WO2008128387A1 - Dispositif de pulvérisation pour incidence de jets de liquide et gaz et tour de désulfurisation par fumée humide utilisant le dispositif de pulvérisation - Google Patents

Dispositif de pulvérisation pour incidence de jets de liquide et gaz et tour de désulfurisation par fumée humide utilisant le dispositif de pulvérisation Download PDF

Info

Publication number
WO2008128387A1
WO2008128387A1 PCT/CN2007/001949 CN2007001949W WO2008128387A1 WO 2008128387 A1 WO2008128387 A1 WO 2008128387A1 CN 2007001949 W CN2007001949 W CN 2007001949W WO 2008128387 A1 WO2008128387 A1 WO 2008128387A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
liquid
gas
atomizing device
pressurizing device
Prior art date
Application number
PCT/CN2007/001949
Other languages
English (en)
French (fr)
Inventor
Bing Wei
Qixiang Lian
Original Assignee
Bing Wei
Qixiang Lian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNU2007201488588U external-priority patent/CN201023084Y/zh
Priority claimed from CNU2007201488573U external-priority patent/CN201023026Y/zh
Application filed by Bing Wei, Qixiang Lian filed Critical Bing Wei
Publication of WO2008128387A1 publication Critical patent/WO2008128387A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide

Definitions

  • Atomizing device for colliding gas-liquid two-phase jet and spray flue gas desulfurization tower
  • the invention relates to an atomization device for colliding gas-liquid two-phase jets and a spray flue gas desulfurization tower using the same.
  • the atomization device of the invention can be applied to many fields of liquid atomization technology, such as industrial, civil and national defense technology, and the spray flue gas desulfurization tower can be applied to a large number of production processes in power plants, chemical plants and steel plants.
  • a pressure spray type that pressurizes a liquid and is ejected at a high speed by a nozzle
  • a gas and a liquid jet are coaxial, concentric, In the same direction, the center of the tube is a liquid jet, and the outer layer of the tube is a composite nozzle of a high-speed gas jet
  • an impact spray type that causes two liquids to collide with each other or atomizes the solid wall and atomizes
  • a vibration type that atomizes a liquid by vibration by means of sound waves, ultrasonic waves, etc.
  • An electrostatic type that applies high-voltage static electricity to a liquid to atomize it.
  • the above atomizing devices have some disadvantages.
  • a flue gas desulfurization tower using a liquid atomization device is used to remove sulfur dioxide from the flue gas generated by coal combustion.
  • sulfur dioxide emissions have ranked first in the world, and sulfur dioxide emission reduction has been listed as a very important event in environmental protection.
  • the large amount of sulfur dioxide emitted comes from the combustion of solid fuels from industrial and civilian users around the world.
  • a large amount of sulfur dioxide is discharged into the atmosphere, which will form acid rain, destroy the earth's ecology and have a very negative impact on environmental protection.
  • the existing wet flue gas desulfurization tower has the following types: 1) a spray desulfurization tower using a centrifugal nozzle, which comprises: a casing, an atomizing device and a defogger, and a lower portion of the inner cavity of the casing is a liquid storage chamber.
  • the middle part of the inner cavity of the casing is a desulfurization chamber, the upper part of the inner cavity of the casing is a defogging chamber, the mist eliminator is arranged in the demisting chamber, the liquid storage chamber has a discharge port, the lower part of the desulfurization chamber has a flue gas inlet, and the top of the casing has a flue gas outlet.
  • the atomizing device is composed of a liquid pressurizing device, a liquid pipeline and a centrifugal nozzle.
  • the centrifugal nozzle is located at the top of the desulfurization chamber, the nozzle is disposed downward, the liquid pressurizing device is disposed outside the casing, and the centrifugal nozzle passes through the liquid pipeline and the liquid.
  • the pressurizing devices are connected.
  • the desulfurization liquid such as the limestone solution is pressurized by the liquid pressurizing device, and then sprayed through the liquid pipe to the centrifugal nozzle to form a mist, and then reacted with the sulfur dioxide in the flue gas to reach the desulfurization. the goal of.
  • the atomization of the desulfurization liquid by such a centrifugal nozzle is mainly achieved by the centrifugal force acting on the liquid.
