WO2008135422A1 - Verfahren zur herstellung einer wässrigen kompositpartikel-dispersion - Google Patents

Verfahren zur herstellung einer wässrigen kompositpartikel-dispersion Download PDF

Info

Publication number
WO2008135422A1
WO2008135422A1 PCT/EP2008/055145 EP2008055145W WO2008135422A1 WO 2008135422 A1 WO2008135422 A1 WO 2008135422A1 EP 2008055145 W EP2008055145 W EP 2008055145W WO 2008135422 A1 WO2008135422 A1 WO 2008135422A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous
monomers
inorganic solid
polymerization
total amount
Prior art date
Application number
PCT/EP2008/055145
Other languages
English (en)
French (fr)
Inventor
Arno Tuchbreiter
Harm Wiese
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to DE502008003178T priority Critical patent/DE502008003178D1/de
Priority to JP2010506891A priority patent/JP5449138B2/ja
Priority to KR1020097025233A priority patent/KR101487042B1/ko
Priority to CN2008800146294A priority patent/CN101675081B/zh
Priority to EP08749776A priority patent/EP2147020B1/de
Priority to AU2008248731A priority patent/AU2008248731B2/en
Priority to US12/598,202 priority patent/US8268912B2/en
Priority to BRPI0810838-2A priority patent/BRPI0810838B1/pt
Priority to PL08749776T priority patent/PL2147020T3/pl
Priority to AT08749776T priority patent/ATE505490T1/de
Publication of WO2008135422A1 publication Critical patent/WO2008135422A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2343/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Derivatives of such polymers
    • C08J2343/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Definitions

