WO2008135012A1 - Gasdynamische druckwellenmaschine - Google Patents

Gasdynamische druckwellenmaschine Download PDF

Info

Publication number
WO2008135012A1
WO2008135012A1 PCT/DE2008/000693 DE2008000693W WO2008135012A1 WO 2008135012 A1 WO2008135012 A1 WO 2008135012A1 DE 2008000693 W DE2008000693 W DE 2008000693W WO 2008135012 A1 WO2008135012 A1 WO 2008135012A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
pressure wave
wave machine
machine according
rotor
Prior art date
Application number
PCT/DE2008/000693
Other languages
English (en)
French (fr)
Inventor
Georg Glitz
Urs Wenger
Christian Smatloch
Original Assignee
Benteler Automobiltechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Automobiltechnik Gmbh filed Critical Benteler Automobiltechnik Gmbh
Priority to KR1020097015513A priority Critical patent/KR101095123B1/ko
Priority to US12/377,057 priority patent/US20100154413A1/en
Priority to JP2010506796A priority patent/JP4938889B2/ja
Priority to EP08748769A priority patent/EP2150706B1/de
Priority to DE502008001600T priority patent/DE502008001600D1/de
Publication of WO2008135012A1 publication Critical patent/WO2008135012A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F13/00Pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/42Engines with pumps other than of reciprocating-piston type with driven apparatus for immediate conversion of combustion gas pressure into pressure of fresh charge, e.g. with cell-type pressure exchangers