  • the advantages of the spray desulfurization tower with centrifugal nozzle are: The centrifugal nozzle has good atomization effect on the desulfurization liquid, and the desulfurization efficiency is high;
  • the disadvantage is: the centrifugal nozzle is easily blocked and worn to lose atomization, The desulfurization efficiency is reduced, the nozzle life is short, and it is necessary to frequently stop and replace, which affects the production efficiency, and the nozzle mainly relies on imports, and the cost is high.
  • the reason for the clogging of the centrifugal nozzle is mainly because the flow path of the liquid in the nozzle is narrow.
  • the desulfurization solution used is a limestone solution which is an emulsion and contains fine solid particles which will block the flow path, and the alkaline substance contained in the liquid will be in the nozzle.
  • Inner wall Caused by scaling.
  • the reason for the centrifugal nozzle wear is: ⁇
  • the flow rate of the desulfurization solution in the nozzle needs to be relatively low, and the high-speed moving solid particles in the desulfurization solution will curve along the inner wall of the nozzle under the action of centrifugal force. Large friction with the inner wall surface causes severe wear and tear, resulting in nozzle breakage.
  • a spray tower that uses a composite nozzle to atomize a desulfurization liquid, which is different from a spray desulfurization tower using a centrifugal nozzle, and an atomization device that uses a composite nozzle to atomize a desulfurization liquid spray tower
  • the utility model is composed of a composite nozzle, a gas pressurizing device and a liquid pressurizing device.
  • the composite nozzle is composed of a coaxial, co-directional inner tube and an outer tube, and the inner tube of the composite nozzle is connected with the liquid pressurizing device, and the composite The outer tube of the nozzle is connected to a gas pressurizing device.
  • the inner tube of the composite nozzle is sprayed with a desulfurization liquid such as a limestone solution, and the outer tube of the composite nozzle is sprayed with air, and between the pressurized air and the desulfurized liquid.
  • a desulfurization liquid such as a limestone solution
  • the outer tube of the composite nozzle is sprayed with air, and between the pressurized air and the desulfurized liquid.
  • the interaction is to achieve atomization of the desulfurization liquid, and the atomized desulfurization liquid reacts with sulfur dioxide in the flue gas to remove sulfur dioxide in the flue gas.
  • the advantages of the spray tower using the composite nozzle to atomize the desulfurization liquid are:
  • the composite nozzle has good atomization effect on the desulfurization liquid, and the desulfurization efficiency is high; the disadvantage is that the composite nozzle processing process is complicated, and the inner wall of the nozzle is easily worn and is subjected to Destruction, short nozzle life, affecting liquid atomization, desulfurization efficiency is reduced, sometimes even need to be replaced in a few days, resulting in unstable desulfurization effect, affecting production efficiency.
  • the reason why the composite nozzle is easily broken is also caused by strong friction between the high-speed flowing solid particles and the inner wall of the nozzle.
  • the flow path of the liquid in the composite nozzle is narrow, and usually has a certain angle with its axis.
  • the desulfurization liquid makes a curve motion in the nozzle, and the high-speed flowing solid particles and the inner wall of the nozzle strongly rub, causing the composite nozzle to be damaged.
  • 3) Liquid column spray tower with straight nozzle which is different from atomizing device only with spray desulfurization tower with centrifugal nozzle.
  • the atomizing device of liquid column spray tower with straight nozzle is straight.
  • the nozzle and the liquid pressurizing device are composed.
  • the direct nozzle sprays the desulfurization liquid such as the limestone solution mainly by spraying the desulfurization liquid upward through the straight nozzle, and the desulfurization liquid is returned by gravity to the surroundings.
  • the flue gas interacts to achieve atomization of the desulfurization liquid and desulfurization of the flue gas.
  • the liquid column spray tower adopting the direct nozzle has the advantages that the straight nozzle has simple structure, small wear and long service life; the disadvantage is that the mutual friction force between the desulfurization liquid and the surrounding air is small, and the liquid atomization specific surface area is small. The atomization effect is poor, and the desulfurization efficiency is not high.
  • the object of the present invention is to provide an atomizing device which is simple in structure, small in wear, good in atomization effect, can avoid collision of gas-liquid two-phase jets blocked by liquid nozzles, and provides a spray using the atomizing device
  • the flue gas desulfurization tower has high desulfurization efficiency and long service life, and avoids operation loss caused by frequent nozzle replacement nozzle or nozzle.