  • the present invention relates to a process for the preparation of an aqueous dispersion of particles composed of polymer and finely divided inorganic solid (aqueous composite particle dispersion) in which ethylenically unsaturated monomers are dispersed in an aqueous medium and at least one dispersedly dispersed by means of at least one free radical polymerization initiator , finely divided inorganic solid and at least one dispersing aid are polymerized by the method of free-radically aqueous emulsion polymerization, which is characterized in that
  • a stable aqueous dispersion of at least one inorganic solid is used, which is characterized in that it at an initial solids concentration of> 0.1 wt .-%, based on the aqueous dispersion of at least one inorganic solid, one hour after their Preparation contains more than 90 wt .-% of the originally dispersed solid in dispersed form and their dispersed solid particles have a diameter ⁇ 100 nm (aqueous solid dispersion),
  • ethylenically unsaturated monomers > 0.01 and ⁇ 10% by weight of at least one ethylenically unsaturated monomer A (silane monomer) having a silicon-containing functional group and> 90 and ⁇ 99.99% by weight of at least one further of ethylenically unsaturated monomers B differing from the monomers A and the amounts of monomers A and B add up to 100% by weight (total monomer amount),
  • the present invention likewise provides the aqueous composite-particle dispersions obtainable by the process according to the invention and their use, as well as the composite-particle powders obtainable from the aqueous composite-particle dispersions and their use.
  • Aqueous composite particle dispersions are well known. These are fluid systems which comprise disperse particles composed of a plurality of intertwined polymer chains (the so-called polymer matrix) and finely divided inorganic solid particles in an aqueous dispersing medium.
  • the average diameter of the composite particles is generally in the range> 10 nm and ⁇ 1000 nm, often in the range> 50 nm and ⁇ 400 nm and often in the range> 100 nm and ⁇ 300 nm.
  • Van Herk et al. in Macromolecules 2006, 39, pages 4654 to 4656 discloses the encapsulation of i.a.
  • the silicates are covalently modified with silane monomers in latex particles according to the so-called "starved-feed" emulsion polymerization under emulsifier-free conditions
  • the phyllosilicates are modified in dichloromethane and worked up before use in the emulsion polymerization through several process steps.
  • WO 02/24756 discloses the use of hydrophobized phyllosilicates in suspension and miniemulsion polymerization.
  • WO 02/24758 discloses the use of "slightly modified" hydrophobicized phyllosilicates in the emulsion polymerization, but the specific modification is not described.
  • clear water for example clear drinking water, but especially advantageously deionized water, is used whose total amount is calculated to be> 30 and ⁇ 99% by weight and advantageously> 35 and ⁇ 95% by weight and particularly advantageously> 40 and ⁇ 90 wt .-%, based on the aqueous composite particle dispersion is.
  • all those finely divided inorganic solids are suitable which form stable aqueous dispersions which, at an initial solids concentration of> 0.1 wt .-%, based on the aqueous dispersion of at least one inorganic solid, one hour after their preparation or after homogeneous dispersion of the sedimented solids, without further stirring or shaking more than 90 wt .-% of the originally dispersed solid in dispersed form and their dispersed solid particles have a diameter ⁇ 100 nm.
  • the quantitative determination of the initial solids concentration and the solids concentration after one hour is carried out in this document by the method of the analytical ultracentrifuge (see also SE Harding et al., Analytical Ultracentrifugation in Biochemistry and Polymer Science, Royal Society of Chemistry, Cambridge , Great Britain 1992, Chapter 10, Analysis of Polymer Dispersions with Eight Cell AUC Multiplexers: High Resolution Particle Size Distribution and Density Gradient Techniques, W. Gurchtle, pp. 147-175).
  • the particle size of the finely divided inorganic solid and the composite particles is generally determined by the method of quasi-elastic light scattering (DIN-ISO 13321) using a High Performance Particle Sizer (HPPS) from Malvern Instruments Ltd.
  • Suitable finely divided inorganic solids which can be used according to the invention are, in principle, metals, metal compounds, such as metal oxides and metal salts, but also semimetal and nonmetal compounds.
  • noble metal colloids such as palladium, silver, ruthenium, platinum, gold and rhodium and alloys containing them can be used.
  • Finely divided metal oxides exemplified are titanium dioxide (for example commercially available as Homburg bitec ® brands from. Sachtleben Chemie GmbH), zirconium (IV) oxide, tin (II) oxide, Tin (IV) oxide (for example commercially available as Nyacol SN ® brands from.
  • Akzo-Nobel aluminum oxide (e.g., commercially available as Nyacol ® brands from AL. Akzo-Nobel), barium oxide, magnesium oxide, various iron oxides , such as iron (II) oxide (Wuestit), iron (III) oxide (hematite) and iron (II / I I) oxide (magnetite), chromium (III) oxide, antimony ( III) oxide, bismuth (III) oxide, zinc oxide (e.g., commercially available as Sachtotec® ® brands from.
  • sulfides such as iron (II) sulfide, iron (III) sulfide, iron (II) disulfide (pyrite), Tin (II) sulfide, Tin (IV) sulfide, Mercury (II) sulfide, Cadmium (II) sulfide, Zinc sulfide, Copper (II) sulfide, Silver sulfide, Nickel (II) sulfide, cobalt (II) sulfide, cobalt (III) sulfide, manganese (II) sulfide, chromium (III) sulfide, titanium (II) sulfide, titanium
  • An essential semimetallic compound which can be used according to the invention is amorphous silica and / or silicon dioxide present in different crystal structures.
  • suitable silica is commercially available and can ® for example, as Aerosil (trademark of. Degussa AG), Levasil® ® (trademark of. Bayer AG), Ludox ® (trademark of. DuPont), Nyacol ® and Bindzil ® (trademarks of advertising related company. Akzo Nobel) and Snowtex ® (trademark of. Nissan Chemical Industries, Ltd.) to.
  • Suitable non-metal compounds according to the invention are, for example, colloidal graphite or diamond.
  • the at least one finely divided inorganic solid is selected from the group comprising silica, phyllosilicates, alumina, hydroxyaluminum oxide, calcium carbonate, magnesium carbonate, calcium orthophosphate, magnesium orthophosphate, iron (II) oxide, iron (III) oxide, iron (II) III) oxide, tin (IV) oxide, cerium (IV) oxide, yttrium (III) oxide, titanium dioxide, hydroxyapatite, zinc oxide and zinc sulfide.
  • silicon-containing compounds such as fumed silica, colloidal silica and / or phyllosilicates.
  • LE Vasil ® - - advantageously also the commercially available compounds of the Aerosil ® may Ludox ® -, Nyacol ® - grades and Bindzil ® (silicon dioxide), Nanofil ® -, Optigel ® -, Somasif ® -, Cloisite ® -, Lucentite ® -, saponite ® -, hectorite ® - and Laponite ® brands (phyllosilicates), Disperal ® brands (hydroxyaluminum), Nyacol ® AL brands (alumina), Hombitec ® brands (titanium dioxide), Nyacol ® SN brands (tin (IV) oxide), Nyacol ® yTTRIA brands (yttrium (III) oxide), Nyacol ® CEO2 brands (cerium (IV) oxide) and Sachtotec® ® brands (zinc oxide) in the process of this invention be used.
  • the finely divided inorganic solids which can be used for producing the composite particles are such that the solid particles dispersed in the aqueous polymerization medium have a particle diameter of ⁇ 100 nm.
  • Such finely divided inorganic solids are successfully used whose dispersed particles have a particle diameter> 0 nm but ⁇ 90 nm, ⁇ 80 nm, ⁇ 70 nm, ⁇ 60 nm, ⁇ 50 nm, ⁇ 40 nm, ⁇ 30 nm, ⁇ 20 nm or ⁇ 10 nm and all values in between. It is advantageous to use finely divided inorganic solids which have a particle diameter ⁇ 50 nm.
  • the preparation of stable solid dispersions is often carried out directly in the synthesis of finely divided inorganic solids in an aqueous medium or alternatively by dispersing the finely divided inorganic solids in the aqueous polymerization medium.
  • this is possible either directly, for example in the case of precipitated or pyrogenic silicon dioxide, aluminum oxide etc. or with the aid of suitable auxiliary equipment, for example dispersants or ultrasonic sonotrodes.
  • aqueous composite particle dispersion are those finely divided inorganic solids whose aqueous solids dispersion at an initial solids concentration of> 0.1 wt .-%, based on the aqueous solids dispersion, one hour after their preparation or after homogeneous Disper - G ist the sedimented solids, without further stirring or shaking more than 90 wt .-% of the originally dispersed solid in dispersed form and contains whose dispersed solid particles have a diameter ⁇ 100 nm.
  • Typical are initial solids concentrations ⁇ 60 wt .-%.
  • aqueous composite-particle dispersions Based on 100 parts by weight of ethylenically unsaturated monomers (total monomer), in the preparation of aqueous composite-particle dispersions 1 to 1000 parts by weight, preferably 5 to 300 parts by weight and particularly preferably 10 to 200 parts by weight of used at least one finely divided inorganic solid.
  • process step d) at least one subset, advantageously> 10,> 30 or> 50,% by weight and especially advantageously> 60,> 70,> 80 or> 90% by weight of the total amount of inorganic solid is presented in the aqueous polymerization medium.
  • the residual amount of inorganic solid which may remain is added to the aqueous polymerization medium in process step f) under polymerization conditions batchwise in one or more subsets or continuously in a constant or varying stream, in particular in the form of an aqueous solid dispersion.
  • the total amount of the inorganic solid is advantageously initially charged in the form of an aqueous solid dispersion.
  • dispersing aids are generally used, which keep dispersed both the finely divided inorganic solid particles and the monomer droplets and the composite particles formed in the aqueous phase and thus ensure the stability of the aqueous composite particle dispersions produced.
  • Suitable dispersing agents are both the protective colloids customarily used for carrying out free-radical aqueous emulsion polymerizations and emulsifiers.
  • Suitable neutral protective colloids are, for example, polyvinyl alcohols, polyalkylene glycols, cellulose, starch and gelatin derivatives.
  • anionic protective colloids ie protective colloids whose dispersing component has at least one negative electrical charge
  • Suitable cationic protective colloids whose dispersing component has at least one positive electrical charge are, for example, the nitrogen protonated and / or alkylated derivatives of N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylcarbazole, 1-vinylimidazole, 2-vinylimidazole, 2-vinylpyridine, 4 Vinylpyridine, acrylamide, methacrylamide, amines group-bearing acrylates, methacrylates, acrylamides and / or methacrylamides containing homopolymers and copolymers.
  • mixtures of emulsifiers and / or protective colloids can be used.
  • dispersing agents are exclusively emulsifiers whose relative molecular weights, in contrast to the protective colloids, are usually below 1500 g / mol.
  • the individual components must be compatible with each other, which can be checked in case of doubt by hand on fewer preliminary tests.
  • An overview of suitable emulsifiers can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Materials, Georg Thieme Verlag, Stuttgart, 1961, pages 192 to 208.
  • Common nonionic emulsifiers are z.
  • ethoxylated mono-, di- and tri-alkylphenols EO units: 3 to 50, alkyl radical: C 4 to C 2
  • ethoxylated fatty alcohols EO units: 3 to 80; alkyl radical: C 8 to C 3 e
  • Lutensol ® A grades C 2 Ci4-fatty alcohol ethoxylates, EO units: 3 to 8
  • Lutensol ® AO-marks C13C15- Oxoalkoholethoxilate, EO units: 3 to 30
  • Lutensol ® AT-marks Ci 6 Ci 8 - fatty alcohol ethoxylates, EO grade: 1 1 to 80
  • Lutensol ® ON grades C 10 oxo alcohol ethoxylates, EO grade: 3 to 11
  • Lutensol ® TO grades C 13 oxo alcohol ethoxylates, EO grade : 3 to 20
  • Usual anionic emulsifiers are z.
  • alkali metal and ammonium salts of Al kylsulfaten (alkyl radical: Cs to C12), ethoxylated sulfuric acid monoesters of alkanols (EO units: 4 to 30, alkyl radical: C12 to C 8) and of ethoxylated alkylphenols (EO units: 3 to 50, alkyl radical: C 4 to C 12), (from alkylsulfonic alkyl radical: C12 to C 8) and of Al kylarylsulfonklaren (alkyl radical: Cg to C 8).
  • R 1 and R 2 are H atoms or CA- to C24-alkyl and are not simultaneously H atoms, and M 1 and M 2 may be alkali metal ions and / or ammonium ions proved.
  • R 1 and R 2 are preferably linear or branched alkyl radicals having 6 to 18 C atoms, in particular having 6, 12 and 16 C atoms or -H, wherein R 1 and R 2 are not both simultaneously H atoms are.
  • M 1 and M 2 are preferably sodium, potassium or ammonium, with sodium being particularly preferred. Particularly advantageous are compounds I in which M 1 and M 2 are sodium, R 1 is a branched alkyl radical having 12 C atoms and R 2 is an H atom or R 1 .
  • Suitable cationic emulsifiers are generally C 1 -C 6 -alkyl-, aralkyl- or heterocyclic radical-containing primary, secondary, tertiary or quaternary ammonium salts, alkanolammonium salts, pyridinium salts, imidazolinium salts, oxazolinium salts, morpholinium salts, thiazolinium salts and salts of amine. oxides, quinolinium salts, isoquinolinium salts, tropylium salts, sulfonium salts and phosphonium salts.
  • Examples include dodecylammonium acetate or the corresponding hydrochloride, the chlorides or acetates of the various 2- (N, N, N-trimethylammonium) ethylparaffinklareester, N-cetylpyridinium chloride, N-Laurylpyridiniumsulfat and N-cetyl-N, N, N-trimethylammonium bromide, N- Dodecyl-N, N, N-trimethylammonium bromide, N-octyl-N, N, N-trimethylammonium bromide, N, N-distearyl-N, N-dimethylammonium chloride and the gemini-surfactant N, N'- (lauryldimethyl) ethylenediamine dibromide.
  • aqueous composite-particle dispersions between 0.1 and 10% by weight, often 0.5 to 7.0% by weight and frequently 1.0 to 5.0% by weight of dispersing assistant, in each case based on the total amount of aqueous composite particle dispersion used.
  • emulsifiers in particular nonionic and / or anionic emulsifiers.
  • anionic emulsifiers are used. According to the invention it is possible, if appropriate, to submit a partial or total amount of dispersing assistant in the polymerization vessel as a constituent of the aqueous polymerization medium which contains a partial or total amount of the inorganic solid [process step d)].
  • the total amount or any remaining amount of dispersing assistant during process step e) or during process step f) can be metered into the aqueous polymerization medium batchwise in one or more portions or continuously with constant or varying flow rates.
  • the metering of the dispersing aids during the polymerization reaction in process step f) is carried out continuously with constant flow rates, in particular as part of an aqueous monomer emulsion.
  • Suitable monomers A are all radically copolymerizable ethylenically unsaturated monomers which have at least one silyl-containing functional group, for example vinylalkoxysilanes, in particular vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltriphenoxysilane, vinyltris (dimethylsiloxy) silane, vinyltris (2-methoxyethoxy ) silane, vinyltris (3-methoxypropoxy) silane and / or vinyltris (trimethylsiloxy) silane, acryloxysilanes, in particular 2- (acryloxyethoxy) trimethylsilane, acryloxymethyltrimethylsilane, (3-acryloxypropyl) dimethylmethoxysilane, (3-acryloxypropyl) methylbis (trimethylsiloxy) silane, (3-Acryloxypropyl) methyldimethoxysilane, (3-acryloxypropyl) trimethoxys
  • process step e) at least a subset of the monomers A is added to the aqueous polymerization medium for a period of time of> 5 and ⁇ 240 minutes, advantageously> 30 and ⁇ 120 minutes and particularly advantageously> 45 and ⁇ 75 minutes. dosed.
  • the dosage is advantageously carried out with a continuous, constant flow rate.
  • process step e) according to the invention,> 0.1 and ⁇ 100% by weight, advantageously> 5 and ⁇ 70% by weight, and particularly advantageously> 10 and ⁇ 50% by weight of monomers A, based on the total amount of monomers A, added to the aqueous polymerization medium.
  • process step e) takes place at a temperature of the aqueous polymerization medium> 20 ° C., advantageously at a temperature> 50 and ⁇ 100 ° C., and with particular advantage at a temperature> 75 and ⁇ 95 ° C.
  • any remaining amount of monomers A may be added to the aqueous polymerization medium in process step f) batchwise in one or more portions or continuously with constant or varying flow rates.
  • the metering of the monomers A during the polymerization reaction in process step f) takes place continuously with constant flow rates, in particular as a constituent of an aqueous emulsion of the monomers B.
  • the total amount of monomers A is> 0.5 and ⁇ 3% by weight, based on the total monomer amount, wherein in process step e)> 10 and ⁇ 50% by weight of the total amount of monomers A are metered.
  • Suitable monomers B are, inter alia, in a simple manner with the silane monomers radically copolymerizable ethylenically unsaturated monomers, such as ethylene, vinyl aromatic monomers such as styrene, ⁇ -methyl styrene, o-chlorostyrene or vinyl toluenes, esters of vinyl alcohol and 1 to 18 C.
  • silane monomers radically copolymerizable ethylenically unsaturated monomers, such as ethylene, vinyl aromatic monomers such as styrene, ⁇ -methyl styrene, o-chlorostyrene or vinyl toluenes, esters of vinyl alcohol and 1 to 18 C.
  • Monocarboxylic acids such as vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl laurate and vinyl stearate, esters of preferably 3 to 6 carbon atoms having ⁇ , ß- monoethylenically unsaturated mono- and dicarboxylic acids, in particular acrylic acid, methacrylic acid, maleic acid , Fumaric acid and itaconic acid, with alkanols generally having 1 to 12, preferably 1 to 8 and in particular 1 to 4, carbon atoms, such as, in particular, methyl acrylate, methacrylic acid, ethyl, n-butyl, isobutyl, butyl and 2-ethylhexyl ester, dimethyl maleate or di-n-butyl maleate, nitriles of ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids, such as acrylonitrile il and C4-8 conjugated dienes, such as 1, 3-butadiene and is
  • monomers B to be polymerized normally have a proportion of> 50% by weight,> 80% by weight or> 90% by weight.
  • these monomers in water under normal conditions [20 0 C, 1 atm (absolute)] only a moderate to low solubility.
  • Other monomers B which usually increase the internal strength of the films of the polymer matrix, normally have at least one hydroxyl, N-methylol or carbonyl group, or at least two non-conjugated ethylenically unsaturated double bonds.
  • Examples include two vinyl radicals containing monomers, two vinylidene radicals having monomers and two alkenyl radicals having monomers.
  • Particularly advantageous are the diesters of dihydric alcohols with .alpha.,. Beta.-monoethylenically unsaturated monocarboxylic acids, of which the acrylic and methacrylic acids are preferred.
  • Examples of such two non-conjugated ethylenically unsaturated double bonds monomers are alkylene glycol diacrylates and - dimethacrylates, such as ethylene glycol diacrylate, 1, 2-propylene glycol diacrylate, 1, 3
  • the methacrylic acid and acrylic acid C 1 -C 8 hydroxyalkyl esters such as n-hydroxyethyl, n-hydroxypropyl or n-hydroxybutyl acrylate and methacrylate, and also compounds such as diacetoneacrylamide and acetylacetoxyethyl acrylate or methacrylate.
  • the abovementioned monomers based on the total amount of the monomers B to be polymerized, in amounts of up to 5 wt .-%, often 0.1 to 3 wt .-% and often 0.5 to 2 wt .-% for the polymerization used.
  • those ethylenically unsaturated monomers BS which have either at least one acid group and / or their corresponding anion or those ethylenically unsaturated monomers BA which contain at least one amino, amido, ureido or N-heterocyclic group and / or or their nitrogen protonated or alkylated ammonium derivatives.
  • the amount of monomers BS or monomers BA is up to 10% by weight, often 0.1 to 7% by weight and frequently 0.2 to 5% by weight. %.
  • the monomers BS used are ethylenically unsaturated monomers having at least one acid group.
  • the acid group may be, for example, a carboxylic acid, sulfonic acid, sulfuric acid, phosphoric acid and / or phosphonic acid group.
  • Examples of such monomers BS are acrylic acid, methacrylic acid, maleic acid, Fumaric acid, itaconic acid, crotonic acid, 4-styrenesulfonic acid, 2-methacryloxyethylsulfonic acid, vinylsulfonic acid and vinylphosphonic acid and phosphoric acid monoesters of n-hydroxyalkyl acrylates and n-hydroxyalkyl methacrylates, such as phosphoric acid monoesters of hydroxyethyl acrylate, n-hydroxypropyl acrylate, n-hydroxybutyl acrylate and hydroxyethyl methacrylate, n-hydroxyalkyl methacrylate
  • ammonium and alkali metal salts of the aforementioned at least one acid group-containing ethylenically unsaturated monomers can also be used according to the invention.
