Beschreibung
Wässrige Pigmentpräparationen
Gegenstand der vorliegenden Erfindung sind wässrige Pigmentpräparationen enthaltend neuartige nichtionische Polymere als Dispergiermittel, sowie ihre Verwendung zum Einfärben von natürlichen und synthetischen Materialien.
Für die Dispergierung von Pigmenten im flüssigen Medium sind üblicherweise Dispergiermittel notwendig. Dispergiermittel können anionischer, kationischer, amphoterer oder neutraler Struktur sein. Sie können niedermolekularer Natur sein oder höhermolekulare Polymere darstellen, die eine statistische, alternierende, blockartige, kammartige oder sternförmig angeordnete Architektur der polymerisierten Monomere ausbilden.
Von besonderer kommerzieller Bedeutung sind Dispergiermittel beispielsweise für die Dispergierung von Pigmenten bei der Herstellung von Pigmentkonzentraten, die zum Einfärben von Dispersions- und Lackfarben, Anstrichmitteln, Beschichtungsstoffen und Druckfarben verwendet werden, sowie zum Einfärben von Papier, Kartonagen und Textilien.
Im Stand der Technik sind auch Pigmentpräparationen beschrieben, die geordnete Polymerstrukturen enthalten. Beispiele dafür sind EP 1 293 523, DE 10 2005 012 315 und EP 1 721 941.
Bislang ist es jedoch nicht gelungen, die in der Vergangenheit verwendeten nichtionischen Novolakdispergiermittel in ihrer Performance zu ersetzen, ohne Nachteile in Kauf nehmen zu müssen. Die früher gebräuchlichen Novolakdispergiermittel enthalten als Folge ihrer Herstellung Reste von Alkylphenolen, häufig Nonylphenol, und deren Ethoxylaten. Da
Alkylphenolethoxylate bzw. deren Abbauprodukte in der Umwelt kaum abgebaut werden, reichern sie sich an. Dies ist problematisch, da sie auf Wasserorganismen eine hormonelle Wirkung zeigen. Daher wurden in vielen Ländern
Rechtsvorschriften erlassen (z. B. 2003/53/EC), die den Einsatz von Stoffen, die Alkylphenole bzw. ihre Ethoxylate enthalten, in offenen Stoffkreisläufen beschränken bzw. verbieten.
Bisherige Untersuchungen haben gezeigt, dass es nach wie vor außerordentlich schwierig ist, Dispergiermittel zu synthetisieren, die nichtionischen Novolaksystemen äquivalent sind. Gefordert sind demnach neue Dispergiermittel, die organische Pigmente in hoher Konzentration von über 40 % niederviskos dispergieren können. Die Dispersionen müssen leicht herstellbar sein, d. h. die Pigmente müssen leicht benetzbar und leicht ins wässrige Medium einarbeitbar sein. Die Dispersion muss eine hohe und reproduzierbare Farbstärke aufweisen, die über einen Zeitraum von mehreren Jahren stabil erhalten bleibt. Ebenfalls sollten alle weiteren coloristischen Parameter wie z. B. der Bunttonwinkel und die Reinheit reproduzierbar und stabil sein. Die Dispersion sollte nicht schäumen bzw. keine Schaumbildung im Anwendungsmedium verursachen oder beschleunigen. Ferner sollten die Dispergiermittel zu einer breiten Verträglichkeit der Dispersionen in verschiedenen Anwendungsmedien beitragen. Zudem muss die Dispersion scherstabil sein, d. h. es darf sich unter Scherung die Farbstärke oder Coloristik nicht signifikant ändern.
Überraschenderweise wurde gefunden, dass spezielle nichtionische Copolymere, die mit Hilfe von Makromonomeren aus Polyethylen/Polypropylen-glykol- Mono(meth)acrylsäureestern hergestellt werden, die gestellte Aufgabe erfüllen und nichtionische Novolaksysteme in ihrer Performance als Dispergiermittel ersetzen können.
Gegenstand der vorliegenden Erfindung sind wässrige Pigmentpräparationen, enthaltend
(A) mindestens ein organisches und/oder anorganisches Pigment, (B) ein Dispergiermittel der Formel (I) oder (II), oder Mischungen der Dispergiermittel der Formeln (I) und (II),
(H)
wobei die Indices a, b und c den molaren Anteil des jeweiligen Monomeren angeben a = 0,01 - 0,8 b = 0,001 - 0,8 c = 0,001 - 0,8 wobei die Summe aus a + b + c gleich 1 ist und besonders bevorzugt a = 0,1 - 0,7 b = 0,1 - 0,6 c = 0,1 - 0,6 wobei die Summe aus a + b + c gleich 1 ist,
A für C2-C4-Alkylen und B für ein von A unterschiedliches C2-C4-Alkylen steht,
R für Wasserstoff oder Methyl steht, m eine Zahl von 1 bis 500, vorzugsweise 1 bis 50, ist; n eine Zahl von 1 bis 500, vorzugsweise 1 bis 50, ist; wobei die Summe m + n gleich 2 bis 1.000 ist;
X3 für einen aromatischen oder araliphatischen Rest mit 3 bis 30 C-Atomen steht, der gegebenenfalls eines oder mehrere der Heteroatome N, O und S enthält,
Za für H oder (CrC4)-Alkyl steht, Zb für H oder (CrC4)-Alkyl steht, Zc für H oder (d-C4)-Alkyl steht; R1 für Wasserstoff oder Methyl steht, Xb für einen aromatischen oder araliphatischen Rest mit 3 bis 30 C-Atomen steht, der gegebenenfalls eines oder mehrere der Heteroatome N, O und S enthält,
W3 für Sauerstoff oder die Gruppe NH steht,
R2 für Wasserstoff oder Methyl steht,
Y für einen aliphatischen Kohlenwasserstoffrest mit 1 bis 30 C-Atomen, vorzugsweise 6 bis 30, insbesondere 9 bis 20 C-Atomen, steht, der linear oder verzweigt, oder auch cyclisch sein kann, und die Heteroatome O, N und/oder S enthalten kann und auch ungesättigt sein kann, Wb für Sauerstoff oder die Gruppe NH steht;
(C) gegebenenfalls Benetzer, (D) gegebenenfalls weitere Tenside und/oder Dispergiermittel,
(E) gegebenenfalls ein oder mehrere organische Lösemittel und/oder eine oder mehrere hydrotrope Substanzen,
(F) gegebenenfalls weitere zur Herstellung wässriger Pigmentdispersionen übliche Zusatzstoffe, und (G) Wasser.
Bevorzugte Pigmentpräparationen enthalten 5 bis 80 Gew.-%, beispielsweise 10 bis 70 Gew.-%, an Komponente (A).
Bevorzugte Pigmentpräparationen enthalten 0,1 bis 30 Gew.-%, beispielsweise 2 bis 15 Gew.-%, an Komponente (B).