  • the present invention adopts the following design scheme - an atomizing device in which a gas-liquid two-phase jet collides, characterized in that the atomizing device comprises a gas nozzle, a gas pipeline, a gas pressurizing device, and a liquid nozzle
  • the liquid pipeline is composed of a liquid pipeline and a liquid pressurizing device, and the gas nozzle is connected through a gas pipeline and a gas pressurizing device, and the liquid nozzle is connected to the liquid pressurizing device through the liquid pipeline
  • the gas nozzle and the liquid nozzle are separately disposed, and the gas nozzle and the liquid nozzle are disposed opposite to each other or the gas nozzle and the liquid nozzle are disposed in such a manner that their axes intersect outside the nozzle.
  • the distance between the two axes is 0 ⁇ 0. 5 meters, when the gas nozzle and the liquid nozzle are arranged in a manner that the nozzles are opposite to each other, the axis of the gas nozzle and the axis of the liquid nozzle are coincident or parallel.
  • the distance between the spout of the gas nozzle and the spout of the liquid nozzle is greater than zero and less than or equal to 3 meters.
  • the distance between the intersection of the two axes from the nozzle of the gas nozzle and the nozzle of the liquid nozzle is greater than 0 and less than or equal to 3 meters.
  • the gas nozzle is a straight nozzle or a tapered nozzle or a diverging nozzle or a tapered diverging nozzle
  • the liquid nozzle is a straight nozzle or a tapered nozzle or a diverging nozzle or a taper. Expansion nozzle.
  • the gas nozzle and the liquid nozzle are respectively one or more.
  • a spray flue gas desulfurization tower comprises: a casing, an atomizing device and a defogger, wherein the inner cavity of the casing is divided into a liquid storage chamber, a desulfurization chamber and a defogging chamber from bottom to top, and the liquid storage chamber has a discharge port,
  • the lower part of the desulfurization chamber has a flue gas inlet
  • the mist eliminator is disposed in the demisting chamber
  • the top of the casing has a flue gas outlet
  • the atomizing device is composed of a gas nozzle, a gas pipeline, a gas pressurizing device, and a liquid nozzle
  • the liquid pipeline and the liquid pressurizing device are composed, the gas nozzle and the liquid nozzle are disposed in the desulfurization chamber, the liquid pressurizing device and the gas pressurizing device are disposed outside the casing, and the gas nozzle passes through the gas pipeline and the gas pressurizing device Connected, the liquid nozzle is connected through a liquid line
  • the atomizing device of the gas-liquid two-phase jet colliding with the present invention is composed of a gas nozzle, a gas pipeline, a gas pressurizing device, a liquid nozzle, a liquid pipeline and a liquid pressurizing device, and the gas nozzle passes
  • the gas pipeline is connected with the gas pressurizing device
  • the liquid nozzle is connected by the liquid pipeline and the liquid pressurizing device
  • the gas nozzle and the liquid nozzle are separately arranged
  • the gas nozzle and the liquid nozzle are arranged in a manner opposite to the nozzle thereof
  • the gas nozzle and the liquid nozzle are arranged in such a manner that their axes intersect outside the nozzle.
  • the gas and the liquid are respectively pressurized to cause the pressurized gas and the pressurized liquid jet to collide with each other, and the liquid jet is pulverized into droplets to achieve liquid atomization, due to mutual interaction between the pressurized gas and the pressurized liquid.
  • the friction force is large, the liquid atomization specific surface area is high, and the atomization effect is good.
  • the movement of the liquid in the liquid nozzle is close to a linear motion, which minimizes the friction of the solid particles in the liquid against the tube wall, and the liquid nozzle has a long service life.
  • the device has simple structure, small wear and good atomization effect, can avoid liquid nozzle clogging, and has wide application range, and is an atomization device with great development potential.
  • the device for atomizing the desulfurization liquid is simple in structure, the mutual friction force between the pressurized gas and the desulfurization liquid is large, the liquid atomization specific surface area is high, the atomization effect is good, the de-fluid liquid and the coal-burning coal
  • the gas is fully contacted, and the flue gas desulfurization efficiency is high; the movement of the desulfurization liquid in the liquid nozzle is close to linear motion, and the friction of the solid particles in the desulfurization liquid to the liquid nozzle tube wall is minimized, and the liquid nozzle is continuously used. It has a long service life and can avoid the loss of desulfurization efficiency due to blockage or wear of liquid nozzles or nozzles and the loss of operation due to the replacement of liquid nozzles. It is a flue gas desulfurization device with wide application range and great development potential.
