WO2008139116A1 - Procede de realisation de conduite sous-marine comprenant le martelage de soudures d'assemblage a l'interieur de la conduite - Google Patents

Procede de realisation de conduite sous-marine comprenant le martelage de soudures d'assemblage a l'interieur de la conduite Download PDF

Info

Publication number
WO2008139116A1
WO2008139116A1 PCT/FR2008/050625 FR2008050625W WO2008139116A1 WO 2008139116 A1 WO2008139116 A1 WO 2008139116A1 FR 2008050625 W FR2008050625 W FR 2008050625W WO 2008139116 A1 WO2008139116 A1 WO 2008139116A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
hammering
tool
carriage
weld
Prior art date
Application number
PCT/FR2008/050625
Other languages
English (en)
Inventor
Eric Kerdiles
Jean-Michel Duchazeaubeneix
Philippe Jacob
Patrick Cheppe
Original Assignee
Saipem S.A.
Sonats - Société des Nouvelles Applications des Techniques de Surfaces
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saipem S.A., Sonats - Société des Nouvelles Applications des Techniques de Surfaces filed Critical Saipem S.A.
Priority to US12/595,376 priority Critical patent/US20100147047A1/en
Priority to AT08788147T priority patent/ATE502241T1/de
Priority to EP08788147A priority patent/EP2132474B1/fr
Priority to DE602008005564T priority patent/DE602008005564D1/de
Priority to BRPI0810164-7A2A priority patent/BRPI0810164A2/pt
Publication of WO2008139116A1 publication Critical patent/WO2008139116A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/26Repairing or joining pipes on or under water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes
    • B23K9/282Electrode holders not supplying shielding means to the electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B39/00Burnishing machines or devices, i.e. requiring pressure members for compacting the surface zone; Accessories therefor
    • B24B39/02Burnishing machines or devices, i.e. requiring pressure members for compacting the surface zone; Accessories therefor designed for working internal surfaces of revolution
    • B24B39/026Impact burnishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/06Means for driving the impulse member
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/02Welded joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/10Pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/275Tools having at least two similar components
    • B25D2250/285Tools having three or more similar components, e.g. three motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/275Tools having at least two similar components
    • B25D2250/285Tools having three or more similar components, e.g. three motors
    • B25D2250/291Tools having three or more parallel bits, e.g. needle guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/311Ultrasonic percussion means
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Definitions