Besonders bevorzugte Pigmentpräparationen enthalten an Komponente
(A) 5 bis 80 Gew.-%, beispielsweise 10 bis 70 Gew.-%,
(B) 0,1 bis 30 Gew.-%, beispielsweise 2 bis 15 Gew.-%,
(C) 0 bis 10 Gew.-%, beispielsweise 0,1 bis 5 Gew.-%, (D) 0 bis 20 Gew.-%, beispielsweise 1 bis 10 Gew.-%,
(E) 0 bis 30 Gew.-%, beispielsweise 5 bis 20 Gew.-%,
(F) 0 bis 20 Gew.-%, beispielsweise 0,1 bis 5 Gew.-%,
(G) Rest Wasser, jeweils bezogen auf das Gesamtgewicht (100 Gew.-%) der Pigmentpräparation.
Im Falle dass eine oder mehrere der Komponenten (C), (D), (E) und (F) vorhanden sind, beträgt deren Minimalkonzentration unabhängig voneinander zweckmäßigerweise mindestens 0,01 Gew.-%, bevorzugt mindestens 0,1 Gew.-%, bezogen auf das Gesamtgewicht der Pigmentpräparation.
Die Komponente (A) der erfindungsgemäßen Pigmentpräparation ist ein feinteiliges organisches oder anorganisches Pigment oder ein Gemisch verschiedener organischer und/oder anorganischer Pigmente. Die Komponente (A) kann auch ein Farbstoff sein, der in bestimmten Lösemitteln löslich ist und in anderen Lösemitteln Pigmentcharakter hat. Die Pigmente können sowohl in Form trockenen Pulvers als auch als wasserfeuchter Presskuchen eingesetzt werden.
Als organische Pigmente kommen Monoazo-, Disazo-, verlackte Azo-, ß-Naphthol-, Naphthol AS-, Benzimidazolon-, Disazokondensations-, Azo-Metallkomplex-Pigmente und polycyclische Pigmente wie z. B.
Phthalocyanin-, Chinacridon-, Perylen-, Perinon-, Thioindigo-, Anthanthron-, Anthrachinon-, Flavanthron-, Indanthron-, Isoviolanthron-, Pyranthron-, Dioxazin-, Chinophthalon-, Isoindolinon-, Isoindolin- und Diketopyrrolopyrrol-Pigmente oder Ruße in Betracht.
Von den genannten organischen Pigmenten sind diejenigen besonders geeignet, die für die Herstellung der Präparationen möglichst feinteilig sind, wobei bevorzugt
D
95 % und besonders bevorzugt 99 % der Pigmentpartikel eine Teilchengröße < 500 nm besitzen.
Als beispielhafte Auswahl besonders bevorzugter organischer Pigmente sind dabei Rußpigmente, wie z.B. Gas- oder Fumaceruße; Monoazo- und
Disazopigmente, insbesondere die Colour Index Pigmente Pigment Yellow 1 , Pigment Yellow 3, Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 14, Pigment Yellow 16, Pigment Yellow 17, Pigment Yellow 73, Pigment Yellow 74, Pigment Yellow 81 , Pigment Yellow 83, Pigment Yellow 87, Pigment Yellow 97, Pigment Yellow 111 , Pigment Yellow 126, Pigment Yellow 127, Pigment Yellow 128, Pigment Yellow 155, Pigment Yellow 174, Pigment Yellow 176, Pigment Yellow 191 , Pigment Yellow 213, Pigment Yellow 214, Pigment Yellow 219, Pigment Red 38, Pigment Red 144, Pigment Red 214, Pigment Red 242, Pigment Red 262, Pigment Red 266, Pigment Red 269, Pigment Red 274, Pigment Orange 13, Pigment Orange 34 oder Pigment Brown 41 ; ß-Naphthol- und Naphthol AS-Pigmente, insbesondere die Colour Index Pigmente Pigment Red 2, Pigment Red 3, Pigment Red 4, Pigment Red 5, Pigment Red 9, Pigment Red 12, Pigment Red 14, Pigment Red 53:1 , Pigment Red 112, Pigment Red 146, Pigment Red 147, Pigment Red 170, Pigment Red 184, Pigment Red 187, Pigment Red 188, Pigment Red 210, Pigment Red 247, Pigment
Red 253, Pigment Red 256, Pigment Orange 5, Pigment Orange 38 oder Pigment Brown 1 ; verlackte Azo- und Metallkomplexpigmente, insbesondere die Colour Index Pigmente Pigment Red 48:2, Pigment Red 48:3, Pigment Red 48:4, Pigment Red 57:1 , Pigment Red 257, Pigment Orange 68 oder Pigment Orange 70; Benzimidazolinpigmente, insbesondere die Colour Index Pigmente Pigment Yellow 120, Pigment Yellow 151 , Pigment Yellow 154, Pigment Yellow 175, Pigment Yellow 180, Pigment Yellow 181 , Pigment Yellow 194, Pigment Red 175, Pigment Red 176, Pigment Red 185, Pigment Red 208, Pigment Violet 32, Pigment Orange 36, Pigment Orange 62, Pigment Orange 72 oder Pigment Brown 25; Isoindolinon- und Isoindolinpigmente, insbesondere die Colour Index Pigmente Pigment Yellow 139 oder Pigment Yellow 173; Phthalocyaninpigmente, insbesondere die Colour Index Pigmente Pigment Blue 15, Pigment Blue 15:1 , Pigment Blue 15:2, Pigment Blue 15:3, Pigment Blue 15:4, Pigment Blue 15:6,
Pigment Blue 16, Pigment Green 7 oder Pigment Green 36; Anthanthron-, Anthrachinon-, Chinacridon-, Dioxazin-, Indanthron-, Perylen-, Perinon- und Thioindigopigmente, insbesondere die Colour Index Pigmente Pigment Yellow 196, Pigment Red 122, Pigment Red 149, Pigment Red 168, Pigment Red 177, Pigment Red 179, Pigment Red 181 , Pigment Red 207, Pigment Red 209, Pigment Red 263, Pigment Blue 60, Pigment Violet 19, Pigment Violet 23 oder Pigment Orange 43; Triarylcarboniumpigmente, insbesondere die Colour Index Pigmente Pigment Red 169, Pigment Blue 56 oder Pigment Blue 61 ; Diketopyrrolopyrrolpigmente, insbesondere die Colour Index Pigmente Pigment Red 254, Pigment Red 255, Pigment Red 264, Pigment Red 270, Pigment Red 272, Pigment Orange 71 , Pigment Orange 73, Pigment Orange 81 , zu nennen.
Ferner eignen sich verlackte Farbstoffe wie Ca-, Mg-, AI-Lacke von sulfonsäure- und/oder carbonsäuregruppenhaltigen Farbstoffen.