  • Particularly preferred alkali metal is sodium and potassium.
  • Examples of these are the ammonium, sodium and potassium salts of acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, 4-styrenesulfonic acid, 2-methacryloxyethylsulfonic acid, vinylsulfonic acid and vinylphosphonic acid, and the mono- and di-ammonium, sodium and Potassium salts of the phosphoric acid monoesters of hydroxyethyl acrylate, n-hydroxypropyl acrylate, n-hydroxybutyl acrylate and hydroxyethyl methacrylate, n-hydroxypropyl methacrylate or n-hydroxybutyl methacrylate.
  • Monomers BA used are ethylenically unsaturated monomers which contain at least one amino, amido, ureido or N-heterocyclic group and / or their nitrogen-protonated or alkylated ammonium derivatives.
  • Monomers BA Containing At Least One Amino Group 2-Aminoethyl acrylate, 2-aminoethyl methacrylate, 3-aminopropyl acrylate, 3-aminopropyl methacrylate, 4-amino-n-butyl acrylate, 4-amino-n-butyl methacrylate, 2- (N-methylamino) ethyl acrylate, 2- (N-methylamino) ethyl methacrylate, 2- (N-ethylamino) ethyl acrylate, 2- (N-ethylamino) ethyl methacrylate, 2- (Nn propylamino) ethyl acrylate, 2- (Nn propylamino) ethyl methacrylate, 2- N-iso- propylamino) ethyl acrylate, 2- (N-iso-propylamino) ethyl methacrylate, 2-
  • Examples of monomers BA which contain at least one amido group are acrylamide, methacrylamide, N-methylacrylamide, N-methylmethacrylamide, N-ethylacrylamide, N-ethylmethacrylamide, Nn-propylacrylamide, Nn-propylmethacrylamide, N-iso-propylacrylamide, N-iso -Propylmethacrylamid, N-tert-butylacrylamide, N-tert-butyl methacrylamide, N, N-dimethylacrylamide, N, N-dimethyl methacrylamide, N 1 N- diethylacrylamide, N, N-diethyl methacrylamide, N, N-di-n-propylacrylamide, N, N-di-n-propylmethacrylamide, N, N-di-iso-propylacrylamide, N, N-diisopropylacrylamide, N, N-diisopropylmethacrylamide, N,
  • monomers BA which comprise at least one ureido group, N, N '- divinylethyleneurea and 2- (1-imidazolin-2-onyl) ethyl methacrylate (for example commercially available as NORSOCRYL ® 100 from Elf Atochem.).
  • Examples of monomers BA containing at least one N-heterocyclic group are 2-vinylpyridine, 4-vinylpyridine, 1-vinylimidazole, 2-vinylimidazole and N-vinylcarbazole.
  • a part or the total amount of the abovementioned nitrogen-containing monomers BA can be present in the quaternary ammonium form protonated on the nitrogen.
  • BA having a quaternary Alkylammonium Vietnamese on the nitrogen may be mentioned by way of example 2- (N, N 1 NT rimethylammonium) (play, commercially available examples as NORSOCRYL ® ADAMQUAT MC 80 from. Elf Atochem) ethylacrylatchlorid, 2- (N, N, N-trimethylammonium) ethyl methacrylate chloride (e.g., commercially available as NORSOCRYL MADQUAT ® MC 75 from.
  • 2- (N, N 1 NT rimethylammonium) play, commercially available examples as NORSOCRYL ® ADAMQUAT MC 80 from. Elf Atochem
  • 2- (N, N, N-trimethylammonium) ethyl methacrylate chloride e.g., commercially available as NORSOCRYL MADQUAT ® MC 75 from.
  • NORSOCRYL ® MADQUAT BZ 75 from. Elf Atochem 2- (N-benzyl-N, N-diethylammonium) ethylacrylatchlorid, 2- (N-benzyl-N, N-diethylammonium) ethyl methacrylate, 2- (N-benzyl-N , N-dipropylammonium) ethyl acrylate chloride, 2- (N-benzyl-N, N-dipropylammonium) ethyl methacrylate chloride, 3- (N, N, N-
  • mixtures of the aforementioned ethylenically unsaturated monomers BS or BA can be used.
  • the composition of the monomers B is chosen so that their polymerization alone would result in a polymer whose glass transition temperature ⁇ 100 0 C, preferably ⁇ 60 0 C, in particular ⁇ 40 0 C and often> -30 0 C and often> -20 0 C or> -10 0 C is.
  • x 1 , x 2 , .... x n are the mass fractions of the monomers 1, 2, .... n and T 9 1 , T 9 2 , .... T 9 n the glass transition temperatures of each of only one of Monomers 1, 2, .... n constructed polymers in degrees Kelvin.
  • the T 9 values for the homopolymers of most monomers are known and are listed, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 5th ed., Vol. A21, page 169, Verlag Chemie, Weinheim, 1992; Other sources of glass transition temperatures of homopolymers include, for example, J. Brandrup, EH Immergut, Polymer Handbook, 1 st Ed., J. Wiley, New York, 1966; 2 nd ed. J. Wiley, New York, 1975 and 3 rd Ed. J. Wiley, New York, 1989.
  • the total amount of monomers B is added to the aqueous polymerization medium in process step f).
  • the monomers B can be metered into the aqueous polymerization medium batchwise in one or more portions or continuously with constant or changing flow rates.
  • the metering of the monomers B is carried out continuously with constant flow rates, in particular as part of an aqueous monomer emulsion.
  • radical polymerization initiators which are capable of initiating a free-radical aqueous emulsion polymerization are suitable.
  • these may be both peroxides and azo compounds.
  • redox initiator systems come into consideration.
  • peroxides may in principle inorganic peroxides, such as hydrogen peroxide or peroxodisulfates, such as the mono- or di-alkali metal or ammonium salts of Peroxodischwefelklare, such as their mono- and di-sodium, potassium or ammonium salts or organic peroxides such as alkyl hydroperoxides, for example tert. Butyl, p-menthyl or cumyl hydroperoxide, as well as dialkyl or Diarylperoxide, such as di-tert-butyl or di-cumyl peroxide are used.
  • inorganic peroxides such as hydrogen peroxide or peroxodisulfates, such as the mono- or di-alkali metal or ammonium salts of Peroxodischwefelklad, such as their mono- and di-sodium, potassium or ammonium salts or organic peroxides such as alkyl hydroperoxides, for example tert. But
  • Suitable oxidizing agents for redox initiator systems are essentially the abovementioned peroxides.
  • Suitable reducing agents may be sulfur compounds having a low oxidation state, such as alkali metal sulphites, for example potassium and / or sodium sulphite, alkali hydrogen sulphites, for example potassium and / or sodium hydrogen sulphite, alkali metal bisulphites, for example potassium and / or sodium metabisulfite, formaldehyde sulfoxylates, for example potassium and / or sodium formaldehydesulfoxylate, alkali metal salts, especially potassium and / or sodium salts, aliphatic sulfinic acids and alkali metal hydrogen sulfides, such as, for example, potassium and / or sodium hydrogen sulfide, salts of polyvalent metals, such as iron (II) sulfate, iron (II) ammonium sulfate, iron (II) phosphate, endiols such as dihydroxymaleic acid, benzoin and / or ascorbic acid, and reducing saccharides such
  • the total amount of the radical initiator in the aqueous reaction medium before the initiation of the polymerization reaction in process step d) or e) can be submitted.
  • the initiation of the polymerization reaction of the monomers present in the aqueous polymerization medium after radical formation of the free-radical initiator is understood to be initiation of the polymerization reaction.
  • the initiation of the polymerization reaction by adding radical initiator to the aqueous polymerization medium can be carried out under polymerization conditions [process step f)].
  • a partial or total amount of the radical initiator may be added to the aqueous polymerization medium containing the monomers introduced under conditions which are not suitable for triggering a polymerization reaction, for example at low temperature [process steps d) and e)] and there - Are set according to polymerization conditions in the aqueous polymerization mixture.
  • Polymerization conditions are to be understood as meaning in general those temperatures and pressures under which the free-radically initiated aqueous emulsion polymerization proceeds at a sufficient rate of polymerization. They are dependent, in particular, on the radical initiator used.
  • the nature and amount of the radical initiator, the polymerization temperature and the polymerization pressure are selected so that the free-radical initiator has a half-life of ⁇ 3 hours, more preferably ⁇ 1 hour and most preferably ⁇ 30 minutes and there are always enough starting radicals available to effect the polymerization reaction to trigger or maintain.
  • the reaction temperature for the radical aqueous emulsion polymerization in the presence of the finely divided inorganic solid comes up to 170 ° C into consideration. In this case, temperatures of 50 to 120 0 C, often 60 to 110 0 C and often 70 to 100 0 C are usually applied.
  • the free-radical aqueous emulsion polymerization according to the invention can be carried out at a pressure of less than, equal to or greater than 1 atm (atmospheric pressure), so that the polymerization temperature can exceed 100 ° C. and can be up to 170 ° C.
  • highly volatile monomers B for example ethylene, butadiene or vinyl chloride is polymerized under elevated pressure.
  • the pressure may be 1, 2, 1, 5, 2, 5, 10, 15 bar or even higher values. If emulsion polymerizations are carried out under reduced pressure, pressures of 950 mbar, often 900 mbar and often 850 mbar (absolute) are set.
  • the free-radical aqueous emulsion polymerization is advantageously carried out at 1 atm (absolute) with exclusion of oxygen, in particular under an inert gas atmosphere, for example under nitrogen or argon.
  • the aqueous polymerization medium can, to a lesser extent, also contain organic solvents, such as, for example, methanol, ethanol, isopropanol, butanols, but also acetone, etc.
  • organic solvents such as, for example, methanol, ethanol, isopropanol, butanols, but also acetone, etc.
  • the amount of organic solvent is such that at the end of process step e) ⁇ 10 wt .-%, preferably ⁇ 5 wt .-% and particularly advantageously ⁇ 2 wt .-%, each based on the total amount of water of the aqueous composite particle dispersion obtainable according to the invention is.
  • no such solvents are present.
  • halogen compounds such as n-butyl chloride, n-butyl bromide, n-butyl iodide, methylene chloride, ethylene dichloride, chloroform, bromoform, bromotrichloromethane, Dibromdichlormethan, carbon tetrachloride, carbon tetrabromide, benzyl chloride, benzyl bromide, organic thio compounds such as primary , secondary or tertiary aliphatic thiols such as ethanethiol, n-propanethiol, 2-propanethiol, n-butanethiol, 2-butanethiol, 2-methyl-2-propanethiol, n-pentanethiol, 2-pentanethiol, 3-pentanethiol, 2-methyl -2-butanethiol, 3-methyl-2-butanethiol,
  • Methylbenzenethiol as well as all other in Polymerhandbook 3 rd edtiti- on, 1989, J. Brandrup and EH Immergut, John Wiley & Sons, Section II, pages 133 to 141 described sulfur compounds, but also aliphatic and / or aromatic aldehydes, such as Acetaldeyhd, propionaldehyde and / or benzaldehyde, unsaturated fatty acids such as oleic acid , Be used with non-conjugated double bonds, such as divinylmethane or vinylcyclohexane or hydrocarbons with easily abstractable hydrogen atoms, such as toluene.
  • aldehydes such as Acetaldeyhd, propionaldehyde and / or benzaldehyde
  • unsaturated fatty acids such as oleic acid
  • Be used with non-conjugated double bonds such as divinylmethane or vinylcyclohexane or hydrocarbons
  • the optionally used total amount of the radical chain-transferring compounds is generally ⁇ 5% by weight, often ⁇ 3% by weight and frequently ⁇ 1% by weight.
  • process steps e) and f) can be carried out in an acidic, neutral or basic pH range.
  • the pH is advantageously> 5 and ⁇ 1 1, in particular advantageously> 6 and ⁇ 10 (respective sample measured at 20 ° C. and 1 atm).
  • the aqueous composite-particle dispersions obtainable according to the invention usually have a total solids content of from 1 to 70% by weight, frequently from 5 to 65% by weight and often from 10 to 60% by weight.
  • the composite particles obtainable according to the invention generally have particle diameters of> 10 and ⁇ 1000 nm, often ⁇ 500 nm and often ⁇ 250 nm.
  • the particle size of the composite particles is generally determined by the method of quasi-elastic light scattering (DIN-ISO 13321 ) with a High Performance Particle Sizer (HPPS) from Malvern Instruments Ltd.
  • the composite particles obtainable according to the invention can have different structures.
  • the composite particles may contain one or more of the finely divided solid particles.
  • the finely divided solid particles may be completely enveloped by the polymer matrix. But it is also possible that a part of the finely divided solid particles is coated by the polymer matrix, while another part is arranged on the surface of the polymer matrix. Of course, it is also possible that a large part of the finely divided solid particles is bound to the surface of the polymer matrix.
  • EP-A 767 180 or DE-A 38 34 734 can be removed without adversely affecting the properties of the aqueous composite-particle dispersions.
  • aqueous composite-particle dispersions obtainable by the process according to the invention, it is possible to produce polymer films containing inorganic solid particles in a simple manner. These polymer films generally have increased mechanical strength, less blushing, better adhesion to mineral surfaces, improved resistance to organic solvents and increased scratch resistance, blocking resistance and heat resistance compared with the polymer films containing no inorganic particulate matter.
  • Aqueous composite-particle dispersions which are prepared by the described process according to the invention are therefore particularly suitable as binders, for the production of a protective layer, as an adhesive, for the modification of cement and mortar formulations or in medical diagnostics (cf., for example, K. Mosbach and L Andersson, Nature, 1977, 270, pp. 259-261; PL Kronick, Science 1978, 200, pp. 1074-1076, US-A 4,157,323).
  • the composite particles can also be used as catalysts in various aqueous dispersion systems.
  • the aqueous composite-particle dispersions obtainable in accordance with the invention are readily dryable to redispersible composite-particle powders (eg freeze-drying or spray-drying). This is especially true if the glass transition temperature of the polymer matrix of the present invention accessible composite particles> 50 0 C, preferably> 60 0 C, more preferably> 70 0 C, most preferably> 80 0 C and particularly preferably> 90 0 C or> 100 0 C is.
  • the composite particle powders are useful, inter alia, as additives for plastics, components for toner formulations or additives in electrophotographic applications and as components in cement and mortar formulations.
  • the process according to the invention enables one-step and solvent-free access to aqueous composite-particle dispersions, using silane monomers.
  • the films obtainable from the aqueous composite-particle dispersions according to the invention have improved tear strength and / or elongation at break values.
  • the films also show a more homogeneous distribution of the inorganic solid.
  • a homogeneous emulsion consisting of 401 g deionized water, 8.9 g of a 45 wt .-% strength aqueous solution of Dowfax 2A1 ®, 18.4 g of a 10 wt .-% aqueous sodium hydroxide, 4 g methacrylic acid, 118 g of n-butyl acrylate, 60 g of methyl methacrylate, 16 g of ethyl acrylate and 1, 7 g (3-methacryloxypropyl) trimethoxysilane and feed 2 as a mixture of 161 g of deionized water, 8.5 g of a 10 wt .-% aqueous sodium hydroxide solution and 2.4 g of sodium peroxodisulfate.
  • Feed 1 was metered in continuously over the course of 2 hours, the metering rate being 3.14 g / minute for the first 40 minutes and then 6.28 g / minute for the first 40 minutes.
  • feed 2 was added in two hours with a continuous flow rate. Finally, the reaction mixture was stirred for a further 30 minutes at the reaction temperature and finally cooled to room temperature.
  • the aqueous composite-particle dispersion thus obtained had a solids content of 18.5% by weight, based on the total weight of the aqueous composite-particle dispersion.
  • the solids content was generally determined by drying about 1 g of the composite particle dispersion in an open aluminum tiggle with an inner diameter of about 3 cm in a drying oven at 150 ° C. to constant weight. to Determination of the solids content was carried out in each case two separate measurements and the corresponding mean value was formed.
  • the pH of the composite particle dispersion was 8.1.
  • the particle size of the composite particles was generally determined by the quasi-elastic light scattering method (DIN-ISO 13321) using a High Performance Particle Sizer (HPPS) from Malvern Instruments Ltd. A mean particle size of 102 nm was determined.
  • Example 2 The preparation of Example 2 was carried out analogously to Example 1 with the difference that 0.2 g (3-methacryloxypropyl) trimethoxysilane and 2.7 g (3-methacryloxypropyl) trimethoxysilane were metered as part of the monomer emulsion.
  • the resulting aqueous composite-particle dispersion had a solids content of 18.7% by weight, based on the total weight of the aqueous composite-particle dispersion.
  • the pH of the composite particle dispersion was 8.2.
  • the composite particles had a homogeneous density of 1.33 g / cm 3 .
  • Example 3 The preparation of Example 3 was carried out analogously to Example 1 with the difference that 0.1 g of (3-methacryloxypropyl) trimethoxysilane initially charged and 1.4 g (3 Methacryloxypropyl) trimethoxysilane was metered as part of the monomer emulsion.
  • the resulting aqueous composite-particle dispersion had a solids content of 18.5% by weight, based on the total weight of the aqueous composite-particle dispersion.
  • the pH of the composite particle dispersion was 8.1.
  • the composite particles had a homogeneous density of 1.33 g / cm 3 .
  • Comparative Example 1 The preparation of Comparative Example 1 was carried out analogously to Example 1 with the difference that the total amount of 3-methacryloxypropyltrimethoxysilane was metered as part of the monomer emulsion in feed 1.
  • the aqueous composite-particle dispersion thus obtained had a solids content of 18.6% by weight, based on the total weight of the aqueous composite-particle dispersion.
  • the pH of the composite particle dispersion was 8.2.
  • Example 4 The preparation of Example 4 was carried out analogously to Example 1 with the difference that as feed 1 an emulsion consisting of 401 g of deionized water, 8.9 g of a 45 wt .-% aqueous solution of Dowfax ® 2A1, 18.4 g of a 10 wt .-% solution of sodium hydroxide solution, 4 g of methacrylic acid, 118 g of n-butyl acrylate, 76 g of methyl methacrylate and 1, 7 g (3-methacryloxypropyl) trimethoxysilane was used.
  • the resulting aqueous composite-particle dispersion had a solids content of 18.2% by weight, based on the total weight of the aqueous composite-particle dispersion.
  • the pH of the composite particle dispersion was 8.2.
  • Example 5 The preparation of Example 5 was carried out analogously to Example 1 with the difference that as feed 1 an emulsion consisting of 401 g of deionized water, 8.9 g of a 45 wt .-% aqueous solution of Dowfax ® 2A1, 18.4 g of a 10 % by weight solution of sodium hydroxide solution, 31 g of methyl acrylate, 25 g of styrene, 4.5 g of methacrylic acid, 62 g of n-butyl acrylate, 31 g of 2-ethylhexyl acrylate and 1.7 g (3
  • Methacryloxypropyl) trimethoxysilane was used.
  • the feed rate for the first 40 minutes was 2.92 g / minute, then 5.84 g / minute.
  • the aqueous composite-particle dispersion thus obtained had a solids content of 15.9% by weight, based on the total weight of the aqueous composite-particle dispersion.
  • the pH of the composite particle dispersion was 8.3.
  • Example 6 The preparation of Example 6 according to Example 1 except that Optigel® ® SH (trademark of. Suedchemie AG) was used instead of Laponite ® RDS as a layer silicate.
  • Optigel® ® SH trademark of. Suedchemie AG
  • the resulting aqueous composite-particle dispersion had a solids content of 18.9% by weight, based on the total weight of the aqueous composite-particle dispersion.
  • the pH of the composite particle dispersion was 8.1.
  • Example 7 The preparation of Example 7 according to Example 5 with the difference that Optigel® ® EX 0482 (trademark of. Suedchemie AG) was used instead of Laponite ® RDS as a layer silicate.
  • the resulting aqueous composite-particle dispersion had a solids content of 18.5% by weight, based on the total weight of the aqueous composite-particle dispersion.
  • the pH of the composite particle dispersion was 8.1.
  • aqueous composite particle dispersions of Examples 1, 2, and 3 and of Comparative Example 1 films were produced and determined by these the breaking strength and the elongation at break.
  • the fracture mechanical properties of the aforementioned Kompsitpumble- dispersion films were determined in the tensile test according to DIN 53504.
  • the thickness of the dispersion films was 0.4 to 0.5 mm and the take-off speed was 25.4 mm / min.
  • the appropriate amounts of Kompositpumble- dispersions were applied to a Teflon support and stored to form the dispersion films for 14 days in a climate chamber at 23 0 C and 50% relative humidity.
  • the values given in the following table are in each case the mean values from in each case 5 separate measurements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Verfahren zur Herstellung von wässrigen Kompositpartikel-Dispersionen unter Verwendung von silangruppenhaltigen Monomeren.