  • the present invention relates to a method for producing submarine pipes for conveying corrosive fluids and in particular water, comprising welding assembly of unitary pipe elements.
  • the present invention relates more particularly to a subsurface connection installation between a floating support and a tanker loading buoy.
  • the present invention relates more particularly to a bottom-surface connection installation comprising at least one underwater pipe providing the connection between a floating support and the seabed, particularly at great depth.
  • These subsea pipes are called “risers” or “risers” as explained below, these risers consisting of unitary tubular elements welded together end to end, made of steel.
  • the subject of the present invention is a riser-type underwater pipe providing the connection between a floating support and the seabed, said riser being constituted by a catenary-type rigid pipe extending from said floating support up to at a point of contact at the bottom of the sea.
  • the technical sector of the invention is therefore the field of the manufacture and installation of subsea pipelines and more particularly bottom-surface production links for the underwater extraction of oil, gas or other soluble material. or fuse, or a suspension of mineral material, from submerged wellhead for field development in the open sea off the coast.
  • the main and immediate application of the invention being in the field of petroleum production, as well as in the re-injection of water and the production or re-injection of gas.
  • a floating support generally comprises anchoring means to remain in position despite the effects of currents, winds and waves. It also generally includes means for drilling, storage and treatment of oil as well as means of unloading to removal tankers, the latter occurring at regular intervals to carry out the removal of production.
  • the name of these floating supports is the Anglo-Saxon term “Floating Production Storage Offloading” (meaning “floating means of storage, production and unloading") which will be used the abbreviated term "FPSO” throughout the description FDPU or Floating Drilling & Production Unit), where the floating support is also used to carry out drilling operations with deviated wells in the height of the slice. of water.
  • An underwater pipe, or a riser, according to the invention can be either a "production line” of crude oil or gas, or a water injection pipe, ensuring the connection with a sub-wellhead. marine installed at the bottom of the sea, is still a “drilling riser” ensuring the connection between the floating support and a wellhead located at the bottom of the sea.
  • the bottom-surface connection line When the bottom-surface connection line is of the type catenary, it directly ensures the connection between a floating support and a point of contact at the bottom of the sea which is offset with respect to the axis of said support, said pipe takes by its own weight a so-called "chain" configuration, forming a curve whose radius of curvature decreases from the surface to the point of contact at the bottom of the sea, and the axis of said pipe forms an angle ⁇ with the vertical whose value generally varies from 10 to 20 degrees at floating support level up to, theoretically, 90 degrees at the seabed corresponding to a theoretical position substantially tangential to the horizontal as will be explained below.
  • Chain linkages are generally carried out using flexible pipes, but their cost is extremely high due to the complex structure of the pipe.
  • Step Catenary Riser meaning "chain-shaped steel riser” which will be used for the abbreviated term “SCR” or “catenary riser” in the present description, whether steel or other material such as a composite material.
  • x represents the distance in the horizontal direction between said contact point and a point M of the curve
  • y represents the altitude of the point M (x and y are therefore the abscissae and ordinates of a point M of the curve with respect to an orthonormal coordinate system whose origin is at the point of contact)
  • - Ro represents the radius of curvature at said point of contact, ie at the point of horizontal tangency.
  • R represents the radius of curvature at the point M (x, y)
  • the curvature varies along the chain from the surface, or its radius has a maximum value R ma ⁇ , to the point of contact, or its radius has a minimum value R m i ⁇ (or Ro in the formula below). above).
  • R ma ⁇ maximum value
  • R m i ⁇ minimum value
  • the pipe has a radius of curvature which is maximum at the top of the chain, generally at least 1500, in particular from 1500 to 5000m, ie at the point of suspension on the FPSO, and which decreases until at the point of contact with the ground. At this point, the radius of curvature is minimal in the suspended portion. But, in the adjacent part resting on the bottom of the sea, said pipe being theoretically in a straight line, its radius of curvature is theoretically infinite. In fact, this radius is not infinite but extremely high, because there remains a residual curvature.
  • These pipes are made by butt welding of unitary pipe elements.
  • the unitary elements of condu ite are themselves assembled in the form of a ream, generally two to four unit elements welded end to end, then transported to sea. And, in a known manner, these oars are assembled by welding to each other at sea from a pipe laying vessel, particularly at a J-laying tower.
  • the assembly welds are preferably made and mainly from outside the pipe.
  • the most critical portion of the risers is at the level of the assembly welds of the unitary conductor elements and, in particular, in the nearest portion of the point of contact, and the greater part of the forces in this lower part of the chain. are in fact generated by the own movements of the floating support and by the excitations which occur in the upper part of the chain subjected to the current and to the swell, all these excitations then propagating mechanically all along the pipe until at the foot of chain.
  • the steels constituting the pipes are selected to withstand fatigue during the life of the installations, but the welds between pipe elements, in this area of the chainstay foot, constitute weak points when said driving line is water, or fluids comprising water and more particularly salt water. Indeed, said welds in the presence of water are subject to phenomena of fatigue and corrosion creating time, under variable bending stresses, cracks leading to the ruin of said pipe.
  • Anti-corrosion alloys are well known to those skilled in the art, they are mainly nickel base alloys, especially inconel type, preferably of particular grade, especially inconel 625 or 825, said inconel having also a excellent resistance to fatigue by their high elastic limit and thus achieve lifetimes of 20 to 30 years.
  • the object of the present invention is to provide a new method for manufacturing and installing underwater pipes intended to convey corrosive fluids and in particular water comprising the assembly by welding reams of submarine pipes from a ship laying underwater conduct at sea that is:
  • the inventors have discovered that crack initiators are located inside the pipe, at the small protuberance of the weld bead turned towards the inside of the pipe and not on the outer surface of the pipe. the main mass of the weld bead outside the pipe. More specifically, as explained in the detailed description which follows with reference to FIGS. 3E and 3F, the inventors have discovered that the origin of the ruins of the welds resides at the level of the transition zone between the weld and the internal steel surface of base of the adjacent pipe, zone at which tensile stresses associated with the thermal shock during welding result in physical defects, including cracking primers located at this level. Indeed, during welding, localized indentations or quenchings occur uncontrollable, leading to contraction stress states of the metal located in and near the weld zone, while the rest of the adjacent surface of the pipe is either at rest or in compression.
  • these localized contraction stress problems of welds are solved by annealing to relieve stress.
  • Other means of treating these problems at the level of the welds are known to obtain a relaxation of tensile stress, but these are not compatible with the constraints of time and rate of installation at sea required. But, in this case, for the welding of underwater pipe elements during installation at sea, these annealing treatments are not possible.
  • the present invention provides a method for producing steel submarine pipes intended to convey corrosive fluids, and in particular water, comprising assembling by welding the end-to-end ends of single pipe elements, the welding seams being made of steel or metal alloy of said welding being disposed outside the pipe, characterized in that a localized hammering is carried out inside the pipe to increase the compressive stress level of the steel or the metal at the level of said welds and on the peripheral inner surface of the adjacent pipe, on either side of the welds, so as to create a hammered surface corridor over a distance L limited in the axial longitudinal direction XX of said pipe, that is to say only part of the length of each of the two pipe elements assembled by said weld from their respective ends m are butt. More particularly, said hammered corridor extends over a distance L at least equal to half the thickness of the pipe wall, more preferably a distance L less than twice the thickness of the pipe.
  • the weld comprises a main weld bead outside the pipe and an inner protuberance or bead of smaller thickness protruding on the side of the inside of the pipe.
  • This protuberance or internal bead results from the partial melting of the ends of the unit elements assembled by welding during the heat treatment welding.
  • said hammered corridor extends over a distance L corresponding to the width of the weld inside the pipe, in particular the width of said inner bead, which bead has in practice a width of 3 to 5 mm, that on either side a width of 1 to 10 mm is increased, ie a distance L of 5 to 25 mm.
  • hammering is used here to mean a surface treatment by multiplying impacts using one or more projectiles which increases the level of compression stress on an area of the surface to be treated.
  • the present invention is the entire surface of said corridor, that is to say of the internal cylindrical surface section, on either side of the weld, and overlapping it, which undergoes these impacts, no area of the surface outside the corridor being hit by such an impact.
  • the projectiles may be ball-shaped or with a pointed spindle end, the projectiles striking the surface to be treated by their end and, during impacts, their energy. kinetics is transformed into plastic and elastic deformation energy of the treated surface which has the effect of increasing the compressive stress of the material at this level, thereby eliminating the areas with residual tensile stresses.
  • a hammering according to the present invention is, in a way, to achieve a cold forging which removes the residual tensile stresses, deforming the material at the hammered surface. It should be noted that it is not sought to reduce the extra thickness related to an internal bead or protuberance of the weld bead, but it is only desired to compress, in a substantially uniform manner, the surface of the weld zone. and adjacent areas, using sufficient energy to plasticize and deform the metal to remove any residual tensile stresses due to the welding operation.
  • said ends of unit elements of pipe to be welded comprise, in longitudinal axial section, a straight end of the inner side to the pipe forming heel on, preferably, at least a quarter of the thickness of the current portion of driving and extended to the outside of the pipe by an inclined chamfer.
  • the protuberance or inner bead protruding from the weld bead comes from the melting of said bead and the filler metal. It is understood that said chamfer is turned towards the outside of the pipe, so that it can receive a weld bead deposited between two chamfers at the ends of two pipe elements placed end to end chamfer, forming substantially a V at the ends. of two cond uite elements to be assembled by welding put end to end.
  • a material removal is carried out by machining, preferably by grinding or milling, prior to the internal surface of the pipe and the weld bead at the level of the surface to be hammered, before said hammering.
  • said hammering is carried out at least in the transition zone between the inner surface of the weld bead and the adjacent inner surface of the pipe.
  • said hammering is carried out so as to effect the compression or increase the compression to a thickness of 0.2 to 2 mm from said inner surface of the pipe and said weld.
  • the limited distance L represents 1 to 3 times the thickness of the pipe.
  • hammering is carried out so as to obtain a compressive stress greater than 5 M Pa, preferably greater than 50 MPa, especially 50 to 1000 M Pa, over the entire hammered surface.
  • said hammering is carried out with a hammering device that is moved inside said pipe by translation and rotation at the zones of said welds, the hammering device comprising: at least one hammering tool mounted on a first motorized carriage,
  • said first carriage being able to move inside said conduit, in translation in the axial longitudinal direction XX of said conduit,
  • said first carriage supporting means for displacing said hammering tool in relative radial translation with respect to said first carriage, making it possible to apply said hammering tool against the internal surface of the pipe, or to release the hammering tool set back by relative to the internal surface of the pipe, and
  • said hammering tool comprises a vibrating surface, preferably extending over a said limited distance L in the axial longitudinal direction XX, and a plurality of projectiles of the spherical or pointed type, capable of being projected towards the inner surface to be treated by said vibrating surface, to create a plurality of impacts.
  • the method according to the invention is characterized in that said first carriage comprises means for moving said hammering tool in relative translation with respect to said first carriage in said longitudinal axial direction XX.
  • said means of longitudinal relative translation of the hammering tool being able to move said projectiles at least a distance corresponding to the spacing between two successive projectiles, so that the entire treated surface is fully hammered substantially uniformly.
  • the method according to the invention is characterized in that it comprises the steps in which:
  • said hammer tool is moved in rotation about said axial longitudinal axis XX, around the circumference of the internal conduction surface, and then
  • the hammering tool is moved in relative translation in the axial longitudinal direction XX with respect to said first carriage, so as to effect hammering and compression over the entire hammered surface, particularly in the case of hammer tool having a plurality of said projectiles type tip or spherule, spaced apart from each other.
  • said first motorized carriage supports a first shaft disposed in said axial longitudinal direction XX, and
  • said first shaft supports a transverse guide support, capable of guiding the displacement of a second carriage in radial translation in a transverse direction perpendicular to said axial longitudinal direction XX, that is to say in a transverse direction perpendicular to said axial longitudinal direction XX, and comprising means capable of holding said hammering tool in position opposite the internal surface of said pipe, and
  • said first shaft comprises a controlled rotation drive means itself around its said axial longitudinal axis XX, so as to be able to move said hammering tool over the entire circumference of the inner surface of the pipe, in rotation controlled on himself, and
  • said first shaft is preferably capable of being driven in relative translation with respect to said first carriage in said axial longitudinal direction XX, in particular on at least one short distance ⁇ x corresponding to a part of the possible distance between two successive projectiles, that is to say a distance of between 0.1 and 10 mm in the case of hammer tool with a single row of projectiles.
  • said hammering tool comprises a plurality of projectiles, in particular of the spherical or pointed type, projected against said surface to be hammered from a vibrating surface of said hammering tool, in particular where appropriate in a radial direction
  • said hammering tool is pivotally mounted with respect to said second carriage, thus making it possible to vary the inclination ⁇ of the direction Yi, Yi for projecting said projectiles with respect to said translation direction. radial of said second carriage YY.
  • This embodiment makes it possible to optimize the hammering at the transition zones between the internal weld bead and the adjacent pipe wall, in particular in the absence of prior machining of said internal weld bead.
  • this preliminary grinding of the surface to be hammered is carried out with a rotary grinding tool mounted in place or with a said hammering tool on a said first carriage.
  • said welding is made of carbon steel, stainless steel or corrosion-resistant alloy, inconel type, high elasticity, fatigue resistant, preferably inconel grade 625 or 825.
  • the method according to the invention comprises the following successive steps, in which: 1) in the workshop on the ground, the assembling by said welding of the respective ends of at least two unit elements of pipe, put end to end to form driving trains, and
  • the subject of the present invention is also a submarine bottom-surface connection pipe, at least a portion of which comprises zones of said assembly welds of unit elements of pipes put in compression by a method according to the invention.
  • the subject of the present invention is a submarine bottom-to-surface connection pipe according to the invention, characterized in that it is a catenary pipe of the SCR type, at least a portion comprising the zone in question. contact with the ground extending over at least 100 m, preferably 200 m above the ground, has been assembled by a pipe-forming method according to the invention.
  • the present invention finally relates to a hammering device comprising at least one said hammering tool mounted on a d it first carriage adapted to move in translation inside a pipe, comprising a said hammering tool capable of moving in longitudinal relative translation XX with respect to said first carriage and in rotation about said axial longitudinal axis XX of the pipe at said welds, as defined above.
  • FIG. 1 is a side view of a pipe in simple chain configuration 1, suspended on a floating support 10 of the FPSO type, and whose lower end rests on the bottom of the sea 13, represented in three different positions. 1 a, 1 b, 1 c.
  • FIG. 1 A is a sectional view in side view of the trench 12 dug by the foot 1 1 chain during uplifting and resting movements of the pipe on the seabed.
  • FIG. 2 is a longitudinal section of a pipe and a side view of a hammering robot 3 inside the pipeline during assembly, during the hammering treatment of the weld 6 between the ends of the pipe.
  • two pipe elements 2a, 2b, the weld being represented only in the lower half of the section.
  • FIG. 2A is a sectional view of the pipe with a side view of the inside of the pipe showing a hammering robot 3.
  • FIG. 3 shows a longitudinal sectional view of one end of a pipe element showing a straight portion (heel) and an inclined portion (chamfer).
  • FIGS. 3A, 3B, 3C and 3D are sections or views from the side of all or part of the respective ends of the two pipe elements to be assembled, respectively in the approach and positioning (3A), welding (3B) phases. ), internal grinding (3C), and hammering treatment (3D).