Geeignete anorganische Pigmente sind beispielsweise Titandioxide, Zinksulfide, Zinkoxide, Eisenoxide, Magnetite, Manganeisenoxide, Chromoxide, Ultramarin, Nickel- oder Chromantimontitanoxide, Mangantitanrutile, Cobaltoxide, Mischoxide des Cobalts und Aluminiums, Rutilmischphasenpigmente, Sulfide der seltenen Erden, Spinelle des Cobalts mit Nickel und Zink, Spinelle basierend auf Eisen und Chrom mit Kupfer Zink sowie Mangan, Bismutvanadate sowie Verschnittpigmente. Insbesondere werden die Colour Index Pigmente Pigment Yellow 184, Pigment Yellow 53, Pigment Yellow 42, Pigment Yellow Brown 24, Pigment Red 101 , Pigment Blue 28, Pigment Blue 36, Pigment Green 50, Pigment Green 17,
Pigment Black 11 , Pigment Black 33 sowie Pigment White 6 verwendet. Bevorzugt werden auch häufig Mischungen anorganischer Pigmente verwendet. Mischungen von organischen mit anorganischen Pigmenten werden ebenfalls häufig verwendet.
Anstelle von Pigmentdispersionen lassen sich auch Dispersionen herstellen, die als Feststoffe beispielsweise natürliche feinteilige Erze, Mineralien, schwer- oder unlösliche Salze, Wachs- oder Kunststoffteilchen, Farbstoffe, Pflanzenschutz- und
Schädlingsbekämpfungsmittel, UV-Absorber, optische Aufheller und Polymerisationsstabilisatoren enthalten.
Als Komponente (B) werden neuartige spezielle nichtionische Copolymere als Dispergiermittel eingesetzt. Die Copolymere besitzen ein Molekulargewicht von 103g/mol bis 109 g/mol, besonders bevorzugt von 103 bis 107 g/mol, insbesondere bevorzugt 103 bis 105 g/mol.
Diese Polymere werden durch radikalische Polymerisation von Monomeren entsprechend den in den Klammern [ ]c, [ ]b und [ ]a beschriebenen Resten in Formel (I) oder (II) hergestellt.
Das Herstellungsverfahren ist in der deutschen Patentanmeldung DE 10 2007 021 868 beschrieben.
In einer bevorzugten Ausführungsform steht (A-O )m für Propylenoxid-Einheiten und (B-O)n für Ethylenoxid-Einheiten, oder (A-O)m für Ethylenoxid-Einheiten und (B-O)n für Propylenoxid-Einheiten, wobei der molare Anteil der Ethylenoxid- Einheiten bevorzugt 50 bis 98 %, insbesondere 60 bis 95 %, besonders bevorzugt 70 bis 95 %, bezogen auf die Summe der Ethylenoxid- und Propylenoxid- Einheiten, beträgt.
Die Summe der Alkylenoxydeinheiten kann prinzipiell n + m = 2 bis 1.000 sein, bevorzugt ist 2 bis 500, insbesondere 2 bis 100, besonders bevorzugt 5 bis 100. Eine wesentliche Eigenschaft, die die erfindungsgemäßen Polymere auszeichnet, ist, dass es sich bei den Polyalkylenglykol-Seitenketten des Polymers nicht um reine Polyethylenglykole oder Polypropylenglykole handelt. Stattdessen sind die Polyalkylenglykole entweder statistische oder blockartige Polyalkylenglykole aus Propylenoxid- und Ethylenoxid-Einheiten. Erst die Feinabstimmung dieses EO/PO-Verhältnisses ermöglicht polymere Dispergiermittel, die zum Herstellen von hochkonzentrierten Pigmentdispersionen mit niedriger Viskosität geeignet sind. Durch die optimierten Verhältnisse des EO/PO-Anteils im Monomer [ ]a in Kombination mit den aromatischen und aliphatischen Monomeren [ ]b und [ ]c gelingt es, die Eigenschaften von novolakartigen Dispergiermitteln so nachzubilden, dass ein sehr ähnliches Eigenschaftsprofil erhalten wird.
Zu den Monomeren der Gruppe [ ]b gehören beispielsweise die folgenden Ester und Amide der Acrylsäure und Methacrylsäure: Phenyl, Benzyl, ToIyI, 2-Phenoxyethyl, Phenethyl. Weitere Monomere können vinylaromatische Monomere wie Styrol und seine Derivate sein, wie beispielsweise Vinyltoluol, α-Methylstyrol. Bei der aromatischen Einheit kann es sich auch um Heteroaromaten handeln, wie z. B. in 1-Vinylimidazol. Besonders bevorzugte Monomere der Gruppe [ ]b können sein: Styrol, 1-Vinylimidazol, Benzylmethacrylat, 2-Phenoxyethylmethacrylat und Phenethylmethacrylat.
Zu den Monomeren der Gruppe [ ]c gehören beispielsweise die folgenden Ester und Amide der Acrylsäure und Methacrylsäure: Methyl-, Ethyl-, Propyl-, Isopropyl-, n-Butyl-, Isobutyl-, t-Butyl-, Pentyl-, Hexyl-, 2-Ethylhexyl-, 3,3-Dimethylbutyl-, Heptyl-, Oktyl-, Isooctyl-, Nonyl-, Lauryl-, Cetyl-, Stearyl-, Behenyl-, Cyclohexyl-, Trimethylcyclohexyl-, t-Butylcyclohexyl-, Bornyl-, Isobornyl-, Adamantyl-,
(2,2-Dimethyl-1-methyl)propyl-, Cyclopentyl-, 4-Ethyl-cyclohexyl-, 2-Ethoxyethyl-, Tetrahydrofurfuryl- und Tetrahydropyranyl-.
Bevorzugte Monomere der Gruppe [ ]c sind die folgenden Alkyl-Ester bzw. Alkyl-Amide der Acrylsäure und Methacrylsäure: Methyl-, Ethyl-, Propyl-, Butyl-, Isobutyl-, 2-Ethoxyethyl-, Myristyl-, Octadecyl-, besonders bevorzugt 2-Ethylhexyl- und Lauryl-.
Als Komponente (C) werden beispielsweise kationische, anionische, amphotere oder nicht ionogene Verbindungen verwendet, die die Pigmentbenetzung fördern (Netzmittel, Benetzter).