Description

Verfahren zur Herstellung einer wässrigen Kompositpartikel-Dispersion
Beschreibung
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung einer wässrigen Dispersion von aus Polymerisat und feinteiligem anorganischem Feststoff aufgebauten Partikeln (wässrige Kompositpartikel-Dispersion), bei dem ethylenisch ungesättigte Monomere in wässrigem Medium dispers verteilt und mittels wenigstens eines radikalischen Polymerisationsinitiators im Beisein wenigstens eines dispers verteilten, feinteiligen anorganischen Feststoffes und wenigstens eines Dispergierhilfsmittels nach der Methode der radikalisch wässrigen Emulsionspolymerisation polymerisiert werden, welches dadurch gekennzeichnet ist, dass
a) eine stabile wässrige Dispersion des wenigstens einen anorganischen Feststoffs eingesetzt wird, welche dadurch charakterisiert ist, dass sie bei einer Anfangsfeststoffkonzentration von > 0,1 Gew.-%, bezogen auf die wässrige Dispersion des wenigstens einen anorganischen Feststoffs, noch eine Stunde nach ihrer Herstellung mehr als 90 Gew.-% des ursprünglich dispergierten Feststoffes in dispergierter Form enthält und deren dispergierte Feststoffteilchen einen Durch- messer < 100 nm aufweisen (wässrige Feststoffdispersion),
b) als ethylenisch ungesättigte Monomere > 0,01 und < 10 Gew.-% wenigstens eines, eine siliziumhaltige funktionelle Gruppe aufweisenden ethylenisch ungesättigten Monomeren A (Silanmonomer) und > 90 und < 99,99 Gew.-% wenigs- tens eines weiteren, sich von den Monomeren A unterscheidenden ethylenisch ungesättigten Monomeren B eingesetzt werden und sich die Mengen an Monomeren A und B zu 100 Gew.-% addieren (Gesamtmonomerenmenge),
c) 1 bis 1000 Gew.-Teile an anorganischem Feststoff pro 100 Gew.-Teilen ethyle- nisch ungesättigten Monomeren eingesetzt werden, dabei
d) wenigstens eine Teilmenge des anorganischen Feststoffs in einem wässrigen Polymerisationsmedium in Form einer wässrigen Feststoffdispersion vorgelegt wird, daran anschließend
e) wenigstens eine Teilmenge der Monomeren A während einer Zeitdauer von > 5 und < 240 Minuten dem wässrigen Polymerisationsmedium zudosiert werden, und daran anschließend
f) die gegebenenfalls verbliebene Restmenge des anorganischen Feststoffs, die gegebenenfalls verbliebene Restmenge der Monomeren A und die Gesamtmen- ge der Monomeren B dem wässrigen Polymerisationsmedium unter Polymerisationsbedingungen zudosiert werden.
Gegenstand der vorliegenden Erfindung sind ebenfalls die nach dem erfindungsgemä- ßen Verfahren zugänglichen wässrigen Kompositpartikel-Dispersionen und deren Verwendung sowie die aus den wässrigen Kompositpartikel-Dispersionen zugänglichen Kompositpartikelpulver und deren Verwendung.
Wässrige Kompositpartikel-Dispersionen sind allgemein bekannt. Es handelt sich dabei um fluide Systeme, die aus mehreren ineinander verschlungenen Polymerisatketten bestehenden Polymerisatknäuel (die sogenannte Polymermatrix) und feinteiligem anorganischen Feststoff aufgebaute Partikel in wässrigem Dispergiermedium in disperser Verteilung befindlich enthalten. Der mittleren Durchmesser der Kompositpartikel liegt in der Regel im Bereich > 10 nm und < 1000 nm, oft im Bereich > 50 nm und < 400 nm und häufig im Bereich > 100 nm und < 300 nm.
Kompositpartikel und Verfahren zu ihrer Herstellung in Form von wässrigen Kompositpartikel-Dispersionen sowie deren Verwendung sind dem Fachmann bekannt und beispielsweise in den Schriften US-A 3,544,500, US-A 4,421 ,660, US-A 4,608,401 , US-A 4,981 ,882, EP-A 104 498, EP-A 505 230, EP-A 572 128, GB-A 2 227 739, WO 01/18081 , WO 01/29106, WO 03/000760, WO 06/072464 sowie in Long et al., Tianjin Daxue Xuebao 1991 , 4, Seiten 10 bis 15, Bourgeat-Lami et al.,Die Angewandte Makromolekulare Chemie 1996, 242, Seiten 105 bis 122, Paulke et al., Synthesis Stu- dies of Paramagnetic Polystyrene Latex Particles in Scientific and Clinical Applications of Magnetic Carriers, Seiten 69 bis 76, Plenum Press, New York, 1997, Armes et al., Advanced Materials 1999, 1 1 , Nr. 5, Seiten 408 bis 410 offenbart.
Für die vorliegende Erfindung ist von folgendem Stand der Technik auszugehen.
Van Herk et al. offenbaren in Macromolecules 2006, 39, Seiten 4654 bis 4656, die Ver- kapselung von u.a. mit Silanmonomeren kovalent modifizierten Schichtsilikaten in Latexpartikeln nach der sogenannten „starved-feed"-Emulsionspolymerisationsmethode unter Emulgator-freien Bedingungen. Die Schichtsilikate werden dabei in Dichlor- methan modifiziert und vor dem Einsatz in der Emulsionspolymerisation über mehrere Prozessschritte aufgearbeitet.
Bourgeat-Lami et al. beschreiben in Progress in Solid State Chemistry 2006, 34, Seiten 121 bis 137, die hydrophob kovalente Modifizierung von Schichtsilikaten in Toluol, deren Aufreinigung und anschließendem Einsatz in der Emulsionspolymerisation.
In der WO 02/24756 wird die Verwendung von hydrophobierten Schichtsilikaten in der Suspensions- und Miniemulsionspolymerisation offenbart. Darüber hinaus offenbart die WO 02/24758 den Einsatz von „leicht modifizierten" hydrophobierten Schichtsilikaten in der Emulsionspolymerisation, wobei jedoch die spezifische Modifizierung nicht beschrieben wird.
Aufgabe der vorliegenden Erfindung war die Bereitstellung eines neuen H erstell Verfahrens für stabile wässrige Kompositpartikel-Dispersionen unter Verwendung von Silan- monomeren.
Für das erfindungsgemäße Verfahren wird klares Wasser, beispielsweise klares Trink- wasser, insbesondere vorteilhaft jedoch entionisiertes Wasser eingesetzt, dessen Gesamtmenge so bemessen wird, dass sie > 30 und < 99 Gew.-% und vorteilhaft > 35 und < 95 Gew.-% und insbesondere vorteilhaft > 40 und < 90 Gew.-%, bezogen auf die wässrige Kompositpartikel-Dispersion, beträgt.
Für das erfindungsgemäße Verfahren sind alle diejenigen feinteiligen anorganischen Feststoffe geeignet, welche stabile wässrige Dispersionen ausbilden, die bei einer Anfangsfeststoffkonzentration von > 0,1 Gew.-%, bezogen auf die wässrige Dispersion des wenigstens einen anorganischen Feststoffs, noch eine Stunde nach ihrer Herstellung oder nach homogener Dispergierung der sedimentierten Feststoffe, ohne weiteres Rühren oder Schütteln mehr als 90 Gew.-% des ursprünglich dispergierten Feststoffes in dispergierter Form enthalten und deren dispergierten Feststoffteilchen einen Durchmesser < 100 nm aufweisen.
Die quantitative Bestimmung der Anfangsfeststoffkonzentration und der Feststoffkon- zentration nach einer Stunde erfolgt im Rahmen dieser Schrift über die Methode der Analytischen Ultrazentrifuge (vgl. hierzu S.E. Harding et al., Analytical Ultracentrifuga- tion in Biochemistry and Polymer Science, Royal Society of Chemistry, Cambridge, Great Britain 1992, Chapter 10, Analysis of Polymer Dispersions with an Eight-Cell- AUC-Multiplexer: High Resolution Particle Size Distribution and Density Gradient Techniques, W. Mächtle, Seiten 147 bis 175). Die Bestimmung der Teilchengröße des feinteiligen anorganischen Feststoffs sowie der Kompositpartikel erfolgt im Rahmen dieser Schrift generell nach der Methode der quasielastischen Lichtstreuung (DIN-ISO 13321 ) mit einem High Performance Particle Sizer (HPPS) der Fa. Malvern Instruments Ltd.
Als erfindungsgemäß einsetzbare feinteilige anorganische Feststoffe sind prinzipiell Metalle, Metallverbindungen, wie Metalloxide und Metallsalze aber auch Halbmetall- und Nichtmetallverbindungen geeignet. Als feinteilige Metallpulver können Edelmetallkolloide, wie beispielsweise Palladium, Silber, Ruthenium, Platin, Gold und Rhodium sowie diese enthaltende Legierungen eingesetzt werden. Als feinteilige Metalloxide beispielhaft genannt seien Titandioxid (beispielsweise kommerziell verfügbar als Hom- bitec®-Marken der Fa. Sachtleben Chemie GmbH), Zirkonium-(IV)-oxid, Zinn-(ll)-oxid, Zinn-(IV)-oxid (beispielsweise kommerziell verfügbar als Nyacol® SN-Marken der Fa. Akzo-Nobel), Aluminiumoxid (beispielsweise kommerziell verfügbar als Nyacol® AL- Marken der Fa. Akzo-Nobel), Bariumoxid, Magnesiumoxid, verschiedene Eisenoxide, wie Eisen-(ll)-oxid (Wuestit), Eisen-(lll)-oxid (Hämatit) und Eisen-(l l/l I l)-oxid (Magnetit), Chrom-(lll)-oxid, Antimon-(lll)-oxid, Wismut-(lll)-oxid, Zinkoxid (beispielsweise kommerziell verfügbar als Sachtotec®-Marken der Fa. Sachtleben Chemie GmbH), Nickel- (I l)-oxid , Nickel-(lll)-oxid, Cobalt-(ll)-oxid, Cobalt-(lll)-oxid, Kupfer-(ll)-oxid, Yttrium- (lll)-oxid (beispielsweise kommerziell verfügbar als Nyacol® YTTRIA-Marken der Fa. Akzo-Nobel), Cer-(IV)-oxid (beispielsweise kommerziell verfügbar als Nyacol® CEO2- Marken der Fa. Akzo-Nobel) amorph und/oder in ihren unterschiedlichen Kristallmodifikationen sowie deren Hydroxyoxide, wie beispielsweise Hydroxytitan-(IV)-oxid, Hydro- xyzirkonium-(IV)-oxid, Hydroxyaluminiumoxid (beispielsweise kommerziell verfügbar als Disperal®-Marken der Fa. Condea-Chemie GmbH) und Hydroxyeisen-(lll)-oxid a- morph und/oder in ihren unterschiedlichen Kristallmodifikationen. Folgende amorphen und/oder in ihren unterschiedlichen Kristallstrukturen vorliegenden Metallsalze sind im erfindungsgemäßen Verfahren prinzipiell einsetzbar: Sulfide, wie Eisen-(ll)-sulfid, Ei- sen-(lll)-sulfid, Eisen-(ll)-disulfid (Pyrit), Zinn-(ll)-sulfid, Zinn-(IV)-sulfιd, Quecksilber- (ll)-sulfid, Cadmium-(ll)-sulfid, Zinksulfid, Kupfer-(ll)-sulfid, Silbersulfid, Nickel-(ll)- sulfid, Cobalt-(ll)-sulfid, Cobalt-(lll)-sulfid, Mangan-(ll)-sulfid, Chrom-(lll)-sulfid, Titan- (ll)-sulfid, Titan-(lll)-sulfid, Titan-(IV)-sulfid, Zirkon-(IV)-sulfid, Antimon-(lll)-sulfid, Wis- mut-(lll)-sulfid, Hydroxide, wie Zinn-(ll)-hydroxid, Aluminiumhydroxid, Magnesiumhydroxid, Calciumhydroxid, Bariumhydroxid, Zinkhydroxid, Eisen-(ll)-hydroxid, Eisen- (lll)-hydroxid, Sulfate, wie Calciumsulfat, Strontiumsulfat, Bariumsulfat, Blei-(IV)-sulfat, Carbonate, wie Lithiumcarbonat, Magnesiumcarbonat, Calciumcarbonat, Zinkcarbonat, Zirkonium-(IV)-carbonat, Eisen-(ll)-carbonat, Eisen-(lll)-carbonat, Orthophosphate, wie Lithiumorthophosphat, Calciumorthophosphat, Zinkorthophosphat, Magnesiu- morthophosphat, Aluminiumorthophosphat, Zinn-(lll)-orthophosphat, Eisen-(ll)- orthophosphat, Eisen-(lll)-orthophosphat, Metaphosphate, wie Lithiummetaphosphat, Calciummetaphosphat, Aluminiummetaphosphat, Pyrophosphate, wie Magnesiumpy- rophosphat, Calciumpyrophosphat, Zinkpyrophosphat, Eisen-(lll)-pyrophosphat, Zinn- (ll)-pyrophosphat, Ammoniumphosphate, wie Magnesiumammoniumphosphat, Zinkammoniumphosphat, Hydroxylapatit
Figure imgf000005_0001
Orthosilikate, wie Lithiumortho- silikat, Calcium-/Magnesiumorthosilikat, Aluminiumorthosilikat, Eisen-(ll)-orthosilikat, Eisen-(lll)-orthosilikat,Magnesiumorthosilikat, Zinkorthosilikat, Zirkonium-(lll)- orthosilikat, Zirkonium-(IV)-orthosilikat, Metasilikate, wie Lithiummetasilikat, Calcium- /Magnesiummetasilikat, Calciummetasilikat, Magnesiummetasilikat, Zinkmetasilikat, Schichtsilikate, wie Natriumaluminiumsilikat und Natriummagnesiumsilikat insbesondere in spontan delaminierender Form, wie beispielsweise Optigel® SH und Optigel® EX 0482 (Marken der Südchemie AG), Saponit® SKS-20 und Hektorit® SKS 21 (Marken der Hoechst AG) sowie Laponite® RD und Laponite® GS (Marken der Rockwood Holdings Inc.), Aluminate, wie Lithiumaluminat, Calciumaluminat, Zinkaluminat, Borate, wie Magnesiummetaborat, Magnesiumorthoborat, Oxalate, wie Calciumoxalat, Zirkoni- um-(IV)-oxalat, Magnesiumoxalat, Zinkoxalat, Aluminiumoxalat, Tatrate, wie Calcium- tatrat, Acetylacetonate, wie Aluminiumacetylacetonat, Eisen-(lll)-acetylacetonat, Salicy- late, wie Aluminiumsalicylat, Citrate, wie Calciumcitrat, Eisen-(ll)-citrat, Zinkeitrat, PaI- mitate, wie Aluminiumpalmitat, Calciumpalmitat, Magnesiumpalmitat, Stearate, wie Aluminiumstearat, Calciumstearat, Magnesiumstearat, Zinkstearat, Laurate, wie Calci- umlaurat, Linoleate, wie Calciumlinoleat, Oleate, wie Calciumoleat, Eisen-(ll)-oleat oder Zinkoleat.
Als wesentliche erfindungsgemäß einsetzbare Halbmetallverbindung sei amorphes und/oder in unterschiedlichen Kristallstrukturen vorliegendes Siliziumdioxid genannt. Erfindungsgemäß geeignetes Siliziumdioxid ist kommerziell verfügbar und kann beispielsweise als Aerosil® (Marke der Fa. Degussa AG), Levasil® (Marke der Fa. Bayer AG), Ludox® (Marke der Fa. DuPont), Nyacol® und Bindzil® (Marken der Fa. Akzo- Nobel) und Snowtex® (Marke der Fa. Nissan Chemical Industries, Ltd.) bezogen wer- den. Erfindungsgemäß geeignete Nichtmetallverbindungen sind beispielsweise kolloidal vorliegender Graphit oder Diamant.
Als feinteilige anorganische Feststoffe sind solche besonders geeignet, deren Löslichkeit in Wasser bei 20 0C und 1 atm (= 1 ,013 bar absolut) < 1 g/l, bevorzugt < 0,1 g/l und insbesondere < 0,01 g/l ist. Besonders bevorzugt sind Verbindungen ausgewählt aus der Gruppe umfassend Siliziumdioxid, Aluminiumoxid, Zinn-(IV)-oxid, Yttrium-(lll)- oxid, Cer-(IV)-oxid, Hydroxyaluminiumoxid, Calciumcarbonat, Magnesiumcarbonat, Calciumorthophosphat, Magnesiumorthophosphat, Calciummetaphospat, Magnesiummetaphosphat, Calciumpyrophosphat, Magnesiumpyrophosphat, Orthosilikate, wie Lithiumorthosilikat, Calcium-/Magnesiumorthosilikat, Aluminiumorthosilikat, Eisen-(ll)- orthosilikat, Eisen-(lll)-orthosilikat,Magnesiumorthosilikat, Zinkorthosilikat, Zirkonium- (lll)-orthosilikat, Zirkonium-(IV)-orthosilikat, Metasilikate, wie Lithiummetasilikat, Calci- um-/Magnesiummetasilikat, Calciummetasilikat, Magnesiummetasilikat, Zinkmetasilikat, Schichtsilikate, wie Natriumaluminiumsilikat und Natriummagnesiumsilikat insbe- sondere in spontan delaminierender Form, wie beispielsweise Produkte der Nanofil®-, Optigel®-, Cloisite®- (Marken der Fa. Südchemie AG), Somasif®-, Lucentite®- (Marken der Fa. CBC Japan Co., Ltd.), Saponit®- Hektorit®- (Marken der Fa. Höchst AG) sowie Laponite®-Reihen (Marke der Fa. Rockwood Holdings, Inc.), Eisen-(ll)-oxid, Eisen-(lll)- oxid, Eisen-(l l/l I l)-oxid , Titandioxid, Hydroxylapatit, Zinkoxid und Zinksulfid.
Bevorzugt ist der wenigstens eine feinteilige anorganische Feststoff ausgewählt aus der Gruppe umfassend Siliziumdioxid, Schichtsilikate, Aluminiumoxid, Hydroxyaluminiumoxid, Calciumcarbonat, Magnesiumcarbonat, Calciumorthophosphat, Magnesiumorthophosphat, Eisen-(ll)-oxid, Eisen-(lll)-oxid, Eisen-(ll/lll)-oxid, Zinn-(IV)-oxid, Cer- (IV)-oxid, Yttrium-(lll)-oxid, Titandioxid, Hydroxylapatit, Zinkoxid und Zinksulfid. Insbesondere bevorzugt sind siliziumhaltige Verbindungen, wie pyrogene Kieselsäure, kolloidale Kieselsäure und/oder Schichtsilikate.
Vorteilhaft können auch die kommerziell verfügbaren Verbindungen der Aerosil®-, Le- vasil®-, Ludox®-, Nyacol®- und Bindzil®-Marken (Siliziumdioxid), Nanofil®-, Optigel®-, Somasif®-, Cloisite®-, Lucentite®-, Saponit®-, Hektorit®- sowie Laponite®-Marken (Schichtsilikate), Disperal®-Marken (Hydroxyaluminiumoxid), Nyacol® AL-Marken (Aluminiumoxid), Hombitec®-Marken (Titandioxid), Nyacol® SN-Marken (Zinn-(IV)-oxid), Nyacol® YTTRIA-Marken (Yttrium-(lll)-oxid), Nyacol® CEO2-Marken (Cer-(IV)-oxid) und Sachtotec®-Marken (Zinkoxid) im erfindungsgemäßen Verfahren eingesetzt werden.
Die zur Herstellung der Kompositpartikel einsetzbaren feinteiligen anorganischen Feststoffe sind so beschaffen, dass die im wässrigen Polymerisationsmedium dispergierten Feststoffteilchen einen Teilchendurchmesser von < 100 nm aufweisen. Erfolgreich werden solche feinteiligen anorganischen Feststoffe eingesetzt, deren dispergierte Teilchen einen Teilchendurchmesser > 0 nm aber < 90 nm, < 80 nm, < 70 nm, < 60 nm, < 50 nm, < 40 nm, < 30 nm, < 20 nm oder < 10 nm und alle Werte dazwischen aufweisen. Mit Vorteil werden feinteilige anorganische Feststoffe eingesetzt, welche einen Teilchendurchmesser < 50 nm aufweisen.
Die Zugänglichkeit feinteiliger Feststoffe ist dem Fachmann prinzipiell bekannt und erfolgt beispielsweise durch Fällungsreaktionen oder chemische Reaktionen in der Gasphase (vgl. hierzu E. Matijevic, Chem. Mater. 1993, 5, Seiten 412 bis 426; LJII- mann's Encyclopedia of Industrial Chemistry, Vol. A 23, Seiten 583 bis 660, Verlag Chemie, Weinheim, 1992; D. F. Evans, H. Wennerström in The Colloidal Domain, Seiten 363 bis 405, Verlag Chemie, Weinheim, 1994 und RJ. Hunter in Foundations of Colloid Science, Vol. I, Seiten 10 bis 17, Clarendon Press, Oxford, 1991).
Die Herstellung von stabilen Feststoffdispersionen erfolgt dabei häufig direkt bei der Synthese der feinteiligen anorganischen Feststoffe in wässrigem Medium oder alternativ durch Eindispergieren der feinteiligen anorganischen Feststoffe in das wässrige Polymerisationsmedium. Abhängig vom Herstellweg der feinteiligen anorganischen Feststoffe gelingt dies entweder direkt, beispielsweise beim gefälltem oder pyrogenem Siliziumdioxid, Aluminiumoxid etc. oder unter Zuhilfenahme geeigneter Hilfsaggregate, wie beispielsweise Dispergatoren oder Ultraschallsonotroden.