  • FIGS. 3C and 3D only a lower part of the welding to better show the inner ground surface 63 of the weld bead 6.
  • Figure 3A ' is a variant of Figure 3A in case of slight shift of the ends of the ends of the two pipe elements to be assembled.
  • FIGS. 3B 'and 3C are partial longitudinal sections relating to FIGS. 3B and 3C showing only the lower part of the weld and the pipe.
  • FIGS. 3E and 3F show variants of FIG. 3B 'in the case where the pipe ends are offset, as in FIG. 3A, a crack initiation since the interior being shown in FIG. 3F.
  • FIG. 4A represents a pipe laying ship equipped with a J-laying tower.
  • FIG. 4B shows a side view of a pipe 2P during descent to the seabed and held in tension within said J-laying tower, and a 2N train maintained in the upper part of said tower; J pose, said train being approximated to said pipe 2P in suspension, to be assembled by welding.
  • FIG. 4C shows in section in side view the two ends of pipe elements. In the lower part, the hammering has not yet been performed at 72, while said hammering is in progress in the upper half at 7i.
  • FIG. 4D shows in side view a train 2 consisting of four pipe elements 2a-2d assembled together and ready to be transferred to the laying ship J of Figure 4A.
  • FIG. 5 represents a detailed view of the hammering tool 5.
  • FIG. 5A shows a side view of a single row projectile swiveling hammer tool.
  • FIG. 6 represents a detailed view of a grinding tool 19 mounted on a second carriage 4c in place of the hammering tool 5.
  • FIG. 1 a bottom-surface connection 1, 1a, 1b, 1c, of the SCR type, suspended on a floating support 10 of FPSO type anchored at 11, and based on the FIG. bottom of the sea 13 at the point of contact 14a, 14b, 14c.
  • the curvature varies along the chain from the surface, or its radius has a maximum value, to the point of contact, or its radius has a minimum value Ro, Ri, R2-
  • the floating support 10 moves, for example from left to right as shown in the figure, which has the effect of lifting or resting the chain-shaped pipe at the seabed.
  • the floating support moves away from the normal position 10a, which has the effect of straightening the chain 1c by lifting it, and moving the point of contact 14 to the right of 14a to 14c; the radius of curvature at the foot of chain increases from Ro to R2, as well as the horizontal tension in the pipe generated at said point of contact, and therefore the tension in the pipe at said floating support.
  • the displacement to the right of the floating support has the effect of relaxing the chain 1b and to rest a portion of the pipe on the seabed.
  • the radius R 0 at the point contact 14a decreases to the value Ri, as well as the horizontal tension in the pipe at the same point, as well as the tension in the pipe at said floating support.
  • This reduction of the radius of curvature at 14b creates considerable internal stresses within the structure of the pipe, which generates cumulative fatigue phenomena that can lead to the ruin of the bottom-surface connection.
  • the pipe has a radius of curvature which is maximum at the top of the chain, ie at the point of suspension on the FPSO, and which decreases to the point of contact 14 with the ground 13.
  • the radius of curvature is minimal in the suspended portion, but in the adjacent portion resting on the seabed, said pipe being theoretically in a straight line, its radius of curvature is theoretically infinite. In fact, this radius is not infinite but extremely high, because it generally remains a residual curvature.
  • FIG. 4D shows a train 2 comprising four unitary driving elements 2a-2d assembled together by welding 2 2 , 2 3 and 2 4 , carried out in the workshop.
  • the first end 2i of said ream to be welded with the door 2 5 a driving assembly already being laid, the end 2 5 of the train constituting the new 2s end of the pipe during laying and being ready to be assembled at the end 2i of a next train, aboard the laying ship 8 of Figure 4A equipped with a 9 laying tower J.
  • the oars are horizontally stored on the deck, then they are raised one after the other by a pivoting ramp 18 from a horizontal position until they are inserted into the laying tower 9. J.
  • the already laid pipe portion 2P not shown in FIG.
  • FIG. 2 is shown in section and in side view two pipe elements 2a-2b assembled end to end by welding 6 in the workshop, the upper half being shown in the approach phase before welding.
  • a remote-controlled device or robot 3 carrying a hammering tool 5 according to the invention is introduced from the right end of the right-hand pipe 2b.
  • invention so as to position said hammering tool astride said weld 6, substantially to the axis of the latter.
  • the robot 3 makes it possible to automatically perform a hammering treatment of the inner wall and weld on a corridor 7 of width L, for example of total width 2 to 6 cm, that is to say substantially from 1 to 3 cm on both sides of the weld bead 6.
  • FIG 3 there is shown in section, the face of a machined pipe element for assembly by welding to the next element.
  • the face is machined in the plane perpendicular to the axis XX of the pipe and has, towards the inside of the pipe, a heel 16 of a few mm, generally 2 to 4 mm, then a chamfer 17, for example straight and conic as shown, or curved and parabolic (not shown).
  • FIG. 3A two pipe elements that are ready to be welded face to face.
  • the driving elements have an extreme quality level, or when they have been rebored so as to have a perfect circular diameter
  • the surfaces of the inner walls of said pipe elements are substantially continuous.
  • the result is a slight internal protrusion 62 substantially uniform on the right (2k) and the left (2h) as well as over the entire periphery, as detailed in Figure 3B '.
  • FIGS. 3E and 3F show the dreaded phenomena previously described for this type of pipe subjected to fatigue for a period that may exceed 25 to 30 years.
  • the first pass must be perfectly fused with the respective heels 16 of the two ends of the two pipe elements 2a, 2b.
  • the chamfers 17 are prepared as shown in Figures 3 and 3A. It is the fusion of said heels which creates a slight extra thickness in the form of a bead or protuberance of small thickness 62 (FIG. 3B) towards the inside of the pipe, said excess thickness being substantially rounded but having an irregular shape on the periphery of the wall inner of said conduit, and sometimes an angled connector at the interface between solder and base metal of the inner surface 2i of the conduit members.
  • the driving elements do not have a perfectly circular internal cross section, but it is slightly oval.
  • the thickness of the wall may vary on the periphery.
  • connection angle cti will be small, while on the other element 2b, the connection angle 02 will be larger, and may result in a sharp angle.
  • the welding process involves heating and melting powers, and therefore considerable energy, because the aim is to minimize the cycle time, especially with regard to the welding performed on board the laying ship 8, such as previously explained with reference to FIGS. 4A-4D.
  • Such installation vessels have an extremely high hourly operating cost, the welding and preparation operations constituting critical occupancy time.
  • the localized thermal shocks created by the power of the welding machines are considerable and this results in zones of concentration of residual stresses that can not be treated conventionally, in particular by thermal annealing, to obtain a relaxation of the acceptable stresses in a lapse of time. time compatible with the desired installation rates.
  • Said residual stresses may be compressive or tensile stresses, the latter being being the most feared with respect to fatigue behavior during the lifetime of the facilities that exceeds 25-30 years or more.
  • the device according to the invention consists of a first carriage 3 with wheels 3rd powered by a motor 3a, powered by a 3d umbilical.
  • the wheels are connected to an axial main body 3i of the first carriage, by a system of arms 3b mounted in articulated parallelogram, preferably three parallelogram structures 3b, each carrying two wheels aligned in the direction XX.
  • the three parallelogram structures 3b are preferably uniformly distributed at 120 ° from each other, as shown in cross-section in FIG. 2A, and actuated synchronously by springs or jacks 3c, so that the main body 3i of said robot remains substantially in the axis XX of said duct.
  • the first trolley or robot 3 carries at the front an axial shaft 4, movable in translation along the axis XX in a guiding barrel 4a integral with the main body 3i passing through it axially, which is displaced in translation along said axis XX by a actuator, not shown, which can be for example a cylinder or an electric motor, preferably controlled and controlled by a computer, through the umbilical 3d.
  • a actuator not shown
  • said shaft 4 is rotatable about itself about the same axis XX, within said guide barrel 4a. Said rotation of the shaft 4 is actuated by an electric motor not shown, integrated in the main body 3i, and preferably controlled and controlled by said computer.
  • a guide support 4b integral with said shaft holds a second carriage 4c and guides it in a direction perpendicular to the axis XX and to the inner wall 2i of the pipe 2.
  • Said second carriage 4c supports a hammering tool 5 integral with the latter.
  • Said hammering tool is kept in intimate contact with the inner wall 2i of the pipe 2, preferably with a constant bearing force, for example by means of a pneumatic cylinder 4d, moving said second carriage 4c in a transverse direction.
  • the main body is then substantially at the axis XX of the pipe, and the position of the hammering tool 5 is adjusted by acting on the position of the movable shaft 4 in translation along XX, always under the control of the video camera 4th.
  • the actuator 4d is then actuated so as to deploy the hammering tool in a transverse direction to press against the surface 2i of the wall of said conduit.
  • the hammering tool is then actuated, while rotating the shaft 4 about its axis XX, so as to subject the entire periphery of the internal weld bead, as well as internal adjacent surfaces 2i of each of the driving elements to form a hammered corridor 7, corresponding to the active width of said hammer tool.
  • the hammering process is advantageously improved by making successive circular passes by slightly shifting, in longitudinal translation, to the left or to the right, the hammering tool, by modifying the longitudinal position of the shaft 4, which can move in translation according to the axis XX in the guide bush 4a integral with the frame 3.
  • a hammering tool 5 is used as described in FIGS. 6 and 7 of FR 2 791 293. More particularly, the vibrating surface is constituted by the end of a sonotrode.
  • This metallic sonotrode is subject to a piezoelectric emitter via one or more acoustic amplifiers having, in a manner known per se, a profile adapted to amplify the amplitude of the oscillations of the sonotrode.
  • the projectiles may be ball-shaped or a pin or tip. The projectiles strike the surface to be treated by their end and, during the impacts, their kinetic energy is transformed into plastic and elastic deformation energy which create or increase the level of compressive stress of the material at this level.
  • FIG. 5 more precisely describes a carriage 4c equipped with its hammer tool 5 remotely controlled through an umbilical link 53, comprising a vibrating surface under the ultrasonic wave effect 52 in the transverse direction YY perpendicular to the longitudinal direction XX, and projecting the elongate projectiles 5i from a retracted position 5a to an extended position 5i b, said two successive projectiles being spaced apart by a distance e of 2 to 5 mm.
  • Offsets in translation of the hammer tool 5 in the direction XX by a distance ⁇ x e / 5 for example, make it possible to hammer the surface to be treated between the points of impact of the different projectiles 5i when the hammer tool is in a given longitudinal position and, in order to fully hammer the surface to be treated, and also to insist on a particular area, and / or to standardize the hammering.
  • FIG. 5A there is shown a hammer tool 5 with a single row of projectiles 5i in the direction XX.
  • Said hammering tool pivots around the axis 4f of the support 4g integral with the carriage 4c.
  • the axis X1X1 of the projectiles 5i which also corresponds to the direction of projection of said projectiles 5i against the surface to be hammered, is inclined by an angle ⁇ with respect to said radial translation direction of the carriage 4c (YY) so as to reach under the best conditions, the transition zones 2h-2k as described above with reference to FIGS. 3B 'and 3F, that is to say substantially the closest to the direction perpendicular to the surface of the bead in said areas.
  • This hammering locally deforms and on a controlled thickness according to the energy transmitted by the sonotrode to said needles, the metal of the weld and the base metal of the end of each of the driving elements.
  • This plastic deformation of the metal makes it possible to establish a generalized and substantially homogeneous state of compression stress throughout the treated zone 7, which has the effect of resorbing the localized states of residual tensile stresses resulting from the welding process and of phenomena of undesired localized quenching previously described.
  • the compression is dependent on the power and accuracy of the hammering process, and is generally performed on a thickness ranging from 0.2 to 2 mm, which advantageously prevents the appearance of dreaded cracking primers.
  • an internal grinding 63 of the weld so as to remove geometric surface defects, so as to be able to perform the hammering on an inner pipe surface and substantially cylindrical weld at this level.
  • Said grinding is advantageously carried out using a grinding tool 19 as shown in FIG. 6, mounted on a device similar to said hammering tool described above, but in which the hammering tool has been replaced by a grinding tool 19.
  • the grinding tool 19 comprises a rotary grinding wheel 19i mounted on a second said carriage 4c, and which can therefore be displaced in translation in the transverse direction YY, so that the rotary grinding wheel 19i bears against the inner surface of the pipe and the grinding weld.
  • At least one wheel 20 is mounted integral with the grinding tool 19, next to it, so that it serves as a guide to ensure the maintenance of the rotary grinding wheel 19i when it bears on said inner pipe surface, i.e. so that said rotary grinding wheel 19i remains tangential to the bore of the pipe, thereby removing just the necessary amount of protrusion 62 of the weld bead 6, as shown in FIGS. 3C-3C
  • FIG. 6 shows a rotary grinding wheel 19i of cylindrical shape with axis of rotation X1X1, extending in the longitudinal direction parallel to the axial longitudinal direction XX of the pipe, the grinding surface of the grinding wheel corresponding to its surface. external cylindrical.
  • the cylindrical rotary grinding wheel can extend in the direction X1X1 of a said distance L.
  • the wheel 20 has an axis of rotation X2X2 in the longitudinal direction parallel to the axes XX and X1X1, so that the wheel 20 and the rotary grinding wheel 19i have the same tangent X3X3 closest to the inner surface 2i of the pipe, which allows the wheel 20 to guide the grinding tool by maintaining its axis X 1 X 1 tangentially to the bore 2i of the pipe, as described above.
  • the state of the inner surface of the pipe is represented in the zone of the hammered inner surface 7 of the weld, over a width L substantially corresponding to the width of the vibrating surface of the hammering tool. 5.
  • 2a-2d are approximately 6 to 12m, which requires introducing the hammering robot by the end closest to the weld to be treated, that is to say at a distance of 6 to 12 m depending on the case, then to walk the robot over this distance to come to position it with precision straddling said weld to be treated.
  • the prefabricated reams In the case of on-site installation, the prefabricated reams generally have a length of about 50 m as shown in FIG. 4D, and in some cases even 25m or 100m, and it is then necessary to route the robot on this distance, so that it can reach the area of the weld to be treated.
  • FIG. 4A-4C shows the assembly between two trains and the treatment of the welded zone by hammering, during the installation on site which is carried aboard a laying ship 8 equipped with a laying tower J 9, as shown in Figure 4A.
  • the already-laid driving element 2P is fixedly held in suspension at the bottom of its turn, and a new driving element 2N is transferred by means of a swiveling ramp 18, in a known manner, from the horizontal position. at the oblique position corresponding to the inclination of the tower to then be positioned in the axis of the terminal pipe element in suspension.
  • Said pipe element to be assembled 2N is then moved axially in the direction XX towards the suspension pipe element 2P in suspension, as shown in FIG.
  • the hammering robot 3 is introduced inside the pipe and allowed to descend to the weld zone, located 50 m below in the case of 50 m, as explained in Figure 4C, and then hammering a corridor 7, similar to the treatment done in the workshop as previously described with reference to Figures 2-2A.
  • the hammering robot is brought up to the top of the tower 9, and the upper end of the tower is seized. driving, that we go down to the bottom of the tower to carry out a new cycle of assembly and treatment of a new train of driving.
  • a control of the stress state of the treated area is carried out, so as to highlight the suppression of the states. tensile stresses and their substitution by compression stress states.
  • the most appropriate means of control is the X-ray method which makes it possible to measure the interatomic distances at the surface of the material, and thus to characterize in a very precise manner the state and the level of stress, which it either traction, rest, or compression.
  • Such means are available from the applicant and are implemented by means of a robot similar to that described above, the hammering tool 5 being replaced by the X-ray source and the associated sensors available from STRESSTECH ( Finland).
  • the signals recovered by the sensors are then sent to a signal processing unit, for example a computer, which will deduce the actual level of stress existing after, and if necessary before, the hammering treatment of said welding zone.
  • the present invention has been described mainly to solve the problem related to the bottom-surface bonds and more particularly at the level of the zone of the point of contact with the seabed, of a SCR type connection.
  • the invention applies to any type of underwater pipe, whether it rests on the seabed, whether it is integrated into a vertical tower, or that it constitutes a subsurface connection between two FPSO, or between an FPSO and an unloading buoy.
  • subsurface links are described in FR 05/04848 patent of one of the applicants, more particularly in Figures 1 A-1 D and 2A.
  • Said subsurface connections are particularly subject to fatigue phenomena when they are subjected to waves and currents and especially to the movements of floating supports, FPSO and loading buoy, which generate alternating stresses especially in the area close to said floating supports.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Combustion & Propulsion (AREA)
  • Earth Drilling (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Arc Welding In General (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Heat Treatment Of Articles (AREA)
  • Drying Of Solid Materials (AREA)
  • Pipeline Systems (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