Definitions

  • the invention relates to a gas-dynamic pressure wave machine for charging an internal combustion engine according to the features in the preamble of patent claim 1.
  • Charging systems that generate gas-dynamic processes in closed gas channels and use them for charging are generally referred to as pressure wave superchargers or pressure wave machines.
  • the cell rotors used in pressure wave machines are made of cast material.
  • the cell rotors are cylindrical and usually have axially straight, cross-section constant running channels extending from the hot gas to the cold gas side. It is known to actively drive the rotor in pressure wave chargers, which are used as charge air compressors for internal combustion engines.
  • EP 0 235 609 A1 also includes a freewheeling device driven by the gas forces Pressure wave loader to the prior art.
  • the cell rotor has axially parallel or obliquely to the rotor axis or helically wound cell separation walls. The drive of the cell rotor is effected by the action of the cell walls by high-pressure exhaust gases, which open in the rotor housing via gas channels at a corresponding loading angle and set by the entry of the exhaust gas, the cell rotor in rotation.
  • a pressure exchanger with a frusto-conical rotor is known.
  • the radial height of the individual rotor cells varies in the longitudinal direction of the rotor.
  • EP 0 431 433 A1 a pressure exchanger for an internal combustion engine is shown, wherein the pressure exchanger should have an increased flushing energy.
  • the individual cells of the cell rotor should generally have a constant cross section along their longitudinal axes, which only succeeds due to the inclination of the cells with respect to the longitudinal axis of the rotor in that the cell height decreases.
  • Aerodynamic pressure wave machines are also known from DE 1 428 029 B for the state of the art, in which cylindrical rotors are used.
  • the individual cells may be connected to a shroud and a hub mechanically, by welding or by soldering. Also, the production of cells from box sections or a meander-like curved band is possible. From GB 1 058 577 A it is known to provide several concentric cell rings. There are also different approaches to cell geometry. In GB 920 624 A it is proposed that Build cell dividing walls from Z-shaped bent sheets.
  • the individual cells may also be configured honeycomb, as shown in GB 840 408 A. When the cells are arranged in a plurality of concentric rings, it is possible according to the teaching of GB 920 908 to provide cell cross-sections which differ from ring to ring.
  • EP 0 143 956 A1 proposes to coat the cells of the cellular wheel with a catalyst material.
  • the problem with today's systems is the thermal load collective, which is subject to the entire component geometry of the cell rotor. As can be found on the hot gas side of the cell rotor temperatures up to 1100 0 C and the cold-gas side temperatures of up to 200 0 C. A thermally induced distortion of components and a resulting sub-optimal efficiency are the result. Problems occur in particular in the gap dimensional accuracy between the gas-conducting elements.
  • the gas inlet angle are not optimal.
  • Cast cell rotors also have a high moment of inertia, due to relatively large wall thicknesses.
  • the casting technology production of fine cell structures is very expensive. Cast manufacturing also requires relatively expensive inspection procedures and high reject rates.
  • the invention is based on the object, a gas-dynamic pressure wave machine for charging an internal combustion engine, in particular with regard to the design of the Cell rotor to optimize in terms of manufacturing technology and to increase the efficiency of the pressure wave machine.
  • the essence of the invention can be seen in the fact that the outer circumference of the cell rotor increases from its exhaust side to its charge air side.
  • This, in effect, non-cylindrical design of the cell rotor brings with it the possibility of being built, i. non-cast, cell rotors with high manufacturing accuracy cost-effectively.
  • the reason is that the individual cell dividing walls between adjacent cells, while maintaining close dimensional tolerances, in particular while maintaining close joining gaps, with the jacket elements radially limiting the cells inside and outside, i. on the outside with an outer sheath and the inside with an inner sheath, can be connected.
  • a previously manufactured outer sheath can be slipped over the individual cell walls as it were, so that the joint gap becomes minimal due to displacement of the outer sheath or of the inner sheath in the longitudinal extent of the cell rotor, which results in a cost-effective, reliable and very precise connection the individual components, in particular by soldering or fusion welding processes enabled.
  • the jacket elements of the cell rotor can therefore be made somewhat longer than the individual cell dividing walls in order to ensure by Relatiwerlagerung in the direction of the common longitudinal axis that the joint gap is as small as possible.
  • the non-cylindrical outer contour of the cell rotor also allows self-centering of the jacket elements during the joining process.
  • you wanted to build cylindrical cell rotors you had to work much tighter Tolerance ranges are met in order to realize circumferentially consistently small joining gaps can.
  • the cell rotor is preferably formed frusto-conical. This information refers to its external geometry.
  • the shape of the outer geometry also determines the internal geometry of the cell rotor, since the height of a cell measured in the radial direction should remain constant over the longitudinal extent of the cell rotor. Nevertheless, the cross-sectional area of the individual cells increases from the exhaust side to the charge air side, since the annular area of a cell ring from the charge air side to the exhaust side also increases, but the number of cells remains constant. Increasing the cross-sectional area toward the exhaust side results in a reduction in the velocity of the combustion gas within a cell and thus in a pressure increase, which can increase the efficiency and charge level achieved by the pressure wave machine.
  • the advantages of the invention are not only in frustoconical cell rotors to bear, but also when the outer jacket of the cell rotor is curved in the longitudinal extension of the cell rotor and, accordingly, all cells are curved in their longitudinal extent, in the sense that they are on the cold gas side at a greater distance to the axis of rotation of the cell rotor run as on the acted upon by exhaust gas hot gas side.
  • the curvature may be constant over the length of the cell rotor.
  • the curvature of the outer shell increases from the exhaust side to the charge air side.
  • the lateral surface can therefore be parabolically curved in the longitudinal extent of the cell rotor or form a parabolic rotational body.
  • the angle between the axis of rotation or longitudinal axis of the cell rotor and its outer jacket can be up to 50 °.
  • the angle may vary depending on the curvature or slope of the outer shell. The angle is preferably greater than 20 °.
  • the cell rotor can be assembled from semi-finished products of different materials.
  • metallic materials in particular steels of different chemical composition with different mechanical properties
  • the individual cells can be formed from thin sheet metal elements.
  • the gas guide grid formed of the cell dividing walls can be made of bent, thin sheet metal elements and connected to the outer and inner supporting structural elements, i. an outer sheath and an inner sheath to be connected.
  • the finely structured cell dividing walls preferably consist of a thin stainless steel foil with wall thicknesses that can be in the range of 0.05-1.0 mm.
  • the jacket may be formed from a conical expansion of a cylindrical tubular component, i. by cold forming.
  • the selection of materials suitable for the requirements enables a reduction of the mass and in relation to cast components a significant reduction of the mass moment of inertia.
  • the obstruction and blind surfaces resulting from the individual cell dividing walls can be reduced as much as possible, with an optimum being sought between as many cells as possible and the smallest possible blind surface or obstructive surface.
  • the optimal ratio of the cross-sectional areas of the cells to the cross-sectional area of the individual cell dividing walls is essentially material-dependent, since the individual cell dividing walls are subject to strong mechanical and thermal stresses.
  • the design of the cell rotor according to the invention is closed on the periphery.
