr) 2007-05-16 2008-05-16 Substrats de verre pour ecrans de visualisation

Country Status (2)

Country Link
FR (1) FR2916198A1 (fr)
WO (1) WO2008149021A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140032365A (ko) * 2011-01-11 2014-03-14 에이지와이 홀딩 코포레이션 낮은 열팽창 계수를 갖는 유리 조성물 및 이로부터 제조된 유리 섬유
US10364177B2 (en) 2006-02-10 2019-07-30 Corning Incorporated Glass compositions having high thermal and chemical stability and methods of making thereof
US11168018B2 (en) 2013-08-15 2021-11-09 Corning Incorporated Aluminoborosilicate glass substantially free of alkali oxides
USRE49307E1 (en) 2013-08-15 2022-11-22 Corning Incorporated Alkali-doped and alkali-free boroaluminosilicate glass

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072237A (ja) * 1996-06-03 1998-03-17 Asahi Glass Co Ltd 無アルカリガラスおよび液晶ディスプレイパネル
US6169047B1 (en) * 1994-11-30 2001-01-02 Asahi Glass Company Ltd. Alkali-free glass and flat panel display
DE10000837C1 (de) * 2000-01-12 2001-05-31 Schott Glas Alkalifreie Aluminoborosilicatgläser und ihre Verwendungen
JP2001151534A (ja) * 1999-11-25 2001-06-05 Nippon Electric Glass Co Ltd 液晶ディスプレイ用ガラス基板
US6537937B1 (en) * 1999-08-03 2003-03-25 Asahi Glass Company, Limited Alkali-free glass
US20040043887A1 (en) * 2002-08-29 2004-03-04 Paulson Thomas E. Low-density glass for flat panel display substrates
US20040220039A1 (en) * 2000-12-22 2004-11-04 Ulrich Peuchert Alkali-free aluminoborosilicate glasses and uses thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169047B1 (en) * 1994-11-30 2001-01-02 Asahi Glass Company Ltd. Alkali-free glass and flat panel display
JPH1072237A (ja) * 1996-06-03 1998-03-17 Asahi Glass Co Ltd 無アルカリガラスおよび液晶ディスプレイパネル
US6537937B1 (en) * 1999-08-03 2003-03-25 Asahi Glass Company, Limited Alkali-free glass
JP2001151534A (ja) * 1999-11-25 2001-06-05 Nippon Electric Glass Co Ltd 液晶ディスプレイ用ガラス基板
DE10000837C1 (de) * 2000-01-12 2001-05-31 Schott Glas Alkalifreie Aluminoborosilicatgläser und ihre Verwendungen
US20040220039A1 (en) * 2000-12-22 2004-11-04 Ulrich Peuchert Alkali-free aluminoborosilicate glasses and uses thereof
US20040043887A1 (en) * 2002-08-29 2004-03-04 Paulson Thomas E. Low-density glass for flat panel display substrates

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10364177B2 (en) 2006-02-10 2019-07-30 Corning Incorporated Glass compositions having high thermal and chemical stability and methods of making thereof
KR20140032365A (ko) * 2011-01-11 2014-03-14 에이지와이 홀딩 코포레이션 낮은 열팽창 계수를 갖는 유리 조성물 및 이로부터 제조된 유리 섬유
KR102012750B1 (ko) * 2011-01-11 2019-08-21 에이지와이 홀딩 코포레이션 낮은 열팽창 계수를 갖는 유리 조성물 및 이로부터 제조된 유리 섬유
US11168018B2 (en) 2013-08-15 2021-11-09 Corning Incorporated Aluminoborosilicate glass substantially free of alkali oxides
USRE49307E1 (en) 2013-08-15 2022-11-22 Corning Incorporated Alkali-doped and alkali-free boroaluminosilicate glass

Also Published As

Publication number Publication date
FR2916198A1 (fr) 2008-11-21
WO2008149021A3 (fr) 2009-02-12

Similar Documents

Publication Publication Date Title
WO2007104885A2 (fr) Substrats de verre pour ecrans plats
EP1888473A2 (fr) Substrats de verre pour ecrans plats
KR102559221B1 (ko) 치수적으로 안정한 급속 에칭 유리
TWI555715B (zh) 無鹼玻璃
US9505650B2 (en) Non-alkali glass substrate
US9023744B2 (en) Alkali-free glass
FR2758550A1 (fr) Compositions de verre silico-sodo-calcique et leurs applications
WO1997011920A1 (fr) Substrat de verre exempt d'alcalis
JPH10324526A (ja) 無アルカリガラスの清澄方法
WO2005063642A1 (fr) Verre ne comprenant pas d'alcali, procede de production associe et panneau d'affichage a cristaux liquides
WO2015056645A1 (fr) Verre non alcalin
JP5109225B2 (ja) 無アルカリガラスおよび液晶ディスプレイパネル
EP0576362A2 (fr) Verres thermiquement stables et chimiquement résistants
EP1979282A1 (fr) Procede d'affinage du verre et produit obtenu
WO2008149021A2 (fr) Substrats de verre pour ecrans de visualisation
WO2018116731A1 (fr) Verre
WO2020080163A1 (fr) Plaque de verre sans alcali
JP2002029776A (ja) 耐クラック性に優れた無アルカリガラス
WO2004099096A2 (fr) Composition de verre silico-sodo-calcique, notamment pour la realisation de substrats.
TW202342390A (zh) 玻璃
JP2008013434A (ja) 耐クラック性に優れた無アルカリガラス
TW201518240A (zh) 無鹼玻璃
WO2008031997A2 (fr) Ecran de visualisation
FR3090624A1 (fr) Verres aluminoborosilicates de cuivre et leurs utilisations
JP6631942B2 (ja) 無アルカリガラス板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805791

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08805791

Country of ref document: EP

Kind code of ref document: A2