La présente invention concerne un procédé de réalisation de conduites sous marines (1) en acier comprenant l'assemblage par soudage des extrémités bout à bout d'éléments de conduite unitaires (2a-2b), les cordons de soudure en acier ou alliage métallique desdits soudage étant disposés à l'extérieur de la conduite, caractérisé en ce que on réalise un martelage localisé à l'intérieur de la conduite pour augmenter la compression de l'acier ou métal au niveau desdites soudures (6) et sur la surface interne (2i) périphérique de la conduite adjacente, de part et d'autre des soudures (6), de manière à créer un corridor (7) de surface martelée sur une distance L limitée dans la direction longitudinale axiale (XX) de ladite conduite. De préférence, on réalise ce martelage avec un dispositif comprenant un chariot à roues (3) équipé d'un outil de martelage (5).

Description

PROCEDE DE REALISATION DE CONDU ITE SOUS-MARI NE COMPRENANT LE MARTELAGE DE SOUDURES D'ASSEMBLAGE A L'I NTERI EU R DE LA CON DU ITE
La présente invention concerne un procédé de réalisation de conduites sous-marines destinées à véhiculer des fluides corrosifs et notamment de l'eau, comprenant l'assemblage par soudage d'éléments unitaires de conduite.
La présente invention concerne plus particulièrement une installation de liaison de subsurface entre un support flottant et une bouée de chargement de pétrolier.
La présente invention concerne plus particulièrement une installation de liaison fond-surface comprenant au moins une conduite sous-marine assurant la liaison entre un support flottant et le fond de la mer notamment à grande profondeur. Ces conduites sous-marines sont appelées "colonnes montantes" ou "risers" comme explicité ci-après, ces risers étant constitués d'éléments tubulaires unitaires soudés entre eux bout à bout, réalisés en acier.
Plus particulièrement, la présente invention a pour objet une conduite sous-marine du type riser assurant la liaison entre un support flottant et le fond de la mer, ledit riser étant constitué par une conduite rigide de type caténaire s'étendant depuis ledit support flottant jusqu'à un point de contact au fond de la mer.
Le secteur technique de l'invention est donc le domaine de la fabrication et de l'installation de conduites sous-marines et plus particulièrement de liaisons fond-surface de production pour l'extraction sous-marine de pétrole, de gaz ou autre matériau soluble ou fusible, ou d'une suspension de matière minérale, à partir de tête de puits immergé pour le développement de champs de production installés en pleine mer au large des côtes. L'application principale et immédiate de l'invention étant dans le domaine de la prod uction pétrolière, ainsi que dans la ré-injection d'eau et la production ou ré-injection de gaz.
Un support flottant comporte en général des moyens d'ancrage pour rester en position malgré les effets des cou rants, des vents et de la houle. I l comporte aussi en général des moyens de forage, de stockage et de traitement du pétrole ainsi que des moyens de déchargement vers des pétroliers enleveurs, ces derniers se présentant à intervalle régulier pour effectuer l'enlèvement de la production . L'appellation de ces supports flottants est le terme anglo-saxon "Floating Production Storage Offloading" (signifiant "moyen flottant de stockage, de production et de déchargement") dont on utilisera le terme abrégé "FPSO" dans l'ensemble de la description suivante, ou encore "FDPU" ou "Floating Drilling & Production Unit" (signifiant "moyen flottant de forage et de production"), lorsque le support flottant est aussi utilisé pour effectuer les opérations de forage avec puits dévié dans la hauteur de la tranche d'eau .
Une conduite sous-marine, ou un riser, selon l'invention peuvent être soit un "conduite de production" de pétrole brut ou de gaz, soit un conduite d'injection d'eau , assurant la liaison avec une tête de puits sous-marine installée au fond de la mer, soit encore un "riser de forage" assurant la liaison entre le support flottant et une tête de puits localisée au fond de la mer.
Dans les FPSO où l'on installe en général une multiplicité de lignes, on est amené à mettre en œuvre soit des liaisons fond- surface de type tour-hybride, soit des liaisons de type caténaire en forme de "chaînette" .
Lorsque la conduite de liaison fond-surface est du type caténaire, elle assure directement la liaison entre un support flottant et un point de contact au fond de la mer qui se trouve décalé par rapport à l'axe dudit support, ladite conduite prend de par son propre poids une configuration dite de "chaînette", formant une courbe dont le rayon de courbure diminue depuis la surface jusqu'au point de contact au fond de la mer, et l'axe de ladite conduite forme un angle α avec la verticale dont la valeur varie en général de 10 à 20 degrés au niveau du support flottant jusqu'à, théoriquement, 90 degrés au niveau du fond de la mer correspondant à une position théorique sensiblement tangentielle à l'horizontale comme il sera explicité ci-après.
Les liaisons de type chaînette sont en général réalisées à l'aide de conduites flexibles, mais leur coût est extrêmement élevé en raison de structure complexe de la conduite.
Ainsi on a été amené à développer des colonnes montantes sensiblement verticales, de manière à rapprocher de la surface la liaison souple en configuration de chaînette vers le support flottant, ce qui permet de minimiser la longueur de ladite conduite flexible, ainsi que les efforts qui lui sont appliqués, minimisant ainsi considérablement son coût.
Dès lors que la profondeur d'eau atteint et dépasse 800- 1000m, il devient possible de réaliser ladite liaison fond-surface à l'aide d'une conduite rigide à paroi épaisse, car la longueur de la conduite étant considérable, sa souplesse permet d'obtenir une configuration de chaînette satisfaisante en restant dans des limites de contraintes acceptables.
Ces risers rigides en matériaux résistants de forte épaisseur, en configuration de chaînette, sont communément appelés par le terme anglo-saxon "Steel Catenary Riser" signifiant "riser en acier en forme de chaînette" dont on utilisera le terme abrégé "SCR" ou "riser caténaire" dans la présente description , qu'il soit en acier ou en autre matériau tel qu'un matériau composite.
Ces "SCR" ou "risers caténaires" sont beaucoup plus simples à réaliser que les conduites flexibles et donc moins onéreux.
La courbe géométrique formée par une conduite de poids uniforme en suspension soumise à la gravité, appelée "chaînette" est une fonction mathématique de type cosinus hyperbolique (Coshx = (ex + e"x)/2 , reliant l'abscisse et l'ordonnée d'un point quelconque de la courbe selon les formules suivantes :
y = R0(cosh(x/R0) - 1 )
R = Ro.(Y/Ro + 1 )2
dans lesquelles :
- x représente la distance dans la direction horizontale entre ledit point de contact et un point M de la courbe,
- y représente l'altitude du point M (x et y sont donc les abscisses et ordonnées d'un point M de la courbe par rapport à un repère orthonormé dont l'origine est audit point de contact)
- Ro représente le rayon de courbure au dit point de contact, c'est à dire au point de tangence horizontale.
- R représente le rayon de courbure au point M (x, y)
Ainsi , la courbure varie le long de la chaînette depuis la surface, ou son rayon a une valeur maximale Rmaχ, jusqu'au point de contact, ou son rayon a une valeur minimale Rmiπ (ou Ro dans la formule ci-dessus). Sous l'effet des vagues, du vent et du courant, le support de surface se déplace latéralement et verticalement, ce qui a pour effet de soulever ou de reposer la conduite en forme de chaînette, au niveau du fond de la mer.
Ainsi, la conduite présente un rayon de courbure qui est maximal au sommet de la chaînette, en général, d'au moins 1500, notamment de 1500 à 5000m, c'est à dire au point de suspension sur le FPSO, et qui décroît jusqu'au point de contact avec le sol. A cet endroit, le rayon de courbure est minimal dans la portion en suspension . Mais, dans la partie adjacente reposant sur le fond de la mer, ladite conduite étant théoriquement en ligne droite, son rayon de courbure est théoriquement infini. En fait ledit rayon n'est pas infini mais extrêmement élevé, car il subsiste une courbure résiduelle.
Ainsi, au gré des mouvements du support flottant en surface, le point de contact se déplace d'avant en arrière et, dans la zone soulevée ou reposée sur le fond, le rayon de courbure passe successivement d'une valeur minimale Rmiπ à une valeur extrêmement élevée, voire infinie dans le cas d'une configuration théorique où la conduite sous-marine repose sur le fond de la mer sensiblement en ligne droite.
Ces flexions alternatives créent des phénomènes de fatigue concentrés dans toute la zone de pied de chaînette et la durée de vie de telles conduites est fortement réduite et en général incompatible avec les durées de vie recherchées pour les liaisons fond-surface, c'est à dire 20-25 ans, voire plus.
De plus, on observe que durant ces mouvements alternatifs du point de contact, la raideur de la conduite, associée à la courbure résiduelle mentionnée précédemment, va dans le temps creuser un sillon sur toute la longueur soulevée puis reposée et créer une zone de transition dans laquelle existera un point d'inflexion où le rayon de courbure, minimal en pied de chaînette, changera alors de sens dans ladite zone de transition, et croîtra pour atteindre enfin une valeur infinie dans la portion de conduite sous-marine reposant en ligne droite sur le fond de la mer.
Ces mouvements répétés sur de longues périodes créent un sillon d'autant plus important dans les sols peu consolidés que l'on rencontre couramment en grande profondeur, ce qui a pour effet de modifier la courbure de la chaînette et conduire, si le phénomène s'amplifie, à des risq ues d'endommagement des condu ites, soit au niveau des conduites sous-marines reposant au fond de la mer, soit au niveau des SCR assurant la liaison entre ces conduites sous-marines reposant au fond de la mer et la surface.
Ces conduites sont réalisées par soudage bout à bout d'éléments unitaires de conduite. Les éléments unitaires de condu ite sont eux-mêmes assemblés sous forme de rame, en général de deux à quatre éléments unitaires soudés bout à bout, puis transporté en mer. Et, de façon connue, ces rames sont assemblées par soudage les unes aux autres en mer à partir d'un navire de pose de conduite, notamment au niveau d'une tour de pose en J . Les soudures d'assemblage sont réalisées de préférence et principalement depuis l'extérieur de la conduite.
La portion la plus critique des risers se situe au niveau des soudures d'assemblage des éléments unitaires de conduite et, notamment, dans la portion la plus proche du point de contact et, la plus grande partie des efforts dans cette partie basse de la chaînette sont en fait engendrés par les mouvements propres du support flottant et par les excitations qui surviennent dans la partie haute de la chaînette soumise au courant et à la houle, l'ensemble de ces excitations se propageant alors mécaniquement tout le long de la conduite jusqu'au pied de chaînette.
Les aciers constituant les conduites sont sélectionnés pour résister à la fatigue pendant toute la durée de vie des installations, mais les soudures entre éléments de conduites, dans cette zone du pied de chaînette, constituent des points faibles lorsque ladite conduite véhicule soit de l'eau, soit des fluides comportant de l'eau et plus particulièrement de l'eau salée. En effet, lesdites soudures en présence d'eau sont sujettes à des phénomènes de fatigue et de corrosion créant dans le temps, sous contraintes variables de flexion, des fissures conduisant à la ruine de ladite conduite.
Pour pallier à ce problème, on réalise des soudures entre éléments de conduite à l'aide d'un acier inoxydable ou un alliage résistant à la corrosion . Les alliages anti corrosion sont bien connus de l'homme de l'art, il s'agit principalement d'alliages base nickel, notamment du type inconel, de préférence de grade particulier, notamment en inconel 625 ou 825, lesdits inconels présentant aussi une excellente résistance à la fatigue de par leur haute limite élastique et permettant ainsi d'atteindre des durées de vie de 20 à 30 ans.
Pour que la soudure puisse être résistante et effectuée dans de bonnes conditions, on a proposé de revêtir l'intérieur des deux éléments conduites à souder ensemble du même acier inoxydable ou alliage résistant à la corrosion sur quelques cm au niveau des extrémités des éléments de conduite à souder ensemble, de manière à ce que la passe de pénétration de la soudure qui constituera la future paroi en contact avec le fluide soit du même métal que le métal d'apport de la soudure, en particulier de l'inconel. Ce revêtement en acier inoxydable ou alliage anti corrosion, notamment de type inconel, se fait par un procédé coûteux à l'arc électrique appelé « cladding », c'est-à-dire « revêtement », réalisé en général à l'aide d'une procédé TIG ou plasma, associé à un fil d'apport ou à une poudre d'acier inoxydable ou d'alliage résistant à la corrosion . Le but de la présente invention est de fournir un nouveau procédé de fabrication et d'installation de conduites sous marines destinées à véhiculer des fluides corrosifs et notamment de l'eau comprenant l'assemblage par soudage de rames de conduites sous marines à partir d'un navire de pose en mer de conduites sous marines qui soit :
- fiable en termes de résistance à la fatigue au niveau de chacune des soudures, et notamment en permettant d'éviter l'apparition de fissures dans le temps,
- en affectant le moins possible les performances de résistances mécaniques et / ou augment le moins possible les pertes de charges du fluide véhiculé à l'intérieur de la conduite en opération, et
- simple et le moins coûteux possible à mettre en œuvre , et notamment dans lequel on réalise le moins possible d'étape d'assemblage et notamment de soudage à bord du navire de pose.
Selon la présente invention, les inventeurs ont découverts que des amorces de fissure se localisent à l'intérieur de la conduite, au niveau de la petite protubérance du cordon de soudure tournée vers l'intérieur de la conduite et non pas sur la face externe de la masse principale du cordon de soudure à l'extérieur de la conduite. Plus précisément, comme explicité dans la description détaillée qui va suivre en référence aux figures 3E et 3F, les inventeurs ont découverts que l'origine des ruines des soudures réside au niveau de la zone de transition entre la soudure et la surface interne en acier de base de la conduite adjacente, zone au niveau de laquelle, des contraintes de traction liées au choc thermique lors du soudage se traduisent par des défauts physique, notamment des amorces de fissuration localisées à ce niveau . En effet, lors du soudage, il se produit des retraits ou trempes localisés incontrôlables, conduisant à des états de contrainte de contraction du métal localisé dans et à proximité de la zone de la soudure, alors que le reste de la surface adjacente de la conduite est soit au repos, soit en compression .
En général, on résout ces problèmes de contrainte de contraction localisés des soudures par des recuits pour relâcher la contrainte. On connaît d'autres moyens de traitement de ces problèmes au niveau des soudures pour obtenir une relaxation de contrainte de traction, mais ceux-ci ne sont pas compatibles avec les contraintes de temps et de cadence de pose en mer recherchées. Mais, dans le cas présent, pour le soudage d'éléments de conduite sous-marine lors de la pose en mer, ces traitements de recuit ne sont pas possibles.
La présente invention fournit un procédé de réalisation de conduites sous marines en acier destinées à véhiculer des fluides corrosifs et notamment de l'eau, comprenant l'assemblage par soudage des extrémités bout à bout d'éléments de conduite unitaires, les cordons de soudure en acier ou alliage métallique desdits soudage étant disposés à l'extérieur de la conduite, caractérisé en ce que on réalise un martelage localisé à l'intérieur de la conduite pour augmenter le niveau de contrainte de compression de l'acier ou du métal au niveau desdites soudures et sur la surface interne périphérique de la conduite adjacente, de part et d'autre des soudures, de manière à créer un corridor de surface martelée sur une distance L limitée dans la direction longitudinale axiale XX de ladite conduite, c'est-à-dire sur une partie seulement de la longueur de chacun des deux éléments de conduite assemblés par la dite soudure à partir de leurs extrémités respectives mises bout à bout. Plus particulièrement, ledit corridor martelé s'étend sur une distance L au moins égale à la moitié de l'épaisseur de la paroi de conduite, de préférence encore une distance L inférieure 2 fois l'épaisseur de la conduite .
Plus particulièrement, la soudure comprend un cordon de soudure principal à l'extérieur de la conduite et une protubérance ou bourrelet interne d'épaisseur plus réduite dépassant du coté de l'intérieur de la conduite.
Cette protubérance ou bourrelet interne résulte de la fusion partielle des extrémités des éléments unitaires assemblés par soudage lors du traitement thermique de soudage.
Plus particulièrement, le dit corridor martelé s'étend sur une distance L correspondant à la largeur de la soudure à l'intérieur de la conduite, notamment la largeur du dit bourrelet interne, lequel bourrelet présente en pratique une largeur de 3 à 5mm, que l'on augmente de part et d'autre d'une largeur de 1 à 10 mm soit une distance L de 5 à 25mm.
On entend ici par "martelage", un traitement de surface par une multiplication d'impacts à l'aide d'un ou plusieurs projectiles qui réalise une augmentation du niveau de contrainte de compression sur une zone de la surface à traiter.
Selon la présente invention, c'est toute la surface dudit corridor, c'est-à-dire de la section de surface interne cylindrique, de part et d'autre de la soudure, et chevauchant celle-ci, qui subit ces impacts, aucune zone de la surface en dehors dudit corridor n'étant frappée par un tel impact.
Les projectiles peuvent être de forme de bille ou d'une extrémité de broche en pointe, les projectiles venant frapper par leur extrémité la surface à traiter et, lors des impacts, leur énergie cinétique est transformée en énergie de déformation plastique et élastique de la surface traitée ce qui a pour effet d'augmenter la contrainte de compression du matériau à ce niveau, supprimant de ce fait les zones à contraintes résiduelles de traction .
Des outils de martelage que l'on peut utiliser selon la présente invention sont décrits dans FR 2 791 293 de l'une des demanderesses, mais des outils de martelage plus rudimentaires décrits dans US 3 937 055, par exemple, peuvent être également utilisés.
Un martelage selon la présente invention consiste, en quelque sorte, à réaliser un forgeage à froid qui supprime les contraintes résiduelles de traction, en déformant la matière au niveau de la surface martelée. Il y a lieu d'observer que l'on ne cherche pas à résorber la surépaisseur éventuelle liée à un bourrelet ou protubérance interne du cordon de soudure, mais on cherche seulement à compresser, de manière sensiblement uniforme, la surface de la zone de soudage et les zones adjacentes, en utilisant une énergie suffisante pour plastifier et déformer le métal de manière à en supprimer toutes les contraintes résiduelles de traction dues à l'opération de soudage.
Plus particulièrement encore, lesdites extrémités d'éléments unitaires de conduite à souder comportent, en coupe axiale longitudinale, une extrémité droite du coté intérieur à la conduite formant talon sur, de préférence, au moins un quart de l'épaisseur de la partie courante de la conduite et prolongée vers l'extérieur de la conduite par un chanfrein incliné.