  • FIG. 1 is a schematic view showing the structure of an atomizing device for colliding gas-liquid two-phase jets according to the present invention
  • FIG. 2 is a schematic view showing the structure of a spray flue gas desulfurization tower of the present invention
  • the first embodiment of the atomizing device of the gas-liquid two-phase jet colliding with the present invention is as shown in FIG. 1.
  • the atomizing device comprises a gas nozzle 2, a gas pipeline 1, a gas pressurizing device, a liquid nozzle 5, and a liquid tube.
  • the road 4 is composed of a liquid pressurizing device, and the gas nozzle 2 is connected through a gas line 1 and a gas pressurizing device.
  • the liquid nozzle 4 is connected through a liquid line 5 and a liquid pressurizing device, the gas nozzle 2 and the liquid spray
  • the tubes 5 are arranged separately, the gas nozzles 2 and the liquid nozzles 5 are arranged in such a way that their nozzles are opposed or the gas nozzles 2 and the liquid nozzles 5 are arranged in such a way that their axes 8, 9 intersect outside the nozzle.
  • Embodiment 2 of the atomizing device in which the gas-liquid two-phase jet collides with the present invention wherein the gas nozzle 2 and the liquid nozzle 5 are arranged in a manner opposite to the nozzle thereof, the axis 8 of the gas nozzle and the liquid nozzle
  • the axis 9 is coincident or parallel, and the distance between the two axes 8, 9 is 0 to 0.5 m.
  • the distance between the nozzle of the gas nozzle 2 and the nozzle of the liquid nozzle 5 is greater than 0 and less than or equal to 3 meters.
  • Embodiment 3 of the atomizing device in which the gas-liquid two-phase jet collides with the present invention wherein the gas nozzle 2 and the liquid nozzle 5 are disposed between the two axes 8 and 9 when their axes 8 and 9 intersect outside the nozzle.
  • the included angle is an arbitrarily achievable angle, and the intersection 10 of the two axes 8, 9 is greater than 0 and less than or equal to 3 meters from the nozzle of the gas nozzle 2 and the nozzle of the liquid nozzle 5, respectively.
  • Embodiment 4 of the atomizing device in which the gas-liquid two-phase jet collides with the present invention wherein the gas nozzle 2 is a straight nozzle or a tapered nozzle or a diverging nozzle or a tapered diverging nozzle, and the liquid nozzle 5 It is a straight nozzle or a tapered nozzle or a diverging nozzle or a tapered diverging nozzle.
  • the gas nozzle 2 and the liquid nozzle 5 are one or two to 50, respectively, or more are provided as needed.
  • the gas and the liquid are respectively pressurized by the gas pressurizing device and the liquid pressurizing device, so that the gas jet 3 ejected from the gas nozzle 2 and the liquid jet 6 ejected from the liquid nozzle 5 collide with each other, and the liquid collides with each other.
  • the body jet 6 is pulverized into atomized droplets 7 to effect liquid atomization.
  • the device has the advantages of simple structure, small wear and good atomization effect, avoiding clogging of the liquid nozzle, and wide application range, and is an atomization device with great development potential.
  • Embodiment 1 of the spray flue gas desulfurization tower of the present invention comprises: a casing 11, an atomizing device and a demister 12, and the inner cavity of the casing 11 is from bottom to top Divided into a liquid storage chamber 13, a desulfurization chamber 14 and a defogging chamber 18, the liquid storage chamber 13 has a discharge port 15, a lower portion of the desulfurization chamber 14 has a flue gas inlet 16, and a mist eliminator 12 is disposed in the demisting chamber 18, the housing 11 has a flue gas outlet 17 at the top, wherein the atomizing device is composed of a gas nozzle 2, a gas line 1, a gas pressurizing device, a liquid nozzle 5, a liquid line 4, and a liquid pressurizing device, the gas nozzle 2 and the liquid nozzle 5 is disposed in the desulfurization chamber 14, the liquid pressurizing device and the gas pressurizing device are disposed outside the casing 1 1
  • Embodiment 2 of the spray flue gas desulfurization tower of the present invention wherein when the gas nozzle 2 and the liquid nozzle 5 are disposed opposite to each other, the axis 8 of the gas nozzle and the axis 9 of the liquid nozzle are coincident or parallel.
  • the distance between the two axes 8, 9 is 0 to 0.5 m.