  • the rotor can be 1 to 3 concentric cell rings, which are separated by concentric shell elements, provided.
  • the jacket element separating the cell rings is at the same time the outer jacket for the inner cell ring and the inner jacket for the outer cell ring.
  • a cell rotor usually has equal cell cross-sections over its entire circumference.
  • the cell rotor according to the invention it is possible to build pressure wave machines tuned to the respective internal combustion engine by arranging irregularly distributed cells over the circumference of the cell rotor in the circumferential extent. In other words, the noise development can be extremely limited or even prevented by varying the distances between the individual cell dividing walls.
  • the sound pressure wave from the exhaust tract of the internal combustion engine can be chopped up by the plurality of individual cells, so that the outlet side of the cell a uniform exit gas flow is formed, which has only small pressure fluctuations and thus minimal acoustic emissions.
  • the particular advantage over cell rotors produced by casting technology is that, by changing the position of individual cell dividing walls, resonant vibrations can be easily or at the same time inexpensively restricted or prevented.
  • an irregular sequence of cells of different widths or different circumferential extents is provided.
  • two cells of different widths are uneven, that is, distributed as irregularly as possible over the circumference of the cell rotor Repetitions and thus the possibility to be stimulated to resonant vibrations to avoid.
  • the irregular distribution of the cells over the circumference refers not only to a single cell ring, but to the cells of all cell rings. In this case, it may be favorable if the relative deviations in the circumferential extent between the cells of each cell ring are the same. If the cells of a cell ring extend, for example, in one above 2 ° and in the other case above 3.5 °, then this ratio also applies to the cells of other cell rings.
  • the cells in cross-section are circular ring pieces.
  • balancing rings may be provided, which are preferably mounted on both ends of the cell wheel.
  • the balancing rings serve on the one hand to support the filigree cell system and also fulfill a sealing function to the adjacent exhaust pipes or charge air ducts. About the balancing rings an additional fixing of the outer jacket is possible.
  • the balancing rings also serve to compensate for uneven mass distributions.
  • the surface of the cell dividing walls is specifically roughened to minimize the gas friction on the cell dividing walls.
  • This roughened surface structure leads to a fluidic boundary layer minimization and to an improvement of the flow conditions within the individual cells. Also, this feature of the roughened surface structure can be relatively easily and inexpensively realized in built cell wheels in contrast to casting solutions.
  • the cell partitions at least partially with a catalytic coating which already causes additional exhaust gas purification processes during the charging of the exhaust gas.
  • the cell rotor according to the invention can rotate with respect to the inlet angle of the gas flow through obliquely to the direction of rotation cell walls be offset.
  • the cell walls can be parallel to the axis or oblique to the rotor axis.
  • Another advantage of the pressure wave machine according to the invention is that with the same length of the gas channels or the individual cells, the overall length of the cell rotor can be shortened overall. This effect is all the more pronounced, the greater the angle between the central longitudinal axis of the cell rotor and the outer jacket.
  • the very decisive advantage of the invention can be seen in the improved manufacturability of the cell rotor.
  • the materially and / or positively connected to the outer shell or the inner jacket cell walls can be added inexpensively with high precision.
  • the cell system can be mechanically connected to the adjacent jacket elements.
  • brazing processes are considered.
  • Possible dimensional differences can be largely reduced by non-cylindrical design, in particular by conicity of the components.
  • a Nachjustieriana due to the self-centering of individual components of the pressure waves of the cell rotor is possible, as well as process changes in the production of the cell rotor and geometry changes are flexible and possible in less time.
  • the supporting inner system of the cell rotor can be made by machining.
  • This is a shaft with corresponding storage means, on which corresponding sealing means are provided.
  • manufacturing methods such as bending, deep-drawing or hydroforming can be used for producing the individual components of the cell rotor, with the choice of the production method being essentially dependent on the component geometry.
  • the choice of the production method being essentially dependent on the component geometry.
  • the cell dividing walls are alternately connected to one another in the region of the outer jacket and in the region of the inner jacket, and components of one in the circumferential direction of the cell rotor extending, meandering shaped cell plate are.
  • Such a cell plate is brought in the assembly due to the small wall thicknesses in the desired non-cylindrical shape, in particular a cone shape, and joined with the outer shell and the inner shell.
  • double Z-shaped configured cell walls are conceivable, the middle cross section of such configured cell walls so to speak forms a sheath extending between the radially outer and radially inner region of the cell walls or cells and thus effectively forms a separation jacket.
  • the cell dividing walls may be part of cell elements profiled in a U-shaped cross-section, i. are generally part of open hollow sections.
  • the cell dividing walls are part of thin-walled, closed hollow profiles.
  • a number of square profiles could be spaced apart around the circumference.
  • Figure 1 shows a longitudinal section through a rotor of a pressure wave machine and characters
  • FIG. 1 shows a cell rotor 1, which forms the core component of a gas-dynamic pressure wave machine for charging an internal combustion engine.
  • the cell rotor 1 is rotatably mounted in a manner not shown in a housing about its longitudinal axis LA. It is located between a charge air supply line and a combustion gas exhaust line.
  • the arrow A indicates the inflow direction of charge air.
  • the air taken up inside the cell rotor 1 is compressed by inflowing exhaust gases flowing into the cell rotor 1 from the opposite side in the direction of the arrow B.
  • the compressed intake air is expelled in the direction of the arrow C.
  • the exhaust gas exits in the direction of the arrow D from the cell rotor 1.
  • the cell rotor 1 has a peripherally closed outer shell 2, which is formed in this embodiment, cone-shaped. As a result, the cell rotor as a whole has the shape of a truncated cone.
  • the outer periphery of the cell rotor increases from its exhaust side 3 to its charge air side 4 towards.
  • the cell rotor is mounted on a shaft 5, which may be coupled in a manner not shown with drive means.
  • the shaft 5 carries a frusto-conical hub 6, to which a cell structure of the cell rotor 1 is attached.
  • the gas-permeable areas of the cell rotor 1 are divided into two concentric cell rings 7, 8.
  • the cell rings 7, 8 are each closed in the radial direction, so that a gas exchange can take place only in the longitudinal orientation of the cell rotor 1.
  • the height of the individual cells measured in the radial direction is constant. That is, the outer jacket 2 is parallel to an inner jacket 9 of the outer cell ring.
  • this inner casing 9 is to be regarded as the outer casing 9 'which, together with a further radially inner inner casing 10 radially inner cell ring 8 limited in the radial direction.
  • the jacket elements 2, 9, 10 are concentric with one another.
  • the cell rotor 1 has a multiplicity of cells 11, 12, 13, 14. Between the individual cells 11-14 are cell dividing walls 15, which are formed from sheet metal elements. The cell dividing walls 11-15 are preferably materially connected by soldering or fusion welding to the respective inner shell 9, 10 or the respective outer shell 2, 9 '.
  • each cell ring 7, 8 there are two cells of different circumferential extent.
  • the respective cell types 11, 12; 13, 14 are preferably arranged distributed regularly over the circumference of the cell rotor 1.
  • the angle W is additionally drawn, which is measured between the outer shell 2 and the longitudinal axis LA of the cell rotor 1 and a maximum of 50 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

