WO2008128499A1 - Elektromagnetisches betätigungselement - Google Patents

Elektromagnetisches betätigungselement Download PDF

Info

Publication number
WO2008128499A1
WO2008128499A1 PCT/DE2008/000524 DE2008000524W WO2008128499A1 WO 2008128499 A1 WO2008128499 A1 WO 2008128499A1 DE 2008000524 W DE2008000524 W DE 2008000524W WO 2008128499 A1 WO2008128499 A1 WO 2008128499A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory unit
actuating element
external system
characteristic data
actuator
Prior art date
Application number
PCT/DE2008/000524
Other languages
English (en)
French (fr)
Inventor
René Schulz
Thomas Rolland
Josef V. Kerber
Original Assignee
Thomas Magnete Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomas Magnete Gmbh filed Critical Thomas Magnete Gmbh
Priority to AT08748700T priority Critical patent/ATE523885T1/de
Priority to EP08748700A priority patent/EP2143114B1/de
Publication of WO2008128499A1 publication Critical patent/WO2008128499A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2432Methods of calibration
    • F02D41/2435Methods of calibration characterised by the writing medium, e.g. bar code
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/005Arrangement of electrical wires and connections, e.g. wire harness, sockets, plugs; Arrangement of electronic control circuits in or on fuel injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8007Storing data on fuel injection apparatus, e.g. by printing, by using bar codes or EPROMs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/128Encapsulating, encasing or sealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to an electromagnetic actuator, and a method for providing and retrieving characteristics for such an actuator.
  • the electromagnetic actuators are each provided with an integrated control electronics, in which the associated characteristics of the element are stored.
  • a control electronics requires its own power supply and increases the cost.
  • DE 195 20 037 A1 describes a method and a structure for controlling a fuel injection device, wherein a power deviation is electronically minimized or even eliminated.
  • Such a method comprises the steps of measuring the resulting characteristics of the device under a variety of operating conditions, such as e.g. Timing and delivery characteristics of the fuel injector, adjusting the control signal as a function of the measured resulting characteristics, such as by setting a base number control and duration or pulse width of a fuel delivery command signal for a fuel injector, and controlling the device in accordance with the set one Control signal to reduce the power deviation.
  • EP 0 868 602 B1 describes an EEPROM technology as data carrier for the performance data of an injection nozzle.
  • a method for providing and retrieving technical data for an electromagnetically actuated fuel injection valve in which a memory unit is provided on the fuel injection valve, in which characteristic data in the form of technical data specifications about the operating behavior of the valve is stored, is described herein. Thereafter, the characteristics are transferred to a vehicle computer which uses these characteristics to advantageously balance differences between fuel injectors and eliminate deviations of the valves from a single centered injection jet.
  • An unambiguous assignment of the storage unit to a respective fuel injection valve results from the fact that the storage unit in one of the Fuel injector molded housing is encapsulated.
  • a data transmission between the memory unit and an external system such as the vehicle computer and a power supply of the memory unit on the one hand and an electrical power supply of the fuel injection valve on the other hand is independent and separated from each other.
  • DE 10 2005 001 427 A1 shows a method for correcting the injection behavior of at least one injector having a solenoid valve.
  • information about the at least one injector determined by comparing target values with actual values at individually multiple checkpoints of the at least one injector is stored, the at least one injector taking into account the stored information using the hub the solenoid valve is controlled as information.
  • DE 101 10 729 A1 describes an automatic transmission for a motor vehicle.
  • the transmission is associated with a switching operations of the transmission control unit, which is arranged separately from the transmission.
  • the transmission is associated with a memory unit in which properties and operating data of the transmission can be stored in order to use these for controlling the Gesture.
  • the storage unit is electrically connected to the control unit for data transmission. The connection is made via a serial interface, with a connecting cable between the memory unit and the control unit at the same time the power supply of
  • Storage unit and the data transmission is used. An electrical supply to the transmission via this connection is not provided.
  • DE 200 13 501 U1 describes a circuit arrangement for connecting an actuator to a control unit.
  • the actuator which may be a solenoid valve or a solenoid, is powered by an electrical connection to the control unit with electrical energy, the electrical energy in the form of a direct current with superimposed AC constant amplitude is provided.
  • a memory unit for storing characteristics of the actuator is not provided.
  • DE 41 29 446 A1 describes by means of electromagnetic radiation deactivatable label systems for use in an electronic article surveillance system. A direct electrical contacting of the labels is not provided.
  • the invention has for its object to provide an electromagnetic actuator and a method for providing and retrieving characteristics for such an element, in which a transmission of characteristics is ensured easily and inexpensively.
  • An electromagnetic actuator comprises a memory unit that can be described by a first external system and read by a second external system, and an electrical connection for supplying electrical power to the actuating element for driving the electrical connection to the storage unit and by it electrical signals to the memory unit and / or are transferable from the memory unit to characteristics of the Write actuator in the memory unit and / or read from it.
  • the actuating element according to the invention is characterized in that the electrical connection performs a dual function: it serves both to supply the actuating element with electrical energy and to transmit information to the memory unit or from the memory unit by transmitting electrical signals to or from this memory unit , By means of these electrical signals specific characteristic data of the actuating element can be stored in the memory unit and / or read therefrom.
  • the use of the electrical connection in addition to the purpose of information transmission allows low or low manufacturing costs for the actuator. Since the actuating element in addition to the electrical connection, which is conventionally already present, has no further connections for access to the memory unit, it is not readily apparent from the outside that an information storage of characteristic data takes place in the actuating element. This provides effective protection against the use of unauthorized third-party products.
  • the electrical connection can be connected to the first system and / or to the second system. This can be done in that the first system or the second system have their own electrical connection, which is adapted to those of the actuating element and, e.g. is formed complementary thereto.
  • the electrical connection of the actuator is expediently designed as a 2-pin connector, which ensures a captive contact.
  • the substantially simultaneous supply of electrical energy and the transmission of information by means of the electrical signals can be realized for example by using different time windows.
  • different frequencies are exploited, with the energy Supply of the actuating element by controlled direct current with superimposed low-frequency alternating current constant amplitude can be done.
  • the energy supply of the storage unit can also be effected by the regulated direct current or by the low-frequency alternating current.
  • the writing and / or reading of the memory unit for transmitting the characteristic data can be effected by a superimposed higher-frequency alternating current with a modulated-on signal.
  • the memory unit when read out by the second external system, sends the characteristic data to the second external system through a higher-frequency alternating current with a modulated-on signal.
  • the mentioned modulated signals are optionally generated by amplitude or frequency modulation. In this way, a simultaneous activation of the actuating element, for example, during operation of a motor vehicle and read-out of the storage unit by the second external system is possible in particular.
  • the characteristic data can be transmitted by means of the higher-frequency alternating current with a time delay for controlling the device or the storage unit.
  • the control of the memory unit takes place as explained above by the regulated direct current or by the low-frequency alternating current.
  • the transmission of information or the transmission of the characteristic data takes place exclusively by high-frequency alternating current, which has no practical effect on the device.
  • the supply of the electronic memory circuit can be done by both DC and AC. However, it is off
  • a high-frequency AC power supply preferable.
  • the supply of the memory circuit can then be switched off, whereby an error function is excluded during this operation.
  • the memory unit may comprise an electronic circuit and a data memory.
  • the electronic circuit of the memory unit may preferably receive identification data and store it in the data memory in response to a suitable signal of the first external system. Mutatis mutandis this applies to the reading out of the memory unit, wherein the electronic circuit outputs the characteristic data to the second external system in response to a signal from the second external system.
  • the electrical supply of the electronic circuit of the storage unit can advantageously take place via the electrical connection, which also supplies the actuating element with electrical energy.
  • the memory unit of the actuating element may comprise a plurality of passive components in the form of
  • each resonant circuit is assigned in each case a fuse.
  • the resonant circuits can be brought into resonance by high-frequency signals, wherein above a certain strength of these high-frequency signals in selected resonant circuits in the case of resonance melt through the associated fuses.
  • the characteristics are dual coded assigned the characteristic frequencies.
  • the second external system For reading the characteristic data, the second external system in turn sends high-frequency signals with all the characteristic frequencies to the memory unit, but now the strength of the high-frequency signals is so low that the fuses, which are still intact, do not melt through.
  • the generated resonances of the resonant circuits whose fuses are still intact, are measured by the second external system, recognized and processed according to the coding to corresponding characteristics.
  • the electromagnetic actuating element according to the invention may be a valve, a metering pump or an actuator in the form of an actuator or the like.
  • the first external system can be formed from a test stand, by means of which technical data specifications or specific characteristics of a specific actuating element can be measured.
  • the second external system may be on-board electronics of a vehicle which actuates the actuating element on the basis of the characteristic data stored in the memory unit.
  • a method according to the invention for providing and retrieving characteristic data for an electromagnetic actuation element which comprises an electrical connection and a memory unit for driving comprises the following steps:
  • Reading out the characteristics stored in the memory unit by a second external system so that the second external system controls the actuating element based on the characteristic data, wherein the electrical connection for both the transmission of electrical energy to the actuating element for its activation and for the transmission of electrical Signals for storing the characteristic data in the memory unit and / or for reading the characteristic data stored in the memory unit by the second external system is used.
  • the electrical connection assumes a dual function, so that a separate electrical connection, which would serve exclusively for the transmission of the characteristic data by means of the electrical signals, is not necessary.
  • the advantages of the actuating element and the method according to the invention are reflected in low production costs, because separate electrical see connections can be omitted and the memory unit has a comparatively simple structure.
  • a complex control electronics in the actuator is not required, as can be used for driving the actuator on a control electronics on the part of the customer.
  • handling is significantly easier, especially for the customer, since no scanning is required for assigning customer data to a particular actuator. Even in the case of a later replacement of the actuator or the customer electronics the correct assignment of the characteristics is guaranteed.
  • the transmission of the characteristic data by means of the higher-frequency alternating current can be carried out with a time delay for controlling the device or the memory unit.