  • the distance between the spout of the gas nozzle 2 and the spout of the liquid nozzle 5 is greater than 0 and less than or equal to 3 meters.
  • Embodiment 3 of the spray flue gas desulfurization tower of the present invention wherein the gas nozzle 2 and the liquid nozzle 5 are arranged such that the axes 8 and 9 intersect the nozzle, the axis 8 of the gas nozzle and the axis of the liquid nozzle
  • the angle between 9 can be any achievable angle, and the distance between the axis 8 of the gas nozzle and the axis 9 of the liquid nozzle is greater than the distance between the nozzle of the gas nozzle 2 and the nozzle of the liquid nozzle 5, respectively. 0 is less than or equal to 3 meters.
  • Embodiment 4 of the spray flue gas desulfurization tower of the present invention wherein the gas nozzle 2 is a straight nozzle or a tapered nozzle or a diverging nozzle or a tapered diverging nozzle, and the liquid nozzle 5 is a straight nozzle or a progressive nozzle Shrink nozzle or diverging nozzle or tapered diverging nozzle.
  • the gas nozzle 2 and the liquid nozzle 5 are respectively 1 or 2-50 or more are provided as needed.
  • the coal-fired flue gas is continuously fed from the flue gas inlet 16 into the casing 1 1 , and the desulfurization in the air and liquid lines 2 in the gas line 1 is respectively performed by the gas pressurizing device and the liquid pressurizing device.
  • the liquid limestone solution is pressurized to cause the gas jet 3 emitted from the gas nozzle 2 and the liquid jet 6 emitted from the liquid nozzle 5 to collide with each other, and the liquid jet 6 is pulverized and atomized into droplets 7, which enter the casing.
  • the sulfur dioxide in the flue gas in 1 1 reacts to achieve desulfurization of the coal-fired flue gas.

Description

一种气液两相射流相撞的雾化装置及喷淋烟气脱硫塔 技术领域