Eine gasdynamische Druckwellenmaschine zur Aufladung einer Verbrennungskraftmaschine mit einem in einem Gehäuse drehbar gelagerten Zellenrotor (1), der zwischen einer Zuleitung für Ladeluft und einer Abgasleitung für Verbrennungsgase angeordnet ist, wobei der Außenumfang des Zellenrotors (1) von seiner Abgasseite (3) zu seiner Ladeluftseite (4) hin zunimmt. Die in Radialrichtung gemessene Höhe einer Zelle des Zellenrotors (1) bleibt in Längserstreckung des Zellenrotors (1) konstant, während die Querschnittsfläche der einzelnen Zellen von der Abgasseite zur Ladeluftseite hin zunimmt.

Description

Gasdynamische Druckwellenmaschine
Die Erfindung betrifft eine gasdynamische Druckwellenmaschine zur Aufladung einer Verbrennungskraftmaschine gemäß den Merkmalen im Oberbegriff des Patentanspruchs 1.
Verbrennkraftmaschinen für Kraftfahrzeuge werden zur Erhöhung ihres Wirkungsgrades aufgeladen, d.h. der Füllungsgrad wird verbessert. Aufgeladene Motoren haben bei geringerem Hubraum einen geringeren spezifischen Verbrauch als Saugmotoren gleicher Leistung.
Aufladesysteme, die gasdynamische Prozesse in geschlossenen Gaskanälen erzeugen und zur Aufladung nutzen, werden im Allgemeinen als Druckwellenlader oder Druckwellenmaschinen bezeichnet. Üblicherweise werden die bei Druckwellenmaschinen zum Einsatz kommenden Zellenrotoren aus gegossenem Material hergestellt. Die Zellenrotoren sind zylindrisch gestaltet und besitzen zumeist axial gerade, querschnittskonstant verlaufende Kanäle, die sich von der Heißgas- zur Kaltgasseite erstrecken. Es ist bekannt, bei Druckwellenladern, die als Ladeluftverdichter für Verbrennungsmotoren eingesetzt werden, den Rotor aktiv anzutreiben. Durch die EP 0 235 609 A1 zählt allerdings auch ein durch die Gaskräfte angetriebener, freilaufender Druckwellenlader zum Stand der Technik. Der Zellenrotor weist achsparallele oder schräg zur Rotorachse liegende oder schraubenförmig verwundene Zellentrennwände auf. Der Antrieb des Zellenrotors erfolgt durch die Beaufschlagung der Zellentrennwände durch Hochdruckabgase, die über Gaskanäle in einem entsprechenden Beaufschlagungswinkel in das Rotorgehäuse einmünden und durch den Eintritt des Abgases den Zellenrotor in Rotation versetzen.
Aus der DD 285 397 A5 ist eine gasdynamische Druckwellenmaschine mit nicht konstantem Zellenquerschnitt bekannt. Durch den sich verändernden Querschnitt sollen die wichtigsten gasdynamischen Parameter gegenüber denen von zylindrischen Rotoren verbessert werden. Eine Änderung der radialen Zellenhöhe mit der Rotorlänge x um den Betrag 2axb mit a=0,03 bis 0,1 und b=1 ,5 bis 2,5 soll verbesserte Ergebnisse liefern.
Aus der DE 690 08 541 T2 ist ein Druckaustauscher mit einem kegelstumpfförmigen Rotor bekannt. Die radiale Höhe der einzelnen Rotorzellen variiert in Längsrichtung des Rotors. In der EP 0 431 433 A1 wird ein Druckaustauscher für eine Verbrennungskraftmaschine aufgezeigt, wobei der Druckaustauscher eine erhöhte Spülenergie aufweisen soll. Die einzelnen Zellen des Zellenrotors sollen entlang ihrer Längsachsen in der Regel einen konstanten Querschnitt aufweisen, was auf Grund der Neigung der Zellen gegenüber der Längsachse des Rotors nur dadurch gelingt, dass die Zellenhöhe abnimmt.
Aerodynamische Druckwellenmaschinen zählen auch durch die DE 1 428 029 B zum Stand der Technik, bei welcher zylindrische Rotoren zum Einsatz kommen. Die einzelnen Zellen können mit einem Deckband und einer Nabe mechanisch, durch Schweißen oder durch Löten verbunden sein. Auch ist die Fertigung der Zellen aus Kastenprofilen oder einem mäanderartig gebogenen Band möglich. Aus der GB 1 058 577 A ist es bekannt, mehrere konzentrische Zellenringe vorzusehen. Auch hinsichtlich der Zellengeometrie gibt es verschiedene Ansätze. In der GB 920 624 A wird vorgeschlagen, die Zellentrennwände aus Z-förmig gebogenen Blechen aufzubauen. Die einzelnen Zellen können auch wabenartig konfiguriert sein, wie in der GB 840 408 A aufgezeigt wird. Wenn die Zellen in mehreren konzentrischen Ringen angeordnet sind, ist es entsprechend der Lehre der GB 920 908 möglich, Zellenquerschnitte vorzusehen, die sich von Ring zu Ring unterscheiden.
Zur Verbesserung der katalytischen Effekte für die Abgase bei mittels
Druckwellenmaschinen aufgeladenen Verbrennungsmotoren wird in der
EP 0 143 956 A1 vorgeschlagen, die Zellen des Zellenrades mit einem Katalysator-Material zu beschichten.
Problematisch an heutigen Systemen ist das thermische Belastungskollektiv, dem die gesamte Bauteilgeometrie des Zellenrotors unterliegt. So finden sich auf der Heißgasseite des Zellenrotors Temperaturen von bis zu 1.100 0C und auf der Kaltgasseite Temperaturen von maximal 200 0C. Ein thermisch verursachter Bauteilverzug und ein daraus resultierender suboptimaler Wirkungsgrad sind die Folge. Probleme treten insbesondere bei der Spaltmaßhaltigkeit zwischen den gasführenden Elementen auf.
Bei den regelmäßig axial gerade verlaufenden Gaskanälen sind die Gaseintrittswinkel nicht optimal. Gegossene Zellenrotoren besitzen zudem ein hohes Trägheitsmoment, bedingt durch relativ große Wandstärken. Zudem ist die gießtechnische Herstellung feiner Zellstrukturen sehr kostenintensiv. Die Gussfertigung macht zudem relativ teure Kontrollverfahren erforderlich und bringt hohe Ausschussraten mit sich.
Auf Grund der fertigungstechnischen Schwierigkeiten und unter Berücksichtigung der Anforderungsprofile an Druckwellenlader ist die wirtschaftliche Herstellung eines Zellenrotors unter Berücksichtigung aller Anforderungen im industriellen Maßstab sehr problematisch.
Hiervon ausgehend liegt der Erfindung die Aufgabe zu Grunde, eine gasdynamische Druckwellenmaschine zur Aufladung einer Verbrennungskraftmaschine, insbesondere im Hinblick auf die Gestaltung des Zellenrotors, in fertigungstechnischer Hinsicht zu optimieren und den Wirkungsgrad der Druckwellenmaschine zu erhöhen.
Diese Aufgabe ist bei einer gasdynamischen Druckwellenmaschine mit den Merkmalen des Patentanspruchs 1 gelöst.
Vorteilhafte Weiterbildungen des Erfindungsgedankens sind Gegenstand der abhängigen Patentansprüche.
Der Kerngedanke der Erfindung ist darin zu sehen, dass der Außenumfang des Zellenrotors von seiner Abgasseite zu seiner Ladeluftseite hin zunimmt. Diese im Ergebnis nicht-zylindrische Gestaltung des Zellenrotors bringt die Möglichkeit mit sich, gebaute, d.h. nicht-gegossene, Zellenrotoren mit hoher Fertigungsgenauigkeit kostengünstig herzustellen. Der Grund ist, dass die einzelnen Zellentrennwände zwischen einander benachbarten Zellen unter Einhaltung enger Maßtoleranzen, insbesondere unter Einhaltung enger Fügespalte, mit den die Zellen radial innen- und außenseitig begrenzenden Mantelelementen, d.h. außenseitig mit einem Außenmantel und innenseitig mit einem Innenmantel, verbunden werden können. Durch die nicht-zylindrische Außenkontur des Zellenrotors kann ein zuvor gefertigter Außenmantel gewissermaßen über die einzelnen Zellentrennwände gestülpt werden kann, so dass durch Verlagerung des Außenmantels oder auch des Innenmantels in Längserstreckung des Zellenrotors der Fügespalt minimal wird, was ein kostengünstiges, zuverlässiges und sehr präzises Verbinden der einzelnen Bauteile, insbesondere durch Lötprozesse oder Schmelzschweißprozesse, ermöglicht. Die Mantelelemente des Zellenrotors können daher etwas länger gestaltet sein als die einzelnen Zellentrennwände, um durch Relatiwerlagerung in Richtung der gemeinsamen Längsachse zu gewährleisten, dass der Fügespalt möglichst klein wird.
Die nicht-zylindrische Außenkontur des Zellenrotors ermöglicht zudem eine Selbstzentrierung der Mantelelemente während des Fügevorgangs. Wollte man zylindrische Zellenrotoren bauen, mussten hingegen deutlich engere Toleranzbereiche eingehalten werden, um umfangsseitig gleich bleibend geringe Fügespalte realisieren zu können.