Als Komponente (D) der erfindungsgemäßen Pigmentpräparationen dienen übliche, zur Herstellung wässriger Pigmentdispersionen geeignete Dispergiermittel und Tenside oder Gemische solcher Substanzen. Üblicherweise werden anionische, kationische, amphotere oder nichtionische grenzflächenaktive Verbindungen hierfür verwendet. Besonders bewährt haben sich darunter Dispergiermittel, die eine oder mehrere mittel- oder langkettige
Kohlenwasserstoffketten besitzen, zum Teil auch solche, die über aromatische Ringgruppen verfügen. Von der Vielzahl der Verbindungen soll an dieser Stelle nur eine Auswahl angeführt werden, ohne jedoch die Anwendbarkeit der erfindungsgemäßen Verbindungen auf diese Beispiele einzuschränken. Beispiele sind Alkylsulfate wie z. B. Laurylsulfat, Stearylsulfat oder Octadecylsulfat, primäre Alkylsulfonate wie z. B. Dodecylsulfonat, und sekundäre Alkylsulfonate, insbesondere das Ci3-Ci7-Alkansulfonat-Natriumsalz, Alkylphosphate, Alkylbenzolsulfonate wie beispielsweise die Dodecylbenzolsulfonsäure, ebenso alle Salze dieser Verbindungen. Ferner eignet sich Sojalecithin oder es werden Kondensationsprodukte aus Fettsäure und Taurin oder Hydroxyethansulfonsäure verwendet, ebenso Alkoxylierungsprodukte von Alkylphenolen, Rizinusölkolophoniumestern, Fettalkoholen, Fettaminen, Fettsäuren und Fettsäureamiden, diese Alkoxylierungsprodukte können desgleichen mit ionischen Endgruppen ausgestattet sein, beispielsweise als Sulfobemsteinsäure-Halbester oder auch als Sulfonsäure-, Schwefelsäure- und Phosporsäureester, sowie deren Salze, den Sulfonaten, Sulfaten oder Phosphaten. Auch sind oxalkylierte Additionsverbindungen, die durch Umsetzung von Polyepoxiden mit Aminen oder Bisphenol-A bzw. Bisphenol-A-Derivaten mit Aminen erhalten werden, geeignet, in ähnlicher Weise auch Hamstoffderivate.
Ebenso eignen sich nichtionische alkoxylierte Styrol-Phenol-Kondensate, die durch Anlagerung von gegebenenfalls substituierten Styrolen an gegebenenfalls substituierten Phenolen und Umsetzung mit Ethylenoxid und/oder Propylenoxid erhalten werden, ebenso deren ionisch modifizierten Derivate, beispielsweise als Sulfonsäure-, Schwefelsäure- und Phosphorsäureester, sowie deren Salze, den Sulfonaten, Sulfaten oder Phosphaten. Zudem eignen sich als grenzflächenaktive Verbindungen auch Ligninsulfonate und Polykondensate aus Naphthalinsulfonsäure und Formaldehyd bzw. auch aus Alkylarylsulfonsäuren, Halogenarylsulfonsäure, sulfonierten Phenolen oder sulfonierten Naphtholen mit Formaldehyd.
Der Komponente (E) entsprechen organische Lösemittel oder wasserlösliche hydrotrope Substanzen. Hydrotrope Verbindungen, die gegebenenfalls auch als
Lösemittel dienen, oder oligomerer oder polymerer Natur sind, sind beispielsweise Formamid, Harnstoff, Tetramethylhamstoff, ε-Caprolactam, Ethylenglykol, Propylenglykol, Diethylenglykol, Triethylenglykol, Polyethylenglykol, α-Methyl-ω- hydroxy-polyethylenglykolether, Dimethylpolyethylenglykolether, Dipropylenglykol, Polypropylenglykol, Dimethylpolypropylenglykolether, Copolymere aus Ethylen- und Propylenglykol, Butylglykol, Methylcellulose, Glycerin, Diglycerin, Polyglycerin, N-Methylpyrrolidon, 1 ,3-Diethyl-2-imidazolidinon, Thiodiglykol, Natrium- Benzolsulfonat, Natrium-Xylolsulfonat, Natrium-Toluolsulfonat, Natrium- Cumolsulfonat, Natrium-Dodecylsulfonat, Natrium-Benzoat, Natrium-Salicylat, Natrium-Butylmonoglykolsulfat, Cellulosederivate, Gelatinederivate,
Polyvinylpyrrolidon, Polyvinylalkohol, Polyvinylimidazol und Co- und Terpolymere aus Vinylpyrrolidon, Vinylacetat und Vinylimidazol, wobei anschließend die Polymere mit Vinylacetatbausteinen einer Verseifung zum Vinylalkohol unterzogen werden können.
Als Komponente (F) werden beispielsweise Verdicker, Konservierungsmittel, Viskositätsstabilisatoren, Mahlhilfsmittel und Füllstoffe eingesetzt. Weitere übliche Zusatzstoffe können Antiabsetzmittel, Lichtschutzmittel, Antioxidantien, Entgaser/Entschäumer, schaumreduzierende Mittel sein, Antibackmittel sowie Additive, welche die Viskosität und Rheologie günstig beeinflussen. Als Mittel zur Regulierung der Viskosität kommen z. B. Polyvinylalkohol und Cellulosederivate infrage. Wasserlösliche natürliche oder künstliche Harze sowie Polymere als Filmbildner bzw. Bindemittel zur Erhöhung von Haft- und Abriebfestigkeit kommen ebenso in Betracht. Als pH-Regulatoren kommen organische oder anorganische Basen und Säuren zum Einsatz. Bevorzugte organische Basen sind Amine, wie z. B. Ethanolamin, Diethanolamin, Triethanolamin, N,N-Dimethylethanolamin, Diisopropylamin, Aminomethylpropanol oder Dimethylaminomethylpropanol. Bevorzugte anorganische Basen sind Natrium-, Kalium-, Lithiumhydroxid oder Ammoniak. Der Komponente (F) können auch Fette und Öle pflanzlicher und tierischer Herkunft entsprechen, beispielsweise Rindertalg, Palmkernfett,
Kokosfett, Rapsöl, Sonnenblumenöl, Leinöl, Palmöl, Sojaöl, Erdnussöl und Walöl, Baumwollsaatöl, Maisöl, Mohnöl, Olivenöl, Rizinusöl, Rüböl, Safloröl, Sojabohnenöl, Distelöl, Sonnenblumenöl, Heringöl, Sardinenöl. Auch sind die
gesättigten und ungesättigten höheren Fettsäuren gängige Additive, z. B. Palmitinsäure, Cyprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Stearinsäure, Ölsäure, Linolsäure, Linolensäure, Capronsäure, Caprylsäure, Arachinsäure, Behensäure, Palmitoleinsäure, Gadoleinsäure, Erucasäure und Ricinolsäure, sowie deren Salze.
Zur Herstellung der Pigmentpräparationen benutztes Wasser, Komponente (G), wird vorzugsweise in Form von entsalztem oder destilliertem Wasser eingesetzt. Auch Trinkwasser (Leitungswasser) und/oder Wasser natürlichen Ursprungs kann verwendet werden.
Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung der erfindungsgemäßen Pigmentpräparationen, dadurch gekennzeichnet, dass man die Komponente (A) in Form von Pulver, Granulat oder wässrigem Presskuchen in Gegenwart von Wasser (G) sowie den Komponenten (B) und gegebenenfalls (C) und (D) dispergiert, anschließend gegebenenfalls Wasser (G), sowie gegebenenfalls eine oder mehrere der Komponenten (E) und (F) zumischt und gegebenenfalls die erhaltene wässrige Pigmentdispersion mit Wasser (G) verdünnt. Vorzugsweise werden die Komponenten (B) und gegebenenfalls eine oder mehrere der Komponenten (C), (D), (E) und (F) zunächst vermischt und homogenisiert, dann die Komponente (A) in die vorgelegte Mischung eingerührt, wobei die Komponente (A) angeteigt und vordispergiert wird. Je nach Kornhärte der Komponente (A) wird anschließend gegebenenfalls unter Kühlung mit Hilfe eines Mahl- oder Dispergieraggregats feindispergiert oder feinverteilt. Dazu können Rührwerke, Dissolver (Sägezahnrührer), Rotor-Stator-Mühlen,
Kugelmühlen, Rührwerkskugelmühlen wie Sand- und Perlmühlen, Schnellmischer, Knetapparaturen, Walzenstühle oder Hochleistungsperlmühlen verwendet werden. Die Feindispergierung bzw. Mahlung der Komponente (A) erfolgt bis zur gewünschten Teilchengrößenverteilung und kann bei Temperaturen im Bereich von 0 bis 100 0C erfolgen, zweckmäßig bei einer Temperatur zwischen 10 und 70 0C, vorzugsweise bei 20 bis 60 °C. Im Anschluss an die Feindispergierung kann die Pigmentpräparation mit Wasser (G), vorzugsweise entionisiertem oder destilliertem Wasser, weiter verdünnt werden.
Die erfindungsgemäßen Pigmentpräparationen eignen sich zum Pigmentieren und Färben von natürlichen und synthetischen Materialien aller Art, insbesondere von wässrigen Anstrichmitteln, Dispersions- und Lackfarben (Dispersionslacken). Ferner eignen sich die erfindungsgemäßen Pigmentpräparationen zur Einfärbung makromolekularer Materialien aller Art, z. B. von natürlichen und synthetischen Fasermaterialien, bevorzugt Cellulosefasern, auch zur Papiermassefärbung wie zur Laminateinfärbung. Weitere Anwendungen sind die Herstellung von Druckfarben, hierbei beispielsweise Textildruck-, Flexodruck-, Dekordruck- oder Tiefdruckfarben, Tapetenfarben, wasserverdünnbaren Lacken, Holzschutzsystemen, Viskose-Spinnfärbungen, Lacken, auch Pulverlacken,
Wurstdärmen, Saatgut, Düngemittel, Glas, insbesondere Glasflaschen, sowie zur Massefärbung von Dachziegeln, zur Einfärbung für Putze, Beton, Holzbeizen, Buntstiftminen, Faserschreiber, Wachse, Paraffine, Tuschen, Pasten für Kugelschreiber, Kreiden, Wasch- und Reinigungsmittel, Schuhpflegemittel, Latex- Produkten, Schleifmitteln sowie zum Einfärben von Kunststoffen bzw. hochmolekularen Materialien aller Art. Hochmolekulare organische Materialien sind beispielsweise Celluloseether und -ester, wie Ethylcellulose, Nitrocellulose, Celluloseacetat oder Cellulosebutyrat, natürliche Harze oder Kunstharze, wie Polymerisationsharze oder Kondensationsharze, z.B. Aminoplaste, insbesondere Harnstoff- und Melaminformaldehydharze, Alkydharze, Acrylharze, Phenoplaste, Polycarbonate, Polyolefine, wie Polystyrol, Polyvinylchlorid, Polyethylen, Polypropylen, Polyacrylnitril, Polyacrylsäureester, Polyamide, Polyurethane oder Polyester, Gummi, Casein, Latices, Silikon, Silikonharze, einzeln oder in Mischung.
Weiterhin eignen sich die erfindungsgemäßen Pigmentpräparationen zur Herstellung von Drucktinten für den Einsatz in allen konventionellen Ink-Jet- Druckem, insbesondere für solche, die auf dem Bubble-Jet- oder Piezo-Verfahren beruhen. Mit diesen Drucktinten können Papier bedruckt werden, sowie natürliche oder synthetische Fasermaterialien, Folien und Kunststoffe. Zudem können die erfindungsgemäßen Pigmentpräparationen zum Bedrucken verschiedenster Arten von beschichteten oder unbeschichteten Substratmaterialien verwendet werden, so z. B. zum Bedrucken von Pappe, Karton, Holz und Holzwerkstoffen,
metallischen Materialien, Halbleitermaterialien, keramischen Materialien, Gläsern, Glas- und Keramikfasern, anorganischen Werkstoffen, Beton, Leder, Lebensmitteln, Kosmetika, Haut und Haaren. Das Substratmaterial kann dabei zweidimensional eben oder räumlich ausgedehnt, d. h. dreidimensional gestaltet sein und sowohl vollständig oder nur teilweise bedruckt oder beschichtet werden.
Die erfindungsgemäßen Pigmentpräparationen sind außerdem geeignet als Farbmittel in elektrophotographischen Tonern und Entwicklern, wie z. B. Ein- oder Zweikomponentenpulvertonern (auch Ein- oder Zweikomponenten-Entwickler genannt), Magnettoner, Flüssigtoner, Latextoner, Polymerisationstoner sowie Spezialtoner. Typische Tonerbindemittel hierbei sind Polymerisations-, Polyadditions- und Polykondensationsharze, wie Styrol-, Styrolacrylat-, Styrolbutadien-, Acrylat-, Polyester-, Phenol-Epoxidharze, Polysulfone, Polyurethane, einzeln oder in Kombination, sowie Polyethylen und Polypropylen, die noch weitere Inhaltsstoffe, wie Ladungssteuermittel, Wachse oder
Fließhilfsmittel, enthalten können oder im Nachhinein mit diesen Zusätzen modifiziert werden.
Außerdem sind die erfindungsgemäßen Pigmentpräparationen als Farbmittel in Tinten, vorzugsweise Ink-Jet Tinten, wie z.B. auf wässriger oder nichtwässriger Basis ("Solvent Based"), Mikroemulsionstinten, UV-härtbare Tinten sowie in solchen Tinten, die nach dem Hot-Melt-Verfahren funktionieren, geeignet.
Außerdem können die erfindungsgemäßen Pigmentpräparationen auch als Farbmittel für Farbfilter („Color Filter") für „Fiat Panel Displays", sowohl für die additive wie für die subtraktive Farberzeugung, ferner für „Photo-Resists", sowie als Farbmittel für elektronische Tinten („Electronic Inks" bzw. „e-inks") oder elektronisches Papier („Electronic Paper" bzw. „e-paper") eingesetzt werden.