本发明涉及一种气液两相射流相撞的雾化装置及使用该雾化装置的喷淋烟 气脱硫塔。本发明雾化装置可应用于工业、 民用和国防科技等诸多使用到液体雾 化技术的领域,喷淋烟气脱硫塔则可应用于发电厂、化工厂和炼钢厂等生产过程 中产生大量烟气的工业企业和集中供热锅炉房等场所。
背景技术
迄今为止用于液体雾化的装置很多,其中具有代表性的有以下几种类型: 1 ) 对液体加压, 由喷头高速喷出的压力喷雾型; 2) 气体和液体射流同轴、 同心、 同向, 管中心为液体射流, 管外层为高速气体射流的复合喷管; 3 ) 使两种液体 互相撞击, 或者使液体撞击固体壁面而雾化的撞击喷雾型; 4) 对液体加压, 通 过离心喷嘴进行喷雾的离心型; 5) 借助声波、 超声波等作用, 使液体通过振动 而进行雾化的振动型; 6) 对液体施加高压静电, 使其进行雾化的静电型。 上述 雾化装置都存在一些缺点。
使用液体雾化装置的烟气脱硫塔是用来除去燃煤燃烧产生的烟气中的二氧 化硫。 2006 年我国二氧化硫的排放量已位居世界第一, 二氧化硫的减排在环境 保护中已被列为一件非常重要的大事。大量排放的二氧化硫来自全球各工业及民 用用户燃用固体燃料而产生的烟气。 大量的二氧化硫被排入大气中会形成酸雨, 破坏地球生态,对环境保护带来极为不利的影响。而现有的湿法烟气脱硫塔有下 列几种: 1 )采用离心式喷嘴的喷淋脱硫塔, 它包括: 壳体、 雾化装置和除雾器, 壳体内腔下部为储液腔, 壳体内腔中部为脱硫腔, 壳体内腔上部为除雾腔, 除雾 器设于除雾腔内, 储液腔具有出料口, 脱硫腔下部具有烟气进口, 壳体顶部具有 烟气出口, 雾化装置由液体加压装置、液体管路和离心式喷嘴组成, 离心式喷嘴 位于脱硫腔顶部, 喷口朝下设置, 液体加压装置设于壳体外, 离心式喷嘴通过液 体管路和液体加压装置相连接。采用离心式喷嘴的喷淋脱硫塔在使用时,脱硫液 体如石灰石溶液通过液体加压装置加压后经液体管路由离心式喷嘴成雾状喷出, 再与烟气中的二氧化硫进行反应达到脱硫的目的。这种离心式喷嘴对脱硫液体的 雾化主要是靠对液体的离心力作用来实现的。釆用离心式喷嘴的喷淋脱硫塔的优 点是: 其中的离心式喷嘴对脱硫液体的雾化效果好, 脱硫效率高; 缺点是: 离心 式喷嘴极易被堵塞和磨损至失去雾化作用, 造成脱硫效率下降, 喷嘴寿命短, 需 经常停机更换, 影响生产效率, 且此种喷嘴主要依靠进口, 成本较高。 离心式喷 嘴堵塞的原因主要是喷嘴内液体的流道较窄,所采用的脱硫溶液一一石灰石溶液 为乳液并含有细小固体颗粒会堵塞流道,且液体中所含的碱性物质会在喷嘴内壁 面结垢所致。离心式喷嘴磨损的原因是. · 为达到较好的雾化效果, 脱硫溶液在喷 嘴中的流速需较髙,脱硫溶液中高速运动的固体颗粒会在离心力的作用下沿喷嘴 内壁做曲线运动,与内壁面发生较大的摩擦以使其发生严重的磨损, 导致喷嘴破 损。 2) 采用复合喷管雾化脱硫液体的喷淋塔, 其与采用离心式喷嘴的喷淋脱硫 塔相比仅雾化装置不同,采用复合喷管雾化脱硫液体的喷淋塔的雾化装置由复合 喷管、气体加压装置和液体加压装置组成, 复合喷管由同轴、 同向的内管和外管 复合而成,复合喷管的内管与液体加压装置相连接, 复合喷管的外管与气体加压 装置相连接。采用复合喷管雾化脱硫液体的喷淋塔在使用时,其中的复合喷管的 内管喷射脱硫液体如石灰石溶液,而复合喷管的外管喷射空气,利用加压空气和 脱硫液体之间的相互作用来实现脱硫液体的雾化,被雾化后的脱硫液体与烟气中 的二氧化硫进行反应以除去烟气中的二氧化硫。采用复合喷管雾化脱硫液体的喷 淋塔优点是: 其中的复合喷管对脱硫液体雾化效果好, 脱硫效率高; 缺点是复合 喷管加工工艺复杂,喷管内壁极易磨损,遭到破坏,喷嘴寿命短,影响液体雾化, 脱硫效率下降,有时甚至几天就需更换,造成脱硫效果的不稳定,影响生产效率。 复合喷管易破损的原因也是高速流动的固体颗粒与喷管内壁发生强烈摩擦所致。 复合喷管内液体的流道较窄,且通常要与其轴线成一定的角度,脱硫液体在喷管 内做曲线运动, 高速流动的固体颗粒与喷管内壁发生的强烈摩擦, 导致复合喷管 破损。 3 ) 采用直喷管的液柱式喷淋塔, 其与采用离心式喷嘴的喷淋脱硫塔相比 仅雾化装置不同,采用直喷管的液柱式喷淋塔的雾化装置由直喷管和液体加压装 置组成。采用直喷管的液柱式喷淋塔在使用时,其中的直喷管对脱硫液体如石灰 石溶液的雾化主要是通过直喷管向上喷射脱硫液体,脱硫液体靠重力作用回落下 来时与周围烟气相互作用,实现对脱硫液体的雾化及对烟气的脱硫。采用直喷管 的液柱式喷淋塔的优点是其中的直喷管结构简单, 磨损小, 使用寿命长; 缺点是 脱硫液体与周围空气的相互摩擦作用力小,液体雾化比表面积小,雾化效果较差, 脱硫效率不高。