Der Zellenrotor ist vorzugsweise kegelstumpfförmig ausgebildet. Diese Angabe bezieht sich auf seine Außengeometrie. Die Form der Außengeometrie bestimmt auch die Innengeometrie des Zellenrotors, da die in Radialrichtung gemessene Höhe einer Zelle über die Längserstreckung des Zellenrotors konstant bleiben soll. Dennoch nimmt die Querschnittsfläche der einzelnen Zellen von der Abgasseite zur Ladeluftseite hin zu, da die Kreisringfläche eines Zellenrings von der Ladeluftseite zur Abgasseite ebenfalls zunimmt, wobei die Anzahl der Zellen jedoch konstant bleibt. Die Vergrößerung der Querschnittsfläche in Richtung zur Abgasseite führt zu einer Reduzierung der Geschwindigkeit des Verbrennungsgases innerhalb einer Zelle und damit zu einem Druckanstieg, wodurch der durch die Druckwellenmaschine erreichte Wirkungs- und Aufladegrad erhöht werden kann.
Die erfindungsgemäßen Vorteile kommen nicht nur bei kegelstumpfförmigen Zellenrotoren zum Tragen, sondern auch dann, wenn der Außenmantel des Zellenrotors in Längserstreckung des Zellenrotors gekrümmt ist und dementsprechend auch sämtliche Zellen in ihrer Längserstreckung gekrümmt sind, in dem Sinne, dass sie auf der Kaltgasseite im größeren Abstand zur Rotationsachse des Zellenrotors verlaufen als auf der von Abgas beaufschlagten Heißgasseite. Die Krümmung kann über die Längserstreckung des Zellenrotors konstant sein. Vorzugsweise nimmt die Krümmung des Außenmantels von der Abgasseite zur Ladeluftseite hin zu. Die Mantelfläche kann daher in Längserstreckung des Zellenrotors parabolisch gekrümmt sein bzw. einen parabolischen Rotationskörper bilden. Theoretisch ist es auch möglich, gerade oder gekrümmte Kurvenabschnitte, d.h. solche mit konstanter und variabler Steigung, aneinander zu reihen mit dem Ergebnis, dass der Außenumfang des Zellenrotors von seiner Abgasseite zu seiner Ladeluftseite hin zunimmt. In jedem Fall soll aber die Höhe der Zellen konstant bleiben. In praktischer Umsetzung kann der Winkel zwischen der Rotationsachse bzw. Längsachse des Zellenrotors und seinem Außenmantel bis zu 50° betragen. Der Winkel kann in Abhängigkeit von der Krümmung bzw. Steigung des Außenmantels variieren. Der Winkel ist vorzugsweise größer als 20°.
Der Zellenrotor kann aus Halbzeugen unterschiedlicher Werkstoffe zusammengebaut sein. Das heißt es können insbesondere metallische Werkstoffe, insbesondere Stähle unterschiedlicher chemischer Zusammensetzung mit unterschiedlichen mechanischen Eigenschaften, zum Einsatz kommen. Beispielsweise können die einzelnen Zellen aus Dünnblechelementen gebildet sein. Hierbei kann das aus den Zellentrennwänden gebildete Gasleitgitter aus gebogenen, dünnen Blechelementen hergestellt und mit den äußeren und inneren tragenden Strukturelementen, d.h. einem Außenmantel und einem Innenmantel, verbunden sein. Die feinstrukturierten Zellentrennwände bestehen bevorzugt aus einer dünnen Edelstahlfolie mit Wandstärken, die in einem Bereich von 0,05 - 1 ,0 mm liegen können.
Der Mantel kann aus einem durch konisches Aufweiten eines zylindrischen Rohrbauteils, d.h. durch Kaltumformung, hergestellt werden. Die Auswahl anforderungsgerechter Werkstoffe ermöglicht eine Reduzierung der Masse und in Relation zu Gussbauteilen eine signifikante Reduzierung des Massenträgheitsmoments. Gleichzeitig können die durch die einzelnen Zellentrennwände resultierenden Versperr- und Blindflächen weitestgehend reduziert werden, wobei ein Optimum zwischen möglichst vielen Zellen und möglichst geringer Blindfläche bzw. Versperrfläche angestrebt wird. Das optimale Verhältnis der Querschnittsflächen der Zellen zu der Querschnittsfläche der einzelnen Zellentrennwände ist im Wesentlichen materialabhängig, da die einzelnen Zellentrennwände starken mechanischen und thermischen Belastungen unterliegen.
Da für die Zellentrennwände Halbzeuge mit sehr geringer Wandstärke eingesetzt werden, ist die erfindungsgemäße Bauform des Zellenrotors umfangsseitig geschlossen. Je nach Größe des Rotors können 1 bis 3 konzentrische Zellenringe, die durch konzentrische Mantelelemente voneinander getrennt sind, vorgesehen sein. Bei mehreren Zellenringen ist das die Zellenringe trennende Mantelelement gleichzeitig Außenmantel für den inneren Zellenring und Innenmantel für den äußeren Zellenring.
Ein weiterer wesentlicher Aspekt der Erfindung ist die reduzierte Geräuschentwicklung der Druckwellenmaschine. Ein Zellenrotor besitzt üblicherweise über seinem gesamten Umfang gleich große Zellenquerschnitte. Es besteht allerdings die Gefahr, dass es in Verbindung mit Verbrennungskraftmaschinen zu stehenden Wellen innerhalb des Zellenrotors und dadurch zu Lärmentwicklung durch Resonanzschwingungen kommt. Bei dem erfindungsgemäßen Zellenrotor ist es möglich, auf die jeweilige Verbrennungskraftmaschine abgestimmte Druckwellenmaschinen zu bauen, indem in der Umfangserstreckung voneinander abweichende Zellen unregelmäßig über den Umfang des Zellenrotors verteilt angeordnet werden. Mit anderen Worten kann die Lärmentwicklung durch Variation der Abstände zwischen den einzelnen Zellentrennwänden extrem eingeschränkt oder sogar verhindert werden. Durch die Variation der Abstände kann die Schalldruckwelle aus dem Abgastrakt der Verbrennungskraftmaschine durch die Vielzahl der einzelnen Zellen gewissermaßen zerhackt werden, so dass austrittsseitig des Zellenrads ein gleichmäßiger Austrittsgasstrom entsteht, der nur geringe Druckschwankungen und damit minimale Schallemissionen aufweist. Der besondere Vorteil gegenüber gusstechnisch hergestellten Zellenrotoren ist, dass durch Veränderung der Position einzelner Zellentrennwände Resonanzschwingungen fertigungstechnisch einfach und zugleich kostengünstig eingeschränkt oder verhindert werden können.
Bezüglich der Verteilung der Zellen über den Umfang ist eine möglichst unregelmäßige Abfolge von Zellen unterschiedlicher Breite bzw. unterschiedlicher Umfangserstreckung vorgesehen. Im einfachsten Fall sind zwei unterschiedlich breite Zellen ungleichmäßig, d.h. mit einem möglichst unregelmäßigen Muster, über den Umfang des Zellenrotors verteilt, um Wiederholungen und damit die Möglichkeit, zu Resonanzschwingungen angeregt zu werden, zu vermeiden. Die unregelmäßige Verteilung der Zellen über den Umfang bezieht sich nicht nur auf einen einzelnen Zellenring, sondern auf die Zellen aller Zellenringe. Hierbei kann es günstig sein, wenn die relativen Abweichungen in der Umfangserstreckung zwischen den Zellen jeweils eines Zellenrings gleich sind. Wenn sich die Zellen eines Zellenrings beispielsweise in einem über 2° und im anderen Fall über 3,5° erstrecken, so gilt dieses Verhältnis auch für die Zellen weiterer Zellenringe. Bevorzugt handelt es sich bei den Zellen im Querschnitt um Kreisringstücke.
Bei dem erfindungsgemäßen Zellenrotor können Wuchtringe vorgesehen sein, die bevorzugt auf beiden Enden des Zellenrads montiert werden. Die Wuchtringe dienen einerseits zur Abstützung des filigranen Zellensystems und erfüllen des Weiteren eine Dichtfunktion zu den angrenzenden Abgasleitungen bzw. Ladeluftleitungen. Über die Wuchtringe ist ein zusätzliches Fixieren des Außenmantels möglich. Die Wuchtringe dienen auch dazu, ungleichmäßige Masseverteilungen zu kompensieren.
Ferner wird als vorteilhaft angesehen, wenn die Oberfläche der Zellentrennwände zur Minimierung der Gasreibung an den Zellentrennwänden gezielt angeraut ist. Diese angeraute Oberflächenstruktur führt zu einer strömungstechnischen Grenzschichtminimierung und zu einer Verbesserung der Strömungsverhältnisse innerhalb der einzelnen Zellen. Auch dieses Merkmal der angerauten Oberflächenstruktur lässt sich bei gebauten Zellenrädern relativ einfach und kostengünstig realisieren im Gegensatz zu Gusslösungen.