  • This logic is also referred to as timeshare.
  • timeshare To avoid repetition with respect to the time-shifted information transfer, reference is made to the explanation of the actuating element according to the invention at the appropriate place.
  • FIG. 1 shows an actuating element according to the invention together with a first external system and a second external system
  • FIG. 2 shows a memory unit of the actuating element of FIG. 1
  • FIG. 3 shows an alternative storage unit of the actuating element of FIG.
  • Figure 1 is a flowchart for measuring characteristics of the
  • Actuator, Figure 5 is a flowchart for reading the characteristics of the
  • FIG. 6 shows a flowchart for measuring and storing characteristic data analogous to FIG. 4, according to an alternative embodiment
  • FIG. 7 shows a flowchart for reading out the characteristic data from FIG
  • FIG. 1 schematically shows an electromagnetic actuating element 1 together with a first external system 2 and a second external system 3.
  • the electromagnetic actuating element 1 is a magnetic valve which comprises a translationally driven magnetic piston in a known manner.
  • This magnetic piston is provided in the illustration of Figure 1 in the partial opening by the reference numeral 4.
  • the magnetic piston 4 is biased by a coil spring 5 and is driven by a coil (not shown) against the spring bias, thereby opening or closing a valve opening.
  • the operation of the solenoid valve 1 in relation to the opening and closing is known in the art and therefore not explained in detail at this point.
  • the electromagnetic actuator 1 may also be listed as an electromagnetically driven metering pump, as an electromagnetically actuated actuator in the form of an actuator or the like or in the form of another valve.
  • the actuating element 1 is referred to only as a solenoid valve, without being a restriction solely to such a component to understand.
  • the solenoid valve 1 has an electrical connection 6, which serves to supply electrical energy to the coil.
  • the magnetic piston 4 shifts along its longitudinal axis 7 in order to actuate the valve opening as desired.
  • the electrical connection 6 is expediently designed as a 2-pole plug connection and hereinafter referred to only as such, without being understood as a restriction.
  • the electrical connection 6 can also be designed in any other way, as long as a trouble-free feeding of electrical energy or electrical signals is to be explained as follows.
  • the solenoid valve 1 further comprises a memory unit 8, which is electrically connected to the 2-pin connector 6.
  • FIG. 2 shows the memory unit 8 in detail. It comprises an electronic circuit 9 and a data memory 10, which may be embodied as EEPROM.
  • the first external system 2 may for example be designed as a test stand and serves to measure specific characteristics of the solenoid valve 1 after assembly and before delivery to the customer.
  • a high accuracy for certain characteristics such as opening pressure, switching time, flow rate or flow rate is required, which can not be achieved by close tolerance of the items of the solenoid valve 1 or only with unreasonably high costs.
  • the second external system 3 uses the characteristic data for the compensation of the drive signals such that the required accuracy is achieved in the control or regulation of the customer system. This applies not only to a solenoid valve, but in the same way for other electromagnetic devices, eg for electromagnetically actuated actuators or metering pumps.
  • Flow rate and flow rate are included as a function of the current.
  • the flow rate is usually a function of the pressure difference.
  • the switching time of the solenoid valve usually depends on the stroke of the magnetic piston 4.
  • 2 accurate characteristics for a respective solenoid valve are determined by means of a test stand in the form of the external system to account for possible manufacturing tolerances. The determination of such characteristic data enables a precise control of the solenoid valve 1 by the second external system 3, which may include control electronics of the customer.
  • the solenoid valve 1 When measuring the characteristics of the solenoid valve 1 by the first external system 2, the solenoid valve 1 is connected to the 2-pin connector 6 to the first external system 2.
  • the first external system 2 comprises a connection socket 11 into which the 2-pin connector 6 is inserted.
  • an electrical connection between the solenoid valve 1 and the first external system 2 is made.
  • the measurement of characteristics is explained in detail with reference to FIG.
  • the 2-pin connector 6 serves not only for transmitting electrical energy to the coil of the solenoid valve 1, but also for information transmission, that is, for transmitting the measured from the first external system 2 characteristics to the memory unit 8 of the solenoid valve 1.
  • the 2-pin Connector 6 thus assumes a dual function, so that a separate electrical connection is not required exclusively for transmitting the characteristic data in the memory unit 8.
  • the second external system 3 comprises a connection socket 12 which is connected to the 2-pole
  • Plug connection 6 of the solenoid valve is adjusted.
  • the 2-pin connector 6 is used not only for transmitting or reading the characteristics, but also for energizing the coil of the solenoid valve. 1
  • the solenoid valve 1 After the solenoid valve 1 is inserted into or connected to the first external system 2, the characteristics of the solenoid valve 1 are measured in step S110. After processing the characteristics in step S111, the characteristics are modulated to a carrier frequency, in step S112. During the measurement of the characteristics on the test bench or by the first external system 2, the solenoid valve 1 is supplied with regulated direct current with superimposed low-frequency alternating current of constant amplitude or operated. After completion of a complete measurement of all required characteristics, these are transmitted to the memory unit 8 in step S113 by means of the 2-pin connector 6. This is done by emitting electrical signals to the memory unit, for example by a superimposed higher-frequency alternating current as a carrier, wherein the electrical signals are modulated.
  • the modulation can be done either by means of amplitude or frequency modulation.
  • For the common use of the 2-pin connector for both the transmission of electrical power to the coil and the characteristics of the memory unit 8 may be provided as an alternative to the use of these different frequencies and a use of different time windows.
  • step S114 a demodulation of the higher-frequency alternating current with the modulated signals takes place in order to read out the characteristic data from this high-frequency signal.
  • the writing of the characteristic data in the data memory 10 by the electronic circuit 9 then takes place in step S115, so that as a result the characteristic data are stored in the data memory according to step S116.
  • steps S114 to S116 a supply voltage for the electronic circuit 9 of the memory unit 8 can be obtained from the direct current or else from the superimposed alternating current which is applied to the 2-pole plug connection 6.
  • steps S110 to S113 are schematically assigned to the first external system 2
  • steps S114 to S116 are schematically assigned to the solenoid valve 1 in a simplified manner. This assignment should clarify the context in which the individual steps are carried out.
  • step S130 After the solenoid valve 1 has been connected with its 2-pin connector 6 to the connection socket 12 of the second external system 3, 3 signals for reading the data memory 10 are generated in step S130 by the second external system.
  • step S131 this read signal is modulated to a carrier frequency before being sent to the solenoid valve 1 via the 2-pin connector 6 in step S 132.
  • the read signal is output from the
  • High-frequency signal is read out to read the characteristic data from the data memory 10 of the memory unit 8 according to step S134.
  • the characteristics are modulated to a carrier frequency and, in step S136, are sent back to the customer's second external system 3, which may have a control circuit.
  • the characteristic data is then read out by means of a suitable demodulation, in order subsequently to process the characteristic data accordingly in step S138.
  • control circuit of the second system 3 Based on the characteristics processed in step 138, the control circuit of the second system 3 then generates a controlled one in step S139
  • the supply voltage for the electronic circuit 9, which is previously required for the steps S133 to S136, can be obtained from the direct current or the superimposed alternating current, which is applied to the 2-pin connector 6.
  • FIG. 3 An alternative embodiment for the memory unit is shown in FIG. 3, and designated accordingly by the reference numeral 8 '.
  • the memory unit 8 ' differs from that of FIG. 2 in that it has exclusively passive components in the form of oscillatable circuits 13 or oscillating circuits which do not require a power supply.
  • the storage unit 8 ' comprises a plurality of such oscillating circuits 13, which are shown schematically simplified in FIG. In Figure 3 are four Resonant circuits 13 shown without being limited thereto.
  • the memory unit 8 ' may also comprise more or fewer than four resonant circuits 13.
  • Each oscillating circuit 13 is assigned a fuse 14 whose function is explained below. After the characteristic data of the solenoid valve 1 has been measured on the test bench or by the first external system 2, a few selected oscillating circuits 13 are brought to resonate by strong high-frequency signals in order to transmit these characteristics to the memory unit 8 '.
  • the characteristic resonant frequency of a respective resonant circuit 13 determines which resonant circuits resonate in detail when the high-frequency signals are present, with the fuses 14 of these resonant circuits 13 melting through when the resonance occurs.
  • the characteristics are expediently assigned to the characteristic frequencies in a dual-coded manner. However, other forms of coding are possible.
  • step S210 after connecting the solenoid valve 1 to the first external system 2 in step S210, the characteristics of the solenoid valve 1 are measured before the characteristics are processed and binary coded in step S211.
  • the binary coding takes place in that selected resonant circuits 13 resonate, thereby destroying their associated fuses 14.
  • step S212 the required high-frequency signals are generated with a sufficient strength, which are transmitted in step S213 to the solenoid valve 1 and its memory unit 8 by means of the 2-pin connector.
  • a regulated direct current with superimposed low-frequency alternating current is applied to the solenoid valve 1.
  • step S214 On the device side takes place in the memory unit 8 'after receipt of the high-frequency signals, a demodulation according to step S214, in which the high-frequency signals are read.
  • step S215 the writing of the memory unit 8 'is performed by destroying the fuses 14 of selected oscillating circuits 13 due to high resonance. Also in steps S214 and S215, the solenoid valve 1 is energized via the 2-pole plug connection 6.
  • the readout of the characteristics by the second external system 3 is shown in the flowchart of FIG.
  • the control circuit of the second external system 3 generates signals for reading out the memory unit 8 'in step S230, and then sequentially generating the characteristic high-frequency signals of a predetermined strength in step S231. These high-frequency signals are transmitted to the solenoid valve 1 via the 2-pin connector 6 in step S232. On the device side, a demodulation takes place in step S233, the high-frequency signals being read out of step S231. In step S234, the resonant circuits 13 resonate with the intact fuses 14 without the oscillating circuits being destroyed by the weak high-frequency signals. As a result, the characteristics of the
  • Memory unit 8 ' are read.
  • the latter can recognize the resonance for each characteristic frequency, according to step S236, hereinafter, in step S237, these characteristics of recovery and
  • step S238 the control circuit of the second external system 3 generates a regulated DC current with superimposed low-frequency AC current applied to the 2-pole connector 6 to operate the solenoid valve 1 in step S239.
  • the inventive solenoid valve 1 Regardless of the type of storage unit is carried out in the inventive solenoid valve 1 energizing the coil and transmitting the characteristics or from the memory unit together via the 2-pin connector 6. If the memory unit 8 has an electronic circuit 9, the power supply is carried out by the already existing Driving current for the coil of the solenoid valve 1. Since the storage unit is always connected to the solenoid valve 1, a transfer of the information or the characteristics is always carried out with the solenoid valve 1 itself to avoid confusion and information losses on the customer side. On the basis of the characteristic data of a specific solenoid valve 1 measured on the test bench, compensation can be made by the customer, which brings about a considerable improvement in the accuracy of the operation of the solenoid valve 1. In addition, such a combination of specific characteristics to a specific solenoid valve also acts as protection against the use of inappropriate devices or unauthorized imitation of the solenoid valve, for example, by pirates product.