Dans ce cas, la protubérance ou bourrelet interne dépassant du cordon de soudure provient de la fusion dudit talon et du métal d'apport. On comprend que ledit chanfrein est tourné vers l'extérieur de la conduite, de sorte qu'il peut recevoir un cordon de soudure déposé entre deux chanfreins aux extrémités de deux éléments de conduite mis bout à bout de chanfrein , formant sensiblement un V aux extrémités de deux éléments de cond uite à assembler par soudage mis bout à bout.
Dans un mode de réalisation avantageux, on réalise un enlèvement de matière par usinage, de préférence par meulage ou fraisage, préalable de la surface interne de la conduite et du cordon de soudure au niveau de la surface à marteler, avant ledit martelage.
Avantageusement encore, on réalise ledit martelage au moins dans la zone de transition entre la surface interne du cordon de soudure et la surface interne adjacente de la conduite.
Plus particulièrement, on réalise ledit martelage de manière à réaliser la mise en compression ou augmenter la compression sur une épaisseur de 0,2 à 2 mm de ladite surface interne de la conduite et de ladite soudure.
Dans un mode de réalisation , la distance limitée L représente 1 à 3 fois l'épaisseur de la conduite.
Plus particulièrement encore, on réalise un martelage de manière à obten ir une contrainte de compression supérieure à 5 M Pa, de préférence supérieure à 50 MPa, notamment de 50 à 1 000 M Pa, sur toute la surface martelée.
Dans un mode préféré de réalisation , on réalise ledit martelage avec un dispositif de martelage que l'on déplace à l'intérieur de ladite conduite par translation et rotation au niveau des zones desdites soudures, le dispositif de martelage comprenant : - au moins un outil de martelage monté sur un premier chariot motorisé,
- ledit premier chariot étant apte à se déplacer à l'intérieur de ladite conduite, en translation dans la direction longitudinale axiale XX de ladite conduite,
- ledit premier chariot supportant des moyens de déplacement dudit outil de martelage en translation radiale relative par rapport audit premier chariot, permettant d'appliquer ledit outil de martelage contre la surface interne de la conduite, ou de dégager l'outil de martelage en retrait par rapport à la surface interne de la conduite, et
- des moyens de déplacement en rotation dudit outil de martelage autour dudit axe longitudinal axial XX de la conduite, permettant d'effectuer ledit martelage sur toute la circonférence de la surface interne de ladite conduite par une dite rotation de l'outil de martelage.
Dans un mode de réalisation particulier, ledit outil de martelage comprend une surface vibrante, s'étendant de préférence sur une dite distance limitée L dans la direction longitudinale axiale XX, et une pluralité de projectiles de type à sphérile ou à pointe, aptes à être projetés en direction de la surface interne à traiter par ladite surface vibrante, pour créer une pluralité d'impacts.
Dans un mode préféré, le procédé selon l'invention est caractérisé en ce que ledit premier chariot comprend des moyens de déplacement dudit outil de martelage en translation relative par rapport audit premier chariot dans ladite direction axiale longitudinale XX. En particulier dans le cas où l'outil de martelage comprend une pluralité de projectiles projetés à partir d'une surface vibrante radialement, elle-même s'étendant sur au moins une distance dans la direction longitudinale, ledit moyen de translation relative longitudinal de l'outil de martelage étant apte à déplacer lesdits projectiles d'au moins une distance correspondant à l'entraxe entre deux projectiles successifs, de façon à ce que toute la surface traitée soit entièrement martelée de manière sensiblement uniforme.
Plus particulièrement encore, le procédé selon l'invention est caractérisé en ce qu'il comprend les étapes dans lesquelles:
- on déplace en translation ledit premier chariot à l'intérieur de ladite conduite dans ladite direction longitudinale axiale XX, de sorte que ledit outil de martelage soit sensiblement positionné de manière à ce que celui-ci puisse réaliser un martelage dans ladite zone de soudure et de part et d'autre de celle-ci sur une dite distance à marteler L, dans ladite direction axiale longitudinale XX, chevauchant ladite soudure, puis
- on déplace ledit outil de martelage contre ou à proximité de la surface interne de la conduite par translation radiale dudit outil de martelage, puis
- on déplace en rotation ledit outil de martelage autour dudit axe longitudinal axial XX, sur la circonférence de la surface interne de cond uite, puis
- le cas échéant, on déplace en translation relative l'outil de martelage dans la direction longitudinale axiale XX par rapport audit premier chariot, de façon à effectuer le martelage et la compression sur toute la surface martelée, notamment en cas d'outil de martelage comportant une pluralité de dits projectiles de type à pointe ou sphérule, espacés les uns des autres.
On comprend que le déplacement en translation relative longitudinale de l'outil de martelage par rapport audit premier chariot peut se faire soit de manière continue, soit de manière séquentielle entre deux dites rotations dudit outil de martelage.
Ceci permet de ne pas laisser de surface non martelée entre deux zones d'impact desdits projectiles successifs, et ainsi d'atteindre les zones les plus critiques, situées à l'interface entre le bourrelet du cordon de soudure et le métal de base de la conduite.
Selon d'autres caractéristiques avantageuses :
- ledit premier chariot motorisé supporte un premier arbre, disposé dans ladite direction longitudinale axiale XX, et
- ledit premier arbre supporte un support de guidage transversal, apte à guider le déplacement d'un deuxième chariot en translation radiale dans une direction transversale perpendiculaire à ladite direction longitudinale axiale XX, c'est-à-dire dans une direction transversale perpendiculaire à ladite direction longitudinale axiale XX, et comprenant un moyen apte à maintenir ledit outil de martelage en position en regard de la surface interne de ladite conduite, et
- ledit premier arbre comprend un moyen d'entraînement en rotation contrôlée lui-même autour de son dit axe longitudinal axial XX, de manière à pouvoir déplacer ledit outil de martelage sur toute la circonférence de la surface interne de la conduite, en rotation contrôlée sur lui-même, et
- ledit premier arbre est, de préférence, apte à être entraîné en translation relative par rapport audit premier chariot dans ladite direction longitudinale axiale XX, notamment sur au moins une courte distance δx correspondant à une partie de la distance éventuelle entre deux projectiles successifs, soit sur une distance comprise entre 0.1 et 10mm dans le cas d'outil de martelage à rangée unique de projectiles.
Dans un mode de réalisation particulier, ledit outil de martelage comprend une pluralité de projectiles, notamment du type à sphérile ou à pointe, projetés contre ladite surface à marteler à partir d'une surface vibrante dudit outil de martelage, notamment le cas échéant dans une direction radiale
Toutefois, dans un mode de réalisation particulier, ledit outil de martelage est monté à pivotement par rapport au dit deuxième chariot, permettant ainsi de faire varier l'inclinaison β de la direction Yi , Yi de projection desdits projectiles par rapport à ladite direction de translation radiale dudit deuxième chariot YY.
Ce mode de réalisation permet d'optimiser le martelage au niveau des zones de transition entre le bourrelet interne de soudure et la paroi de conduite adjacente, notamment en l'absence d'usinage préalable dudit bourrelet de soudure interne.
Dans le procédé dans lequel on réalise un meulage préalable, ce meulage préalable de la surface à marteler est réalisé avec un outil de meulage à meule rotative monté à la place ou avec un dit outil de martelage sur un dit premier chariot.
Plus particulièrement, on réalise lesdits soudages en acier au carbone, en acier inoxydable ou en alliage résistant à la corrosion, de type inconel, à haute élasticité, résistant à la fatigue, de préférence en inconel de grade 625 ou 825.
Plus particulièrement encore, le procédé selon l'invention comprend les étapes suivantes successives, dans lesquelles : 1 ) on réalise, en atelier à terre, l'assemblage par dit soudage des extrémités respectives d'au moins deux éléments unitaires de conduite, mis bout à bout pour former des rames de conduite, et
2) on réalise en mer, à partir d'un navire de pose équipé d'une tour de pose en J , l'assemblage par dit soudage des extrémités respectives desdites rames pour former une conduite.
La présente invention a également pour objet une conduite sous-marine de liaison fond-surface, dont au moins une partie comprend des zones de dites soudures d'assemblage d'éléments unitaires de conduites mises en compression par un procédé selon l'invention .
Plus particulièrement, la présente invention a pour objet une conduite sous-marine de liaison fond-surface selon l'invention , caractérisée en ce qu'il s'agit d'une conduite caténaire du type SCR dont au moins une partie comprenant la zone en contact avec le sol s'étendant sur au moins 100 m , de préférence 200 m au dessus du sol, a été assemblée par un procédé de réalisation de conduite selon l'invention .
La présente invention a enfin pour objet un dispositif de martelage comprenant au moins un dit outil de martelage monté sur un d it premier chariot apte à se déplacer en translation à l'intérieur d'une conduite, comprenant un dit outil de martelage apte à se déplacer en translation relative longitudinale XX par rapport audit premier chariot et en rotation autour dudit axe longitudinal axial XX de la conduite au niveau desdites soudures, tel que défini ci- dessus.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière détaillée des modes de réalisation qui vont suivre, en référence aux figures suivantes, dans lesquelles :
- la figure 1 est une vue de côté d'une conduite en configuration de chaînette simple 1 , suspendue à un support flottant 10 de type FPSO, et dont l'extrémité inférieure repose sur le fond de la mer 13, représentée dans trois positions différentes 1 a, 1 b, 1 c.
- la figure 1 A est une coupe en vue de côté détaillant la tranchée 12 creusée par le pied 1 1 de chaînette lors des mouvements de soulèvement et de repos de la conduite sur le fond marin .
- la figure 2 est une coupe longitudinale d'une conduite et une vue de côté d'un robot de martelage 3 à l'intérieur de la conduite en cours d'assemblage, lors du traitement de martelage de la soudure 6 entre les extrémités de deux éléments de conduite 2a, 2b, la soudure n'étant représentée qu'en moitié inférieure de la coupe.
- la figure 2A est une vue en coupe de la conduite avec une vue de coté de l'intérieur de la conduite montrant un robot de martelage 3.
- la figure 3 représente une vue en coupe longitudinale d'une extrémité d'un élément de conduite montrant une partie droite (talon) et une partie inclinée (chanfrein).
- les figures 3A, 3B, 3C et 3D sont des coupes ou vues de côté de tout ou partie des extrémités respectives des deux éléments de conduite à assembler, respectivement dans les phases d'approche et de positionnement (3A), de soudage (3B), de meulage interne (3C), et de traitement par martelage (3D). Sur les figures 3C et 3D, on n'a représenté qu'une partie inférieure de la soudure pour mieux montrer la surface meulée intérieure 63 du cordon de soudure 6.
- la figure 3A' est une variante de la figure 3A en cas de léger décalage des talons des extrémités des deux éléments de conduite à assembler.
- les figures 3B' et 3C sont des sections longitudinales partielles relatives aux figures 3B et 3C ne montrant que la partie inférieure de la soudure et de la conduite.
- les figures 3E et 3F représentent des variantes de la figure 3B' dans le cas où les extrémités de conduite sont décalées, comme dans la figure 3A\ une amorce de fissure depuis l'intérieu r étant montrée en 2k, figure 3F .
- la figure 4A représente un navire de pose de conduites équipé d'une tour de pose en J .
- la figure 4B représente en vue de côté une conduite 2P en cours de descente jusqu'au fond de la mer et maintenue en tension au sein de ladite tour de pose en J , et une rame 2N maintenue dans la partie supérieure de ladite tour de pose en J , ladite rame étant approchée de ladite conduite 2P en suspension , en vue d'être assemblée par soudage.
- la figure 4C représente en coupe en vue de côté les deux extrémités d'éléments de conduite. Dans la partie inférieure, le martelage n'a pas encore été effectué en 72, alors que ledit martelage est en cours dans la demi partie supérieure en 7i .
- la figure 4D représente en vue de côté une rame 2 constituée de quatre éléments de conduite 2a-2d assemblés entre eux et prêts à être transférés sur le navire de pose en J de la figure 4A. - la figure 5 représente une vue détaillée de l'outil de martelage 5.
- la figure 5A représente une vue de côté d'un outil de martelage orientable à simple rangée de projectile.
- la figure 6 représente une vue détaillée d'un outil de meulage 19 monté sur un dit second chariot 4c, à la place de l'outil de martelage 5.
Dans la figure 1 , on a représenté en vue de côté une liaison fond-surface 1 , 1 a, 1 b, 1 c, de type SCR, suspendue à un support flottant 10 de type FPSO ancré en 1 1 , et reposant sur le fond de la mer 13 au niveau du point de contact 14a, 14b, 14c.
La courbure varie le long de la chaînette depuis la surface, ou son rayon a une valeur maximale, jusqu'au point de contact, ou son rayon a une valeur minimale Ro, Ri , R2- Sous l'effet des vagues, du vent et du courant, le support flottant 10 se déplace, par exemple de gauche à droite comme représenté sur la figure, ce qui a pour effet de soulever ou de reposer la conduite en forme de chaînette, au niveau du fond de la mer. Dans la position 10c, le support flottant s'écarte de la position normale 10a, ce qui a pour effet de tendre la chaînette 1 c en la soulevant, et de déplacer le point de contact 14 vers la droite de 14a en 14c; le rayon de courbure en pied de chaînette augmente de Ro à R2, de même que la tension horizontale dans la conduite engendrée au niveau dudit point de contact, et par conséquent que la tension dans la conduite au niveau dudit support flottant. De la même manière, dans la position 10b, le déplacement vers la droite du support flottant a pour effet de détendre la chaînette 1 b et de reposer une partie de la conduite sur le fond de la mer. Le rayon R0 au niveau du point de contact 14a décroît jusqu'à la valeur Ri , de même que la tension horizontale dans la conduite au même point, ainsi que la tension dans la conduite au niveau dudit support flottant. Cette réduction du rayon de courbure en 14b crée des contraintes internes considérables au sein de la structure de la conduite ce qui engendre des phénomènes de fatigue cumulés pouvant conduire à la ruine de la liaison fond-surface.
Ainsi, la conduite présente un rayon de courbure qui est maximal au sommet de la chaînette, c'est à dire au point de suspension sur le FPSO, et qui décroît jusqu'au point de contact 14 avec le sol 13. A cet endroit, le rayon de courbure est minimal dans la portion en suspension, mais dans la partie adjacente reposant sur le fond de la mer, ladite conduite étant théoriquement en ligne droite, son rayon de courbure est théoriquement infini . En fait ledit rayon n'est pas infini mais extrêmement élevé, car il persiste en général une courbure résiduelle.
Ainsi, comme expliqué précédemment, au gré des mouvements du support flottant en surface 10, le point de contact 14 se déplace de droite à gauche et, dans la zone soulevée ou reposée sur le fond, le rayon de courbure passe successivement d'une valeur minimale Rmiπ à une valeur extrêmement élevée, voire infinie dans le cas d'une configuration sensiblement en ligne droite.
Ces flexions alternatives créent des phénomènes de fatigue concentrés dans toute la zone de pied de chaînette et la durée de vie de telles conduites est fortement réduite et en général incompatible avec les durées de vie recherchées pour les liaisons fond-surface, c'est à dire 20-25 ans, voire plus.
De plus, comme illustré dans la figure 1 A, on observe que durant ces mouvements alternatifs du point de contact, la raideur de la conduite, associée à la courbure résiduelle mentionnée précédemment, va dans le temps creuser un sillon 12 sur toute la longueur soulevée puis reposée, et créer ainsi une zone de transition dans laquelle existera un point d'inflexion 1 1 , où la courbure change de sens dans les zones de transition, pour atteindre enfin une valeur infinie dans la portion de conduite sous- marine reposant en ligne droite sur le fond de la mer, ladite portion n'étant soulevée que de manière exceptionnelle, par exemple lors du cumul maximal dans la même direction, vers la gauche, de tous les éléments perturbateurs (houle-vent-courant) agissant sur le support flottant et sur la chaînette, ou encore lors de l'apparition de phénomènes de résonance au niveau de la chaînette elle- même. Lorsque la conduite se soulève, le point d'inflexion disparaît et les fibres précédemment en traction se retrouvent alors en compression ce qui crée une fatigue considérable dans cette portion de conduite. Ladite fatigue est alors d'un ou deux ordres supérieur à la fatigue en section courante où il n'y a pas de changement de la courbure, ce qui est incompatible avec une durée de vie recherchée de 25-30 ans voire plus.
Dans la figure 4D on a représenté une rame 2 comportant quatre éléments unitaires de conduite 2a-2d assemblés entre eux par soudages 22, 23 et 24, réalisés en atelier. La première extrémité 2i de ladite rame devant être soudée avec celle 25 d'une conduite déjà assemblée en cours de pose, l'extrémité 25 de la rame constituant la nouvelle extrémité 2s de la conduite en cours de pose et étant prête à être assemblée à l'extrémité 2i d'une rame suivante, à bord du navire de pose 8 de la figure 4A équipé d'une tour 9 de pose en J . A bord de ce navire, les rames sont stockées sur le pont à l'horizontale, puis elles sont relevées l'une après l'autre par une rampe pivotante 18 depuis une position horizontale jusqu'à être insérées dans la tour 9 de pose en J . La portion de conduite déjà posée 2P, non représentée figure 4A mais représentée figure 4B, est maintenue en tension au sein de la tour par une pince. Puis, une nouvelle rame 2N est descendue vers ladite conduite 2P maintenue en tension, comme détaillé sur la figure 4b, pour finalement être soudée, puis traitée par martelage selon l'invention, comme détaillé sur la figure 4c.
Sur la figure 2 on a représenté en coupe et en vue de côté deux éléments de conduites 2a-2b assemblés bout à bout par soudage 6 en atelier, la demi partie supérieure étant représentée en phase d'approche avant soudage. Lorsque le procédé de soudage est terminé et que le contrôle de la qualité dudit soudage a été effectué, depuis l'extrémité droite de la conduite de droite 2b, on introduit un dispositif commandé à distance ou robot 3 portant un outil de martelage 5 selon l'invention, de manière à venir positionner ledit outil de martelage à cheval sur ladite soudure 6, sensiblement à l'axe de cette dernière. Le robot 3 permet d'effectuer de manière automatique un traitement de martelage de la paroi interne et soudure sur un corridor 7 de largeur L, par exemple de largeur totale 2 à 6 cm, c'est-à-dire sensiblement de 1 à 3cm de part et d'autre du cordon de soudure 6.
Sur la figure 3, on a représenté en coupe, la face d'un élément de conduite usinée en vue de son assemblage par soudage à l'élément suivant. La face est usinée dans le plan perpendiculaire à l'axe XX de la conduite et présente, vers l'intérieur de la conduite, un talon 16 de quelques mm, en général 2 à 4 mm, puis un chanfrein 17, par exemple droit et conique tel que représenté, ou courbe et parabolique (non représenté).