Beispiele
Herstellung der Dispergiermittel (B):
Synthesebeispiel 1
In einem Kolben mit Rührer, Rückflusskühler, Innenthermometer und Stickstoffeinleitung wurden 258 g Polyalkylenglykolmonomethacrylat (Molmasse 750, molares EO/PO-Verhältnis 6,3), 136,4 g 2-Ethylhexylmethacrylat, 71 ,6 g Styrol und 16,5 g 1-Dodecanthiol in 660 ml tert. Butanol unter Stickstoffeinleitung vorgelegt. Dann wurde unter Rühren auf eine Temperatur von 80 0C aufgeheizt. Nach Erreichen der Reaktionstemperatur wurde 16,5 g des Initiators AMBN, gelöst in 130 ml Isobutanol, innerhalb 1 Stunde zudosiert. Anschließend wurde noch weitere 5 Stunden bei dieser Temperatur gerührt. Nach dem Abkühlen auf Raumtemperatur wurde das Lösungsmittel im Vakuum entfernt.
Die nachfolgenden Synthesebeispiele werden analog Synthesebeispiel 1 unter Einsatz der folgenden Ausgangsstoffe durchgeführt:
Synthesebeispiel 2 210 g Polyalkylenglykolmonomethacrylat (Molmasse 350, molares EO/PO-Verhältnis 1 ,7), 79,2 g 2-Ethylhexylmethacrylat, 41 ,6 g Styrol.
Synthesebeispiel 3
258 g Polyalkylenglykolmonomethacrylat (Molmasse 750, molares EO/PO-Verhältnis 6,3), 87,5 g Laurylmethacrylat, 35,8 g Styrol.
Synthesebeispiel 4
210 g Polyalkylenglykolmonomethacrylat (Molmasse 350, molares EO/PO-Verhältnis 1 ,7), 101 ,6 g Laurylmethacrylat, 41 ,6 g Styrol.
Synthesebeispiel 5
363 g Polyalkylenglykolmonomethacrylat (Molmasse 1.100, molares EO/PO-Verhältnis 10,2, 70 %ig in t-Butanol), 117,3 g Laurylmethacrylat, 48,0 g Styrol.
Synthesebeispiel 6
452 g Polyalkylenglykolmonomethacrylat (Molmasse 2.000, molares EO/PO-Verhältnis 20,5, 70 %ig in t-Butanol), 80,4 g Laurylmethacrylat, 32,9 g Styrol.
Synthesebeispiel 7
210 g Polyalkylenglykolmonomethacrylat (Molmasse 350, molares
EO/PO-Verhältnis1 ,7), 202,8 g Stearylmethacrylat, 62,4 g Styrol.
Synthesebeispiel 8
258 g Polyalkylenglykolmonomethacrylat (Molmasse 750, molares EO/PO-Verhältnis 6,3), 38,2 g Isobornylmethacrylat, 30,3 g Benzylmethacrylat.
Synthesebeispiel 9 363 g Polyalkylenglykolmonomethacrylat (Molmasse 1.100, molares
EO/PO-Verhältnis 10,2, 70 % in t-Butanol), 39,3 g Tetrahydrofurfurylmethacrylat, 87,8 g Phenethylmethacrylat.
Synthesebeispiel 10 452 g Polyalkylenglykolmonomethacrylat (Molmasse 2.000, molares
EO/PO-Verhältnis 20,5, 70 %ig in t-Butanol), 25,0 g 2-Ethoxyethylmethacrylat, 29,7 g 1-Vinylimidazol.
Synthesebeispiel 11 210 g Polyalkylenglykolmonomethacrylat (Molmasse 350, molares
EO/PO-Verhältnis1 ,7), 69,0 g Laurylacrylat, 52,8 g Benzylmethacrylat.
Synthesebeispiel 12
258 g Polyalkylenglykolmonomethacrylat (Molmasse 750, molares
EO/PO-Verhältnis 6,3), 38,2 g i-Vinyl-2-Pyrrolidon, 107,3 g Styrol.
Synthesebeispiel 13
452 g Polyalkylenglykolmonomethacrylat (Molmasse 2.000, molares EO/PO-Verhältnis 20,5, 70 %ig in t-Butanol), 31 ,3 g 2-Ethylhexylmethacrylat,
27.8 g Benzylmethacrylat.
Synthesebeispiel 14
363 g Polyalkylenglykolmonomethacrylat (Molmasse 1.100, molares EO/PO-Verhältnis 10,2, 70 % in t-Butanol), 58,7 g Laurylmethacrylat,
43.9 g Phenethylmethacrylat.
Synthesebeispiel 15
258 g Polyalkylenglykolmonomethacrylat (Molmasse 750, molares EO/PO-Verhältnis 6,3), 116,3 g Stearylmethacrylat, 70,9 g 2-Phenoxyethylmethacrylat.
Synthesebeispiel 16
210 g Polyalkylenglykolmonomethacrylat (Molmasse 350, molares EO/PO-Verhältnis 0,43), 72,0 g Laurylacrylat, 52,8 g Benzylmethacrylat.
Synthesebeispiel 17 258 g Polyalkylenglykolmonomethacrylat (Molmasse 750, molares EO/PO-Verhältnis 0,22), 87,5 g Laurylmethacrylat, 35,8 g Styrol.
Synthesebeispiel 18
363 g Polyalkylenglykolmonomethacrylat (Molmasse 1.100, molares EO/PO-Verhältnis 0,30, 70 % in t-Butanol), 58,7 g Laurylmethacrylat, 43,9 g Phenethylmethacrylat.
Synthesebeispiel 19
388 g Polyalkylenglykolmonomethacrylat (Molmasse 750, molares
EO/PO-Verhältnis 6,3), 68,2 g 2-Ethylhexylmethacrylat, 35,8 g Styrol.
Synthesebeispiel 20
517 g Polyalkylenglykolmonomethacrylat (Molmasse 750, molares EO/PO-Verhältnis 6,3), 68,2 g 2-Ethylhexylmethacrylat, 35,8 g Styrol.
Synthesebeispiel 21 280 g Polyalkylenglykolmonomethacrylat (Molmasse 350, molares EO/PO-Verhältnis 1 ,7), 79,2 g 2-Ethylhexylmethacrylat, 41 ,6 g Styrol.
Synthesebeispiel 22
387 g Polyalkylenglykolmonomethacrylat (Molmasse 750, molares EO/PO-Verhältnis 6,3), 87,5 g Laurylmethacrylat, 35,8 g Styrol.
Synthesebeispiel 23
267 g Polyaikylenglykolmonomethacrylat (Molmasse 350, molares EO/PO-Verhältnis 1 ,7), 101 ,6 g Laurylmethacrylat, 41 ,6 g Styrol.