Abstract

Die Erfindung betrifft ein elektromagnetisches Betätigungselement (1), das eine Speichereinheit (8), die von einem ersten externen System (2) beschrieben und von einem zweiten externen System (3) ausgelesen werden kann, und einen elektronischen Anschluss (6) umfasst, um dem Betätigungselement elektrische Energie zu dessen Ansteuerung zuzuführen. Der elektrische Anschluss (6) ist mit der Speichereinheit (8) elektrisch verbunden, wobei durch den Anschluss elektrische Signale an die Speichereinheit (8) und/oder von der Speichereinheit (8) übertragen werden können, um Kenndaten des Betätigungselements in die Speichereinheit (8) zu schreiben und/oder daraus auszulesen.

Description

Elektromagnetisches Betätigungselement
Die Erfindung betrifft ein elektromagnetisches Betätigungselement, und ein Verfahren zum Bereitstellen und Abrufen von Kenndaten für ein solches Betätigungselement.
Bei der Herstellung von elektromagnetischen Betätigungselementen in Form einer Pumpe, eines Ventils, eines Stellorgans oder dergleichen werden nach der Montage am Serienprüfstand Kenndaten der einzelnen Betätigungselemente gemessen, welche Kenndaten zusammen mit dem Gerät bzw. dem Betätigungselement an eine elektronische Steuerungsschaltung eines Kunden übermittelt werden sollen. Die Steuerungsschaltung steuert ein jeweiliges Betätigungselement auf Grundlage der zugehörigen spezifischen Kenndaten an, um somit durch eine Kompensation von Fertigungstoleranzen und dergleichen einen genaueren Betrieb des Betätigungselements zu erzielen. Bei einem herkömmlichen Verfahren zum Auslesen und Übertragen solcher Kenndaten werden diese zunächst gemessen, wobei das Produkt in Form eines entsprechenden Betätigungselements anschließend mit verschlüsselten Kenndaten beschriftet wird. Die Kenndaten werden sodann mit einem Scanner ausgelesen, bevor sie an die elektronische Steuerschaltung übertragen werden. Das Beschriften des Produktes mit den verschlüsselten Kenndaten, insbesondere das Auslesen dieser Daten mit einem Scanner ist zeit- und arbeitsaufwendig und damit teuer.
Bei einem weiteren herkömmlichen Verfahren zum Übertragen von Kenndaten werden diese zunächst gemessen und anschließend in einer Datei gespeichert. Das Produkt wird mit einer laufenden Produktnummer beschriftet, wobei para- HeI dazu die Datei, in der die Kenndaten gespeichert sind, an den Kunden übermittelt wird. Anhand einer jeweiligen Produktnummer kann der Kunde die Dateien mit den jeweiligen Kenndaten einem konkreten Produkt zuordnen und dann der elektronischen Steuerungsschaltung zuweisen. Die separate Über- mittlung der Datei, in der die Kenndaten gespeichert sind, an den Kunden ist aufwendig und fehlerträchtig.
Nach einem weiteren herkömmlichen Verfahren sind die elektromagnetischen Betätigungselemente jeweils mit einer integrierten Ansteuerelektronik versehen, in der auch die zugehörigen Kenndaten des Elements gespeichert sind. Eine solche Ansteuerelektronik erfordert jedoch eine eigene Energieversorgung und erhöht die Herstellungskosten.
DE 195 20 037 A1 beschreibt ein Verfahren und eine Struktur zum Steuern einer Brennstoffeinspritzvorrichtung, wobei eine Leistungsabweichung elektronisch minimiert oder gar eliminiert wird. Ein solches Verfahren umfasst die Schritte des Messens der sich ergebenden Charakteristika der Vorrichtung bei einer Vielzahl von Betriebsbedingungen, wie z.B. Zeitsteuer- und Liefercha- rakteristiken der Brennstoffeinspritzvorrichtung, Einstellen des Steuersignals als eine Funktion der gemessenen, sich ergebenden Charakteristika, wie beispielsweise durch Einstellen einer Basis-Zahlsteuerung und -dauer oder Impulsbreite eines Brennstofflieferbefehlssignals für eine Brennstoffeinspritzvorrichtung, und Steuern der Vorrichtung in Übereinstimmung mit dem eingestellten Steuersig- nal, um die Leistungsabweichung zu vermindern.
EP 0 868 602 B1 beschreibt eine EEPROM-Technologie als Datenträger für die Leistungsdaten einer Einspritzdüse. Hierin ist ein Verfahren zum Bereitstellen und Abrufen von technischen Daten für ein elektromagnetisch betätigtes Kraft- stoffeinspritzventil erläutert, bei dem an dem Kraftstoffeinspritzventil eine Speichereinheit vorgesehen ist, in der Kenndaten in Form von technischen Datenspezifikationen über das Betriebsverhalten des Ventils gespeichert werden. Anschließend werden die Kenndaten auf einen Fahrzeugcomputer überspielt, der diese Kenndaten verwendet, um Unterschiede zwischen Kraftstoffeinspritzventilen vorteilhaft auszujustieren und Abweichungen der Ventile von einem einzigen zentrierten Einspritzstrahl zu beheben. Eine eindeutige Zuordnung der Speichereinheit zu einem jeweiligen Kraftstoffeinspritzventil ergibt sich daraus, dass die Speichereinheit in einem an dem Kraftstoffeinspritzventil angegossenen Gehäuse eingekapselt ist. Eine Datenübertragung zwischen der Speichereinheit und einem externen System wie beispielsweise dem Fahrzeugcomputer sowie eine Energieversorgung der Speichereinheit einerseits und eine elektrische Energieversorgung des Kraftstoffeinspriztventils andererseits erfolgt unabhängig und getrennt voneinander.
DE 10 2005 001 427 A1 zeigt ein Verfahren zum Korrigieren des Einspritzverhaltens wenigstens eines ein Magnetventil aufweisenden Injektors. Bei einem solchen Verfahren werden Informationen über den wenigstens einen Injektor, die durch Vergleichen von Soll-Werten mit Ist-Werten an individuell mehreren Prüfpunkten des mindestens einen Injektors ermittelt wurden, gespeichert, wobei der wenigstens eine Injektor unter Berücksichtigung der gespeicherten Informationen unter Verwendung des Hubs des Magnetventils als Information gesteuert wird.
DE 101 10 729 A1 beschreibt ein Automatikgetriebe für ein Kraftfahrzeug. Dem Getriebe ist eine Schaltvorgänge des Getriebes steuernde Steuereinheit zugeordnet, die von dem Getriebe getrennt angeordnet ist. Dem Getriebe ist eine Speichereinheit zugeordnet, in welcher Eigenschaften und Betriebsdaten des Getriebes gespeichert werden können, um diese zur Steuerung des Gestriebes zu verwenden. Die Speichereinheit ist dazu für eine Datenübertragung elektrisch mit der Steuereinheit verbunden. Die Verbindung erfolgt über eine serielle Schnittstelle, wobei ein Verbindungskabel zwischen Speichereinheit und Steuereinheit zugleich der Energieversorgung der
Speichereinheit und der Datenübertragung dient. Eine elektrische Versorgung des Getriebes über diese Verbindung ist nicht vorgesehen.
DE 200 13 501 U1 beschreibt eine Schaltungsanordnung zum Anschließen eines Aktuators an eine Steuereinheit. Der Aktuator, bei dem es sich um ein Magnetventil oder einen Hubmagneten handeln kann, wird über eine elektrische Verbindung mit der Steuereinheit mit elektrischer Energie versorgt, wobei die elektrische Energie in Form eines Gleichstroms mit überlagertem Wechselstrom konstanter Amplitude zur Verfügung gestellt wird. Eine Speichereinheit zur Speicherung von Eigenschaften des Aktuators ist nicht vorgesehen.
DE 196 36 031 A1 beschreibt ein Bussystem zur Ausbildung eines
Kommunikationsnetzwerks in explosionsgefährdeten Umgebungen. Um eine Kommunikation zwischen elektrischen Vorrichtungen zu ermöglichen, werden hochfrequente Informationssignale auf einen der Energieversorgung dienenden Wechselstrom aufmoduliert.
DE 41 29 446 A1 beschreibt mittels elektromagnetischer Strahlung deaktivierbare Etikettensysteme zur Verwendung in einem elektronischen Artikelüberwachungssystem. Eine direkte elektrische Kontaktierung der Etiketten ist nicht vorgesehen.
Der Erfindung liegt die Aufgabe zugrunde, ein elektromagnetisches Betätigungselement und ein Verfahren zum Bereitstellen und Abrufen von Kenndaten für ein solches Element zu schaffen, bei dem eine Übertragung von Kenndaten einfach und mit preiswerten Mitteln gewährleistet ist.
Diese Aufgabe wird durch ein elektromagnetisches Betätigungselement mit den Merkmalen von Anspruch 1 und durch ein Verfahren mit den Merkmalen von Anspruch 15 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
Ein erfindungsgemäßes elektromagnetisches Betätigungselement umfasst eine Speichereinheit, die von einem ersten externen System beschrieben und von einem zweiten externen System ausgelesen werden kann, und einen elektrischen Anschluss, um dem Betätigungselement elektrische Energie zu dessen Ansteuerung zuzuführen, wobei der elektrische Anschluss mit der Speichereinheit elektrisch verbunden ist und durch ihn elektrische Signale an die Speichereinheit und/oder von der Speichereinheit übertragbar sind, um Kenndaten des Betätigungselements in die Speichereinheit zu schreiben und/oder daraus auszulesen.
Das erfindungsgemäße Betätigungselement zeichnet sich dadurch aus, dass der elektrische Anschluss eine Doppelfunktion wahrnimmt: er dient sowohl zur Versorgung des Betätigungselements mit elektrischer Energie als auch zur Informationsübertragung an die Speichereinheit bzw. von der Speichereinheit, indem elektrische Signale an diese Speichereinheit oder von dieser übertragen werden. Mittels dieser elektrischen Signale können spezifische Kenndaten des Betätigungselements in der Speichereinheit gespeichert und/oder daraus ausgelesen werden. Die Verwendung des elektrischen Anschlusses zusätzlich zum Zwecke der Informationsübertragung ermöglicht niedrige bzw. günstige Herstellungskosten für das Betätigungselement. Da das Betätigungselement neben dem elektrischen Anschluss, der herkömmlich ohnehin vorhanden ist, keine weiteren Anschlüsse für einen Zugriff auf die Speichereinheit aufweist, ist von außen nicht ohne weiteres erkennbar, dass bei dem Betätigungselement eine Informationsspeicherung von Kenndaten erfolgt. Hierdurch ist ein wirkungsvoller Schutz vor der Verwendung von nicht autorisierten Fremderzeugnissen gegeben.