Vorteilhaft für die Herstellung einer wässrigen Kompositpartikel-Dispersion sind solche feinteiligen anorganischen Feststoffe geeignet, deren wässrige Feststoffdispersion bei einer Anfangsfeststoffkonzentration von > 0,1 Gew.-%, bezogen auf die wässrige Fest- stoffdispersion, noch eine Stunde nach ihrer Herstellung oder nach homogener Disper- gierung der sedimentierten Feststoffe, ohne weiteres Rühren oder Schütteln mehr als 90 Gew.-% des ursprünglich dispergierten Feststoffes in dispergierter Form enthält und deren dispergierten Feststoffteilchen einen Durchmesser < 100 nm aufweisen. Üblich sind Anfangsfeststoffkonzentrationen < 60 Gew.-%. Vorteilhaft können jedoch auch Anfangsfeststoff konzentrationen < 55 Gew.-%, < 50 Gew.-%, < 45 Gew.-%, < 40 Gew.- %, < 35 Gew.-%, < 30 Gew.-%, < 25 Gew.-%, < 20 Gew.-%, < 15 Gew.-%, ≤ 10 Gew.- % sowie > 0,5 Gew.-%, > 1 Gew.-%, > 2 Gew.-%, > 3 Gew.-%, > 4 Gew.-% oder > 5 Gew.-% und alle Werte dazwischen, jeweils bezogen auf die wässrige Feststoffdispersion, eingesetzt werden. Bezogen auf 100 Gew.-Teile an ethylenisch ungesättigten Monomeren (Gesamtmonomerenmenge), werden bei der Herstellung wässriger Kompositpartikel-Dispersionen 1 bis 1000 Gew.-Teile, vorteilhaft 5 bis 300 Gew.-Teile und insbesondere vorteilhaft 10 bis 200 Gew.-Teile des wenigstens einen feinteiligen anorganischen Feststoffes verwendet.
Das erfindungsgemäße Verfahren erfolgt dergestalt, dass in Verfahrensschritt d) wenigstens eine Teilmenge, vorteilhaft > 10, > 30 oder > 50, Gew.-% und insbesondere vorteilhaft > 60, > 70, > 80 oder > 90 Gew.-% der Gesamtmenge des anorganischen Feststoffs im wässrigen Polymerisationsmedium vorgelegt wird. Die gegebenenfalls verbliebene Restmenge an anorganischem Feststoff wird dem wässrigen Polymerisationsmedium in Verfahrensschritt f) unter Polymerisationsbedingungen diskontinuierlich in einer oder mehreren Teilmengen oder kontinuierlich im gleichbleibenden oder sich verändernden Mengenstrom, insbesondere in Form einer wässrigen Feststoffdispersion zudosiert. Mit Vorteil wird jedoch in Verfahrensschritt d) die Gesamtmenge des anorganischen Feststoffs in Form einer wässrigen Feststoffdispersion vorgelegt.
Bei der Herstellung der wässrigen Kompositpartikel-Dispersionen werden allgemein Dispergierhilfsmittel mitverwendet, die sowohl die feinteiligen anorganischen Feststoffteilchen als auch die Monomerentröpfchen und die gebildeten Kompositpartikel in der wässrigen Phase dispers verteilt halten und so die Stabilität der erzeugten wässrigen Kompositpartikel-Dispersionen gewährleisten. Als Dispergierhilfsmittel kommen sowohl die zur Durchführung von radikalischen wässrigen Emulsionspolymerisationen übli- cherweise eingesetzten Schutzkolloide als auch Emulgatoren in Betracht.
Eine ausführliche Beschreibung geeigneter Schutzkolloide findet sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1 , Makromolekulare Stoffe, Georg- Thieme-Verlag, Stuttgart, 1961 , Seiten 41 1 bis 420.
Geeignete neutrale Schutzkolloide sind beispielsweise Polyvinylalkohole, Polyalky- lenglykole, Cellulose-, Stärke- und Gelatinederivate.
Als anionische Schutzkolloide, d.h. Schutzkolloide, deren dispergierend wirkende Komponente wenigstens eine negative elektrische Ladung aufweist, kommen beispielsweise Polyacrylsäuren und Polymethacrylsäuren und deren Alkalimetallsalze, Acrylsäure, Methacrylsäure, 2-Acrylamido-2-methylpropansulfonsäure, 4- Styrolsulfonsäure und/oder Maleinsäureanhydrid enthaltende Copolymerisate und deren Alkalimetallsalze sowie Alkalimetallsalze von Sulfonsäuren hochmolekularer Verbindungen, wie beispielsweise Polystyrol, in Betracht.
Geeignete kationische Schutzkolloide, d.h. Schutzkolloide, deren dispergierend wirkende Komponente wenigstens eine positive elektrische Ladung aufweist, sind beispielsweise die am Stickstoff protonierten und/oder alkylierten Derivate von N- Vinylpyrrolidon, N-Vinylcaprolactam, N-Vinylcarbazol, 1-Vinylimidazol, 2-Vinylimidazol, 2-Vinylpyπdin, 4-Vinylpyridin, Acrylamid, Methacrylamid, amingruppentragende Acryla- te, Methacrylate, Acrylamide und/oder Methacrylamide enthaltenden Homo- und Copolymerisate.
Selbstverständlich können auch Gemische aus Emulgatoren und/oder Schutzkolloiden eingesetzt werden. Häufig werden als Dispergierhilfsmittel ausschließlich Emulgatoren eingesetzt, deren relative Molekulargewichte im Unterschied zu den Schutzkolloiden üblicherweise unter 1500 g/mol liegen. Selbstverständlich müssen im Falle der Verwendung von Gemischen grenzflächenaktiver Substanzen die Einzelkomponenten miteinander verträglich sein, was im Zweifelsfall an Hand weniger Vorversuche überprüft werden kann. Eine Übersicht geeigneter Emulgatoren findet sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1 , Makromolekulare Stoffe, Georg- Thieme-Verlag, Stuttgart, 1961 , Seiten 192 bis 208.
Gebräuchliche nichtionische Emulgatoren sind z. B. ethoxilierte Mono-, Di- und Tri- Alkylphenole (EO-Grad: 3 bis 50, Alkylrest: C4 bis Ci2) sowie ethoxilierte Fettalkohole (EO-Grad: 3 bis 80; Alkylrest: C8 bis C3e). Beispiele hierfür sind die Lutensol® A-Marken (Ci2Ci4-Fettalkoholethoxilate, EO-Grad: 3 bis 8), Lutensol® AO-Marken (C13C15- Oxoalkoholethoxilate, EO-Grad: 3 bis 30), Lutensol® AT-Marken (Ci6Ci8- Fettalkoholethoxilate, EO-Grad: 1 1 bis 80), Lutensol® ON-Marken (C10- Oxoalkoholethoxilate, EO-Grad: 3 bis 11 ) und die Lutensol® TO-Marken (C13- Oxoalkoholethoxilate, EO-Grad: 3 bis 20) der BASF AG.
Übliche anionische Emulgatoren sind z. B. Alkalimetall- und Ammoniumsalze von Al- kylsulfaten (Alkylrest: Cs bis C12), von Schwefelsäurehalbestern ethoxylierter Alkanole (EO-Grad: 4 bis 30, Alkylrest: C12 bis Ci8) und ethoxilierter Alkylphenole (EO-Grad: 3 bis 50, Alkylrest: C4 bis C12), von Alkylsulfonsäuren (Alkylrest: C12 bis Ci8) und von Al- kylarylsulfonsäuren (Alkylrest: Cg bis Ci8).
Als weitere anionische Emulgatoren haben sich ferner Verbindungen der allgemeinen Formel I
Figure imgf000010_0001
worin R1 und R2 H-Atome oder CA- bis C24-Alkyl bedeuten und nicht gleichzeitig H- Atome sind, und M1 und M2 Alkalimetallionen und/oder Ammoniumionen sein können, erwiesen. In der allgemeinen Formel I bedeuten R1 und R2 bevorzugt lineare oder verzweigte Alkylreste mit 6 bis 18 C-Atomen, insbesondere mit 6, 12 und 16 C-Atomen oder -H, wobei R1 und R2 nicht beide gleichzeitig H-Atome sind. M1 und M2 sind bevorzugt Natrium, Kalium oder Ammonium, wobei Natrium besonders bevorzugt ist. Besonders vorteilhaft sind Verbindungen I, in denen M1 und M2 Natrium, R1 ein verzweig- ter Alkylrest mit 12 C-Atomen und R2 ein H-Atom oder R1 ist. Häufig werden technische Gemische verwendet, die einen Anteil von 50 bis 90 Gew.-% des monoalkylierten Produktes aufweisen, wie beispielsweise Dowfax® 2A1 (Marke der Dow Chemical Company). Die Verbindungen I sind allgemein bekannt, z. B. aus US-A 4,269,749, und im Handel erhältlich.
Geeignete kationenaktive Emulgatoren sind in der Regel einen Ce- bis Cis-Alkyl-, - Aralkyl- oder heterocyclischen Rest aufweisende primäre, sekundäre, tertiäre oder quartäre Ammoniumsalze, Alkanolammoniumsalze, Pyridiniumsalze, Imidazoliniumsal- ze, Oxazoliniumsalze, Morpholiniumsalze, Thiazoliniumsalze sowie Salze von Amin- oxiden, Chinoliniumsalze, Isochinoliniumsalze, Tropyliumsalze, Sulfoniumsalze und Phosphoniumsalze. Beispielhaft genannt seien Dodecylammoniumacetat oder das entsprechende Hydrochlorid, die Chloride oder Acetate der verschiedenen 2-(N, N, N- Trimethylammonium)ethylparaffinsäureester, N-Cetylpyridiniumchlorid, N- Laurylpyridiniumsulfat sowie N-Cetyl-N,N,N-trimethylammoniumbromid, N-Dodecyl- N,N,N-trimethylammoniumbromid, N-Octyl-N,N,N-trimethlyammoniumbromid, N, N- Distearyl-N,N-dimethylammoniumchlorid sowie das Gemini-Tensid N, N'- (Lauryldimethyl)ethylendiamindibromid. Zahlreiche weitere Beispiele finden sich in H. Stäche, Tensid-Taschenbuch, Carl-Hanser-Verlag, München, Wien, 1981 und in McCutcheon's, Emulsifiers & Detergents, MC Publishing Company, Glen Rock, 1989.
Häufig werden zur Herstellung der wässrigen Kompositpartikel-Dispersionen zwischen 0,1 bis 10 Gew.-%, oft 0,5 bis 7,0 Gew.-% und häufig 1 ,0 bis 5,0 Gew.-% an Disper- gierhilfsmittel, jeweils bezogen auf die Gesamtmenge an wässriger Kompositpartikel- Dispersion, eingesetzt. Bevorzugt werden Emulgatoren, insbesondere nichtionische und/oder anionische Emulgatoren verwendet. Mit besonderem Vorteil werden anionische Emulgatoren eingesetzt. Erfindungsgemäß ist es möglich, gegebenenfalls eine Teil- oder die Gesamtmenge an Dispergierhilfsmittel im Polymerisationsgefäß als Bestandteil des eine Teil- oder die Gesamtmenge des anorganischen Feststoffs enthaltenden wässrigen Polymerisationsmediums vorzulegen [Verfahrensschritt d)]. Es ist aber auch möglich, die Gesamt- menge oder die gegebenenfalls verbliebene Restmenge an Dispergierhilfsmittel während des Verfahrensschrittes e) oder während des Verfahrensschrittes f) dem wässrigen Polymerisationsmedium zuzuführen. Die Gesamtmenge oder die gegebenenfalls verbliebene Restmenge an Dispergierhilfsmittel kann dem wässrigen Polymerisationsmedium dabei diskontinuierlich in einer oder mehreren Portionen oder kontinuierlich mit gleichbleibenden oder sich verändernden Mengenströmen zudosiert werden. Insbesondere vorteilhaft erfolgt die Dosierung der Dispergierhilfsmittel während der Polymerisationsreaktion in Verfahrensschritt f) kontinuierlich mit gleichbleibenden Mengenströmen, insbesondere als Bestandteil einer wässrigen Monomerenemulsion.
Erfindungsgemäß werden als ethylenisch ungesättigte Monomere > 0,01 und < 10
Gew.-% wenigstens eines, eine siliziumhaltige funktionelle Gruppe aufweisenden ethylenisch ungesättigten Monomeren A (Silanmonomer) und > 90 und < 99,99 Gew.-% wenigstens eines weiteren, sich von den Monomeren A unterscheidenden ethylenisch ungesättigten Monomeren B eingesetzt, wobei sich die Mengen an Monomeren A und B zu 100 Gew.-% addieren (Gesamtmonomerenmenge).
Als Monomere A kommen alle radikalisch copolymerisierbaren ethylenisch ungesättigten Monomere in Betracht, welche wenigstens eine silziumhaltige funktionelle Gruppe aufweisen, wie beispielsweise Vinylalkoxysilane, wie insbesondere Vinyltrimethoxysi- lan, Vinyltriethoxysilan, Vinyltriisopropoxysilan, Vinyltriphenoxysilan, Vi- nyltris(dimethylsiloxy)silan, Vinyltris(2-methoxyethoxy)silan, Vinyltris(3- methoxypropoxy)silan und/oder Vinyltris(trimethylsiloxy)silan, Acryloxysilane, wie insbesondere 2-(Acryloxyethoxy)trimethylsilan, Acryloxymethyltrimethylsilan, (3- Acryloxypropyl)dimethylmethoxysilan, (3-Acryloxypropyl)methylbis(trimethylsiloxy)silan, (3-Acryloxypropyl)methyldimethoxysilan, (3-Acryloxypropyl)trimethoxysilan und/oder (3- Acryloxypropyl)tris(trimethylsiloxy)silan, Methacryloxysilane, wie insbesondere (3- Methacryloxypropyl)trimethoxysilan, (3-Methacryloxypropyl)triethoxysilan (Methacrylo- xymethyl)methyldiethoxysilan und/oder (3-Methacryloxypropyl)methyldiethyloxysilan. Erfindungsgemäß besonders vorteilhaft werden Acryloxysilane und/oder Methacryloxy- silane, insbesondere Methacryloxysilane, wie bevorzugt (3-
Methacryloxypropyl)trimethoxysilan, (3-Methacryloxypropyl)triethoxysilan, (Methacrylo- xymethyl)methyldiethoxysilan und/oder (3-Methacryloxypropyl)methyldiethyloxysilan eingesetzt.
Im Verfahrensschritt e) wird wenigstens eine Teilmenge der Monomeren A während einer Zeitdauer > 5 und < 240 Minuten, vorteilhaft > 30 und < 120 Minuten und insbesondere vorteilhaft > 45 und < 75 Minuten dem wässrigen Polymerisationsmedium zu- dosiert. Dabei erfolgt die Dosierung vorteilhaft mit einem kontinuierlichen gleichbleibenden Mengenstrom. In Verfahrensschritt e) werden erfindungsgemäß > 0,1 und < 100 Gew.-%, vorteilhaft > 5 und < 70 Gew.-% und insbesondere vorteilhaft > 10 und < 50 Gew.-% an Monomeren A, bezogen auf die Gesamtmenge der Monomeren A, dem wässrigen Polymerisationsmedium zudosiert.
In der Regel erfolgt Verfahrensschritt e) bei einer Temperatur des wässrigen Polymerisationsmediums > 20 0C, mit Vorteil bei einer Temperatur > 50 und < 100 0C und mit besonderem Vorteil bei einer Temperatur > 75 und < 95 0C.
Die gegebenenfalls verbliebene Restmenge an Monomeren A kann dem wässrigen Polymerisationsmedium in Verfahrensschritt f) diskontinuierlich in einer oder mehreren Portionen oder kontinuierlich mit gleichbleibenden oder sich verändernden Mengenströmen zudosiert werden. Insbesondere vorteilhaft erfolgt die Dosierung der Monome- ren A während der Polymerisationsreaktion in Verfahrensschritt f) kontinuierlich mit gleichbleibenden Mengenströmen, insbesondere als Bestandteil einer wässrigen E- mulsion der Monomeren B.
Bezogen auf die Gesamtmonomerenmenge werden erfindungsgemäß > 0,01 und < 10 Gew.-%, vorteilhaft > 0,1 und < 5 Gew.-% und insbesondere vorteilhaft > 0,5 und < 3 Gew.-% an Monomeren A eingesetzt, entsprechend einer Menge an Monomeren B > 90 und < 99,99 Gew.-%, vorteilhaft > 95 und < 99,9 Gew.-% und insbesondere vorteilhaft > 97 und < 99,5 Gew.-%.
Erfindungsgemäß vorteilhaft beträgt die Gesamtmenge an Monomeren A > 0,5 und < 3 Gew.-%, bezogen auf die Gesamtmonomerenmenge, wobei in Verfahrensschritt e) > 10 und < 50 Gew.-% der Gesamtmenge an Monomeren A zudosiert werden.
Als Monomere B kommen u.a. insbesondere in einfacher Weise mit den Silanmonome- ren radikalisch copolymerisierbare ethylenisch ungesättigte Monomere in Betracht, wie beispielsweise Ethylen, vinylaromatische Monomere, wie Styrol, α-Methylstyrol, o- Chlorstyrol oder Vinyltoluole, Ester aus Vinylalkohol und 1 bis 18 C-Atome aufweisenden Monocarbonsäuren, wie Vinylacetat, Vinylpropionat, Vinyl-n-butyrat, Vinyllaurat und Vinylstearat, Ester aus vorzugsweise 3 bis 6 C-Atome aufweisenden α,ß- monoethylenisch ungesättigten Mono- und Dicarbonsäuren, wie insbesondere Acryl- säure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure, mit im allgemeinen 1 bis 12, vorzugsweise 1 bis 8 und insbesondere 1 bis 4 C-Atome aufweisenden Alka- nolen, wie besonders Acrylsäure- und Methacrylsäuremethyl-, -ethyl-, -n-butyl-, -iso- butyl und -2-ethylhexylester, Maleinsäuredimethylester oder Maleinsäure-di-n- butylester, Nitrile α,ß-monoethylenisch ungesättigter Carbonsäuren, wie Acrylnitril sowie C4-8-konjugierte Diene, wie 1 ,3-Butadien und Isopren. Die genannten Monomere bilden in der Regel die Hauptmonomeren, die, bezogen auf die Gesamtmenge der nach dem erfindungsgemäßen Verfahren zu polymerisierenden Monomeren B normalerweise einen Anteil von > 50 Gew.-%, > 80 Gew.-% oder > 90 Gew.-% auf sich vereinen. In aller Regel weisen diese Monomeren in Wasser bei Normalbedingungen [20 0C, 1 atm (absolut)] lediglich eine mäßige bis geringe Löslichkeit auf.
Weitere Monomere B, die üblicherweise die innere Festigkeit der Verfilmungen der Polymermatrix erhöhen, weisen normalerweise wenigstens eine Hydroxy-, N-Methylol- oder Carbonylgruppe, oder wenigstens zwei nicht konjugierte ethylenisch ungesättigte Doppelbindungen auf. Beispiele hierfür sind zwei Vinylreste aufweisende Monomere, zwei Vinylidenreste aufweisende Monomere sowie zwei Alkenylreste aufweisende Monomere. Besonders vorteilhaft sind dabei die Di-Ester zweiwertiger Alkohole mit α,ß- monoethylenisch ungesättigten Monocarbonsäuren unter denen die Acryl- und Methac- rylsäure bevorzugt sind. Beispiele für derartige zwei nicht konjugierte ethylenisch ungesättigte Doppelbindungen aufweisende Monomere sind Alkylenglykoldiacrylate und - dimethacrylate, wie Ethylenglykoldiacrylat, 1 ,2-Propylenglykoldiacrylat, 1 ,3-
Propylenglykoldiacrylat, 1 ,3-Butylenglykoldiacrylat, 1 ,4-Butylenglykoldiacrylate und Ethylenglykoldimethacrylat, 1 ,2-Propylenglykoldimethacrylat, 1 ,3- Propylenglykoldimethacrylat, 1 ,3-Butylenglykoldimethacrylat, 1 ,4- Butylenglykoldimethacrylat sowie Divinylbenzol, Vinylmethacrylat, Vinylacrylat, AIIyI- methacrylat, Allylacrylat, Diallylmaleat, Diallylfumarat, Methylenbisacrylamid, Cyclopen- tadienylacrylat, Triallylcyanurat oder Triallylisocyanurat. In diesem Zusammenhang von besonderer Bedeutung sind auch die Methacrylsäure- und Acrylsäure-d-Cs- Hydroxyalkylester wie n-Hydroxyethyl-, n-Hydroxypropyl- oder n-Hydroxybutylacrylat und -methacrylat sowie Verbindungen, wie Diacetonacrylamid und Acetylacetoxyethy- lacrylat bzw. -methacrylat. Erfindungsgemäß werden die vorgenannten Monomeren, bezogen auf die Gesamtmenge der zu polymerisierenden Monomeren B, in Mengen von bis zu 5 Gew.-%, häufig 0,1 bis 3 Gew.-% und oft 0,5 bis 2 Gew.-% zur Polymerisation eingesetzt.