Sur la figure 3A, on a mis face à face deux éléments de conduites prêts à être soudés. Lorsque les éléments de conduite présentent un niveau de qualité extrême, ou lorsqu'ils ont été réalésés de manière à présenter un diamètre circulaire parfait, les surfaces des parois intérieures desdits éléments de conduite sont sensiblement continues. Et lors du soudage (figure 3A, figure 3B- 3B'), il en résulte une légère protubérance intérieure 62 sensiblement uniforme sur la droite (2k) et la gauche (2h) ainsi que sur toute la périphérie, comme détaillé sur la figure 3B'.
Sur les figures 3E et 3F, on a mis en évidence les phénomènes redoutés précédemment décrits pour ce type de conduite soumise à la fatigue pendant une période pouvant excéder 25 à 30 ans. Lors du soudage effectué depuis l'extérieur par des robots de soudage orbitaux multi-têtes, la première passe doit être parfaitement fusionnée avec les talons respectifs 16 des deux extrémités des deux éléments de conduite 2a, 2b. A cet effet, les chanfreins 17 sont préparés comme représentés sur les figures 3 et 3A. C'est la fusion desdits talons qui crée une légère surépaisseur en forme de bourrelet ou protubérance de faible épaisseur 62 (figure 3B) vers l'intérieur de la conduite, ladite surépaisseur étant sensiblement arrondie mais présentant une forme irrégulière sur la périphérie de la paroi intérieure de ladite conduite, et parfois un raccord anguleux au niveau du l'interface entre soudure et métal de base de la surface interne 2i des éléments de conduite.
En fait, en général, les éléments de conduite n'ont pas une section transversale interne parfaitement circulaire, mais celle-ci est légèrement ovalisée. De plus, l'épaisseur de la paroi peut varier sur la périphérie. Ainsi, lorsque l'on met face à face les extrémités des deux éléments de conduite à assembler, si par endroits de la périphérie, on retrouve l'alignement de la figure 3A, en certaines zones il existe un décalage tel que représenté sur la figure 3A'. Lors du processus de soudage, la protubérance 62, sensiblement symétrique sur la figure 3B', présente alors un déséquilibre comme représenté sur la figure 3E. Ainsi, en 2h et 2k représentant respectivement la zone de transition entre la soudure elle-même et le métal de base des éléments de conduite 2a et 2b, il existe un angle CH , 02 entre la tangente à la protubérance et la surface interne 2i de la conduite, plus ou moins ouvert tel que représenté sur la figure 3E. En général, du côté en retrait vers l'intérieur, l'élément de conduite de gauche 2a, l'angle de raccordement cti sera faible, alors que sur l'autre élément 2b, l'angle de raccordement 02 sera plus important et il pourra en résulter un angle vif.
C'est alors dans cette zone présentant des angles vifs 02, que risquent d'apparaître, sous l'effet de la fatigue, des amorces de fissuration, en général localisées, qui se propagent initialement dans la direction FF comme représenté sur la figure 3F, puis finalement sur toute la périphérie de la conduite, conduisant ainsi à la ruine de la soudure et donc de la liaison fond-surface.
Le processus de soudage met en jeu des puissances de chauffe et de fusion, donc des énergies considérables, car l'on cherche à minimiser le temps de cycle, surtout en ce qui concerne la soudure réalisée à bord du navire de pose 8, telle qu'explicitée précédemment en regard des figures 4A-4D. En effet, de tels navires d'installation ont un coût horaire d'exploitation extrêmement élevé, les opérations de soudage et de préparation constituant du temps d'occupation critique. On recherche des temps de cycle le processus de soudage de l'ordre de 10-12 minutes pour des conduites de 300 mm de diamètre et de 20 mm d'épaisseur. Les chocs thermiques localisés créés par la puissance des engins de soudage sont considérables et il en résulte des zones de concentration de contraintes résiduelles qui ne peuvent être traités de manière conventionnelle, notamment par recuit thermique, pour obtenir une relaxation des contraintes acceptables dans un laps de temps compatible avec les cadences de pose recherchées. Lesdites contraintes résiduelles peuvent être des contraintes de compression ou de traction, ces dernières étant les plus redoutées vis-à-vis de la tenue en fatigue pendant la durée de vie des installations qui excède 25-30 ans, voire plus.
Lors d'essais de fatigue réalisés sur des longueurs de conduites soumises à des simulations de fatigue correspondant à celles rencontrées lors de durée de vie de 25 à 50 ans, effectués sur un banc de fatigue, automatisé en termes de spectre de fréquence et d'amplitude des cycles alternés de contraintes, les inventeurs ont mis en évidence des phénomènes de fissuration localisée au niveau de l'interface entre le métal de base d'un élément de conduite et la zone de la soudure, principalement au niveau de la fusion des talons 16 et du bourrelet interne 62 du cordon de soudure 6. En effet, en raison de phénomènes de trempe localisée, combinés à des irrégularités de fusion locale, il apparaît des points faibles dans lesquels la matière se trouve en état de contrainte résiduelle de traction à un niveau significatif, en général concomitamment à la présence d'un défaut physique localisé, tel un angle. A cet endroit précis vont alors apparaître rapidement lors des mouvements de la conduite, des amorces de fissuration en 2k telles que représentés sur la figure 3F, ladite fissure se propageant alors rapidement de manière radiale et périphérique, en général selon une direction FF dans l'épaisseur de la paroi, conduisant ainsi rapidement à la ruine de la conduite et à des risques de pollution inacceptables.
Le dispositif selon l'invention est constitué d'un premier chariot 3 à roulettes 3e motorisé par un moteur 3a, alimenté par un ombilical 3d . Les roues sont reliées à un corps principal axial 3i du premier chariot, par un système de bras 3b montés en parallélogramme articulé, de préférence trois structures 3b de parallélogramme, portant chacune deux roues alignées dans la direction XX. Les trois structures de parallélogramme 3b sont de préférence uniformément réparties à 120° les uns des autres, comme représenté en coupe transversale sur la figure 2A, et actionnés de manière synchrone par des ressorts ou des vérins 3c, de manière à ce que le corps principal 3i dudit robot reste sensiblement dans l'axe XX de ladite conduite. Le premier chariot ou robot 3 porte à l'avant un arbre axial 4, mobile en translation selon l'axe XX dans un canon de guidage 4a solidaire du corps principal 3i le traversant axialement, qui est déplacé en translation selon ledit axe XX par un actionneur, non représenté, qui peut être par exemple un vérin ou un moteur électrique, de préférence asservi et piloté par un ordinateur, à travers l'ombilical 3d . De plus, ledit arbre 4 est mobile en rotation sur lui-même autour du même axe XX, au sein dudit canon de guidage 4a. Ladite rotation de l'arbre 4 est actionnée par un moteur électrique non représenté, intégré au corps principal 3i , et de préférence asservi et piloté par ledit ordinateur. A l'avant de l'arbre 4, un support de guidage 4b, solidaire dudit arbre maintient un second chariot 4c et le guide dans une direction perpendiculaire à l'axe XX et à la paroi interne 2i de la conduite 2. Ledit second chariot 4c supporte un outil de martelage 5 solidaire de ce dernier. Ledit outil de martelage est maintenu en contact intime avec la paroi interne 2i de la conduite 2, de préférence avec une force d'appui constante, par exemple au moyen d'un vérin pneumatique 4d, déplaçant ledit second chariot 4c dans une direction transversale. Ainsi, après que la soudure ait été réalisée et contrôlée, on insère par l'extrémité droite de la conduite 2b, ledit robot 3 équipé du second chariot 4c portant l'outil de martelage 5 en position rétractée, de manière à ce que ledit outil de martelage n'interfère pas avec la surface interne de la paroi de conduite. Grâce à la motorisation 3a, on déplace le robot jusqu'à la soudure 6 à traiter, sous le contrôle d'une caméra vidéo 4e portée par le chariot 4c. Puis, on verrouille le chariot en position longitudinale en bloquant la motorisation 3a et en augmentant la pression dans les vérins 3c qui font pivoter les bras articulés 3b et bloquent les roues 3a contre la la surface interne 2i de la paroi des conduits. Le corps principal se trouve alors sensiblement à l'axe XX de la conduite, et l'on ajuste la position de l'outil de martelage 5 en agissant su r la position de l'arbre 4 mobile en translation selon XX, toujours sous le contrôle de la caméra vidéo 4e. On actionne alors le vérin 4d de manière à déployer l'outil de martelage dans une d irection transversale pour le plaquer contre la surface 2i de la paroi de ladite conduite. On actionne alors l'outil de martelage, tout en actionnant en rotation l'arbre 4 autour de son axe XX, de manière à soumettre l'intégralité de la périphérie du cordon de soudure interne, ainsi que des surfaces adjacentes internes 2i de chacun des éléments de conduite pour former un corridor martelé 7, correspondant à la largeur active dudit outil de martelage. On améliore avantageusement le processus de martelage en effectuant des passes circulaires successives en décalant légèrement, en translation longitudinale, vers la gauche ou vers la droite, l'outil de martelage, en modifiant la position longitudinale de l'arbre 4, mobile en translation selon l'axe XX dans le canon de guidage 4a solidaire du bâti 3.
On utilise un outil de martelage 5 tel que décrit sur les figures 6 et 7 de FR 2 791 293. Plus particulièrement, la surface vibrante est constituée par l'extrémité d'une sonotrode. Cette sonotrode métallique est assujettie à un émetteur piézoélectrique par l'intermédiaire d'un ou plusieurs amplificateurs acoustiques présentant, d'une façon connue en soi, un profil adapté pour amplifier l'amplitude des oscillations du sonotrode. Les projectiles peuvent être de forme de bille ou d'une broche ou pointe. Les projectiles viennent frapper par leur extrémité la surface à traiter et, lors des impacts, leur énergie cinétique est transformée en énergie de déformation plastique et élastique qui créent ou augmentent le niveau de contrainte de compression du matériau à ce niveau . Sur la figure 5, on a décrit plus précisément un chariot 4c équipé de son outil de martelage 5 commandé à distance à travers une liaison ombilicale 53, comprenant une surface vibrante sous l'effet d'onde ultrason 52 dans la direction transversale YY perpendiculaire à la direction longitudinale XX, et projetant les projectiles allongés 5i d'une position rétractée 5ia à une position déployée 5i b, deux dits projectiles successives étant espacés d'une distance e de 2 à 5 mm.
Des décalages en translation de l'outil de martelage 5 dans la direction XX d'une distance δx= e/5 par exemple, permettent de marteler la surface à traiter entre les points d'impact des différents projectiles 5i lorsque l'outil de martelage est dans une position longitudinale donnée et, ceci afin de marteler entièrement la surface à traiter, et aussi d'insister sur une zone plus particulière, et/ou d'uniformiser le martelage.
Sur la figure 5A, on a représenté un outil de martelage 5 à simple rangée de projectiles 5i dans la direction XX. Ledit outil de martelage pivote autour de l'axe 4f du support 4g solidaire du chariot 4c. L'axe X1X1 des projectiles 5i , qui correspond également à la direction de projection desdits projectiles 5i contre la surface à marteler, est incliné d'un angle β par rapport à ladite direction de translation radiale du chariot 4c (YY) de manière à atteindre, dans les meilleures conditions, les zones de transition 2h-2k telles que décrites ci-dessus en référence au figures 3B' et 3F, c'est-à-dire sensiblement le plus proche de la direction perpendiculaire à la surface du bourrelet dans lesdites zones. Ceci φ=μ- permet d'insister sur ces zones de transition 2h-2k sujettes à l'apparition des fissurations redoutées. Ainsi, on utilisera avantageusement un premier outil de martelage tel que décrit en regard de la figure 5 pour effectuer un martelage général . Puis, on insistera sur chacune des zones de transition 2h-2k au moyen dudit outil de martelage à simple rangée de projectiles, les deux outils de martelage étant avantageusement installés sur un même chariot 4c, ou sur des chariots indépendants solidaires du même arbre axial 4.
Ce martelage permet de déformer localement et sur une épaisseur contrôlée en fonction de l'énergie transmise par la sonotrode aux dites aiguilles, le métal de la soudure et le métal de base de l'extrémité de chacun des éléments de conduite. Cette déformation plastique du métal permet d'établir un état généralisé et sensiblement homogène de contrainte de compression dans toute la zone traitée 7, ce qui a pour effet de résorber les états localisés de contraintes résiduelles de traction résultant du processus de soudage et de phénomènes de trempe localisés indésirables précédemment décrits.
La mise en compression dépend de la puissance et de la précision du processus de martelage, et elle est effectuée en général sur une épaisseur variant de 0.2 à 2 mm, ce qui empêche avantageusement l'apparition des amorces de fissuration redoutées.
On améliore avantageusement la qualité de la conduite dans la zone de la soudure dès lors que l'on effectue avant le martelage, un meulage interne 63 de la soudure, de manière à supprimer les défauts géométriques de surface, de manière à pouvoir réaliser le martelage sur une surface interne de conduite et soudure sensiblement cylindrique à ce niveau . Ledit meulage est avantageusement effectué à l'aide d'un outil de meulage 19 tel que représenté sur la figure 6, monté sur un dispositif similaire audit outil de martelage décrit ci-dessus, mais dans lequel l'outil de martelage a été remplacé par un outil de meulage 19. L'outil de meulage 19 comprend une meule rotative 19i montée sur un dit second chariot 4c, et qui peut donc être déplacée en translation dans la direction transversale YY, de sorte que la meule rotative 19i vienne en appui contre la surface interne de la conduite et de la soudure à meuler. Au moins une roulette 20 est montée solidaire de l'outil de meulage 19, à coté de celui-ci, de manière à ce qu'elle serve de guide pour assurer le maintien de la meule rotative 19i lorsque celle-ci vient en appui sur ladite surface interne de conduite, c'est-à-dire de manière à ce que ladite meule rotative 19i reste bien tangentielle à l'alésage de la conduite, enlevant de ce fait juste la quantité nécessaire de protubérance 62 du cordon de soudure 6, comme représenté sur les figures 3C-3C
Sur la figure 6, on a représenté une meule rotative 19i de forme cylindrique d'axe de rotation X1X1 , s'étendant dans la direction longitudinale parallèle à la direction longitudinale axiale XX de la conduite, la surface abrasive de la meule correspondant à sa surface externe cylindrique. Dans un mode de réalisation, la meule rotative cylindrique peut s'étendre dans la direction X1X1 d'une dite distance L. De même, la roulette 20 présente un axe de rotation X2X2 dans la direction longitudinale parallèle aux axes XX et X1X1 , de sorte que la roulette 20 et la meule rotative 19i présentent une même tangente X3X3 la plus proche de la surface interne 2i de la conduite, ce qui permet que la roulette 20 puisse guider l'outil de meulage en maintenant son axe X1X1 tangentiellement à l'alésage 2i de la conduite, comme décrit ci- dessus.
Sur la figure 3D, on a représenté l'état de la surface intérieure de la conduite dans la zone de la surface interne martelée 7 de la soudure, sur une largeur L correspondant sensiblement à la largeur de la surface vibrante de l'outil de martelage 5.
Lors de la préfabrication à terre des rames 2 telles que représentées sur la figure 4D, la longueur des éléments unitaires
2a-2d sont de 6 à 12m environ, ce qui nécessite d'introduire le robot de martelage par l'extrémité la plus proche de la soudure à traiter, c'est-à-dire à une distance de 6 à 12 m environ selon les cas, puis de faire cheminer le robot sur cette distance pour venir le positionner avec précision à cheval sur ladite soudure à traiter.
Dans le cas de l'installation sur site, les rames préfabriquées ont en général une longueur de 50 m environ comme représenté sur la figure 4D, voire dans certains cas de 25m ou de 100m, et il est alors nécessaire de faire cheminer le robot sur cette distance, pour qu'il puisse atteindre la zone de la soudure à traiter.
Sur les figures 4A-4C, on a représenté l'assemblage entre deux rames ainsi que le traitement de la zone de soudure par martelage, lors de l'installation sur site qui est effectuée à bord d'un navire de pose 8 équipé d'une tour de pose en J 9, tel que représenté sur la figure 4A. A cet effet, l'élément de conduite déjà posé 2P est maintenu fixement en suspension en pied de tour, et un nouvel élément de conduite 2N est transféré à l'aide d'une rampe 18 pivotante, de manière connue, de la position horizontale à la position oblique correspondant à l'inclinaison de la tour pour être ensuite positionné dans l'axe de l'élément de conduite terminal en suspension . Ledit élément de conduite à assembler 2N est ensuite déplacé axialement selon la direction XX vers l'élément de conduite terminal 2P en suspension, comme représenté sur la figure 4B, puis soudé de manière connue. Depuis l'extrémité supérieure de la tour, on introduit à l'intérieur de la conduite le robot de martelage 3 que l'on laisse descendre jusqu'à la zone de la soudure, située 50 m en contrebas dans le cas de rames de 50 m, comme explicité sur la figure 4C, puis on effectue le martelage d'un corridor 7, de manière similaire au traitement effectué en atelier comme précédemment décrit en regard des figures 2-2A. En fin de traitement, on remonte le robot de martelage vers le sommet de la tour 9, puis l'on saisit l'extrémité supérieure de la conduite, que l'on redescend vers le bas de la tour pour effectuer un nouveau cycle d'assemblage et de traitement d'une nouvelle rame de conduite.
En atelier, comme à bord du navire d'installation, en fin de traitement de la zone la soudure par martelage, on effectue avantageusement un contrôle de l'état de contraintes de la zone traitée, de manière à mettre en évidence la suppression des états de contraintes de traction et leur substitution par des états de contrainte de compression . Le moyen ce contrôle le plus approprié est la méthode par rayons X qui permet de mesurer les distances inter atomiques au niveau de la surface de la matière, et ainsi de caractériser de manière très précise l'état et le niveau de contrainte, qu'il soit de traction, de repos, ou de compression . De tels moyens sont disponibles chez la demanderesse et sont mis en œuvre au moyen d'un robot similaire à celui décrit précédemment, l'outil de martelage 5 étant remplacé par la source de rayons X et les capteurs associés disponibles auprès de la Société STRESSTECH (Finlande). Les signaux récupérés par les capteurs sont alors envoyés vers une unité de traitement du signal, par exemple un ordinateur, qui en déduira le niveau de contrainte réel existant après, et le cas échéant avant, le traitement par martelage de ladite zone de soudage.
La présente invention a été décrite principalement pour résoudre le problème lié aux liaisons fond-surface et plus particulièrement au niveau de la zone du point de contact avec le fond marin, d'une liaison de type SCR. Mais, l'invention s'applique à tout type de conduite sous-marine, qu'elle repose sur le fond de la mer, qu'elle soit intégrée à une tour verticale, ou encore qu'elle constitue une liaison en subsurface entre deux FPSO, ou entre un FPSO et une bouée de déchargement.
Les divers types de liaison subsurface sont décrits dans le brevet FR 05/04848 de l'une des demanderesses, plus particulièrement dans les figures 1 A-1 D et 2A. Lesdites liaisons subsurface sont tout particulièrement sujettes aux phénomènes de fatigue lorsqu'elles sont soumises à la houle et aux courants et surtout aux mouvements des supports flottants, FPSO et bouée de chargement, qui engendrent des contraintes alternées surtout dans la zone proche desdits supports flottants.