In vorteilhafter Weiterbildung der Erfindung kann der elektrische Anschluss mit dem ersten System und/oder mit dem zweiten System verbunden werden. Dies kann dadurch erfolgen, dass das erste System bzw. das zweite System einen eigenen elektrischen Anschluss aufweisen, der an jenen des Betätigungs- elements angepasst und z.B. komplementär dazu ausgebildet ist. Der elektrische Anschluss des Betätigungselements ist zweckmäßig als 2-polige Steckverbindung ausgebildet, die einen verliersicheren Kontakt gewährleistet.
Im Hinblick auf die erläuterte Doppelfunktion des elektrischen Anschlusses kann die im Wesentlichen gleichzeitige Versorgung mit elektrischer Energie und die Übertragung von Informationen mittels der elektrischen Signale zum Beispiel durch Nutzung von unterschiedlichen Zeitfenstern realisiert werden. Alternativ dazu werden verschiedene Frequenzen ausgenutzt, wobei die Energie- Versorgung des Betätigungselements durch geregelten Gleichstrom mit überlagertem niederfrequenten Wechselstrom konstanter Amplitude erfolgen kann. In letzterem Fall kann die Energieversorgung der Speichereinheit ebenfalls durch den geregelten Gleichstrom oder durch den niederfrequenten Wechsel- ström erfolgen. Für eine geeignete Signaltrennung kann das Beschreiben und/oder das Auslesen der Speichereinheit zur Übertragung der Kenndaten durch einen überlagerten höherfrequenten Wechselstrom mit aufmoduliertem Signal erfolgen. Vorzugsweise sendet die Speichereinheit, wenn sie von dem zweiten externen System ausgelesen wird, die Kenndaten an das zweite ex- terne System durch einen höherfrequenten Wechselstrom mit aufmoduliertem Signal. Die genannten aufmodulierten Signale werden wahlweise durch Amplituden- oder Frequenzmodulation erzeugt. In dieser Weise ist insbesondere ein gleichzeitiges Ansteuern des Betätigungselements zum Beispiel beim Betrieb eines Kraftfahrzeugs und ein Auslesen der Speichereinheit durch das zweite externe System möglich.
In vorteilhafter Weiterbildung der Erfindung können die Kenndaten mittels des höherfrequenten Wechselstroms zeitversetzt zur Ansteuerung des Geräts bzw. der Speichereinheit übertragen werden. Die Ansteuerung der Speichereinheit erfolgt wie vorstehend erläutert durch den geregelten Gleichstrom oder durch den niederfrequenten Wechselstrom. Jedoch erfolgt die Informationsübertragung bzw. die Übertragung der Kenndaten ausschließlich durch hochfrequenten Wechselstrom, der keine praktische Auswirkung auf das Gerät hat. Die Versorgung der elektronischen Speicherschaltung kann sowohl durch Gleich- als auch durch Wechselstrom erfolgen. Jedoch ist aus
Sicherheitsgründen eine hochfrequente Wechselstromversorgung vorzuziehen. Beim Betrieb des Geräts kann dann die Versorgung der Speicherschaltung abgeschaltet sein, wodurch eine Fehlerfunktion während dieses Betriebs ausgeschlossen ist.
Die Informationsübertragung wird durch zusätzliche redundante Datenübertragung vor Störungen weitgehend abgesichert. Aus Sicherheitsgründen vor ungewolltem Überschreiben der gespeicherten Daten wird zusätzlich ein Schreibschutz integriert. Es versteht sich, dass dieser Schreibschutz für einen korrekten Speichervorgang separat abzuschalten ist. In vorteilhafter Weiterbildung der Erfindung kann die Speichereinheit eine elektronische Schaltung und einen Datenspeicher umfassen. Vorzugsweise kann hierbei die elektronische Schaltung der Speichereinheit auf ein geeignetes Signal des ersten externen Systems hin Kenndaten entgegennehmen und in dem Datenspeicher ablegen. Mutatis mutandis gilt dies für das Auslesen der Speichereinheit, wobei deren elektronische Schaltung auf ein Signal des zweiten externen Systems hin die Kenndaten an das zweite externe System abgibt. Die elektrische Versorgung der elektronischen Schaltung der Speichereinheit kann vorteilhaft über den elektrischen Anschluss erfolgen, der auch das Betätigungselement mit elektrischer Energie versorgt.
Bei einer alternativen Ausführungsform kann die Speichereinheit des Betäti- gungselements eine Mehrzahl aus passiven Bauelementen in Form von
Schwingkreisen aufweisen, wobei jedem Schwingkreis jeweils eine Schmelzsicherung zugewiesen ist. Die Schwingkreise lassen sich durch hochfrequente Signale in Resonanzen bringen, wobei oberhalb einer bestimmten Stärke dieser hochfrequenten Signale bei ausgewählten Schwingkreisen im Falle von Resonanz die zugeordneten Schmelzsicherungen durchschmelzen. Zweckmäßigerweise werden dann die Kenndaten dual kodiert den charakteristischen Frequenzen zugeordnet. Es sind jedoch auch andere Kodierungen möglich. Zum Auslesen der Kenndaten werden durch das zweite externe System wiederum hochfrequente Signale mit allen charakteristischen Frequenzen an die Speichereinheit gesandt, wobei nun jedoch die Stärke der hochfrequenten Signale so niedrig ist, dass die noch intakten Schmelzsicherungen nicht durchschmelzen. Die erzeugten Resonanzen der Schwingkreise, deren Schmelzsicherungen noch intakt sind, werden von dem zweiten externen System gemessen, erkannt und gemäß der Kodierung zu entsprechenden Kenndaten verarbeitet.
Bei dem erfindungsgemäßen elektromagnetischen Betätigungselement kann es sich um ein Ventil, eine Dosierpumpe oder ein Stellorgan in Form eines Aktors oder dergleichen handeln. Des weiteren kann das erste externe System aus einem Prüfstand gebildet sein, mittels dem technische Datenspezifikationen bzw. spezifische Kenndaten eines konkreten Betätigungselements gemessen werden können. Bei dem zweiten externen System kann es sich um eine Bord- elektronik eines Fahrzeugs handeln, die das Betätigungselement auf Grundlage der in der Speichereinheit gespeicherten Kenndaten ansteuert.
Ein erfindungsgemäßes Verfahren zum Bereitstellen und Abrufen von Kenndaten für ein elektromagnetisches Betätigungselement, das zur Ansteuerung einen elektrischen Anschluss und eine Speichereinheit umfasst, weist folgende Schritte auf:
- Erzeugen von Kenndaten des Betätigungselements mittels eines ersten externen Systems,
- Übertragen von elektrischen Signalen von dem ersten externen System an die Speichereinheit des Betätigungselements, um darin die Kenndaten zu speichern,
- Auslesen der in der Speichereinheit gespeicherten Kenndaten durch ein zweites externes System, so dass das zweite externe System das Betätigungselement auf Grundlage der Kenndaten ansteuert, wobei der elektrische Anschluss sowohl zur Übertragung von elektrischer Energie an das Betätigungselement zu dessen Ansteuerung als auch zur Übertragung der elektrischen Signale zum Speichern der Kenndaten in der Speichereinheit und/oder zum Auslesen der in der Speichereinheit gespeicherten Kenndaten durch das zweite externe System verwendet wird.
Bei diesem Verfahren übernimmt der elektrische Anschluss eine Doppelfunktion, so dass ein separater elektrischer Anschluss, der ausschließlich zur Übertragung der Kenndaten mittels der elektrischen Signale dienen würde, nicht notwendig ist.
Die Vorteile des Betätigungselements und des Verfahrens nach der Erfindung spiegeln sich in geringen Herstellungskosten wieder, weil auf separate elektri- sehe Anschlüsse verzichtet werden kann und die Speichereinheit einen vergleichsweise einfachen Aufbau aufweist. Eine aufwendige Ansteuerelektronik in dem Betätigungselement ist nicht erforderlich, da zur Ansteuerung des Betätigungselements auf eine Ansteuerelektronik auf Seiten des Kunden zurückgegriffen werden kann. Schließlich ist die Handhabung insbesondere für den Kunden erheblich einfacher, da kein Scanvorgang für ein Zuweisen von Kundendaten zu einem bestimmten Betätigungselement erforderlich ist. Auch im Fall eines späteren Austausches des Betätigungselements oder der kundenseitigen Elektronik ist die richtige Zuordnung der Kenndaten gewährleistet. Da von außen des Betätigungselements nicht ohne weiteres erkennbar ist, dass mittels einer Speichereinheit Kenndaten in Verbindung mit dem Betätigungselement gespeichert sind, sind Hersteller und Anwender auch vor dem Einsatz ungeeigneter Geräte bzw. vor unerlaubten Nachahmungen des Betätigungselements geschützt, weil die Speichereinheit und insbesondere deren Speichereinhalt nicht ohne Weiteres nachgeahmt bzw. kopiert werden kann.
In vorteilhafter Weiterbildung des erfindungsgemäßen Verfahrens kann die Übertragung der Kenndaten mittels des höherfrequenten Wechselstroms zeitversetzt zur Ansteuerung des Gerätes bzw. der Speichereinheit erfolgen. Diese Logik ist auch als Timesharing bezeichnet. Zur Vermeidung von Wiederholungen bezüglich der zeitversetzten Informationsübertragung wird auf die Erläuterung des erfindungsgemäßen Betätigungselements an entsprechender Stelle verwiesen.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen. Die Erfindung ist nachfolgend anhand mehrerer Ausführungsformen in der