Ferner ist es möglich, die Zellentrennwände zumindest teilweise mit einer katalytischen Beschichtung zu versehen, die bereits während der Aufladung des Abgases weitere Abgasreinigungsprozesse bewirkt.
Der erfindungsgemäße Zellenrotor kann hinsichtlich des Eintrittswinkels des Gasstroms durch schräg zur Drehrichtung verlaufende Zellenwände in Drehung versetzt werden. Die Zellenwände können achsparallel oder schräg zur Rotorachse liegen.
Ein weiterer Vorteil der erfindungsgemäßen Druckwellenmaschine ist, dass bei gleichbleibender Länge der Gaskanäle bzw. der einzelnen Zellen die Baulänge des Zellenrotors insgesamt verkürzt werden kann. Dieser Effekt ist umso ausgeprägter, je größer der Winkel zwischen der Mittellängsachse des Zellenrotors und dem Außenmantel ist.
Der ganz entscheidende Vorteil der Erfindung ist in der verbesserten Herstellbarkeit des Zellenrotors zu sehen. Die stoffschlüssig und/oder formschlüssig mit dem Außenmantel bzw. dem Innenmantel verbundenen Zellentrennwände lassen sich mit hoher Präzision kostengünstig fügen. Das Zellensystem kann beispielsweise mechanisch mit den benachbarten Mantelelementen verbunden werden. Als besonders günstig werden Lötprozesse angesehen. Mögliche Maßdifferenzen lassen sich durch nichtzylindrische Ausgestaltung, insbesondere durch Konizität der Bauteile, weitestgehend reduzieren. Zudem ist eine Nachjustierbarkeit auf Grund der Selbstzentrierung einzelner Komponenten der Druckwellen des Zellenrotors möglich, ebenso wie Prozessänderungen bei der Herstellung des Zellenrotors sowie Geometrieveränderungen flexibler und in kürzerer Zeit möglich sind.
Das tragende Innensystem des Zellenrotors kann durch spanende Fertigung hergestellt werden. Es handelt sich hierbei um eine Welle mit entsprechenden Lagerungsmitteln, an der auch entsprechende Abdichtmittel vorgesehen sind.
Grundsätzlich können zur Herstellung der einzelnen Komponenten des Zellenrotors Herstellungsverfahren wie Biegen, Tiefziehen oder Hydroformen zum Einsatz kommen, wobei die Wahl des Fertigungsverfahrens wesentlich von der Bauteilgeometrie abhängig ist. Hierbei bestehen insbesondere bei der Ausbildung der Zellen vielfältige Möglichkeiten. Als besonders günstig wird es angesehen, wenn die Zellentrennwände abwechselnd im Bereich des Außenmantels und im Bereich des Innenmantels miteinander verbunden sind und Bestandteile eines sich in Umfangsrichtung des Zellenrotors erstreckenden, mäanderförmig gestalteten Zellenblechs sind. Ein solches Zellenblech wird bei der Montage auf Grund der geringen Wandstärken in die gewünschte nicht-zylindrische Form, insbesondere eine Kegelform, gebracht und mit dem Außenmantel sowie dem Innenmantel gefügt.
Alternativ können auch einzelne Zellentrennwände verbaut werden, insbesondere solche, die im Querschnitt Z-förmig konfiguriert sind. Der jeweils obere und untere Schenkel einer Z-förmigen Zellentrennwand dient zur Fügung mit dem Außenmantel bzw. dem Innenmantel.
Auch doppelt-Z-förmig konfigurierte Zellentrennwände sind denkbar, wobei der mittlere Querschnitt derartig konfigurierter Zellentrennwände gewissermaßen einen Mantel bildet, der sich zwischen dem radial außenliegenden und radial innenliegenden Bereich der Zellentrennwände bzw. der Zellen erstreckt und somit gewissermaßen einen Trennmantel bildet.
Grundsätzlich ist es auch möglich, dass die Zellentrennwände Bestandteil von im Querschnitt U-förmig profilierten Zellenelementen sind, d.h. ganz allgemein Bestandteil von offenen Hohlprofilen sind. Alternativ ist es auch denkbar, dass die Zellentrennwände Bestandteil von dünnwandigen, geschlossenen Hohlprofilen sind. Beispielsweise könnte eine Reihe von Vierkantprofilen im Abstand zueinander über den Umfang verteilt angeordnet werden. Durch Variation der Abstände zwischen den einzelnen Vierkantprofilen ergibt sich auch die gewünschte Variation der Querschnitte der einzelnen Zellen.
Die Erfindung wird nachfolgend anhand eines in den Zeichnungen dargestellen, schematisierten Ausführungsbeispiels näher erläutert. Es zeigt:
Figur 1 einen Längsschnitt durch einen Rotor einer Druckwellenmaschine und Figuren
2 und 3 in der Stirnansicht und in der Seitenansicht eine schematische Darstellung eines Zellenrotors.
Figur 1 zeigt einen Zellenrotor 1 , welcher den Kernbestandteil einer gasdynamischen Druckwellenmaschine zur Aufladung einer Verbrennungskraftmaschine bildet. Der Zellenrotor 1 ist in nicht näher dargestellter Weise in einem Gehäuse um seine Längsachse LA drehbar gelagert. Er befindet sich zwischen einer Zuleitung für Ladeluft und einer Abgasleitung für Verbrennungsgase. Der Pfeil A kennzeichnet die Zuströmrichtung von Ladeluft. Die innerhalb des Zellenrotors 1 aufgenommene Luft wird durch zuströmende Abgase, die von der gegenüberliegenden Seite in Richtung des Pfeils B in den Zellenrotor 1 strömen, verdichtet. Die verdichtete Ansaugluft wird in Richtung des Pfeils C ausgestoßen. Das Abgas tritt in Richtung des Pfeils D aus dem Zellenrotor 1 aus.
Wesentlich bei dem erfindungsgemäßen Zellenrotor ist sein nicht-zylindrischer Aufbau. Der Zellenrotor 1 weist einen umfangsseitig geschlossenen Außenmantel 2 auf, der in diesem Ausführungsbeispiel kegelmantelförmig ausgebildet ist. Dadurch besitzt der Zellenrotor insgesamt die Form eines Kegelstumpfes. Der Außenumfang des Zellenrotors nimmt von seiner Abgasseite 3 zu seiner Ladeluftseite 4 hin zu. Der Zellenrotor ist auf einer Welle 5 gelagert, die in nicht näher dargestellter Weise mit Antriebsmitteln gekoppelt sein kann. Die Welle 5 trägt eine kegelstumpfförmige Nabe 6, an welcher eine Zellenstruktur des Zellenrotors 1 befestigt ist. Die gasdurchlässigen Bereiche des Zellenrotors 1 sind in zwei konzentrische Zellenringe 7, 8 eingeteilt. Die Zellenringe 7, 8 sind in Radialrichtung jeweils geschlossen, so dass ein Gasaustausch nur in Längsorientierung des Zellenrotors 1 erfolgen kann. Die in Radialrichtung gemessene Höhe der einzelnen Zellen ist konstant. Das heißt, dass der Außenmantel 2 parallel zu einem Innenmantel 9 des äußeren Zellenrings ist. Dieser Innenmantel 9 ist bezüglich des innenliegenden Zellenrings als Außenmantel 9' zu betrachten, der zusammen mit einem weiteren, radial innenliegenden Innenmantel 10 den radial innenliegenden Zellenring 8 in Radialrichtung begrenzt. Die Mantelelemente 2, 9, 10 verlaufen insgesamt konzentrisch zueinander.
Anhand der Figur 2 ist zu erkennen, dass der Zellenrotor 1 eine Vielzahl von Zellen 11 , 12, 13, 14 aufweist. Zwischen den einzelnen Zellen 11-14 befinden sich Zellentrennwände 15, die aus Blechelementen ausgebildet sind. Die Zellentrennwände 11-15 sind vorzugsweise stoffschlüssig durch Löten oder Schmelzschweißen mit dem jeweiligen Innenmantel 9, 10 bzw. dem jeweiligen Außenmantel 2, 9' verbunden.
In jedem Zellenring 7, 8 befinden sich zwei Zellen unterschiedlicher Umfangserstreckung. Die jeweiligen Zellentypen 11 , 12; 13, 14 sind bevorzugt regelmäßig über den Umfang des Zellenrotors 1 verteilt angeordnet.
In der Seitenansicht der Figur 3 ist zusätzlich der Winkel W eingezeichnet, der zwischen dem Außenmantel 2 und der Längsachse LA des Zellenrotors 1 gemessen wird und maximal 50° beträgt.
Bezugszeichen:
1 - Zellenrotor
2 - Außenmantel 3- Abgasseite
4 - Ladeluftseite
5- Welle
6- Nabe
7 - Zellenring
8 - Zellenring
9 - Innenmantel 9' - Außenmantel
10- Innenmantel
11 - Zelle
12- Zelle
13- Zelle
14- Zelle
15 - Zellenwand
LA - Längsachse
A- Pfeil
B- Pfeil
C- Pfeil
D- Pfeil
W- Winkel