Claims

REVENDICATIONS
1 . Procédé de réalisation de conduites sous marines (1 ) en acier comprenant l'assemblage par soudage des extrémités bout à bout d'éléments de conduite unitaires (2a-2b), les cordons de soudure en acier ou alliage métallique desdits soudage étant disposés à l'extérieur de la conduite, caractérisé en ce que on réalise un martelage localisé à l'intérieur de la conduite pour augmenter la compression de l'acier ou métal au niveau desdites soudures (6, 62) et sur la surface interne (2i) périphérique de la conduite adjacente, de part et d'autre des soudures (6), de manière à créer un corridor (7) de surface martelée sur une distance L limitée dans la direction longitudinale axiale (XX) de ladite conduite, de préférence sur une distance L au moins égale à la largeur de la soudure, à l'intérieur de la conduite, augmentée de part et d'autre d'une largeur de 1 à 10 mm.
2. Procédé selon la revendication 1 , caractérisé en ce que la soudure (6) comprend un cordon de soudure principale (61 ) à l'extérieur de la conduite et une protubérance ou bourrelet interne (62) d'épaisseur plus réduite dépassant du coté de l'intérieur de la conduite.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que lesdites extrémités d'éléments unitaires de conduite à souder comportent, en coupe axiale longitudinale, une extrémité droite du coté intérieur à la conduite formant talon (16) sur, de préférence, au moins un quart de l'épaisseur de la partie courante de la conduite et prolongée vers l'extérieur de la conduite par un chanfrein (17) incliné.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'on réalise un enlèvement de matière par usinage, de préférence meulage ou fraisage préalable de la surface interne de la conduite et du cordon de soudure (6, 62) au niveau de la surface à marteler, avant ledit martelage.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'on réalise ledit martelage au moins dans la zone de transition (2h, 2k) entre la surface interne (62, 63) du cordon de soudure (62) et la surface interne (2i) adjacente de la conduite.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'on réalise ledit martelage de manière à réaliser la mise en compression ou augmenter la compression sur une épaisseur de 0,2 à 2 mm de ladite surface interne (2i) de la conduite et de ladite soudure (6).
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la distance limitée L représente 1 à 3 fois l'épaisseur de la conduite.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que l'on réalise un martelage de manière à obtenir une contrainte de compression supérieure à 5 MPa, de préférence supérieure à 50 MPa, sur toute la surface martelée.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que l'on réalise ledit martelage avec un dispositif de martelage que l'on déplace à l'intérieur de ladite conduite par translation et rotation au niveau des zones desdites soudures, le dispositif de martelage comprenant :
- au moins un outil de martelage (5) monté sur un premier chariot motorisé (3), - ledit premier chariot étant apte à se déplacer à l'intérieur de ladite conduite, en translation dans la direction longitudinale axiale (XX) de ladite conduite,
- ledit premier chariot supportant des moyens de déplacement dudit outil de martelage (5) en translation radiale (YY) relative par rapport audit premier chariot, permettant d'appliquer ledit outil de martelage (5) contre la surface interne de la conduite, ou de dégager l'outil de martelage (5) en retrait par rapport à la surface interne de la conduite, et
- des moyens de déplacement en rotation dudit outil de martelage (5) autour dudit axe longitudinal axial (XX) de la conduite, permettant d'effectuer ledit martelage sur toute la circonférence de la surface interne de ladite conduite par une dite rotation de l'outil de martelage (5).
10. Procédé selon la revendication 9, caractérisé en ce que ledit outil de martelage comprend une surface vibrante, s'étendant de préférence sur une dite distance limitée L dans la direction longitudinale axiale (XX), et une pluralité de projectiles (5i ) de type à sphérile ou à pointe, aptes à être projetés en direction de la surface interne à traiter par ladite surface vibrante, pour créer une pluralité d'impacts.
1 1 . Procédé selon l'une des revendications 9 ou 10, caractérisé en ce que ledit premier chariot (3) comprend des moyens de déplacement dudit outil de martelage (5) en translation relative par rapport audit premier chariot dans ladite direction axiale longitudinale (XX).
12. Procédé selon l'une des revendications 9 à 1 1 , caractérisé en ce que : - on déplace en translation ledit premier chariot (3) à l'intérieur de ladite conduite dans ladite direction longitudinale axiale (XX), de sorte que ledit outil de martelage (5) soit sensiblement positionné de manière à ce que celui-ci puisse réaliser un martelage dans ladite zone de soudure et de part et d'autre de celle-ci sur une dite distance à marteler L, dans ladite direction axiale longitudinale (XX), chevauchant ladite soudure, puis
- on déplace ledit outil de martelage contre ou à proximité de la surface interne de la conduite par translation radiale (YY) dudit outil de martelage, pu is
- on déplace en rotation ledit outil de martelage autour dudit axe longitudinal axial (XX), sur la circonférence de la surface interne de conduite, puis
- le cas échéant, on déplace en translation relative l'outil de martelage dans la direction longitudinale axiale (XX) par rapport audit premier chariot, de façon à effectuer le martelage et la compression sur toute la surface martelée, notamment en cas d'outil de martelage comportant une pluralité de dits projectiles (5i ) de type à pointe ou sphérule, espacés les uns des autres .
13. Procédé selon l'une des revendications 9 à 12, caractérisé en ce que :
- ledit premier chariot motorisé (3) supporte un premier arbre (4), disposé dans ladite direction longitudinale axiale (XX), et
- ledit premier arbre (4) supporte un support de guidage transversal (4b), apte à guider le déplacement d'un deuxième chariot (4c) en translation radiale dans une direction transversale perpendiculaire à ladite direction longitudinale axiale (XX), et comprenant un moyen (4d) apte à maintenir ledit outil de martelage (5) en position en regard de la surface interne (2i) de ladite conduite, et
- ledit premier arbre (4) comprend un moyen d'entraînement en rotation contrôlée lui-même autour de son dit axe longitudinal axial (XX), de manière à pouvoir déplacer ledit outil de martelage (5) sur toute la circonférence de la surface interne (2i) de la conduite, en rotation contrôlée sur lui-même, et
- ledit premier arbre (4) est, de préférence, apte à être entraîné en translation relative par rapport audit premier chariot (3) dans ladite direction longitudinale axiale (XX), sur au moins une dite distance limitée L.
14. Procédé selon l'une des revendications 9 à 13, caractérisé en ce que ledit outil de martelage (5) comprend une pluralité de projectiles (5i ) projetés contre ladite surface à marteler à partir d'une surface vibrante (52) dudit outil de martelage.
15. Procédé selon la revendication 14, caractérisé en ce que ledit outil de martelage est monté à pivotement par rapport au dit deuxième chariot (4c), permettant ainsi de faire varier l'inclinaison (β) de la direction (Yi , Yi ) de projection desdits projectiles par rapport à ladite direction de translation radiale dudit deuxième chariot (YY).
16. Procédé selon l'une des revendications 9 à 15, caractérisé en ce que l'on réalise un meulage préalable de la surface à marteler avec un outil de meulage (19) à meule rotative (19i ) monté à la place ou avec un dit outil de martelage (5), sur un dit premier chariot (3).
17. Procédé selon l'une des revendications 1 à 16, caractérisé en ce que l'on réalise lesdits soudages (6) en acier au carbone, en acier inoxydable ou en alliage résistant à la corrosion, de type inconel, à haute élasticité, résistant à la fatigue, de préférence en inconel de grade 625 ou 825.
18. Procédé selon l'une des revendications 1 à 17, caractérisé en ce qu'il comprend les étapes suivantes successives, dans lesquelles :
1 ) on réalise, en atelier à terre, l'assemblage par dit soudage (22, 23, 24) des extrémités respectives d'au moins deux éléments unitaires de conduite (2a-2b), mis bout à bout pour former des rames (2) de conduite, et
2) on réalise en mer, à partir d'un navire de pose (8) équipé d'une tour de pose en J (9), l'assemblage par dit soudage des extrémités (2i , 25) respectives desdites rames pour former une conduite.
19. Conduite sous-marine de liaison fond-surface, dont au moins une partie comprend des zones (7) de dites soudures d'assemblage d'éléments unitaires de conduites mises en compression uniforme selon le procédé de l'une des revendications 1 à 18.
20. Conduite sous-marine de liaison fond-surface selon la revendication 19, caractérisée en ce qu'il s'agit d'une conduite caténaire du type SCR dont au moins une partie comprenant la zone en contact avec le sol s'étendant sur au moins 100 m , de préférence 200 m au dessus du sol , a été assemblée par un procédé selon l'une des revendications 1 à 18.
21 . Dispositif de martelage utile dans un procédé selon l'une des revendications 9 à 16, comprenant au moins un dit outil de martelage (5) monté sur un dit premier chariot (3) apte à se déplacer en translation à l'intérieur d'une conduite, comprenant un dit outil de martelage apte à se déplacer en translation relative longitudinale (XX) par rapport audit premier chariot et en rotation autour dudit axe longitudinal axial (XX) de la conduite au niveau desdites soudures (6), tel que défini dans l'une des revendications 9 à 15.
PCT/FR2008/050625 2007-04-12 2008-04-09 Procede de realisation de conduite sous-marine comprenant le martelage de soudures d'assemblage a l'interieur de la conduite WO2008139116A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/595,376 US20100147047A1 (en) 2007-04-12 2008-04-09 Method of Making an Udersea Pipe, the Method Including Peening Assembly Welds Inside the Pipe
AT08788147T ATE502241T1 (de) 2007-04-12 2008-04-09 Verfahren zur herstellung einer unterwasserleitung mit einhämmerung der montageschweissstellen in die leitung
EP08788147A EP2132474B1 (fr) 2007-04-12 2008-04-09 Procede de realisation de conduite sous-marine comprenant le martelage de soudures d'assemblage a l'interieur de la conduite
DE602008005564T DE602008005564D1 (de) 2007-04-12 2008-04-09 Verfahren zur herstellung einer unterwasserleitunge leitung
BRPI0810164-7A2A BRPI0810164A2 (pt) 2007-04-12 2008-04-09 Método de realização de tubulação submarina compreendendo a martelagem de soldaduras de união no interior da tubulação