Zeichnung schematisch dargestellt und wird unter Bezugnahme auf die Zeichnung ausführlich beschrieben. Es zeigen:
Figur 1 ein erfindungsgemäßes Betätigungselement zusammen mit einem ersten externen System und einem zweiten externen System, Figur 2 eine Speichereinheit des Betätigungselements von Figur 1 ,
Figur 3 eine alternative Speichereinheit des Betätigungselements von
Figur 1 , Figur 4 ein Flussdiagramm zum Messen von Kenndaten des
Betätigungselements durch das erste externe System und Speichern dieser Kenndaten in der Speichereinheit des
Betätigungselements, Figur 5 ein Flussdiagramm zum Auslesen der Kenndaten aus der
Speichereinheit durch das zweite externe System,
Figur 6 ein Flussdiagramm zum Messen und Speichern von Kenndaten analog zu Figur 4, gemäß einer alternativen Ausführungsform, und Figur 7 ein Flussdiagramm zum Auslesen der Kenndaten aus der
Speichereinheit analog zu Figur 5, gemäß einer alternativen
Ausführungsform.
Figur 1 zeigt schematisch ein elektromagnetisches Betätigungselement 1 zusammen mit einem ersten externen System 2 und einem zweiten externen System 3. Bei dem elektromagnetischen Betätigungselement 1 handelt es sich um ein Magnetventil, das in bekannter Weise einen translatorisch angetriebenen Magnetkolben umfasst. Dieser Magnetkolben ist in der Darstellung von Figur 1 in dem Teil-Aufbruch mit dem Bezugszeichen 4 versehen. Der Magnetkolben 4 ist durch eine Spiralfeder 5 vorgespannt und wird durch eine (nicht gezeigte) Spule entgegen der Federvorspannung angetrieben, um dadurch eine Ventilöffnung zu öffnen bzw. zu schließen. Die Funktionsweise des Magnetventils 1 in Bezug auf das Öffnen und Schließen ist im Stand der Technik bekannt und deshalb an dieser Stelle nicht weiter im Detail erläutert. Es versteht sich, dass das elektromagnetische Betätigungselement 1 auch als elektromagnetisch angetriebene Dosierpumpe, als elektromagnetisch betätigter Aktor in Form eine Stellgliedes oder dergleichen oder in Form eines anderen Ventils aufgeführt sein kann. Nachfolgend wird das Betätigungselement 1 nur als Magnetventil bezeichnet, ohne dass darin eine Einschränkung ausschließlich auf ein solches Bauteil zu verstehen ist.
Das Magnetventil 1 weist einen elektrischen Anschluss 6 auf, der dem Zuführen elektrischer Energie zur Spule dient. Wenn die Spule mittels des elektrischen Anschlusses 6 bestromt wird, verschiebt sich der Magnetkolben 4 entlang seiner Längsachse 7, um die Ventilöffnung wunschgemäß zu betätigen. Der elektrische Anschluss 6 ist zweckmäßiger Weise als 2-polige Steckverbindung ausgeführt und nachfolgend nur als solche bezeichnet, ohne darin eine Einschränkung zu verstehen. Der elektrische Anschluss 6 kann auch in beliebig anderer Weise ausgeführt sein, solange ein störungsfreies Zuführen von elektrischer Energie bzw. von elektrischen Signalen wie nachstehend noch zu erläutern gewährleistet ist.
Das Magnetventil 1 umfasst des weiteren eine Speichereinheit 8, die mit der 2- poligen Steckverbindung 6 elektrisch verbunden ist. In Figur 2 ist die Speichereinheit 8 im Detail gezeigt. Sie umfasst eine elektronische Schaltung 9 und einen Datenspeicher 10, der als EEPROM ausgeführt sein kann.
Das erste externe System 2 kann zum Beispiel als Prüfstand ausgebildet sein und dient dazu, spezifische Kenndaten des Magnetventils 1 nach der Montage und vor einer Auslieferung an den Kunden zu messen. Bei dem Magnetventil 1 wird eine hohe Genauigkeit für bestimmte Kenndaten wie Öffnungsdruck, Schaltzeit, Durchflussmenge oder Fördermenge verlangt, die durch eine enge Tolerierung der Einzelteile des Magnetventils 1 nicht oder nur mit unvertretbar hohen Kosten erreicht werden kann. Deshalb ist es sinnvoll, die durch das erste externe System 2 bzw. den Serienprüfstand ohnehin ermittelten Informationen über die Größe solcher Kenndaten an den Kunden zu übermitteln, der diese Kenndaten in seine Ansteuerelektronik bzw. das zweite externe System 3 überträgt. Das zweite externe System 3 verwendet die Kenndaten zur Kompensation der Ansteuersignale derart, das die geforderte Genauigkeit in der Steuerung bzw. Regelung des Kundensystems erreicht wird. Dies gilt nicht nur für ein Magnetventil, sondern in gleicher Weise für andere elektromagnetische Geräte, z.B. für elektromagnetisch betätigte Aktoren oder auch Dosierpumpen.
Die vorstehend genannten Kenndaten werden zum Beispiel in Form einer Tabelle aufgezeichnet, in der Informationen über Druck, Durchfluss,
Fördermenge und Durchflussmenge jeweils als Funktion des Stroms enthalten sind. Bei einem Magnetventil ist die Fördermenge üblicherweise eine Funktion der Druckdifferenz. Gleichwohl hängt die Schaltzeit des Magnetventils zumeist vom Hub des Magnetkolbens 4 ab. Ohne die Kenntnis von exakten Toleranzen, die sich von Magnetventil zu Magnetventil unterscheiden können, ist jedoch eine exakte Einstellung der Schaltzeit nicht möglich. Deshalb werden mittels eines Prüfstands in Form des externen Systems 2 genaue Kenndaten für ein jeweiliges Magnetventil ermittelt, um mögliche Fertigungstoleranzen zu berücksichtigen. Die Bestimmung von solchen Kenndaten ermöglicht ein exaktes Ansteuern des Magnetventils 1 durch das zweite externe System 3, das eine Steuerelektronik des Kunden umfassen kann.
Beim Messen der Kenndaten des Magnetventils 1 durch das erste externe System 2 wird das Magnetventil 1 mit der 2-poligen Steckverbindung 6 an das erste externe System 2 angeschlossen. Hierzu umfasst das erste externe System 2 eine Anschlussbuchse 11 , in die die 2-polige Steckverbindung 6 eingesteckt wird. Hierdurch ist eine elektrische Verbindung zwischen dem Magnetventil 1 und dem ersten externen System 2 hergestellt. Das Messen von Kenndaten ist im Einzelnen unter Bezugnahme auf Figur 4 erläutert. Wenn alle erforderlichen Kenndaten durch das erste externe System 2 gemessen worden sind, werden diese Kenndaten in der Speichereinheit 8 des Magnetventils 1 gespeichert. Hierzu werden elektrische Signale von dem ersten externen System über die 2-polige Steckverbindung 6 an die Speichereinheit 8 übertragen, um dadurch die Kenndaten in den Datenspeicher 10 der Speichereinheit 8 zu schreiben bzw. darin zu speichern. Die 2-polige Steckverbindung 6 dient nicht nur zum Übertragen von elektrischer Energie an die Spule des Magnetventils 1 , sondern auch zur Informationsübertragung, d.h. zum Übertragen der von dem ersten externen System 2 gemessenen Kenndaten an die Speichereinheit 8 des Magnetventils 1. Die 2-polige Steckverbindung 6 übernimmt somit eine Doppelfunktion, so dass ein separater elektrischer Anschluss ausschließlich zum Übertragen der Kenndaten in die Speichereinheit 8 nicht erforderlich ist.
Durch eine feste Anbringung der Speichereinheit 8 an dem Magnetventil 1 ist sichergestellt, dass spezifische Kenndaten, die in der Speichereinheit 8 wie erläutert abgespeichert sind, stets einem konkreten Magnetventil 1 zugewiesen sind. Die Gefahr von Verwechslungen von verschiedenen Datensätzen von Kenndaten ist nicht möglich. Nach Auslieferung des Magnetventils 1 an einen Kunden kann dieser mittels des zweiten externen Systems 3, das eine Steuerschaltung aufweisen kann, die Kenndaten aus der Speichereinheit 8 auslesen und auf deren Grundlage einen angepassten Betrieb des Magnetventils 1 mit individueller Ansteuerung einrichten. Hierzu umfasst das zweite externe System 3 eine Anschlussbuchse 12, die an die 2-polige
Steckverbindung 6 des Magnetventils angepasst ist. Wie vorstehend erläutert, dient die 2-polige Steckverbindung 6 nicht nur zum Übertragen bzw. Auslesen der Kenndaten, sondern auch zum Bestromen der Spule des Magnetventils 1.
Nachstehend ist unter Bezugnahme auf Figur 4 eine Schrittabfolge beim
Messen von Kenndaten des Magnetventils 1 durch das erste externe System 2 und ein anschließendes Speichern dieser Kenndaten in der Speichereinheit 8 erläutert.
Nachdem das Magnetventil 1 in das erste externe System 2 eingesetzt bzw. damit verbunden ist, werden in Schritt S110 die Kenndaten des Magnetventils 1 gemessen. Nach einer Verarbeitung der Kenndaten in Schritt S111 werden die Kenndaten auf eine Trägerfrequenz aufmoduliert, gemäß Schritt S112. Während der Messung der Kenndaten auf dem Prüfstand bzw. durch das erste externe System 2 wird das Magnetventil 1 duch geregelten Gleichstrom mit überlagertem niederfrequenten Wechselstrom konstanter Amplitude bestromt bzw. betrieben. Nach Abschluss einer vollständigen Messung aller erforderlichen Kenndaten werden diese in Schritt S113 mittels der 2-poligen Steckverbindung 6 an die Speichereinheit 8 übertragen. Dies erfolgt durch Aussenden von elektrischen Signalen an die Speichereinheit, z.B. durch einen überlagerten höherfrequenten Wechselstrom als Träger, wobei die elektrischen Signale aufmoduliert sind. Die Aufmodulation kann wahlweise mittels Amplituden- oder Frequenzmodulation erfolgen. Zur gemeinsamen Nutzung der 2-poligen Steckverbindung sowohl zur Übertragung der elektrischen Leistung an die Spule als auch der Kenndaten an die Speichereinheit 8 kann alternativ zur Nutzung dieser verschiedenen Frequenzen auch eine Nutzung von verschiedenen Zeitfenstern vorgesehen sein.