Vergleichs-Synthesebeispiel 1 :
Copolymer nach DE 10 2005 019 384, Bsp. 1
In einem 1 -Liter-Dreihalskolben, welcher mit einem Thermometer, einem Stickstoffanschluss sowie einem Intensivkühler versehen war, wurden 291 ,8 g Styrol, 603,3 g Methacrylsäure sowie 209,8 g Methoxypolyethylenglykolmethacrylat (1.000 g/mol) (MPEG 1000 MA) (50 % in Wasser) unter Rühren in Tetrahydrofuran gelöst. Dann wurden
30,2 g Dibenzoylperoxid (75 % in Wasser) zugegeben und der Kolbeninhalt unter leichtem Stickstoffstrom auf 65 0C temperiert. Die Mischung wurde für 18 Stunden unter Rückfluss erhitzt. Anschließend wurde auf etwa Raumtemperatur abgekühlt.
Unter starkem Rühren wurden portionsweise 73,75 g festes NaOH sowie 1 ,25 L entionisiertes Wasser zugegeben. Nachdem der Kolbeninhalt wieder gelöst war, wurde Tetrahydrofuran, Wasser sowie nicht umgesetztes Styrol unter reduziertem Druck abdestilliert. Der Druck wurde dabei so gewählt, dass die Temperatur der Mischung 40 0C nicht überstieg. Die eingeengte Polymerlösung wurde mit Wasser auf einen Feststoffgehalt von ca. 33 Gew.-% eingestellt.
Herstellung einer Pigmentpräparation:
Das Pigment wurde, entweder als Pulver, Granulat oder als Presskuchen, zusammen mit den Dispergiermitteln und den anderen Zusätzen in entionisiertem Wasser angeteigt und dann mit einem Dissolver (z. B. von der Firma VMA-Getzmann GmbH, Type AE3-M1 ) oder einer anderen geeigneten Apparatur homogenisiert und vordispergiert. Die anschließende Feindispergierung erfolgte mit Hilfe einer Perlmühle (z. B. mit AE3-M1 von VMA-Getzmann) oder einem anderen geeigneten Dispergieraggregat, wobei die Mahlung mit Siliquarzitperlen oder Zirkonmischoxidperlen der Größe d = 1 mm unter Kühlung bis zur gewünschten Farbstärke und Coloristik erfolgte. Im Anschluss wurde die Dispersion mit entionisiertem Wasser auf die gewünschte Pigmentendkonzentration eingestellt, die Mahlkörper abgetrennt und die Pigmentpräparation isoliert.
Die in den folgenden Beispielen beschriebenen Pigmentpräparationen wurden nach dem zuvor beschriebenen Verfahren hergestellt, wobei die Bestandteile in den angegebenen Mengen so verwendet wurden, dass 100 Teile der jeweiligen Pigmentpräparation entstehen. In den nachfolgenden Beispielen bedeuten Teile Gewichtsteile.
Beurteilung einer Pigmentpräparation Die Bestimmung der Farbstärke und des Farbtons erfolgte nach DIN 55986. Für den „Rub-Out-Test" wurde die Dispersionsfarbe oder der Lack nach Mischen mit der Pigmentdispersion auf eine Lackkarte aufgetragen. Anschließend wurde mit dem Finger auf dem unteren Teil der Lackkarte nachgerieben. Unverträglichkeit
lag vor, wenn die nachgeriebene Fläche dann kräftiger gefärbt ist als die angrenzende, nicht nachbehandelte Fläche (der „Rub-Out-Test" wird in DE 2 638 946 beschrieben). Die Farbstärke und die Verträglichkeiten mit den einzufärbenden Medien wurden mit 6 verschiedenen Weißdispersionen ermittelt: 1. Weißdispersion A (für Außenanstriche, Wasserbasis, 20 % TiO2)
2. Weißdispersion B (für Außenanstriche, Wasserbasis, 13,4 % TIO2)
3. Weißdispersion C (für Außenanstriche, Wasserbasis, 22,6 % TiO2)
4. Weißdispersion D (für Außenanstriche, Wasserbasis, Bindemittel Polysiloxanemulsion, TiO2, Talkum, Calciumcarbonat) 5. Weißdispersion E (für Innenanstriche, Wasserbasis, Polymerdispersion, frei von Lösemittel und Weichmachern, emissionsarm, TiO2, Calciumcarbonat) 6. Weißdispersion F (für Innenanstriche, Wasserbasis, Polyacrylate, TiO2, Calciumcarbonat)
Die Viskosität wurde mit einem Kegel-Platte-Viskosimeter (Roto Visco 1 ) der Firma Haake bei 20 0C bestimmt (Titankegel: 0 60 mm, 1 °), wobei die Abhängigkeit der Viskosität von dem Schergefälle in einem Bereich zwischen 0 und 200 s"1 untersucht wurde. Die Viskositäten wurden bei einem Schergefälle von 60 s"1 gemessen. Für eine Beurteilung der Lagerstabilität der Dispersionen wurde die Viskosität direkt nach der Herstellung der Präparation gemessen, sowie nach vierwöchiger Lagerung bei 50 0C.
Die Scherstabilität und das Schaumverhalten wurden nach Scherung einer auf 2 % verdünnten Präparation mit einem handelsüblichen Küchenmixer (Braun MX 32) unter Einstellung einer hohen Rotationsgeschwindigkeit beobachtet. Je scherstabiler die Präparation ist, desto geringer ist der Farbstärkeabfall nach Scherung im Vergleich der Farbstärke einer gescherten zu einer ungescherten Dispersion. Nach Abstellen des Mixers wurde das Schaumverhalten beobachtet.
Die in den folgenden Beispielen beschriebenen Pigmentpräparationen wurden nach dem zuvor beschriebenen Verfahren hergestellt, wobei die folgenden Bestandteile in den angegebenen Mengen so verwendet wurden, dass 100 Teile
der jeweiligen Pigmentpräparation entstehen. In den nachfolgenden Beispielen bedeuten Teile Gewichtsteile.
Beispiel 1
50,0 Teile Komponente (A), Cl. Pigment Blue 15
7,0 Teile Komponente (B), Dispergiermittel entsprechend Synthesebeispiel 19
2,0 Teile Komponente (C), Benetzer
8,0 Teile Komponente (E), Ethylenglykol 0,2 Teile Komponente (F), Konservierungsmittel
Rest Komponente (G), Wasser
Die Pigmentpräparation hat eine durchweg hohe Farbstärke und ist stabil. In alle 6 Weißdispersionen A bis F lässt sie sich unter leichter Verteilbarkeit sehr gut einarbeiten. Der Rub-Out-Test zeigt in allen Fällen keine Farbstärkeunterschiede im Vergleich zur nachgeriebenen Fläche. Die Präparation erweist sich als gut fließfähig und lagerstabil, da sie nach 28 Tagen Lagerung bei 50 0C ebenfalls noch gut fließfähig ist. Die Viskosität nach der Herstellung beträgt 642 mPa-s. Die Präparation ist scherstabil und schäumt nicht.