Daneben können als Monomere B zusätzlich solche ethylenisch ungesättigten Monomere BS eingesetzt werden, die entweder wenigstens eine Säuregruppe und/oder deren entsprechendes Anion oder solche ethylenisch ungesättigten Monomere BA, die wenigstens eine Amino-, Amido-, Ureido- oder N-heterocyclische Gruppe und/oder deren am Stickstoff protonierten oder alkylierten Ammoniumderivate enthalten. Bezo- gen auf die Gesamtmenge der zu polymerisierenden Monomeren B, beträgt die Menge an Monomeren BS bzw. Monomeren BA bis zu 10 Gew.-%, oft 0,1 bis 7 Gew.-% und häufig 0,2 bis 5 Gew.-%.
Als Monomere BS werden ethylenisch ungesättigte Monomere mit wenigstens einer Säuregruppe eingesetzt. Dabei kann die Säuregruppe beispielsweise eine Carbonsäure-, Sulfonsäure-, Schwefelsäure-, Phosphorsäure- und/oder Phosphonsäuregruppe sein. Beispiele für solche Monomere BS sind Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Itaconsäure, Crotonsäure, 4-Styrolsulfonsäure, 2- Methacryloxyethylsulfonsäure, Vinylsulfonsäure und Vinylphosphonsäure sowie Phosphorsäuremonoester von n-Hydroxyalkylacrylaten und n-Hydroxyalkylmethacrylaten, wie beispielsweise Phosphorsäuremonoester von Hydroxyethylacrylat, n- Hydroxypropylacrylat, n-Hydroxybutylacrylat und Hydroxyethylmethacrylat, n-
Hydroxypropylmethacrylat oder n-Hydroxybutylmethacrylat. Erfindungsgemäß lassen sich aber auch die Ammonium- und Alkalimetallsalze der vorgenannten wengistens eine Säuregruppe aufweisenden ethylenisch ungesättigten Monomeren einsetzen. Als Alkalimetall insbesondere bevorzugt ist Natrium und Kalium. Beispiele hierfür sind die Ammonium-, Natrium- und Kaliumsalze der Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Itaconsäure, Crotonsäure, 4-Styrolsulfonsäure, 2- Methacryloxyethylsulfonsäure, Vinylsulfonsäure und Vinylphosphonsäure sowie die Mono- und Di-Ammonium-, -Natrium- und -Kaliumsalze der Phosphorsäuremonoester von Hydroxyethylacrylat, n-Hydroxypropylacrylat, n-Hydroxybutylacrylat und Hydroxye- thylmethacrylat, n-Hydroxypropylmethacrylat oder n-Hydroxybutylmethacrylat.
Bevorzugt werden Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Itaconsäure, Crotonsäure, 4-Styrolsulfonsäure, 2-Methacryloxyethylsulfonsäure, Vinylsulfonsäure und Vinylphosphonsäure als Monomere BS eingesetzt.
Als Monomere BA werden ethylenisch ungesättigte Monomere verwendet, die wenigstens eine Amino-, Amido-, Ureido- oder N-heterocyclische Gruppe und/oder deren am Stickstoff protonierten oder alkylierten Ammoniumderivate enthalten.
Beispiele für Monomere BA, die wenigstens eine Aminogruppe enthalten sind 2- Aminoethylacrylat, 2-Aminoethylmethacrylat, 3-Aminopropylacrylat, 3- Aminopropylmethacrylat, 4-Amino-n-butylacrylat, 4-Amino-n-butylmethacrylat, 2-(N- Methylamino)ethylacrylat, 2-(N-Methylamino)ethylmethacrylat, 2-(N- Ethylamino)ethylacrylat, 2-(N-Ethylamino)ethylmethacrylat, 2-(N-n- Propylamino)ethylacrylat, 2-(N-n-Propylamino)ethylmethacrylat, 2-(N-iso- Propylamino)ethylacrylat, 2-(N-iso-Propylamino)ethylmethacrylat, 2-(N-tert- Butylamino)ethylacrylat, 2-(N-tert.-Butylamino)ethylmethacrylat (beispielsweise kommerziell verfügbar als Norsocryl® TBAEMA der Fa. Elf Atochem), 2-(N1N- Dimethylamino)ethylacrylat (beispielsweise kommerziell verfügbar als Norsocryl® A- DAME der Fa. Elf Atochem), 2-(N,N-Dimethylamino)ethylmethacrylat (beispielsweise kommerziell verfügbar als Norsocryl® MADAME der Fa. Elf Atochem), 2-(N1N- Diethylamino)ethylacrylat, 2-(N,N-Diethylamino)ethylmethacrylat, 2-(N,N-Di-n- propylamino)ethylacrylat, 2-(N,N-Di-n-propylamino)ethylmethacrylat, 2-(N,N-Di-iso- propylamino)ethylacrylat, 2-(N,N-Di-iso-propylamino)ethylmethacrylat, 3-(N- Methylamino)propylacrylat, 3-(N-Methylamino)propylmethacrylat, 3-(N- Ethylamino)propylacrylat, 3-(N-Ethylamino)propylmethacrylat, 3-(N-n- Propylamino)propylacrylat, 3-(N-n-Propylamino)propylmethacrylat, 3-(N-iso- Propylamino)propylacrylat, 3-(N-iso-Propylamino)propylmethacrylat, 3-(N-tert- Butylamino)propylacrylat, 3-(N-tert.-Butylamino)propylmethacrylat, 3-(N, N- Dimethylamino)propylacrylat, 3-(N,N-Dimethylamino)propylmethacrylat, 3-(N1N- Diethylamino)propylacrylat, 3-(N,N-Diethylamino)propylmethacrylat, 3-(N,N-Di-n- propylamino)propylacrylat, 3-(N,N-Di-n-propylamino)propylmethacrylat, 3-(N,N-Di-iso- propylamino)propylacrylat und 3-(N,N-Di-iso-propylamino)propylmethacrylat.
Beispiele für Monomere BA, die wenigstens eine Amidogruppe enthalten sind Acryla- mid, Methacrylamid, N-Methylacrylamid, N-Methylmethacrylamid, N-Ethylacrylamid, N- Ethylmethacrylamid, N-n-Propylacrylamid, N-n-Propylmethacrylamid, N-iso- Propylacrylamid, N-iso-Propylmethacrylamid, N-tert.-Butylacrylamid, N-tert- Butylmethacrylamid, N,N-Dimethylacrylamid, N,N-Dimethylmethacrylamid, N1N- Diethylacrylamid, N,N-Diethylmethacrylamid, N,N-Di-n-propylacrylamid, N,N-Di-n- propylmethacrylamid, N,N-Di-iso-propylacrylamid, N,N-Di-iso-propylmethacrylamid, N,N-Di-n-butylacrylamid, N,N-Di-n-butylmethacrylamid, N-(3-N',N'-
Dimethylaminopropyl)methacrylamid, Diacetonacrylamid, N,N'-Methylenbisacrylamid, N-(Diphenylmethyl)acrylamid, N-Cyclohexylacrylamid, aber auch N-Vinylpyrrolidon und N-Vinylcaprolactam.
Beispiele für Monomere BA, die wenigstens eine Ureidogruppe enthalten sind N, N'- Divinylethylenharnstoff und 2-(1-lmidazolin-2-onyl)ethylmethacrylat (beispielsweise kommerziell verfügbar als Norsocryl® 100 der Fa. Elf Atochem).
Beispiele für Monomere BA, die wenigstens eine N-heterocyclische Gruppe enthalten sind 2-Vinylpyridin, 4-Vinylpyridin, 1-Vinylimidazol, 2-Vinylimidazol und N- Vinylcarbazol.
Bevorzugt werden als Monomere BA folgende Verbindungen eingesetzt: 2-Vinylpyridin, 4-Vinylpyridin, 2-Vinylimidazol, 2-(N,N-Dimethylamino)ethylacrylat, 2-(N1N- Dimethylamino)ethylmethacrylat, 2-(N,N-Diethylamino)ethylacrylat, 2-(N1N-
Diethylamino)ethylmethacrylat, 2-(N-tert.-Butylamino)ethylmethacrylat, N-(3-N',N'- Dimethylaminopropyl)methacrylamid und 2-(1 -lmidazolin-2-onyl)ethylmethacrylat.
Abhängig vom pH-Wert des wässrigen Reaktionsmediums kann ein Teil oder die Ge- samtmenge der vorgenannten stickstoffhaltigen Monomere BA in der am Stickstoff protonierten quartären Ammoniumform vorliegen.
Als Monomere BA, welche am Stickstoff eine quartäre Alkylammoniumstruktur aufweisen, seien beispielhaft genannt 2-(N, N1N-T rimethylammonium)ethylacrylatchlorid (bei- spielsweise kommerziell verfügbar als Norsocryl® ADAMQUAT MC 80 der Fa. Elf Atochem), 2-(N,N,N-Trimethylammonium)ethylmethacrylatchlorid (beispielsweise kommerziell verfügbar als Norsocryl® MADQUAT MC 75 der Fa. Elf Atochem), 2-(N-Methyl- N,N-diethylammonium)ethylacrylatchlorid, 2-(N-Methyl-N,N- diethylammonium)ethylmethacrylatchlorid, 2-(N-Methyl-N,N- dipropylammonium)ethylacrylatchlorid, 2-(N-Methyl-N,N- dipropylammonium)ethylmethacrylat, 2-(N-Benzyl-N,N- dimethylammonium)ethylacrylatchlorid (beispielsweise kommerziell verfügbar als Nor- socryl® ADAMQUAT BZ 80 der Fa. Elf Atochem), 2-(N-Benzyl-N,N- dimethylammonium)ethylmethacrylatchlorid (beispielsweise kommerziell verfügbar als
Norsocryl® MADQUAT BZ 75 der Fa. Elf Atochem), 2-(N-Benzyl-N,N- diethylammonium)ethylacrylatchlorid, 2-(N-Benzyl-N,N- diethylammonium)ethylmethacrylatchlorid, 2-( N-Benzyl-N,N- dipropylammonium)ethylacrylatchlorid, 2-( N-Benzyl-N,N- dipropylammonium)ethylmethacrylatchlorid, 3-(N, N, N-
Trimethylammonium)propylacrylatchlorid1 3-(N1N1N-
Trimethylammonium)propylmethacrylatchlorid1 3-(N-Methyl-N,N- diethylammonium)propylacrylatchlorid1 3-(N-Methyl-N,N- diethylammonium)propylmethacrylatchlorid1 3-(N-Methyl-N,N- dipropylammonium)propylacrylatchlorid, 3-(N-Methyl-N,N- dipropylammonium)propylmethacrylatchlorid, 3-(N-Benzyl-N,N- dimethylammonium)propylacrylatchlorid, 3-(N-Benzyl-N,N- dimethylammonium)propylmethacrylatchlorid, 3-(N-Benzyl-N,N- diethylammonium)propylacrylatchlorid, 3-(N-Benzyl-N,N- diethylammonium)propylmethacrylatchlorid, 3-(N-Benzyl-N,N- dipropylammonium)propylacrylatchlorid und 3-(N-Benzyl-N,N- dipropylammonium)propylmethacrylatchlorid. Selbstverständlich können an Stelle der genannten Chloride auch die entsprechenden Bromide und Sulfate eingesetzt werden.
Bevorzugt werden 2-(N,N,N-Trimethylammonium)ethylacrylatchlorid, 2-(N, N, N- Trimethylammonium)ethylmethacrylatchlorid, 2-(N-Benzyl-N,N- dimethylammonium)ethylacrylatchlorid und 2-(N-Benzyl-N,N- dimethylammonium)ethylmethacrylatchlorid verwendet.
Selbstverständlich können auch Gemische der vorgenannten ethylenisch ungesättigten Monomere BS bzw. BA eingesetzt werden.
Mit besonderem Vorteil wird die Zusammensetzung der Monomeren B so gewählt, dass nach deren alleiniger Polymerisation ein Polymerisat resultieren würde, dessen Glasübergangstemperatur < 100 0C, bevorzugt < 60 0C, insbesondere < 40 0C und häufig > -30 0C und oft > -20 0C oder > -10 0C beträgt.
Üblicherweise erfolgt die Bestimmung der Glasübergangstemperatur nach DIN 53 765 (Differential Scanning Calorimetry, 20 K/min, midpoint-Messung). Nach Fox (T.G. Fox, Bull. Am. Phys. Soc. 1956 [Ser. II] 1 , Seite 123 und gemäß UII- mann's Encyclopädie der technischen Chemie, Bd. 19, Seite 18, 4. Auflage, Verlag Chemie, Weinheim, 1980) gilt für die Glasübergangstemperatur T9 von höchstens schwach vernetzten Mischpolymerisaten in guter Näherung:
1/Tg = XVTg1 + X2/Tg2 + .... X"/Tg",
wobei x1, x2, .... xn die Massenbrüche der Monomeren 1 , 2, .... n und T9 1, T9 2, .... T9 n die Glasübergangstemperaturen der jeweils nur aus einem der Monomeren 1 , 2, .... n auf- gebauten Polymerisaten in Grad Kelvin bedeuten. Die T9-Werte für die Homopolymeri- sate der meisten Monomeren sind bekannt und z.B. in Ullmann's Encyclopedia of In- dustrial Chemistry, 5. Aufl., Vol. A21 , Seite 169, Verlag Chemie, Weinheim, 1992, aufgeführt; weitere Quellen für Glasübergangstemperaturen von Homopolymerisaten bilden z.B. J. Brandrup, E.H. Immergut, Polymer Handbook, 1st Ed., J. Wiley, New York, 1966; 2nd Ed. J.Wiley, New York, 1975 und 3rd Ed. J. Wiley, New York, 1989.
Erfindungsgemäß wird die Gesamtmenge an Monomeren B dem wässrigen Polymerisationsmedium in Verfahrensschritt f) zudosiert. Die Monomeren B können dem wässrigen Polymerisationsmedium dabei diskontinuierlich in einer oder mehreren Portionen oder kontinuierlich mit gleichbleibenden oder sich verändernden Mengenströmen zudosiert werden. Insbesondere vorteilhaft erfolgt die Dosierung der Monomeren B kontinuierlich mit gleichbleibenden Mengenströmen, insbesondere als Bestandteil einer wässrigen Monomerenemulsion.
Zur Herstellung der erfindungsgemäßen wässrigen Kompositpartikel-Dispersion durch radikalische Polymerisation kommen alle diejenigen radikalischen Polymerisationsinitiatoren in Betracht, die in der Lage sind, eine radikalische wässrige Emulsionspolymerisation auszulösen. Es kann sich dabei prinzipiell sowohl um Peroxide als auch um A- zoverbindungen handeln. Selbstverständlich kommen auch Redoxinitiatorsysteme in Betracht. Als Peroxide können prinzipiell anorganische Peroxide, wie Wasserstoffperoxid oder Peroxodisulfate, wie die Mono- oder Di-Alkalimetall- oder Ammoniumsalze der Peroxodischwefelsäure, wie beispielsweise deren Mono- und Di-Natrium-, -Kaliumoder Ammoniumsalze oder organische Peroxide, wie Alkylhydroperoxide, beispielsweise tert.-Butyl-, p-Mentyl- oder Cumylhydroperoxid, sowie Dialkyl- oder Diarylperoxide, wie Di-tert.-Butyl- oder Di-Cumylperoxid eingesetzt werden. Als Azoverbindung finden im wesentlichen 2,2'-Azobis(isobutyronitril), 2,2'-Azobis(2,4-dimethylvaleronitril) und 2,2'-Azobis(amidinopropyl)dihydrochlorid (AIBA, entspricht V-50 von Wako Chemicals) Verwendung. Als Oxidationsmittel für Redoxinitiatorsysteme kommen im wesentlichen die oben genannten Peroxide in Betracht. Als entsprechende Reduktionsmittel können Schwefelverbindungen mit niedriger Oxidationsstufe, wie Alkalisulfite, beispielsweise Kalium- und/oder Natriumsulfit, Alkalihydrogensulfite, beispielsweise Kalium- und/oder Natriumhydrogensulfit, Alkalimetabisulfite, beispielsweise Kalium- und/oder Natrium- metabisulfit, Formaldehydsulfoxylate, beispielsweise Kalium- und/oder Natriumformal- dehydsulfoxylat, Alkalisalze, speziell Kalium- und/oder Natriumsalze aliphatische SuI- finsäuren und Alkalimetallhydrogensulfide, wie beispielsweise Kalium- und/oder Natrium hydrogensulfid, Salze mehrwertiger Metalle, wie Eisen-(ll)-sulfat, Eisen-(ll)- Ammoniumsulfat, Eisen-(ll)-phosphat, Endiole, wie Dihydroxymaleinsäure, Benzoin und/oder Ascorbinsäure sowie reduzierende Saccharide, wie Sorbose, Glucose, Fruc- tose und/oder Dihydroxyaceton eingesetzt werden. In der Regel beträgt die Menge des eingesetzten radikalischen Polymerisationsinitiators, bezogen auf die Gesamtmonome- renmenge, 0,1 bis 5 Gew.-%.
Erfindungsgemäß kann die Gesamtmenge des Radikalinitiators im wässrigen Reaktionsmedium vor Auslösung der Polymerisationsreaktion im Verfahrensschritt d) oder e) vorgelegt werden. Es ist aber auch möglich, gegebenenfalls lediglich eine Teilmenge des Radikalinitiators im wässrigen Reaktionsmedium vor Auslösung der Polymerisati- onsreaktion im Verfahrensschritt d) oder e) vorzulegen und dann im Verfahrensschritt f) unter Polymerisationsbedingungen während der erfindungsgemäßen radikalischen Emulsionspolymerisation die Gesamtmenge bzw. die gegebenenfalls verbliebene Restmenge nach Maßgabe des Verbrauchs kontinuierlich oder diskontinuierlich zuzugeben.
Unter Auslösung der Polymerisationsreaktion wird der Start der Polymerisationsreaktion der im wässrigen Polymerisationsmedium vorliegenden Monomeren nach Radikalbildung des Radikalinitiators verstanden. Dabei kann die Auslösung der Polymerisationsreaktion durch Zugabe von Radikalinitiator zum wässrigen Polymerisationsmedium unter Polymerisationsbedingungen erfolgen [Verfahrensschritt f)]. Es ist aber auch möglich, dass eine Teil- oder die Gesamtmenge des Radikalinitiators dem die vorgelegten Monomeren enthaltenden wässrigen Polymerisationsmedium unter Bedingungen, welche nicht geeignet sind eine Polymerisationsreaktion auszulösen, beispielsweise bei tiefer Temperatur, zugegeben werden [Verfahrensschritte d) und e)] und da- nach im wässrigen Polymerisationsgemisch Polymerisationsbedingungen eingestellt werden. Unter Polymerisationsbedingungen sind dabei generell diejenigen Temperaturen und Drücke zu verstehen, unter denen die radikalisch initiierte wässrige Emulsionspolymerisation mit ausreichender Polymerisationsgeschwindigkeit verläuft. Sie sind insbesondere abhängig vom verwendeten Radikalinitiator. Vorteilhaft werden Art und Menge des Radikalinitiators, die Polymerisationstemperatur und der Polymerisationsdruck so ausgewählt, dass der Radikalinitiator eine Halbwertszeit ≤ 3 Stunden, insbesondere vorteilhaft < 1 Stunde und ganz besonders vorteilhaft < 30 Minuten aufweist und dabei immer genügend Startradikale zur Verfügung stehen, um die Polymerisationsreaktion auszulösen bzw. aufrechtzuerhalten.
Als Reaktionstemperatur für die radikalische wässrige Emulsionspolymerisation in Anwesenheit des feinteiligen anorganischen Feststoffs kommt der gesamte Bereich von 0 bis 170 °C in Betracht. Dabei werden in der Regel Temperaturen von 50 bis 120 0C, häufig 60 bis 110 0C und oft 70 bis 100 0C angewendet. Die erfindungsgemäße radikalische wässrige Emulsionspolymerisation kann bei einem Druck kleiner, gleich oder größer 1 atm (Atmosphärendruck) durchgeführt werden, so dass die Polymerisations- temperatur 100 0C übersteigen und bis zu 170 0C betragen kann. Vorzugsweise wird in Anwesenheit leichtflüchtiger Monomere B, beispielsweise Ethylen, Butadien oder Vi- nylchlorid unter erhöhtem Druck polymerisiert. Dabei kann der Druck 1 ,2, 1 ,5, 2, 5, 10, 15 bar oder noch höhere Werte einnehmen. Werden Emulsionspolymerisationen im Unterdruck durchgeführt, werden Drücke von 950 mbar, häufig von 900 mbar und oft 850 mbar (absolut) eingestellt. Vorteilhaft wird die radikalische wässrige Emulsionspolymerisation bei 1 atm (absolut) unter Sauerstoffausschluss, insbesondere unter Inertgasatmosphäre, wie beispielsweise unter Stickstoff oder Argon durchgeführt.
Wesentlich für das erfindungsgemäße Verfahren ist, dass das wässrige Polymerisations- medium prinzipiell in untergeordnetem Maße auch organische Lösungsmittel, wie beispielsweise Methanol, Ethanol, Isopropanol, Butanole, aber auch Aceton etc. enthalten kann. Von Bedeutung ist allerdings, dass die Menge an organischem Lösungsmittel so bemessen ist, dass sie am Ende von Verfahrensschritt e) < 10 Gew.-%, vorteilhaft < 5 Gew.-% und insbesondere vorteilhaft < 2 Gew.-%, jeweils bezogen auf die Gesamtmenge an Wasser der erfindungsgemäß erhältlichen wässrigen Kompositpartikel-Dispersion, beträgt. Mit Vorteil sind erfindungsgemäß keinerlei solche Lösungsmittel vorhanden.