Sobald die elektrischen Signale von dem ersten externen System 2 an der elektronischen Schaltung 9 der Speichereinheit 8 eintreffen, werden die Kenndaten von der elektronischen Schaltung 9 in dem Datenspeicher 10 gespeichert. Hierbei erfolgt gemäß Schritt S114 eine Demodulation des höherfrequenten Wechselstroms mit den aufmodulierten Signalen, um die Kenndaten aus diesem Hochfrequenzsignal auszulesen. Das Schreiben der Kenndaten in den Datenspeicher 10 durch die elektronische Schaltung 9 erfolgt dann im Schritt S115, so dass im Ergebnis die Kenndaten in dem Datenspeicher gemäß Schritt S116 gespeichert sind. Bei der Durchführung der Schritte S114 bis S116 kann eine Versorgungsspannung für die elektronische Schaltung 9 der Speichereinheit 8 aus dem Gleichstrom oder aber aus dem überlagerten Wechselstrom gewonnen werden, der an der 2-poligen Steckverbindung 6 anliegt.
In der Figur 4 sind die Schritte S110 bis S113 schematisch vereinfacht dem ersten externen System 2 zugewiesen, und die Schritte S114 bis S116 sind schematisch vereinfacht dem Magnetventil 1 zugewiesen. Diese Zuweisung soll verdeutlichen, in welchem Kontext die einzelnen Schritte durchgeführt werden. Nachstehend ist unter Bezugnahme auf Figur 5 eine Schrittabfolge zum Auslesen der Kenndaten durch das zweite externe System 3 erläutert. Nachdem das Magnetventil 1 mit seiner 2-poligen Steckverbindung 6 an die Anschlussbuchse 12 des zweiten externen Systems 3 angeschlossen worden ist, werden in Schritt S130 durch das zweite externe System 3 Signale zum Auslesen des Datenspeichers 10 erzeugt. In Schritt S131 wird dieses Lesesignal auf eine Trägerfrequenz aufmoduliert, bevor es in Schritt S 132 über die 2-polige Steckverbindung 6 zum Magnetventil 1 gesendet wird. Durch eine geeignete Demodulation in Schritt S133 wird das Lesesignal aus dem
Hochfrequenzsignal ausgelesen, um gemäß Schritt S134 die Kenndaten aus dem Datenspeicher 10 der Speichereinheit 8 zu lesen. Hiernach werden gemäß Schritt S135 die Kenndaten auf eine Trägerfrequenz aufmoduliert und in Schritt S136 zurück an das kundenseitige zweite externe System 3, das eine Steuerschaltung aufweisen kann, zurückgesendet. In Schritt S137 werden dann mittels einer geeigneten Demodulation die Kenndaten ausgelesen, um anschließend in Schritt S138 die Kenndaten entsprechend zu verarbeiten.
Auf Grundlage der in Schritt 138 verarbeiteten Kenndaten erzeugt dann die Steuerschaltung des zweiten Systems 3 in Schritt S 139 einen geregelten
Gleichstrom, ggf. mit überlagertem Wechselstrom, um damit das Magnetventil 1 zu dessen Betrieb anzusteuern. Die Versorgungsspannung für die elektronische Schaltung 9, die zuvor für die Schritte S133 bis S136 benötigt wird, kann aus dem Gleichstrom oder dem überlagerten Wechselstrom gewonnen, der an der 2-poligen Steckverbindung 6 anliegt.
In Figur 3 ist eine alternative Ausführungsform für die Speichereinheit gezeigt, und entsprechend mit dem Bezugszeichen 8' bezeichnet. Die Speichereinheit 8' unterscheidet sich von jener der Figur 2 darin, dass sie ausschließlich passive Bauelemente in Form von schwingungsfähige Schaltungen 13 bzw. Schwingkreisen aufweist, die keine Spannungsversorgung benötigen. Die Speichereinheit 8' umfasst eine Mehrzahl von solchen Schwingkreisen 13, die in Figur 3 schematisch vereinfacht dargestellt sind. In Figur 3 sind vier Schwingkreise 13 dargestellt, ohne darin eine Einschränkung zu sehen. Die Speichereinheit 8' kann auch mehr oder weniger als vier Schwingkreise 13 umfassen.
Jedem Schwingkreis 13 ist eine Schmelzsicherung 14 zugewiesen, deren Funktion nachstehend noch erläutert ist. Nachdem auf dem Prüfstand bzw. durch das erste externe System 2 die Kenndaten des Magnetventils 1 gemessen worden sind, werden zur Übertragung dieser Kenndaten an die Speichereinheit 8' einige ausgewählte Schwingkreise 13 durch starke hochfrequente Signal zur Resonanz gebracht. Die charakteristische Resonanzfrequenz eines jeweiligen Schwingkreises 13 legt dabei fest, welche Schwingkreise im Einzelnen beim Anliegen der hochfrequenten Signale in Resonanz geraten, wobei die Schmelzsicherungen 14 dieser Schwingkreise 13 beim Auftreten der Resonanz durchschmelzen. Hierdurch werden die Kenndaten zweckmäßigerweise dual kodiert den charakteristischen Frequenzen zugeordnet. Es sind jedoch auch andere Formen von Kodierungen möglich.
Beim Auslesen der Speichereinheit 8' durch die Steuerschaltung bzw. durch das zweite externe System 3 werden schwache hochfrequente Signale mit allen charakteristischen Frequenzen an die Speichereinheit 8' gesandt. Hierbei geraten zumindest einige der Schwingkreise 13, deren Schmelzsicherung 14 noch intakt ist, in Resonanz, ohne dass dabei die Schmelzsicherungen 14 durchschmelzen. Diese Resonanzen werden von der Steuerschaltung gemessen, erkannt und gemäß der Kodierung zu entsprechenden Kenndaten verarbeitet.
Bei der alternativen Ausführungsform des Magnetventils 1 , bei der die Speichereinheit 8' eine Mehrzahl von Schwingkreisen 13 aufweist, bleibt die Doppelfunktion der 2-poligen Steckverbindung 6 unverändert erhalten. Dies bedeutet, dass die starken bzw. schwachen hochfrequenten Signale zum
Beschreiben bzw. Auslesen der Speichereinheit 8' ebenfalls über die 2-polige Steckverbindung 6, die ansonsten zum Betromen der Spule des Magnetventils 1 dient, an die Speichereinheit 8' gesendet werden. Nachstehend ist unter Bezugnahme auf die Figuren 6 und 7 ein Speichern und Auslesen der Kenndaten mit der Speichereinheit 8' gemäß Figur 3 ausführlich in Abfolge von einzelnen Schritten erläutert.
Wie in dem Flussdiagramm von Figur 6 gezeigt, werden nach einem Anschließen des Magnetventils 1 an das erste externe System 2 in Schritt S210 die Kenndaten des Magnetventils 1 gemessen, bevor die Kenndaten in Schritt S211 verarbeitet und binär kodiert werden. Die binäre Kodierung erfolgt wie vorstehend erläutert dadurch, dass ausgewählte Schwingkreise 13 in Resonanz geraten und dadurch ihre zugeordneten Schmelzsicherungen 14 zerstört werden. Hierzu werden in Schritt S212 die erforderlichen Hochfrequenzsignale mit einer ausreichenden Stärke erzeugt, die in Schritt S213 an das Magnetventil 1 bzw. dessen Speichereinheit 8 mittels der 2-poligen Steckverbindung übertragen werden. Zur Messung der Kenndaten insbesondere in Schritt S210 wird an das Magnetventil 1 ein geregelter Gleichstrom mit überlagertem niederfrequenten Wechselstrom angelegt.
Geräteseitig erfolgt in der Speichereinheit 8' nach Erhalt der Hochfrequenz- Signale eine Demodulation gemäß Schritt S214, in dem die Hochfrequenzsignale ausgelesen werden. In Schritt S215 erfolgt dass Beschreiben der Speichereinheit 8' dadurch, dass die Schmelzsicherungen 14 von ausgewählten Schwingkreisen 13 infolge starker Resonanz zerstört werden. Auch bei den Schritten S214 und S215 erfolgt eine Bestromung des Magnet- ventils 1 über die 2-polige Steckverbindung 6.
Das Auslesen der Kenndaten durch das zweite externe System 3 ist in dem Flussdiagramm von Figur 7 dargestellt. Die Steuerschaltung des zweiten externen Systems 3 erzeugt in Schritt S230 Signale zum Auslesen der Speichereinheit 8', wonach in Schritt S231 sequentiell die charakteristischen Hochfrequenzsignale mit einer bestimmten Stärke erzeugt werden. Diese Hochfrequenzsignale in Schritt S232 über die 2-polige Steckverbindung 6 an das Magnetventil 1 übertragen. Geräteseitig erfolgt in Schritt S233 eine Demodulation, wobei die Hochfrequenzsignale aus Schritt S231 ausgelesen werden. In Schritt S234 geraten die Schwingkreise 13 mit den intakten Schmelzsicherungen 14 in Resonanz, ohne dass dabei durch die schwachen hochfrequenten Signale die Schwingkreise zerstört werden. Hierdurch können die Kenndaten aus der
Speichereinheit 8' ausgelesen werden. Durch Übertragung dieses Resonanzverhaltens in Schritt S235 über die 2-polige Steckverbindung 6 an die Steuerschaltung des zweiten externen Systems 3 kann letzteres die Resonanz für jede charakteristische Frequenz erkennen, gemäß Schritt S236, um hiernach in Schritt S237 diese Kenndaten einer Wiedergewinnung und
Verarbeitung zu unterziehen. Als Ergebnis dessen erzeugt die Steuerschaltung des zweiten externen Systems 3 in Schritt S238 einen geregelten Gleichstrom mit überlagertem niederfrequenten Wechselstrom, der zum Betrieb des Magnetventils 1 gemäß Schritt S239 an die 2-polige Steckverbindung 6 angelegt wird.
Ungeachtet der Art der Speichereinheit erfolgt bei dem erfindungsgemäßen Magnetventil 1 ein Bestromen der Spule und ein Übertragen der Kenndaten oder von der Speichereinheit gemeinsam über die 2-polige Steckverbindung 6. Falls die Speichereinheit 8 eine elektronische Schaltung 9 aufweist, erfolgt deren Energieversorgung durch den ohnehin vorhandenen Ansteuerstrom für die Spule des Magnetventils 1. Da die Speichereinheit stets mit dem Magnetventil 1 verbunden bleibt, erfolgt eine Übertragung der Informationen bzw. der Kenndaten stets mit dem Magnetventil 1 selbst, um Verwechslungen und Informationsverluste auf Kundenseite zu vermeiden. Auf Grundlage der am Prüfstand gemessenen Kenndaten eines bestimmten Magnetventils 1 kann kundenseitig eine Kompensation vorgenommen werden, die eine erhebliche Verbesserung der Genauigkeit beim Betrieb des Magnetventils 1 bewirkt. Zusätzlich wirkt eine solche Verbindung von spezifischen Kenndaten zu einem konkreten Magnetventil auch als Schutz gegen den Einsatz ungeeigneter Geräte oder eine unerlaubte Nachahmung des Magnetventils zum Beispiel durch Produktpiraten.