Claims

Patentansprüche
1. Gasdynamische Druckwellenmaschine zur Aufladung einer Verbrennungskraftmaschine, mit einem in einem Gehäuse drehbar gelagerten Zellenrotor (1), der zwischen einer Zuleitung für Ladeluft und einer Abgasleitung für Verbrennungsgase angeordnet ist, wobei der Außenumfang des Zellenrotors (1) von seiner Abgasseite (3) zu seiner Ladeluftseite (4) hin zunimmt, dadurch gekennzeichnet, dass eine in Radialrichtig gemessene Höhe einer Zelle des Zellenrotors (1 ) in Längserstreckung des Zellenrotors (1 ) konstant bleibt, wobei die Querschnittsfläche der einzelnen Zellen von der Abgasseite zur Ladeluftseite hin zunimmt.
2. Druckwellenmaschine nach Anspruch 1 , dadurch gekennzeichnet, dass der Zellenrotor (1 ) kegelstumpfförmig ist.
3. Druckwellenmaschine nach Anspruch 1 , dadurch gekennzeichnet, dass ein Außenmantel (2) des Zellenrotors (1) in Längserstreckung des Zellenrotors (1 ) gekrümmt ist.
4. Druckwellenmaschine nach Anspruch 3, dadurch gekennzeichnet, dass die Krümmung des Außenmantels (2) von der Abgasseite (3) zur Ladeluftseite (4) zunimmt.
5. Druckwellenmaschein nach Anspruch 4, dadurch gekennzeichnet, dass der Außenmantel (2) in Längserstreckung des Zellenrotors (1 ) parabolisch gekrümmt ist.
6. Druckwellenmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Zellenrotor (1 ) aus Halbzeugen unterschiedlicher Werkstoffe zusammengebaut ist.
7. Druckwellenmaschine nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Zellenrotor (1 ) von seiner Abgasseite (3) zu seiner Ladeluftseite (4) erstreckende Zellentrennwände (15) aufweist, wobei die Zellentrennwände (15) aus Blechelementen bestehen, die mit einem Innenmantel (9, 10) und einem Außenmantel (2, 9') verbunden sind.
8. Druckwellenmaschine nach Anspruch 7, dadurch gekennzeichnet, dass die Zellentrennwände (15) eine Wandstärke von 0,05 bis 1 ,0 mm besitzen.
9. Druckwellenmaschine nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Zellentrennwände (15) stoffschlüssig durch Löten oder Schweißen mit dem Innenmantel (9, 10) und/oder dem Außenmantel (2, 91) verbunden sind.
10. Druckwellenmaschine nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Zellentrennwände (15) formschlüssig mit dem Innenmantel (9, 10) und/oder dem Außenmantel (2, 9') verbunden sind.
11. Druckwellenmaschine nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Zellentrennwände (15) abwechselnd im Bereich ihres Außenmantels (2, 91) und im Bereich des Innenmantels (9, 10) miteinander verbunden sind und Bestandteile eines sich in Umfangsrichtung des Zellenrotors (1 ) erstreckenden, mäanderförmig gestalteten Zellenblechs sind.
12. Druckwellenmaschine nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Zellentrennwände (15) im Querschnitt doppelt- Z-förmig konfiguriert sind.
13. Druckwellenmaschine nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass 1 bis 3 konzentrische Zellenringe (7, 8) vorgesehen sind, wobei benachbarte Zellenringe (7, 8) durch ein konzentrisches Mantelelement (9, 9') voneinander getrennt sind.
14. Druckwellenmaschine nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass in der Umfangserstreckung voneinander abweichende Zellen (11-14) unregelmäßig über den Umfang des Zellenrotors (1 ) verteilt sind.
15. Druckwellenmaschine nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass die relativen Abweichungen in der Umfangserstreckung zwischen den Zellen (11-14) jeweils eines Zellenrings (7, 8) gleich sind.
16. Druckwellenmaschine nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Zellen (11-14) im Querschnitt Kreisringstücke sind.
17. Druckwellenmaschine nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass am Außenumfang des Zellenrotors (1 ) wenigstens ein Wuchtring angeordnet ist.
18. Druckwellenmaschine nach einem der Ansprüche 7 bis 17, dadurch gekennzeichnet, dass die Zellentrennwände (15) zumindest teilweise eine angeraute Oberflächenstruktur besitzen.
19. Druckwellenmaschine nach einem der Ansprüche 7 bis 18, dadurch gekennzeichnet, dass die Zellentrennwände (15) zumindest teilweise mit einer katalytischen Beschichtung versehen sind.
PCT/DE2008/000693 2007-05-04 2008-04-23 Gasdynamische druckwellenmaschine WO2008135012A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020097015513A KR101095123B1 (ko) 2007-05-04 2008-04-23 가스 동압 파형 장치
US12/377,057 US20100154413A1 (en) 2007-05-04 2008-04-23 Gas-dynamic pressure wave machine
JP2010506796A JP4938889B2 (ja) 2007-05-04 2008-04-23 気体力学式の圧力波機械
EP08748769A EP2150706B1 (de) 2007-05-04 2008-04-23 Gasdynamische druckwellenmaschine
DE502008001600T DE502008001600D1 (de) 2007-05-04 2008-04-23 Gasdynamische druckwellenmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007021367.2 2007-05-04
DE102007021367A DE102007021367B4 (de) 2007-05-04 2007-05-04 Gasdynamische Druckwellenmaschine

Publications (1)

Publication Number Publication Date
WO2008135012A1 true WO2008135012A1 (de) 2008-11-13

Family

ID=39620239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/000693 WO2008135012A1 (de) 2007-05-04 2008-04-23 Gasdynamische druckwellenmaschine

Country Status (6)