Neben den vorgenannten Komponenten können im erfindungsgemäßen Verfahren zur Herstellung der wässrigen Kompositpartikel-Dispersion optional auch radikalketten- übertragende Verbindungen eingesetzt werden, um die Molekulargewichte der durch die Polymerisation zugänglichen Polymerisate zu reduzieren bzw. zu kontrollieren. Dabei kommen im wesentlichen aliphatische und/oder araliphatische Halogenverbindungen, wie beispielsweise n-Butylchlorid, n-Butylbromid, n-Butyljodid, Methylenchlorid, Ethylendichlorid, Chloroform, Bromoform, Bromtrichlormethan, Dibromdichlormethan, Tetrachlorkohlenstoff, Tetrabromkohlenstoff, Benzylchlorid, Benzylbromid, organische Thioverbindungen, wie primäre, sekundäre oder tertiäre aliphatische Thiole, wie beispielsweise Ethanthiol, n-Propanthiol, 2-Propanthiol, n-Butanthiol, 2-Butanthiol, 2- Methyl-2-propanthiol, n-Pentanthiol, 2-Pentanthiol, 3-Pentanthiol, 2-Methyl-2- butanthiol, 3-Methyl-2-butanthiol, n-Hexanthiol, 2-Hexanthiol, 3-Hexanthiol, 2-Methyl-2- pentanthiol, 3-Methyl-2-pentanthiol, 4-Methyl-2-pentanthiol, 2-Methyl-3-pentanthiol, 3- Methyl-3-pentanthiol, 2-Ethylbutanthiol, 2-Ethyl-2-butanthiol, n-Heptanthiol und seine isomeren Verbindungen, n-Octanthiol und seine isomeren Verbindungen, n-Nonanthiol und seine isomeren Verbindungen, n-Decanthiol und seine isomeren Verbindungen, n- Undecanthiol und seine isomeren Verbindungen, n-Dodecanthiol und seine isomeren Verbindungen, n-Tridecanthiol und seine isomeren Verbindungen, substituierte Thiole, wie beispielsweise 2-Hydroxyethanthiol, aromatische Thiole, wie Benzolthiol, ortho-, meta-, oder para-Methylbenzolthiol, sowie alle weiteren im Polymerhandbook 3rd edtiti- on, 1989, J. Brandrup und E.H. Immergut, John Wiley & Sons, Abschnitt II, Seiten 133 bis 141 , beschriebenen Schwefelverbindungen, aber auch aliphatische und/oder aromatische Aldehyde, wie Acetaldeyhd, Propionaldehyd und/oder Benzaldehyd, ungesättigte Fettsäuren, wie Ölsäure, Diene mit nicht konjugierten Doppelbindungen, wie Divi- nylmethan oder Vinylcyclohexan oder Kohlenwasserstoffe mit leicht abstrahierbaren Wasserstoffatomen, wie beispielsweise Toluol, zum Einsatz. Es ist aber auch möglich, Gemische sich nicht störender vorgenannter radikalkettenübertragender Verbindungen einzusetzen. Die optional eingesetzte Gesamtmenge der radikalkettenübertragenden Verbindungen, bezogen auf die Gesamtmenge der zu polymerisierenden Monomeren, ist in der Regel < 5 Gew.-%, oft < 3 Gew.-% und häufig < 1 Gew.-%.
Abhängig von der Stabilität der eingesetzten wässrigen Feststoffdispersionen können die Verfahrensschritte e) und f) im sauren, neutralen oder basischen pH-Wertbereich durchgeführt werden. Beim Einsatz von Schichtsilikaten beträgt der pH-Wert vorteilhaft > 5 und < 1 1 , insbesondere vorteilhaft > 6 und < 10 (jeweilige Probe gemessen bei 20 0C und 1 atm).
Die erfindungsgemäß zugänglichen wässrigen Kompositpartikel-Dispersionen weisen üblicherweise einen Gesamtfeststoffgehalt von 1 bis 70 Gew.-%, häufig von 5 bis 65 Gew.-% und oft von 10 bis 60 Gew.-% auf.
Die erfindungsgemäß zugänglichen Kompositpartikel besitzen in der Regel Teilchendurchmesser von > 10 und < 1000 nm, häufig < 500 nm sowie oft < 250 nm. Die Bestimmung der Teilchengröße der Kompositpartikel erfolgt im Rahmen dieser Schrift generell nach der Methode der quasielastischen Lichtstreuung (DIN-ISO 13321 ) mit einem High Performance Particle Sizer (HPPS) der Fa. Malvern Instruments Ltd.
Die erfindungsgemäß zugänglichen Kompositpartikel können unterschiedliche Strukturen aufweisen. Dabei können die Kompositpartikel ein oder mehrere der feinteiligen Feststoffteilchen enthalten. Die feinteiligen Feststoffteilchen können vollständig von der Polymermatrix umhüllt sein. Es ist aber auch möglich, dass ein Teil der feinteiligen Feststoffteilchen von der Polymermatrix umhüllt ist, während ein anderer Teil auf der Oberfläche der Polymermatrix angeordnet ist. Selbstverständlich ist es auch möglich, dass ein Großteil der feinteiligen Feststoffpartikel auf der Oberfläche der Polymermatrix gebunden ist.
Selbstverständlich können die nach Abschluß der Polymerisationsreaktion im wässrigen Polymerisationsmedium verbliebenen Restmengen an nicht umgesetzten Monomeren A und/oder B durch Dampf- und/oder Inertgasstrippung und/oder durch chemi- sehe Desodorierung, wie sie beispielsweise in den Schriften DE-A 44 19 518,
EP-A 767 180 oder DE-A 38 34 734 beschrieben sind, entfernt werden, ohne dass sich die Eigenschaften der wässrigen Kompositpartikel-Dispersionen nachteilig verändern. Aus den über das erfindungsgemäße Verfahren zugänglichen wässrigen Kompositpartikel-Dispersionen lassen sich in einfacher Weise anorganische Feststoffteilchen enthaltende Polymerisatfilme herstellen. Diese Polymerisatfilme weisen gegenüber den keine anorganischen Feststoffteilchen enthaltenden Polymerisatfilmen in der Regel eine erhöhte mechanische Festigkeit, ein geringeres Weißanlaufen, eine bessere Haftung an mineralischen Oberflächen, eine verbesserte Resistenz gegenüber organischen Lösemitteln sowie eine erhöhte Kratzfestigkeit, Blockfestigkeit und Wärmestandfestigkeit auf.
Wässrige Kompositpartikel-Dispersionen, welche nach dem beschriebenen erfindungsgemäßen Verfahren hergestellt werden, eignen sich daher insbesondere als Bindemittel, zur Herstellung einer Schutzschicht, als Klebstoff, zur Modifizierung von Zement- und Mörtelformulierungen oder in der medizinischen Diagnostik (vgl. z.B. K. Mosbach und L. Andersson, Nature, 1977, 270, Seiten 259 bis 261 ; P.L. Kronick, Science 1978, 200, Seiten 1074 bis 1076; US-A 4,157,323). Darüber hinaus lassen sich die Kompositpartikel auch als Katalysatoren in verschiedenen wässrigen Dispersionssystemen einsetzen.
Auch sei festgehalten, dass die erfindungsgemäß zugänglichen wässrigen Komposit- partikel-Dispersionen in einfacher Weise zu redispergierbaren Kompositpartikelpulvern trockenbar sind (z. B. Gefriertrocknung oder Sprühtrocknung). Dies gilt insbesondere dann, wenn die Glasübergangstemperatur der Polymermatrix der erfindungsgemäß zugänglichen Kompositpartikel > 50 0C, vorzugsweise > 60 0C, besonders bevorzugt > 70 0C, ganz besonders bevorzugt > 80 0C und insbesondere bevorzugt > 90 0C bzw. > 100 0C beträgt. Die Kompositpartikelpulver eignen sich u.a. als Additive für Kunststoffe, Komponenten für Tonerformulierungen oder Zusatzstoffe in elektrophotographischen Anwendungen sowie als Komponenten in Zement- und Mörtelformulierungen.
Das erfindungsgemäße Verfahren ermöglicht den einstufigen und lösungsmittelfreien Zugang zu wässrigen Kompositpartikel-Dispersionen, unter Verwendung von Silanmo- nomeren. Darüber hinaus weisen die aus den erfindungsgemäßen wässrigen Kompositpartikel-Dispersionen zugänglichen Verfilmungen verbesserte Reißkraft- und/oder Reißdehnungswerte auf. Auch zeigen die Verfilmungen eine homogenere Verteilung des anorganischen Feststoffs.
Die Erfindung soll anhand der nachfolgenden nichteinschränkenden Beispiele erläutert werden. Beispiele
a) Herstellung der wässrigen Kompositpartikel-Dispersionen
Beispiel 1
In einem 2 I-Vierhalskolben, ausgerüstet mit einem Rückflusskühler, einem Thermometer, einem mechanischen Rührer sowie einer Dosiervorrichtung, wurden bei 20 bis 25 0C (Raumtemperatur) und 1 atm (absolut) unter Stickstoffatmosphäre und Rühren (200 Umdrehungen pro Minute) 489 g entionisiertes Wasser, 20 g pulverförmiges Schichtsilikat Laponite® RDS (Marke der Firma Rockwood Holdings, Inc.; mittlerer Durchmesser im delaminierten, dispergierten Zusand: 20 bis 50 nm) innerhalb von 5 Minuten zugegeben. Um das Schichtsilikat vollständig zu delaminieren wurde die Vorlage für 15 Minuten weiter gerührt (200 Umdrehungen pro Minute) und anschließend auf 82 0C aufgeheizt. Anschließend wurde über eine Zulaufleitung innerhalb einer
Stunde 1 ,2 g (3-Methacryloxypropyl)trimethoxysilan kontinuierlich zudosiert. Dann wurden eine Lösung bestehend aus 40 g entionisiertem Wasser, 2,1 g einer 10 gew.- %igen wässrigen Natriumhydroxidlösung und 0,6 g Natriumperoxodisulfat über eine weitere separate Zulaufleitung innerhalb von 2 Minuten hinzugegeben und 5 Minuten gewartet. Anschließend wurde das Reaktionsgemisch auf 85 0C aufgeheizt. Parallel dazu stellte man als Zulauf 1 eine homogene Emulsion bestehend aus 401 g entionisiertem Wasser, 8,9 g einer 45 gew.-%igen wässrige Lösung von Dowfax® 2A1 , 18,4 g einer 10 gew.-%igen wässrigen Natriumhydroxidlösung, 4 g Methacrylsäure, 118 g n- Butylacrylat, 60 g Methylmethacrylat, 16 g Ethylacrylat und 1 ,7 g (3- Methacryloxypropyl)trimethoxysilan und als Zulauf 2 eine Mischung aus 161 g entionisiertem Wasser, 8,5 g einer 10 gew.-%igen wässrigen Natriumhydroxidlösung und 2,4 g Natriumperoxodisulfat, her. Die beiden Zuläufe wurden nach dem Aufheizen gleichzeitig beginnend wie folgt über separate Zulaufleitungen zudosiert. Zulauf 1 wurde innerhalb von 2 Stunden kontinuierlich zudosiert, wobei die Dosierrate in den ersten 40 Minuten 3,14 g/Minute und danach 6,28 g/Minute betrug. Parallel dazu wurde Zulauf 2 in zwei Stunden mit kontinuierlichem Mengenstrom zudosiert. Abschließend wurde die Reaktionsmischung noch 30 Minuten bei Reaktionstemperatur gerührt und schließlich auf Raumtemperatur abgekühlt.
Die so erhaltene wässrige Kompositpartikel-Dispersion wies einen Feststoffgehalt von 18,5 Gew.-%, bezogen auf das Gesamtgewicht der wässrigen Kompositpartikeldispersion, auf.
Der Feststoffgehalt wurde generell bestimmt, indem ca. 1 g der Kompositpartikel- Dispersion in einem offenen Aluminiumtigel mit einem Innendurchmesser von ca. 3 cm in einem Trockenschrank bei 150 0C bis zur Gewichtskonstanz getrocknet wurde. Zur Bestimmung des Feststoffgehalts wurden jeweils zwei separate Messungen durchgeführt und der entsprechende Mittelwert gebildet.
Der pH-Wert der Kompositpartikel-Dispersion betrug 8,1.
Die Bestimmung der Teilchengröße der Kompositpartikel erfolgte generell nach der Methode der quasielastischen Lichtstreuung (DIN-ISO 13321) mit einem High Performance Particle Sizer (HPPS) der Fa. Malvern Instruments Ltd. Es wurde eine mittlere- Teilchengröße von 102 nm ermittelt.
Mittels der Analytischen Ultrazentrifuge konnte auch nachgewiesen werden, dass die erhaltenen Kompositpartikel eine homogene Dichte von 1 ,33 g/cm3 aufwiesen. Es konnten keine freien Schichtsilikat-Feststoffteilchen nachgewiesen werden (vgl. hierzu auch S.E. Harding et al., Analytical Ultracentrifugation in Biochemistry and Polymer Science, Royal Society of Chemistry, Cambridge, Great Britain 1992, Chapter 10, Ana- lysis of Polymer Dispersions with an Eight-Cell-AUC-Multiplexer: High Resolution Particle Size Distribution and Density Gradient Techniques, W. Mächtle, Seiten 147 bis 175).
Beispiel 2
Die Herstellung von Beispiel 2 erfolgte analog Beispiel 1 mit dem Unterschied, dass 0,2 g (3-Methacryloxypropyl)trimethoxysilan vorgelegt und 2,7 g (3- Methacryloxypropyl)trimethoxysilan als Bestandteil der Monomerenemulsion dosiert wurden.
Die so erhaltene wässrige Kompositpartikel-Dispersion wies einen Feststoffgehalt von 18,7 Gew.-%, bezogen auf das Gesamtgewicht der wässrigen Kompositpartikel- Dispersion, auf.
Der pH-Wert der Kompositpartikel-Dispersion betrug 8,2.
Es wurde eine mittlere Teilchengröße von 110 nm ermittelt.
Mittels der Analytischen Ultrazentrifuge konnten keine freien Schichtsilikate nachgewiesen werden. Darüber hinaus wiesen die Kompositpartikel eine homogene Dichte von 1 ,33 g/cm3 auf.
Beispiel 3
Die Herstellung von Beispiel 3 erfolgte analog Beispiel 1 mit dem Unterschied, dass 0,1 g (3-Methacryloxypropyl)trimethoxysilan vorgelegt und 1 ,4 g (3- Methacryloxypropyl)trimethoxysilan als Bestandteil der Monomerenemulsion dosiert wurde.
Die so erhaltene wässrige Kompositpartikel-Dispersion wies einen Feststoffgehalt von 18,5 Gew.-%, bezogen auf das Gesamtgewicht der wässrigen Kompositpartikel- Dispersion, auf.
Der pH-Wert der Kompositpartikel-Dispersion betrug 8,1.
Es wurde eine mittlere Teilchengröße von 108 nm ermittelt.
Mittels der Analytischen Ultrazentrifuge konnten keine freien Schichtsilikate nachgewiesen werden. Darüber hinaus wiesen die Kompositpartikel eine homogene Dichte von 1 ,33 g/cm3 auf.
Vergleichsbeispiel 1
Die Herstellung von Vergleichsbeispiel 1 erfolgte analog Beispiel 1 mit dem Unterschied, dass die Gesamtmenge an 3-Methacryloxypropyltrimethoxysilan als Bestandteil der Monomerenemulsion in Zulauf 1 dosiert wurde.
Die so erhaltene wässrige Kompositpartikel-Dispersion wies einen Feststoffgehalt von 18,6 Gew.-%, bezogen auf das Gesamtgewicht der wässrigen Kompositpartikel- Dispersion, auf.
Der pH-Wert der Kompositpartikel-Dispersion betrug 8,2.
Es wurde eine mittlere Teilchengröße von 110 nm ermittelt.
Mittels der Analytischen Ultrazentrifuge konnte ein Anteil von ca. 10 Gew.-% an freien Schichtsilikaten nachgewiesen werden.
Beispiel 4
Die Herstellung von Beispiel 4 erfolgte analog Beispiel 1 mit dem Unterschied, dass als Zulauf 1 eine Emulsion bestehend aus 401 g entionisiertem Wasser, 8,9 g einer 45 gew.-%igen wässrigen Lösung von Dowfax® 2A1 , 18,4 g einer 10 gew.-%igen Lösung von Natriumhydroxidlösung, 4 g Methacrylsäure, 118 g n-Butylacrylat, 76 g Methyl- methacrylat und 1 ,7 g (3-Methacryloxypropyl)trimethoxysilan eingesetzt wurde. Die so erhaltene wässrige Kompositpartikel-Dispersion wies einen Feststoffgehalt von 18,2 Gew.-%, bezogen auf das Gesamtgewicht der wässrigen Kompositpartikel- Dispersion, auf.
Der pH-Wert der Kompositpartikeldispersion betrug 8,2.
Es wurde eine mittlere Teilchengröße von 107 nm ermittelt.
Mittels der Analytischen Ultrazentrifuge konnten keine freien Schichtsilikate nachge- wiesen werden.
Beispiel 5
Die Herstellung von Beispiel 5 erfolgte analog Beispiel 1 mit dem Unterschied, dass als Zulauf 1 eine Emulsion bestehend aus 401 g entionisiertem Wasser, 8,9 g einer 45 gew.-%igen wässrigen Lösung von Dowfax® 2A1 , 18,4 g einer 10 gew.-%igen Lösung von Natriumhydroxidlösung, 31 g Methylacrylat, 25 g Styrol, 4,5 g Methacrylsäure, 62 g n-Butylacrylat, 31 g 2-Ethylhexylacrylat und 1 ,7 g (3-
Methacryloxypropyl)trimethoxysilan eingesetzt wurde. Die Zulaufrate für die ersten 40 Minuten betrug 2,92 g/Minute, danach 5,84 g/Minute.
Die so erhaltene wässrige Kompositpartikel-Dispersion wies einen Feststoffgehalt von 15,9 Gew.-%, bezogen auf das Gesamtgewicht der wässrigen Kompositpartikel- Dispersion, auf.
Der pH-Wert der Kompositpartikel-Dispersion betrug 8,3.
Es wurde eine mittlere Teilchengröße von 105 nm ermittelt.
Mittels der Analytischen Ultrazentrifuge konnten keine freien Schichtsilikate nachgewiesen werden.
Beispiel 6
Die Herstellung von Beispiel 6 erfolgte analog Beispiel 1 mit dem Unterschied, dass Optigel® SH (Marke der Fa. Südchemie AG) anstelle von Laponite® RDS als Schichtsilikat eingesetzt wurde.
Die so erhaltene wässrige Kompositpartikel-Dispersion wies einen Feststoffgehalt von 18,9 Gew.-%, bezogen auf das Gesamtgewicht der wässrigen Kompositpartikel- Dispersion, auf. Der pH-Wert der Kompositpartikel-Dispersion betrug 8,1.
Es wurde eine mittlere Teilchengröße von 105 nm ermittelt.
Mittels der Analytischen Ultrazentrifuge konnten keine freien Schichtsilikate nachgewiesen werden.
Beispiel 7
Die Herstellung von Beispiel 7 erfolgte analog Beispiel 5 mit dem Unterschied, dass Optigel® EX 0482 (Marke der Fa. Südchemie AG) anstelle von Laponite® RDS als Schichtsilikat eingesetzt wurde.
Die so erhaltene wässrige Kompositpartikel-Dispersion wies einen Feststoffgehalt von 18,5 Gew.-%, bezogen auf das Gesamtgewicht der wässrigen Kompositpartikel- Dispersion, auf.
Der pH-Wert der Kompositpartikel-Dispersion betrug 8,1.
Es wurde eine mittlere Teilchengröße von 103 nm ermittelt.
Mittels der Analytischen Ultrazentrifuge konnten keine freien Schichtsilikate nachgewiesen werden.
b) Anwendungstechnische Untersuchungen
Reißkraft und Reißdehnung
Von den wässrigen Kompositpartikel-Dispersionen der Beispiele 1 , 2, und 3 sowie vom Vergleichsbeispiel 1 wurden Verfilmungen hergestellt und von diesen die Reißkraft bzw. die Reißdehnung bestimmt.
Die bruchmechanischen Eigenschaften der vorgenannten Kompsitpartikel- Dispersionsfilme wurden im Zugversuch nach DIN 53504 bestimmt. Die Dicke der Dis- persionsfilme betrug 0,4 bis 0,5 mm und die Abzugsgeschwindigkeit 25,4 mm/min. Vor Beginn der Untersuchung wurden die entsprechenden Mengen der Kompositpartikel- Dispersionen auf einen Teflon-Träger aufgetragen und zur Ausbildung der Dispersionsfilme 14 Tage im Klimaraum bei 23 0C und 50 % relativer Luftfeuchtigkeit gelagert. Die in der nachfolgenden Tabelle angegebenen Werte sind jeweils die Mittelwerte aus je- weils 5 separaten Messungen.
Figure imgf000027_0001