Claims

PATENTANSPRÜCHE
1. Elektromagnetisches Betätigungselement (1 ), umfassend eine Speichereinheit (8, 8'), die von einem ersten externen System (2) beschreibbar und von einem zweiten externen System (3) auslesbar ist, und einen elektrischen Anschluss (6), um dem Betätigungselement (1 ) elektrische Energie zu dessen Ansteuerung zuzuführen, dadurch gekennzeichnet, dass der elektrische Anschluss (6) mit der Speichereinheit (8,8') elektrisch verbunden ist, wobei durch den Anschluss elektrische Signale an die Speichereinheit und/oder von der Speichereinheit übertragbar sind, um Kenndaten des Betätigungselements in die Speichereinheit
(8,8') zu schreiben und/oder daraus auszulesen.
2. Betätigungselement (1 ) nach Anspruch 1 , bei dem die Energieversorgung des Betätigungselements durch geregelten Gleichstrom mit überlagertem niederfrequenten Wechselstrom konstanter Amplitude erfolgt.
3. Betätigungselement (1 ) nach Anspruch 1 oder 2, bei dem der elektrische Anschluss (6) zweipolig ist.
4. Betätigungselement (1 ) nach einem der Ansprüche 1 bis 3, bei dem der elektrische Anschluss (6) mit dem ersten System (2) und/oder mit dem zweiten System (3) verbindbar ist.
5. Betätigungselement (1 ) nach einem der Ansprüche 1 bis 4, bei dem die Energieversorgung der Speichereinheit (8,9) durch den geregelten Gleichstrom oder durch den niederfrequenten Wechselstrom erfolgt.
6. Betätigungselement (1 ) nach Anspruch 5, bei dem das Beschreiben und/oder das Auslesen der Speichereinheit zur Übertragung der Kenndaten durch einen überlagerten höherfrequenten Wechselstrom mit aufmoduliertem Signal erfolgt.
7. Betätigungselement (1 ) nach Anspruch 6, bei dem die Speichereinheit die Kenndaten an das zweite externe System (3) durch einen höherfrequenten Wechselstrom mit aufmoduliertem Signal sendet.
8. Betätigungselement (1 ) nach Anspruch 6 oder 7, bei dem die Kenndaten durch den höherfrequenten Wechselstrom zeitversetzt zur Energieversorgung der Speichereinheit (8,9) übertragbar sind.
9. Betätigungselement (1 ) nach einem der Ansprüche 1 bis 8, bei dem die Speichereinheit (8) eine elektronische Schaltung (9) und einen Datenspeicher (10) umfasst.
10. Betätigungselement (1 ) nach einem der Ansprüche 1 bis 4, bei dem die Speichereinheit (8') eine Mehrzahl aus passiven Bauelementen (13) in
Form von Schwingkreisen aufweist, wobei jedem Schwingkreis jeweils eine Schmelzsicherung (14) zugewiesen ist.
11. Betätigungselement (1 ) nach Anspruch 10, bei dem die Schwingkreise (13) durch hochfrequente Signale in Resonanz bringbar sind, wobei ausgewählte Schmelzsicherungen (14) bei Resonanzerregung ihres jeweils zugeordneten Schwingkreises oberhalb einer bestimmten Stärke der hochfrequenten Signale schmelzen.
12. Betätigungselement (1 ) nach einem der Ansprüche 1 bis 11 , das ein Ventil, eine Dosierpumpe oder ein Stellorgan bildet.
13. Betätigungselement (1 ) nach einem der Ansprüche 1 bis 12, bei dem das erste externe System (2) ein Prüfstand ist.
14. Betätigungselement (1 ) nach einem der Ansprüche 1 bis 13, bei dem das zweite externe System (3) eine Bordelektronik eines Fahrzeugs ist, die das Betätigungselement auf Grundlage der in der Speichereinheit gespeicherten Kenndaten ansteuert.
15. Verfahren zum Bereitstellen und Abrufen von Kenndaten für ein elektromagnetisches Betätigungselement (1 ), das zur Ansteuerung einen elektrischen Anschluss (6) und eine Speichereinheit (8,8') umfasst, mit dem Schritten:
Erzeugen von Kenndaten des Betätigungselements mittels eines ersten externen Systems (2), - Übertragen von elektrischen Signalen von dem ersten externen
System (2) an die Speichereinheit (8,8') des Betätigungselements (1 ), um darin die Kenndaten zu speichern,
Auslesen der in der Speichereinheit gespeicherten Kenndaten durch ein zweites externes System (3), so dass das zweite externe System das Betätigungselement auf Grundlage der Kenndaten ansteuert, dadurch gekennzeichnet, dass der elektrische Anschluss (6) sowohl zur Übertragung von elektrischer
Energie an das Betätigungselement zu dessen Ansteuerung als auch zur Übertragung der elektrischen Signale zum Speichern der
Kenndaten in der Speichereinheit und/oder zum Auslesen der in der
Speichereinheit gespeicherten Kenndaten durch das zweite externe
System verwendet wird.
16. Verfahren nach Anspruch 15, bei dem das Betätigungselement (1 ) durch geregelten Gleichstrom mit überlagertem niederfrequenten Wechselstrom konstanter Amplitude mit Energie gespeist wird.
17. Verfahren nach Anspruch 16, bei dem die Speichereinheit durch den geregelten Gleichstrom oder durch den niederfrequenten Wechselstrom mit Energie gespeist wird.
18. Verfahren nach Anspruch 17, bei dem die Kenndaten in der Speicherheinheit durch einen überlagerten höherfrequenten Wechselstrom mit aufmoduliertem Signal gespeichert werden (S 112, SUS. S I U. S Hδ).
19. Verfahren nach Anspruch 17 oder 18, bei dem die Kenndaten aus der Speicherheinheit durch einen überlagerten höherfrequenten Wechselstrom mit aufmoduliertem Signal ausgelesen werden (S 133).
20. Verfahren nach Anspruch 18 oder 19, bei dem die Speichereinheit die Kenndaten an das zweite externe System durch einen höherfrequenten Wechselstrom mit aufmoduliertem Signal sendet (S 135, S 136).
21. Verfahren nach einem der Ansprüche 18 bis 20, bei dem die Kenndaten durch den höherfrequenten Wechselstrom zeitversetzt zur Ansteuerung der Speichereinheit übertragen werden.
22. Verfahren nach einem der Ansprüche 15 bis 21 , bei dem das erste externe System (2) ein Prüfstand oder dergleichen ist.
23. Verfahren nach einem der Ansprüche 15 bis 22, bei dem das zweite externe System (3) eine Bordelektronik eines Fahrzeugs oder dergleichen ist, die das Betätigungselement (1) auf Grundlage der in der Speichereinheit (8, 8') gespeicherten Kenndaten ansteuert.
PCT/DE2008/000524 2007-04-24 2008-03-31 Elektromagnetisches betätigungselement WO2008128499A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT08748700T ATE523885T1 (de) 2007-04-24 2008-03-31 Elektromagnetisches betätigungselement
EP08748700A EP2143114B1 (de) 2007-04-24 2008-03-31 Elektromagnetisches betätigungselement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007019619A DE102007019619A1 (de) 2007-04-24 2007-04-24 Elektromagnetisches Betätigungselement
DE102007019619.0 2007-04-24