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0754425 2007-04-12
FR0754425A FR2914979B1 (fr) 2007-04-12 2007-04-12 Procede de realisation de conduite sous-marine comprenant le martelage de soudures d'assemblage a l'interieur de la conduite

Publications (1)

Publication Number Publication Date
WO2008139116A1 true WO2008139116A1 (fr) 2008-11-20

Family

ID=38667096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050625 WO2008139116A1 (fr) 2007-04-12 2008-04-09 Procede de realisation de conduite sous-marine comprenant le martelage de soudures d'assemblage a l'interieur de la conduite

Country Status (7)

Country Link
US (1) US20100147047A1 (fr)
EP (1) EP2132474B1 (fr)
AT (1) ATE502241T1 (fr)
BR (1) BRPI0810164A2 (fr)
DE (1) DE602008005564D1 (fr)
FR (1) FR2914979B1 (fr)
WO (1) WO2008139116A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102189386A (zh) * 2011-05-25 2011-09-21 浙江省东阳化工机械有限公司 一种不锈钢焊接气瓶内表面处理工艺
EP2178672B1 (fr) * 2007-08-21 2013-05-01 Saipem SA Dispositif de martelage pour realiser le martelage des soudures a l'interieur de conduites sous marines en acier, procede de realisation de conduites sous marines en acier utilisant un tel dispositif
US9339886B2 (en) 2009-12-01 2016-05-17 Saipem S.P.A. Method of and a welding station for laying a pipeline, with pipe section welded together by internal and external welding
CN106965051A (zh) * 2017-05-05 2017-07-21 北京航空航天大学 螺旋焊管管端智能修磨设备
WO2018007709A1 (fr) 2016-07-06 2018-01-11 Saipem S.A. Procede de raccordement de deux elements unitaires d'une conduite sous-marine de transport de fluides soumise a la fatigue
CN113664432A (zh) * 2021-08-25 2021-11-19 青岛嘉恒新能源设备有限公司 一种大型输油管道内移式探伤焊接设备

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8386221B2 (en) * 2009-12-07 2013-02-26 Nuovo Pignone S.P.A. Method for subsea equipment subject to hydrogen induced stress cracking
CN102011915A (zh) * 2010-11-09 2011-04-13 刘成琪 一种多功能管道机器人驱动机构
US9623509B2 (en) 2011-01-10 2017-04-18 Arcelormittal Method of welding nickel-aluminide
US10220444B2 (en) 2015-11-20 2019-03-05 United Technologies Corporation Additive manufactured conglomerated powder removal from internal passages
CN105364405A (zh) * 2015-11-30 2016-03-02 海西华汇化工机械有限公司 通用型螺旋钢管内焊缝刮渣装置
CN105415383B (zh) * 2015-12-23 2017-03-29 国家电网公司 一种电力管道内检查和评估机器人及评估方法
CN106043483B (zh) * 2016-06-13 2018-05-04 天津职业技术师范大学 大型竖直管式内壁爬行机器人
CN107309599B (zh) * 2017-08-19 2019-04-26 三明金牛水泥有限公司 一种水泥生产用纺锤形磨辊堆焊固定装置
US10821534B2 (en) * 2017-09-18 2020-11-03 Raul Cardona Cylinder welding system
CN109108515B (zh) * 2018-10-30 2021-04-30 广船国际有限公司 一种轮船油管的安装方法
US11344974B2 (en) * 2019-10-16 2022-05-31 Saudi Arabian Oil Company Optimized method and system for internal coating of field girth welds
CN112605078A (zh) * 2020-11-30 2021-04-06 盐城大孙庄新城建设有限公司 一种中央空调用清洗机器人
US11530584B2 (en) 2020-12-24 2022-12-20 Baker Hughes Oilfield Operations Llc Downhole robotic shuttle for performing programed operations
CN113404976B (zh) * 2021-06-25 2022-12-27 华能秦煤瑞金发电有限责任公司 一种应用于管道检测机器人的自动疏通装置
CN114147604B (zh) * 2021-12-20 2022-08-26 江苏绿能汽配科技有限公司 一种金属管件打磨装置
CN114280089B (zh) * 2021-12-29 2023-11-10 福建省锅炉压力容器检验研究院 一种基于x射线的火力发电关键部位焊缝应力测试装置
CN115430733A (zh) * 2022-10-08 2022-12-06 广西鲁板建筑设备制造有限公司 一种建筑脚手架的杆件变形修复设备
CN116475755B (zh) * 2023-05-15 2024-01-16 长沙锦峰重工科技有限公司 一种风电塔筒门框冲压装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR867880A (fr) * 1940-08-05 1941-12-02 Procédé de soudure des joints pour tuyaux métalliques, gaines, manchons, coudes, etc.
FR2428782A1 (fr) * 1978-06-13 1980-01-11 Pont A Mousson Elements tubulaires en acier pour conduites en mer
GB2088513A (en) * 1980-11-27 1982-06-09 Snam Progetti Pipe for use as part of a pipeline
US4559085A (en) * 1984-06-18 1985-12-17 Liu Eddy Y L Method for removing spatters from a pipeline

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1079065A (en) * 1912-11-07 1913-11-18 John I Pilston Pipe-peening machine.
US2496027A (en) * 1944-10-23 1950-01-31 Trapet Maurice Portable tool with swivel head
US2795689A (en) * 1954-02-24 1957-06-11 Louis C Mcnutt Automatic pipe welding apparatus
US3531964A (en) * 1967-08-31 1970-10-06 Nasa Controlled glass bead peening
US4410297A (en) * 1981-01-19 1983-10-18 Lynch Robert P Marine continuous pipe laying system
JPS58107292A (ja) * 1981-12-21 1983-06-25 Kawasaki Heavy Ind Ltd 管の溶接継手部処理方法及び装置
US5676857A (en) * 1995-08-11 1997-10-14 Sabre International, Inc. Method of welding the end of a first pipe to the end of a second pipe
GB2345016B (en) * 1998-12-24 2003-04-02 Saipem Spa Method and apparatus for welding pipes together
BR9904117A (pt) * 1999-09-08 2001-04-24 Petroleo Brasileiro Sa Método para instalação de uma tubulação metálica submarina ascendente em catenária
FR2812067B1 (fr) * 2000-07-18 2003-05-16 Commissariat Energie Atomique Robot mobile apte a travailler dans des tuyaux ou d'autres passages etroits
FR2818570B1 (fr) * 2000-12-21 2003-04-18 Bouygues Offshore Insert de centrage et procede d'assemblage et soudage de deux elements de conduite
US7159425B2 (en) * 2003-03-14 2007-01-09 Prevey Paul S Method and apparatus for providing a layer of compressive residual stress in the surface of a part
US7744311B2 (en) * 2004-03-10 2010-06-29 Gusto Engineering B.V. Light-weight versatile J-lay system
GB0513250D0 (en) * 2005-06-29 2005-08-03 Stolt Offshore Ltd Method and apparatus for laying pipelines and related equipment in very deep water
JP4865334B2 (ja) * 2006-01-10 2012-02-01 三菱重工業株式会社 先端工具案内装置及び先端工具案内装置の搬入方法
NO325933B1 (no) * 2006-09-28 2008-08-18 Sub Aqua Technology As Anordning ved plugg
US7744312B2 (en) * 2006-11-10 2010-06-29 Single Buoy Moorings, Inc. Offshore pipe string system and method
ITMI20062402A1 (it) * 2006-12-14 2008-06-15 Saipem Spa Metodo e apparecchiatura di giunzione di spezzoni di tubo per realizzare tubazioni sottomarine e natante di posa di tubazioni sottomarine comprendente tale apparecchiatura
US8414342B2 (en) * 2008-01-18 2013-04-09 Single Buoy Moorings, Inc. Steel pipeline fluid transfer system
JP4901543B2 (ja) * 2007-03-23 2012-03-21 株式会社東芝 配管内作業装置および配管内作業方法
JP5118515B2 (ja) * 2008-03-11 2013-01-16 三菱重工業株式会社 先端工具案内装置
US7927040B2 (en) * 2008-08-08 2011-04-19 Wilson Michael W N Method for storing, delivering and spooling preassembled pipelines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR867880A (fr) * 1940-08-05 1941-12-02 Procédé de soudure des joints pour tuyaux métalliques, gaines, manchons, coudes, etc.
FR2428782A1 (fr) * 1978-06-13 1980-01-11 Pont A Mousson Elements tubulaires en acier pour conduites en mer
GB2088513A (en) * 1980-11-27 1982-06-09 Snam Progetti Pipe for use as part of a pipeline
US4559085A (en) * 1984-06-18 1985-12-17 Liu Eddy Y L Method for removing spatters from a pipeline

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2178672B1 (fr) * 2007-08-21 2013-05-01 Saipem SA Dispositif de martelage pour realiser le martelage des soudures a l'interieur de conduites sous marines en acier, procede de realisation de conduites sous marines en acier utilisant un tel dispositif
US9339886B2 (en) 2009-12-01 2016-05-17 Saipem S.P.A. Method of and a welding station for laying a pipeline, with pipe section welded together by internal and external welding
RU2588930C2 (ru) * 2009-12-01 2016-07-10 САЙПЕМ С.п.А. Способ формирования подводного трубопровода при его прокладке
CN102189386A (zh) * 2011-05-25 2011-09-21 浙江省东阳化工机械有限公司 一种不锈钢焊接气瓶内表面处理工艺
CN102189386B (zh) * 2011-05-25 2013-04-03 浙江省东阳化工机械有限公司 一种不锈钢焊接气瓶内表面处理工艺
WO2018007709A1 (fr) 2016-07-06 2018-01-11 Saipem S.A. Procede de raccordement de deux elements unitaires d'une conduite sous-marine de transport de fluides soumise a la fatigue
US11407052B2 (en) 2016-07-06 2022-08-09 Saipem S.A. Method for connecting two individual elements of an underwater fluid-transport pipe subject to fatigue
CN106965051A (zh) * 2017-05-05 2017-07-21 北京航空航天大学 螺旋焊管管端智能修磨设备
CN113664432A (zh) * 2021-08-25 2021-11-19 青岛嘉恒新能源设备有限公司 一种大型输油管道内移式探伤焊接设备

Also Published As

Publication number Publication date
DE602008005564D1 (de) 2011-04-28
EP2132474A1 (fr) 2009-12-16
US20100147047A1 (en) 2010-06-17
FR2914979A1 (fr) 2008-10-17
BRPI0810164A2 (pt) 2014-12-30
ATE502241T1 (de) 2011-04-15
FR2914979B1 (fr) 2009-07-10
EP2132474B1 (fr) 2011-03-16

Similar Documents

Publication Publication Date Title
EP2132474B1 (fr) Procede de realisation de conduite sous-marine comprenant le martelage de soudures d'assemblage a l'interieur de la conduite
EP2178672B1 (fr) Dispositif de martelage pour realiser le martelage des soudures a l'interieur de conduites sous marines en acier, procede de realisation de conduites sous marines en acier utilisant un tel dispositif
EP1987280B1 (fr) Element de conduites coaxiales et procede de fabrication
EP2066944B9 (fr) Procede de realisation de conduite sous-marine comprenant des soudages et chemisages anti corrosion
EP1987281B1 (fr) Element de conduites coaxiales dont la conduite interne est sous contrainte de traction et procede de fabrication
EP3230640B1 (fr) Procede de montage d'un embout de connexion d'une conduite tubulaire flexible et dispositif permettant de mettre en oeuvre ce procede
EP0565445B1 (fr) Dispositif de montage d'une ligne flexible comportant un limiteur de courbure
EP2286056B1 (fr) Installation de liaison fond-surface d'une conduite rigide avec une conduite flexible a flottabilite positive
EP1917416B1 (fr) Installation comprenant au moins deux liaisons fond-surface d au moins deux conduites sous-marines reposant au fond de la mer.
EP0212316B1 (fr) Colonne de forage pour forage à déviations, procédé d'utilisation de cette colonne et dispositif déviateur utilisé dans cette colonne
WO2001035011A1 (fr) Systeme de pinces pour maintenir une conduite en tension, et support flottant en comprenant
EP3164258B1 (fr) Dispositif et procédé de mise en place d'un manchon tubulaire de jonction pour conduite comportant un chemisage interne
CA3112733A1 (fr) Dispositif interieur de serrage et de soudage
FR2953249A1 (fr) Composants de garniture de forage et train de composants
FR2982633A1 (fr) Composant pour le forage et l'exploitation des puits d'hydrocarbures
EP3234263A1 (fr) Procédé de mise en place d'une installation sous-marine comportant au moins un tronçon de conduite, et installation associée
EP2571753A1 (fr) Installation de liaison fond-surface comprenant une structure de guidage de conduite flexible
CA1280950C (fr) Dispositif de transfert de fluide entre une structure fixe et une structure mobile en rotation utilisant au moins une conduite flexible
EP3482113B1 (fr) Procede de raccordement de deux elements unitaires d'une conduite sous-marine de transport de fluides soumise a la fatigue
EP3526503B1 (fr) Dispositif de retenue d'un embout de connexion de ligne flexible sous-marine partiellement immergee
OA18924A (en) Procédé de raccordement de deux éléments unitaires d'une conduite sous-marine de transport de fluides soumise à la fatigue.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08788147

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008788147

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12595376

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0810164

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091009