Country Link
US (1) US20100154413A1 (de)
EP (1) EP2150706B1 (de)
JP (1) JP4938889B2 (de)
KR (1) KR101095123B1 (de)
DE (2) DE102007021367B4 (de)
WO (1) WO2008135012A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010057319A1 (de) 2008-11-21 2010-05-27 Mec Lasertec Ag Verfahren zur herstellung eines zellenrades
DE102009023217B4 (de) 2009-05-29 2014-08-28 Benteler Automobiltechnik Gmbh Gebaute Nabe für einen Druckwellenlader

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1056094B (de) * 1955-05-11 1959-04-30 Dudley Brian Spalding Verfahren und Einrichtung zur Durchfuehrung gesteuerter chemischer Reaktionen in Gegenwart gasfoermiger oder dampffoermiger Reaktionskomponenten
GB920624A (en) * 1961-02-21 1963-03-13 Power Jets Res & Dev Ltd Improvements in or relating to pressure exchanger cell rings
DE3906551A1 (de) * 1989-03-02 1990-09-06 Asea Brown Boveri Gasdynamische druckwellenmaschine
DD285397A5 (de) * 1989-06-28 1990-12-12 Tu Dresden,Direkt. Forsch.,Dd Gasdynamische druckwellenmaschine mit nicht konstantem zellenquerschnitt
EP0498825B1 (de) * 1989-11-03 1994-04-27 HAUGE, Leif J. Druckaustauscher

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB840408A (en) * 1958-02-28 1960-07-06 Power Jets Res & Dev Ltd Improvements in and relating to pressure exchangers
GB920908A (en) * 1961-01-20 1963-03-13 Power Jets Res & Dev Ltd Improvements in or relating to pressure exchangers
DE1428029B2 (de) * 1963-08-14 1971-12-23 Aktiengesellschaft Brown, Boven & Cie, Baden (Schweiz) Aerodynamische druckwellenmaschine
GB1058577A (en) * 1964-07-30 1967-02-15 Power Jets Res & Dev Ltd Improvements in or relating to pressure exchanger cell rings
BE790403A (fr) * 1971-10-21 1973-04-20 Gen Power Corp Turbo-compresseur integral a onde
US4002414A (en) * 1971-10-21 1977-01-11 Coleman Jr Richard R Compressor-expander rotor as employed with an integral turbo-compressor wave engine
DE3470904D1 (en) * 1983-11-30 1988-06-09 Bbc Brown Boveri & Cie Pressure exchanger
EP0235609B1 (de) 1986-02-28 1990-05-02 BBC Brown Boveri AG Durch die Gaskräfte angetriebener, freilaufender Druckwellenlader
DE3906554A1 (de) * 1989-03-02 1990-09-06 Asea Brown Boveri Gasdynamische druckwellenmaschine
CH680680A5 (de) * 1989-12-06 1992-10-15 Asea Brown Boveri
US6606866B2 (en) * 1998-05-12 2003-08-19 Amerigon Inc. Thermoelectric heat exchanger
US6460342B1 (en) * 1999-04-26 2002-10-08 Advanced Research & Technology Institute Wave rotor detonation engine
JP7035730B2 (ja) * 2018-03-30 2022-03-15 住友大阪セメント株式会社 光導波路素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1056094B (de) * 1955-05-11 1959-04-30 Dudley Brian Spalding Verfahren und Einrichtung zur Durchfuehrung gesteuerter chemischer Reaktionen in Gegenwart gasfoermiger oder dampffoermiger Reaktionskomponenten
GB920624A (en) * 1961-02-21 1963-03-13 Power Jets Res & Dev Ltd Improvements in or relating to pressure exchanger cell rings
DE3906551A1 (de) * 1989-03-02 1990-09-06 Asea Brown Boveri Gasdynamische druckwellenmaschine
DD285397A5 (de) * 1989-06-28 1990-12-12 Tu Dresden,Direkt. Forsch.,Dd Gasdynamische druckwellenmaschine mit nicht konstantem zellenquerschnitt
EP0498825B1 (de) * 1989-11-03 1994-04-27 HAUGE, Leif J. Druckaustauscher

Also Published As

Publication number Publication date
EP2150706A1 (de) 2010-02-10
JP4938889B2 (ja) 2012-05-23
DE102007021367A1 (de) 2008-11-13
US20100154413A1 (en) 2010-06-24
KR20090098899A (ko) 2009-09-17
DE502008001600D1 (de) 2010-12-02
JP2010526242A (ja) 2010-07-29
EP2150706B1 (de) 2010-10-20
KR101095123B1 (ko) 2011-12-16
DE102007021367B4 (de) 2008-12-24

Similar Documents

Publication Publication Date Title
DE60012691T2 (de) Diffusoreinheit
EP3009723B1 (de) Entwurf einer steuerventilverkleidung mit gewundenem pfad
EP3398702A2 (de) Turbinentriebwerkskanal
EP1759091B1 (de) Turbinenrad in einer abgasturbine eines abgasturboladers
EP2665899B1 (de) Verfahren zur herstellung eines schallabsorbers, insbesondere für einen gasturbinenabgaskonus
DE10329000A1 (de) Abgasnachbehandlungsanlage mit einem Gegenstromgehäuse, sowie entsprechendes Verfahren zur Abgasnachbehandlung
EP1450017B1 (de) Anordnung zur Überführung der Abgase eines Verbrennungsmotors in eine Abgasleitung
WO2010003537A2 (de) Turbinengehäuse für einen abgasturbolader einer brennkraftmaschine
EP2283215B1 (de) Wabenkörper mit radial verschieden ausgeführten verbindungsstellen
DE4234006C2 (de) Profilrohr für Wärmetauscher
EP2150706B1 (de) Gasdynamische druckwellenmaschine
CN102387875A (zh) 用于制造密封垫元件的方法
EP1912752A1 (de) Vorrichtung und verfahren zur herstellung metallischer wabenkörper mit mindestens einem formsegment
EP2435675B1 (de) Gebaute nabe für einen druckwellenlader
DE102010021334A1 (de) Verfahren zur Herstellung eines Wärmetauschers und Wärmetauscher
DE102007037424B4 (de) Gasdynamische Druckwellenmaschine
EP2250354B1 (de) Wabenkörper mit flexiblen verbindungsstellen
WO2001086152A1 (de) Filterschalldämpfer
WO2009106416A1 (de) Wabenkörper mit verbindungsfreiem bereich
DE10392744B4 (de) Nicht-zylindrischer Katalysator-Trägerkörper sowie Verfahren zu seiner Herstellung
EP2433015B1 (de) Verfahren zur Herstellung eines Zellenrades
EP2229510A1 (de) Wabenkörper mit strukturiertem blechmaterial
JP2015526266A (ja) ある角度で半径方向外向きに延びるチャネルを有する円錐ハニカム体
DE10217259A1 (de) Katalysator-Trägerkörper mit Wellmantel und Verfahren zu dessen Herstellung
EP1922148A1 (de) Verfahren zur herstellung eines ringförmigen wabenkörpers, sowie ringförmiger wabenkörper

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008748769

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08748769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12377057

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097015513

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2010506796

Country of ref document: JP