Publications (1)

Publication Number Publication Date
WO2008128499A1 true WO2008128499A1 (de) 2008-10-30

Family

ID=39672927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/000524 WO2008128499A1 (de) 2007-04-24 2008-03-31 Elektromagnetisches betätigungselement

Country Status (4)

Country Link
EP (1) EP2143114B1 (de)
AT (1) ATE523885T1 (de)
DE (1) DE102007019619A1 (de)
WO (1) WO2008128499A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325465A1 (de) 2009-11-24 2011-05-25 Delphi Technologies Holding S.à.r.l. Kraftstoffeinspritzdüsen-Kommunikationssystem
EP3159534A4 (de) * 2014-06-23 2018-02-28 Hino Motors, Ltd. Kraftstoffeinspritzsystem vom common-rail-typ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011122363B4 (de) 2011-12-23 2019-03-21 Thomas Magnete Gmbh Elektrische Ansteuerung für Elektromagnete
DE102013107003A1 (de) * 2013-07-03 2015-01-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Anpassen eines Schwingkreises für ein Spielgerät
GB201613901D0 (en) 2016-08-12 2016-09-28 Artemis Intelligent Power Ltd Valve for fluid working machine, fluid working machine and method of operation
DE102021201906A1 (de) 2021-03-01 2022-09-01 Robert Bosch Gesellschaft mit beschränkter Haftung Hochdruckpumpenkomponente für eine Brennkraftmaschine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5575264A (en) * 1995-12-22 1996-11-19 Siemens Automotive Corporation Using EEPROM technology in carrying performance data with a fuel injector
EP1719897A1 (de) * 2005-05-02 2006-11-08 Siemens Aktiengesellschaft Brennstoffeinspritzventil

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059950A (en) * 1990-09-04 1991-10-22 Monarch Marking Systems, Inc. Deactivatable electronic article surveillance tags, tag webs and method of making tag webs
US5634448A (en) 1994-05-31 1997-06-03 Caterpillar Inc. Method and structure for controlling an apparatus, such as a fuel injector, using electronic trimming
DE19636031A1 (de) * 1996-09-05 1998-03-12 Varchmin J Uwe Prof Dr Ing Power-Bus
DE20013501U1 (de) * 2000-08-04 2000-12-07 Hirschmann Richard Gmbh Co Schaltungsanordnung zum Anschließen eines Sensors oder Aktuators an eine Busleitung
DE50114190D1 (de) * 2000-12-27 2008-09-18 Voith Turbo Kg Vorrichtung zur elektronischen Steuerung einer Getriebebaueinheit
DE102005001427A1 (de) 2005-01-12 2006-07-20 Robert Bosch Gmbh Verfahren zum Korrigieren des Einspritzverhaltens wenigstens eines ein Magnetventil aufweisenden Injektors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5575264A (en) * 1995-12-22 1996-11-19 Siemens Automotive Corporation Using EEPROM technology in carrying performance data with a fuel injector
EP1719897A1 (de) * 2005-05-02 2006-11-08 Siemens Aktiengesellschaft Brennstoffeinspritzventil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325465A1 (de) 2009-11-24 2011-05-25 Delphi Technologies Holding S.à.r.l. Kraftstoffeinspritzdüsen-Kommunikationssystem
WO2011064270A1 (en) 2009-11-24 2011-06-03 Delphi Technologies Holding S.À.R.L. Fuel injector communication system
EP3159534A4 (de) * 2014-06-23 2018-02-28 Hino Motors, Ltd. Kraftstoffeinspritzsystem vom common-rail-typ

Also Published As

Publication number Publication date
ATE523885T1 (de) 2011-09-15
DE102007019619A1 (de) 2008-11-06
EP2143114A1 (de) 2010-01-13
EP2143114B1 (de) 2011-09-07

Similar Documents

Publication Publication Date Title
DE4132557C2 (de) Vorrichtung zum Übertragen von elektrischen Signalen von einer stationären Steuervorrichtung zu einer instationären Unwuchtausgleichsvorrichtung
EP2143114B1 (de) Elektromagnetisches betätigungselement
DE102014214248B4 (de) Vorrichtung zum korrigieren von injektorcharakteristiken
DE3806794A1 (de) Mehrfunktionspruefvorrichtung zur feststellung von stoerungen
EP1039357B1 (de) Einrichtung zum Einstellen von Betriebsgrössen in mehreren programmierbaren integrierten Schaltungen
DE102006059007B3 (de) Einrichtung zur Steuerung einer Brennkraftmaschine
EP1791048B1 (de) Automatisierungssystem mit einem angeschlossenen RFID-identifizierten Sensor oder Aktor
EP2188785B1 (de) Tachograph, anordnung und verfahren zur daten-übertragung über eine benutzerfreundliche schnittstelle
EP1649331B1 (de) System und verfahren zur identifizierung von automatisierungskomponenten
DE102008032094A1 (de) Fahrzeug mit einer Vorrichtung zur Erfassung von Fahrzeugkomponenten und Verfahren zur Komponentenerfassung durch ein Fahrzeug
EP1455278A1 (de) Verfahren zur Identifizierung einer elektronischen Einheit
DE10117809A1 (de) System und Verfahren zum Erfassen von Informationen
DE10335905B4 (de) Verfahren und Vorrichtung zur bidirektionalen Eindraht-Datenübertragung
DE102018100756A1 (de) Fahrzeuggebundene vorrichtung, weiterleitungsvorrichtung und computerprogramm
DE102006035112A1 (de) Baueinheit
DE112009000860T5 (de) Flash-Speicher-Signaturkalibrierung
DE10213349A1 (de) System zum Erfassen von Informationen
EP3329481B1 (de) Verfahren zur übertragung von daten von einem sensor zu einem empfänger
WO2007031465A1 (de) Stellvorrichtung für eine mechanische komponente und steuervorrichtung
DE10053598A1 (de) Steuerung für einen Kolbenmotor
DE102013101916B4 (de) Kraftstoffeinspritzsystem ausgestattet mit einem Injektor
EP1536596B1 (de) Treibermodul und Verfahren zur Konfiguration eines Treibermoduls
EP1528996A1 (de) Verfahren und vorrichtung zur bereitstellung von betriebsdaten von funktionskomponenten eines kraftfahrzeugbremsensteuergeräts
WO2007028829A1 (de) Verfahren und steuereinheit zum betreiben einer antriebseinheit
EP4276552A2 (de) Netzgerät zur verwendung in einem kommunikationsnetz und herstellverfahren für ein netzgerät

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08748700

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WD Withdrawal of designations after international publication

Designated state(s): DE

WWE Wipo information: entry into national phase

Ref document number: 2008748700

Country of ref document: EP