Beispiel 2
45,0 Teile Komponente (A), Cl. Pigment Red 112
8,0 Teile Komponente (B), Dispergiermittel entsprechend Synthesebeispiel 23 1 ,0 Teile Komponente (C), Benetzer
10,0 Teile Komponente (E), Propylenglykol
0,2 Teile Komponente (F), Konservierungsmittel
Rest Komponente (G), Wasser
Die Pigmentpräparation hat eine durchweg hohe Farbstärke und ist stabil. In alle 6 Weißdispersionen lässt sie sich unter leichter Verteilbarkeit sehr gut einarbeiten. Der Rub-Out-Test zeigt in den sechs Fällen keine Farbstärkeunterschiede im Vergleich zur nachgeriebenen Fläche. Die Präparation erweist sich als gut
fließfähig und lagerstabil, da sie nach 28 Tagen Lagerung bei 50 0C ebenfalls noch gut fließfähig ist. Die Viskosität nach der Herstellung beträgt 278 mPa-s. Die Präparation ist scherstabil und schäumt nicht.
Beispiel 3
65,0 Teile Komponente (A), Cl. Pigment Yellow 42
4,0 Teile Komponente (B), Dispergiermittel entsprechend Synthesebeispiel 11
1 ,0 Teile Komponente (C), Benetzer 15,0 Teile Komponente (E), Propylenglykol
0,2 Teile Komponente (F), Konservierungsmittel
Rest Komponente (G), Wasser
Die Pigmentpräparation hat eine durchweg hohe Farbstärke und ist stabil. In 5 Weißdispersionen lässt sie sich unter leichter Verteilbarkeit sehr gut einarbeiten, in der 6. Weißdispersionen ist die Einarbeitbarkeit erschwert, aber homogen durchführbar. Der Rub-Out-Test zeigt in den sechs Fällen keine Farbstärkeunterschiede im Vergleich zur nachgeriebenen Fläche. Die Präparation erweist sich als gut fließfähig und lagerstabil, da sie nach 28 Tagen Lagerung bei 50 0C ebenfalls noch gut fließfähig ist. Die Viskosität nach der Herstellung beträgt 1.765 mPa-s. Die Präparation ist scherstabil und schäumt nicht.
Beispiel 4
40,0 Teile Komponente (A), Cl. Pigment Red 168
12,0 Teile Komponente (B), Dispergiermittel entsprechend der Formel (II),
Synthesebeispiel 18
20,0 Teile Komponente (E), Ethylenglykol 0,2 Teile Komponente (F), Konservierungsmittel Rest Komponente (G), Wasser
Die Pigmentpräparation hat eine durchweg hohe Farbstärke und ist stabil. In alle 6 Weißdispersionen lässt sie sich unter leichter Verteilbarkeit sehr gut einarbeiten.
Der Rub-Out-Test zeigt in den sechs Fällen keine Farbstärkeunterschiede im Vergleich zur nachgeriebenen Fläche. Die Präparation erweist sich als gut fließfähig und lagerstabil, da sie nach 28 Tagen Lagerung bei 50 0C ebenfalls noch gut fließfähig ist. Die Viskosität nach der Herstellung beträgt 894 mPa-s. Die Präparation ist scherstabil und schäumt nicht.
Beispiel 5
40,0 Teile Komponente (A), Cl. Pigment Black 7 6,5 Teile Komponente (B), Dispergiermittel entsprechend Synthesebeispiel 21 Rest Komponente (G), Wasser
Die Pigmentpräparation hat eine durchweg hohe Farbstärke und ist stabil. In alle 6 Weißdispersionen lässt sie sich unter leichter Verteilbarkeit sehr gut einarbeiten. Der Rub-Out-Test zeigt in den sechs Fällen keine Farbstärkeunterschiede im Vergleich zur nachgeriebenen Fläche. Die Präparation erweist sich als gut fließfähig und lagerstabil, da sie nach 28 Tagen Lagerung bei 50 0C ebenfalls noch gut fließfähig ist. Die Viskosität nach der Herstellung beträgt 483 mPa-s. Die Präparation ist scherstabil und schäumt nicht.
Beispiel 6
50,0 Teile Komponente (A), Cl. Pigment Green 7
7,5 Teile Komponente (B), Dispergiermittel entsprechend Synthesebeispiel 2 15,0 Teile Komponente (E), Propylenglykol
0,2 Teile Komponente (F), Konservierungsmittel
Rest Komponente (G), Wasser
Die Pigmentpräparation hat eine durchweg hohe Farbstärke und ist flockungsstabil. In alle 6 Weißdispersionen lässt sie sich unter leichter
Verteilbarkeit sehr gut einarbeiten. Der Rub-Out-Test zeigt in den sechs Fällen keine Farbstärkeunterschiede im Vergleich zur nachgeriebenen Fläche. Die Präparation erweist sich als gut fließfähig und lagerstabil, da sie nach 28 Tagen
Lagerung bei 50 0C ebenfalls noch gut fließfähig ist. Die Viskosität nach der Herstellung beträgt 669 mPa-s. Die Präparation ist scherstabil und schäumt nicht.
Vergleichsbeispiel
45,0 Teile Komponente (A), Cl. Pigment Rot 112 8,0 Teile Komponente (B), Dispergiermittel basierend auf Vergleichs-
Synthesebeispiel 1
1 ,3 Teile Komponente (C), Benetzer 10,0 Teile Komponente (E), Propylenglykol
0,2 Teile Komponente (F), Konservierungsmittel 35,5 Teile Komponente (G), Wasser
Die Pigmentpräparation hat eine hohe Farbstärke nur in den Weißdispersionen A, B, C, E. In den Weißdispersionen D und F liegt die Farbstärke bei 85 bzw. 90 %. Die Systeme D und F zeigen einen ausgeprägten Rub-Out, in B ist ein leichter Ru b-Out feststellbar. Die Dispersion ist nicht ausreichend lagerstabil, da sie nach 28 Tagen Lagerung bei 50 0C fest geworden ist.
Weitere Beispiele zu Pigmentpräparationen sind in der folgenden Tabelle enthalten. Es wird jeweils eine 40 %ige Pigmentpräparationen hergestellt auf Basis Pigment Yellow 83 nach folgendem Rezept:
40,0 Teile Komponente (A), Cl. Pigment Yellow 83 10,0 Teile Komponente (B), Dispergiermittel entsprechend der Formel (I) oder
(II), aus dem Synthesebeispiel wie in der Tabelle angegeben
1 ,0 Teile Komponente (C), Benetzer
10,0 Teile Komponente (E), Propylenglykol
0,2 Teile Komponente (F), Konservierungsmittel Rest Komponente (G), Wasser
Die Buchstaben A, bis F geben die Bezeichnung der Weißdispersion wieder, in der getestet wurde. FS ist die Abkürzung für Farbstärke.