Claims

Patentansprüche
1. Verfahren zur Herstellung einer wässrigen Dispersion von aus Polymerisat und feinteiligem anorganischem Feststoff aufgebauten Partikeln (wässrige Komposit- partikel-Dispersion), bei dem ethylenisch ungesättigte Monomere in wässrigem
Medium dispers verteilt und mittels wenigstens eines radikalischen Polymerisationsinitiators im Beisein wenigstens eines dispers verteilten, feinteiligen anorganischen Feststoffes und wenigstens eines Dispergierhilfsmittels nach der Methode der radikalisch wässrigen Emulsionspolymerisation polymerisiert werden, da- durch gekennzeichnet, dass
a) eine stabile wässrige Dispersion des wenigstens einen anorganischen Feststoffs eingesetzt wird, welche dadurch charakterisiert ist, dass sie bei einer Anfangsfeststoffkonzentration von > 0,1 Gew.-%, bezogen auf die wässrige Dispersion des wenigstens einen anorganischen Feststoffs, noch eine Stunde nach ihrer Herstellung mehr als 90 Gew.-% des ursprünglich dispergierten Feststoffes in dispergierter Form enthält und deren dispergierte Feststoffteilchen einen Durchmesser < 100 nm aufweisen (wässrige Feststoffdispersion),
b) als ethylenisch ungesättigte Monomere > 0,01 und < 10 Gew.-% wenigstens eines, eine siliziumhaltige funktionelle Gruppe aufweisenden ethylenisch ungesättigten Monomeren A (Silanmonomer) und > 90 und < 99,99 Gew.-% wenigstens eines weiteren, sich von den Monomeren A unter- scheidenden ethylenisch ungesättigten Monomeren B eingesetzt werden und sich die Mengen an Monomeren A und B zu 100 Gew.-% addieren (Gesamtmonomerenmenge),
c) 1 bis 1000 Gew.-Teile an anorganischem Feststoff pro 100 Gew.-Teilen ethylenisch ungesättigten Monomeren eingesetzt werden, dabei
d) wenigstens eine Teilmenge des anorganischen Feststoffs in einem wässrigen Polymerisationsmedium in Form einer wässrigen Feststoffdispersion vorgelegt wird, daran anschließend
e) wenigstens eine Teilmenge der Monomeren A während einer Zeitdauer von > 5 und < 240 Minuten dem wässrigen Polymerisationsmedium zudosiert werden, und daran anschließend
f) die gegebenenfalls verbliebene Restmenge des anorganischen Feststoffs, die gegebenenfalls verbliebene Restmenge der Monomeren A und die Gesamtmenge der Monomeren B dem wässrigen Polymerisationsmedium unter Polymerisationsbedingungen zudosiert werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in Verfahrensschritt d) > 50 Gew.-% des anorganischen Feststoffs vorgelegt werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in Verfahrensschritt d) die Gesamtmenge des anorganischen Feststoffs vorgelegt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Verfahrensschritt e) bei einer Temperatur > 50 und < 100 0C durchgeführt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in Verfahrensschritt e) > 5 und < 70 Gew.-% der Gesamtmenge der Monomeren A zudosiert werden.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der anorganische Feststoff siliziumhaltig ist.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als anorganischer Feststoff pyrogene Kieselsäure, kolloidale Kieselsäure und/oder ein Schichtsilikat eingesetzt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das wässrige Polymerisationsmedium am Ende von Verfahrensschritt e) < 10 Gew.-
% an organischem Lösungsmittel, bezogen auf die Gesamtmenge an Wasser enthält.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das als Monomer A (3-Methacryloxypropyl)trimethoxysilan, (3-
Methacryloxypropyl)triethoxysilan, (Methacryloxymethyl)methyldiethoxysilan und/oder (3-Methacryloxypropyl)methyldiethyloxysilan eingesetzt wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass als Dispergierhilfsmittel ein anionischer und/oder nichtionischer Emulgator eingesetzt wird.
1 1. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Gesamtmenge der Monomeren A > 0,5 und < 3 Gew.-%, bezogen auf die Gesamtmonomerenmenge beträgt, wobei im Verfahrensschritt e) > 10 und < 50
Gew.-% der Gesamtmenge der Monomeren A zudosiert werden.
12. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Zusammensetzung der Monomeren B so gewählt wird, dass nach deren alleiniger Polymerisation ein Polymerisat resultieren würde, dessen Glasüber- gangstemperutur < 60 0C beträgt.
13. Wässrige Kompositpartikel-Dispersion, erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 12.
14. Verwendung einer wässrigen Kompositpartikel-Dispersion gemäß Anspruch 13, als Bindemittel, zur Herstellung einer Schutzschicht, als Klebstoff, zur Modifizierung von Zement- und Mörtelformulierungen oder in der medizinischen Diagnostik.
15. Kompositpartikelpulver, erhältlich durch Trocknung einer wässrigen Komposit- partikel-Dispersion gemäß Anspruch 13.
PCT/EP2008/055145 2007-05-04 2008-04-28 Verfahren zur herstellung einer wässrigen kompositpartikel-dispersion WO2008135422A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE502008003178T DE502008003178D1 (de) 2007-05-04 2008-04-28 Verfahren zur herstellung einer wässrigen kompositpartikel-dispersion
JP2010506891A JP5449138B2 (ja) 2007-05-04 2008-04-28 水性複合粒子分散液の製造方法
KR1020097025233A KR101487042B1 (ko) 2007-05-04 2008-04-28 수성 복합물 입자 분산액의 제조 방법
CN2008800146294A CN101675081B (zh) 2007-05-04 2008-04-28 一种制备复合颗粒水性分散体的方法
EP08749776A EP2147020B1 (de) 2007-05-04 2008-04-28 Verfahren zur herstellung einer wässrigen kompositpartikel-dispersion
AU2008248731A AU2008248731B2 (en) 2007-05-04 2008-04-28 Method for producing an aqueous composite particle dispersion
US12/598,202 US8268912B2 (en) 2007-05-04 2008-04-28 Process for preparing an aqueous composite-particle dispersion
BRPI0810838-2A BRPI0810838B1 (pt) 2007-05-04 2008-04-28 Processo para preparar uma dispersão aquosa de partículas
PL08749776T PL2147020T3 (pl) 2007-05-04 2008-04-28 Sposób wytwarzania wodnej dyspersji cząstek kompozytowych
AT08749776T ATE505490T1 (de) 2007-05-04 2008-04-28 Verfahren zur herstellung einer wässrigen kompositpartikel-dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07107552.7 2007-05-04
EP07107552 2007-05-04

Publications (1)

Publication Number Publication Date
WO2008135422A1 true WO2008135422A1 (de) 2008-11-13

Family

ID=39619151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/055145 WO2008135422A1 (de) 2007-05-04 2008-04-28 Verfahren zur herstellung einer wässrigen kompositpartikel-dispersion

Country Status (13)

Country Link
US (1) US8268912B2 (de)
EP (1) EP2147020B1 (de)
JP (1) JP5449138B2 (de)
KR (1) KR101487042B1 (de)
CN (1) CN101675081B (de)
AT (1) ATE505490T1 (de)
AU (1) AU2008248731B2 (de)
BR (1) BRPI0810838B1 (de)
DE (1) DE502008003178D1 (de)
ES (1) ES2363054T3 (de)
PL (1) PL2147020T3 (de)
PT (1) PT2147020E (de)
WO (1) WO2008135422A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118961A1 (de) 2009-04-15 2010-10-21 Basf Se Verfahren zur herstellung einer wässrigen kompositpartikel-dispersion
WO2010139679A1 (de) * 2009-06-03 2010-12-09 Basf Se Verfahren zur verbesserung der lagerstabilität von wässrigen kompositpartikel-dispersionen
WO2012022667A1 (de) * 2010-08-16 2012-02-23 Basf Se Verfahren zur verbesserung der lagerstabilität von wässrigen kompositpartikel-dispersionen
EP2500383A1 (de) * 2011-03-18 2012-09-19 Henkel AG & Co. KGaA Pigmenthaltige Lackdispersion sowie W/O Emulsionen als Präkursor für die Bereitstellung der Lackdispersion
EP3650507A1 (de) 2018-11-06 2020-05-13 Daw Se Wässrige beschichtungszusammensetzung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056998A (zh) * 2008-04-25 2011-05-11 巴斯夫欧洲公司 改善复合颗粒水性分散体储藏稳定性的方法
JP2011524920A (ja) * 2008-06-03 2011-09-08 ビーエーエスエフ ソシエタス・ヨーロピア 二酸化チタンナノ粒子を含む二酸化チタン組成物およびその製造と使用
JP2012501381A (ja) * 2008-09-02 2012-01-19 ビーエーエスエフ ソシエタス・ヨーロピア 弾性コーティングにおけるバインダーとしての水性複合粒子分散液の使用
JP5602836B2 (ja) * 2009-04-27 2014-10-08 ビーエーエスエフ ソシエタス・ヨーロピア 有機無機複合粒子
KR102182521B1 (ko) * 2014-12-30 2020-11-24 코오롱글로텍주식회사 고유연성 배리어 섬유기판 및 그의 제조방법
CN108658491B (zh) * 2018-05-29 2020-11-17 江苏苏博特新材料股份有限公司 一种基于铝氧化物的两亲性多功能杂化粒子及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505230A1 (de) * 1991-03-22 1992-09-23 Rhone-Poulenc Chimie Neue Mischteile aus Kieselsäure und Polymeren, diese enthaltende filmbindende Zusammensetzungen, sowie daraus hergestellte Folien und Verfahren zur Herstellung
WO2003000760A1 (de) * 2001-06-21 2003-01-03 Basf Aktiengesellschaft Verfahren zur herstellung einer wässrigen dispersion von aus polymerisat und feinteiligem anorganischem feststoff aufgebauten partikeln

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1172513A (en) 1965-11-11 1969-12-03 Ici Ltd Polymer Coated Particles
US4269749A (en) 1979-04-30 1981-05-26 The Dow Chemical Company Method of imparting salt and/or mechanical stability to aqueous polymer microsuspensions
US4421660A (en) 1980-12-15 1983-12-20 The Dow Chemical Company Colloidal size hydrophobic polymers particulate having discrete particles of an inorganic material dispersed therein
US4608401A (en) 1982-09-02 1986-08-26 Union Carbide Corporation Method of encapsulating finely divided solid particles
CA1255031A (en) 1982-09-02 1989-05-30 Robert W. Martin Polymer encapsulated dispersed solids and methods
DE3834734A1 (de) 1988-10-12 1990-04-19 Basf Ag Verfahren zur herstellung von polymerisaten aus olefinisch ungesaettigten monomeren
GB8902293D0 (en) 1989-02-02 1989-03-22 Tioxide Group Plc Treatment process
US4981882A (en) 1989-03-31 1991-01-01 Union Carbide Chemicals And Plastics Company Inc. Method for enhancing encapsulation efficiency in coating particles in aqueous dispersions
GB2267286B (en) 1992-05-29 1996-01-10 Tioxide Group Services Ltd Coated inorganic particles
DE4419518A1 (de) 1994-06-03 1995-12-07 Basf Ag Verfahren zur Herstellung einer wäßrigen Polymerisatdispersion
IT1276816B1 (it) 1995-10-04 1997-11-03 Atochem Elf Italia Emulsione a basso voc
JP3818689B2 (ja) * 1996-01-16 2006-09-06 富士写真フイルム株式会社 コロイド状シリカをコアとし、有機ポリマーをシェルとするコア/シェル状複合粒子の水性分散物及びその製造方法
JP3692077B2 (ja) 1999-09-08 2005-09-07 ビーエーエスエフ アクチェンゲゼルシャフト 重合体及び微細の無機固体から構成される粒子の水性分散液の製造方法
BR0014888B1 (pt) * 1999-10-20 2010-11-03 processo para preparar uma dispersão aquosa de partìculas compostas de polìmero de adição e sólido inorgánico finamente dividido, dispersão aquosa de partìculas de compósito, uso da mesma, e, pó de partìcula de compósito.
JP2004517980A (ja) 2000-09-21 2004-06-17 ローム アンド ハース カンパニー 極性モノマーと多価カチオンとに関わる方法および組成物
AU2001291024B2 (en) 2000-09-21 2006-11-23 Rohm And Haas Company Hydrophobically modified clay polymer nanocomposites
DE102004010155A1 (de) * 2004-02-27 2005-09-15 Basf Ag Verfahren zur Verbesserung der Lagerstabilität von Kompositpartikel-Dispersionen
DE102005000918A1 (de) 2005-01-06 2006-07-20 Basf Ag Verfahren zur Herstellung wässriger Kompositpartikel-Dispersionen
DE102005051756A1 (de) 2005-10-27 2007-05-03 Basf Ag Aminoplastharzfilm, umfassend mit einer Aminoplastharzmischung, enthaltend anorganische Nanopartikel, getränktes Papier
BRPI0714429A2 (pt) 2006-07-17 2013-03-12 Basf Se uso de uma dispersço aquosa, formulaÇço para revestimento para madeira, processo para revestimento de peÇas moldadas com pelo menos uma superfÍcie de madeira, e, peÇa moldada
CA2699793A1 (en) 2007-10-24 2009-04-30 Basf Se Process for preparing an aqueous composite-particle dispersion
JP2011524920A (ja) 2008-06-03 2011-09-08 ビーエーエスエフ ソシエタス・ヨーロピア 二酸化チタンナノ粒子を含む二酸化チタン組成物およびその製造と使用
JP2012501381A (ja) 2008-09-02 2012-01-19 ビーエーエスエフ ソシエタス・ヨーロピア 弾性コーティングにおけるバインダーとしての水性複合粒子分散液の使用
ES2402109T3 (es) * 2009-04-15 2013-04-29 Basf Se Método para la producción de una dispersión acuosa de partículas de compuesto

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505230A1 (de) * 1991-03-22 1992-09-23 Rhone-Poulenc Chimie Neue Mischteile aus Kieselsäure und Polymeren, diese enthaltende filmbindende Zusammensetzungen, sowie daraus hergestellte Folien und Verfahren zur Herstellung
WO2003000760A1 (de) * 2001-06-21 2003-01-03 Basf Aktiengesellschaft Verfahren zur herstellung einer wässrigen dispersion von aus polymerisat und feinteiligem anorganischem feststoff aufgebauten partikeln

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118961A1 (de) 2009-04-15 2010-10-21 Basf Se Verfahren zur herstellung einer wässrigen kompositpartikel-dispersion
JP2012524133A (ja) * 2009-04-15 2012-10-11 ビーエーエスエフ ソシエタス・ヨーロピア 複合粒子の水性分散液を製造する方法
WO2010139679A1 (de) * 2009-06-03 2010-12-09 Basf Se Verfahren zur verbesserung der lagerstabilität von wässrigen kompositpartikel-dispersionen
CN102459419A (zh) * 2009-06-03 2012-05-16 巴斯夫欧洲公司 改进水性复合颗粒分散体储存稳定性的方法
WO2012022667A1 (de) * 2010-08-16 2012-02-23 Basf Se Verfahren zur verbesserung der lagerstabilität von wässrigen kompositpartikel-dispersionen
EP2500383A1 (de) * 2011-03-18 2012-09-19 Henkel AG & Co. KGaA Pigmenthaltige Lackdispersion sowie W/O Emulsionen als Präkursor für die Bereitstellung der Lackdispersion
WO2012126750A3 (de) * 2011-03-18 2013-01-03 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Pigmenthaltige lackdispersionen sowie w/o emulsionen als präkursor für die bereitstellung der lackdispersionen
EP3650507A1 (de) 2018-11-06 2020-05-13 Daw Se Wässrige beschichtungszusammensetzung

Also Published As

Publication number Publication date
KR20100017596A (ko) 2010-02-16
PT2147020E (pt) 2011-05-03
JP5449138B2 (ja) 2014-03-19
ES2363054T3 (es) 2011-07-19
AU2008248731A1 (en) 2008-11-13
BRPI0810838B1 (pt) 2018-11-13
CN101675081A (zh) 2010-03-17
US8268912B2 (en) 2012-09-18
US20100144922A1 (en) 2010-06-10
EP2147020B1 (de) 2011-04-13
PL2147020T3 (pl) 2011-09-30
ATE505490T1 (de) 2011-04-15
BRPI0810838A2 (pt) 2014-10-29
JP2010526198A (ja) 2010-07-29
KR101487042B1 (ko) 2015-01-28
EP2147020A1 (de) 2010-01-27
DE502008003178D1 (de) 2011-05-26
CN101675081B (zh) 2012-10-31
AU2008248731B2 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
EP2205644B1 (de) Verfahren zur herstellung einer wässrigen kompositpartikel-dispersion
EP1401902B1 (de) Verfahren zur herstellung einer wässrigen dispersion von aus polymerisat und feinteiligem anorganischem feststoff aufgebauten partikeln
EP2147020B1 (de) Verfahren zur herstellung einer wässrigen kompositpartikel-dispersion
EP2419456B1 (de) Verfahren zur herstellung einer wässrigen kompositpartikel-dispersion
EP1838740B1 (de) Verfahren zur herstellung wässriger kompositpartikel-dispersionen
EP1235869B1 (de) Verfahren zur herstellung einer wässrigen dispersion von aus polymerisat und feinteiligem anorganischen feststoff aufgebauten partikeln
EP1720949B1 (de) Verfahren zur verbesserung der lagerstabilität von kompositpartikel-dispersionen
EP1431356B1 (de) Verwendung wässriger Dispersionen aus Polymerisat und feinteiligem anorganischen Feststoff zur Grundierung mineralischer Untergründe
EP2271717B1 (de) Verfahren zur verbesserung der lagerstabilität von wässrigen kompositpartikel-dispersionen
EP1809707B1 (de) Beschichtungsmassen
EP2044130B1 (de) Verwendung wässriger kompositpartikel-dispersionen als bindemittel in holzbeschichtungen
EP1216262A1 (de) Verfahren zur herstellung einer wässrigen dispersion von aus polymerisat und feinteiligem anorganischen feststoff aufgebauten partikeln
WO2010139679A1 (de) Verfahren zur verbesserung der lagerstabilität von wässrigen kompositpartikel-dispersionen
EP2605853B1 (de) Verfahren zur verbesserung der lagerstabilität von wässrigen kompositpartikel-dispersionen
EP2324084A1 (de) Verwendung wässriger kompositpartikel-dispersionen als bindemittel in elastischen beschichtungen
DE19950464A1 (de) Verfahren zur Herstellung einer wäßrigen Dispersion von aus Polymerisat und feinteiligem anorganischen Feststoff aufgebauten Partikeln
DE10000281A1 (de) Verfahren zur Herstellung einer wäßrigen Dispersion von aus Polymerisat und feinteiligem anorganischen Feststoff aufgebauten Partikeln

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880014629.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08749776

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008749776

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12598202

Country of ref document: US

Ref document number: 2008248731

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010506891

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008248731

Country of ref document: AU

Date of ref document: 20080428

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 7087/CHENP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20097025233

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0810838

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091029