发明内容
本发明的目的是提供一种结构简单, 磨损小, 雾化效果好, 可避免液体喷管 堵塞的气液两相射流相撞的雾化装置,及提供一种使用该雾化装置的喷淋烟气脱 硫塔, 该脱硫塔脱硫效率高, 使用寿命长, 避免因经常停机更换喷嘴或喷管而造 成运行损失。
为实现上述目的, 本发明采取以下设计方案- 一种气液两相射流相撞的雾化装置, 其特征在于, 雾化装置由气体喷管、气 体管路、 气体加压装置、 液体喷管、 液体管路和液体加压装置组成, 气体喷管通 过气体管路和气体加压装置相连接,液体喷管通过液体管路和液体加压装置相连 接,气体喷管和液体喷管分开设置,所述气体喷管和液体喷管以其喷口相对的方 式设置或所述气体喷管和液体喷管以其轴线相交于喷口以外的方式设置。
所述气体喷管和液体喷管以其喷口相对的方式设置时,所述气体喷管的轴线 和液体喷管的轴线重合或平行设置, 两轴线之间的距离为 0〜0. 5米, 所述气体 喷管的喷口和液体喷管的喷口之间的距离大于 0并且小于或等于 3米。
所述气体喷管和液体喷管以其轴线相交于喷口以外的方式设置时,两轴线的 交点距离所述气体喷管的喷口和液体喷管的喷口之间的距离分别大于 0 并小于 或等于 3米。
所述气体喷管是直喷管或渐縮喷管或渐扩喷管或渐缩渐扩喷管,所述液体喷 管是直喷管或渐缩喷管或渐扩喷管或渐縮渐扩喷管。
所述气体喷管和液体喷管分别是一个或多个。
一种喷淋烟气脱硫塔, 它包括: 壳体、 雾化装置和除雾器, 壳体内腔自下至 上分为储液腔、脱硫腔和除雾腔,储液腔具有出料口,脱硫腔下部具有烟气进口, 除雾器设于除雾腔内, 壳体顶部具有烟气出口, 其特征在于, 雾化装置由气体喷 管、 气体管路、 气体加压装置、 液体喷管、 液体管路和液体加压装置组成, 气体 喷管和液体喷管设于脱硫腔内,液体加压装置和气体加压装置设于壳体外,气体 喷管通过气体管路和气体加压装置相连接,液体喷管通过液体管路和液体加压装 置相连接,气体喷管和液体喷管分开设置,所述气体喷管和液体喷管以其喷口相 对的方式设置或所述气体喷管和液体喷管以其轴线相交于喷口以外的方式设置。
本发明的优点是:
1、 本发明气液两相射流相撞的雾化装置, 它是由气体喷管、 气体管路、 气 体加压装置、液体喷管、液体管路和液体加压装置组成, 气体喷管通过气体管路 和气体加压装置相连接,液体喷管通过液体管路和液体加压装置相连接,气体喷 管和液体喷管分开设置,气体喷管和液体喷管以其喷口相对的方式设置或气体喷 管和液体喷管以其轴线相交于喷口以外的方式设置。使用时,分别对气体和液体 进行加压,使加压气体和加压液体射流相互喷射撞击, 液体射流被粉碎成液滴而 实现液体雾化, 由于加压气体与加压液体之间的相互摩擦作用力大,液体雾化比 表面积高, 雾化效果好。液体在液体喷管中的运动接近直线运动, 最大限度地减 小了液体中的固体颗粒对管壁的摩擦,液体喷管连续使用寿命长。该装置结构简 单, 磨损小, 雾化效果好, 可避免液体喷管堵塞, 应用范围广, 是一种极具发展 潜力的雾化装置。
2、 发明喷淋烟气脱硫塔, 由于采用上述雾化装置, 在对烟气进行脱硫时, 将烟气连续通入脱硫塔内,分别对气体管路中的空气和液体管路中的脱硫液体如 石灰石溶液进行加压,使气体喷管喷出的空气射流和液体喷管喷出的脱硫液体石 灰石溶液射流相互撞击摩擦, 脱硫液体射流石灰石溶液被粉碎成液滴,液滴与进 入该脱硫塔的燃煤烟气中的二氧化硫进行反应,从而达到脱去烟气中二氧化硫的 目的。该脱硫塔用于对脱硫液体进行雾化的装置结构简单,加压气体与脱硫液体 之间的相互摩擦作用力大, 液体雾化比表面积高, 雾化效果好, 脱流液体与燃煤 烟气充分接触,对烟气脱硫效率高;脱硫液体在液体喷管中的运动接近直线运动, 最大限度的减小了脱硫液体中的固体颗粒对液体喷管管壁的摩擦,液体喷管连续 使用寿命长,可避免因液体喷嘴或喷管被堵塞或磨损而造成脱硫效率下降和因停 机更换液体喷嘴而造成运行损失, 是一种应用范围广、极具发展潜力的烟气脱硫 装置。
附图说明
图 1为本发明气液两相射流相撞的雾化装置结构示意图
图 2为本发明喷淋烟气脱硫塔结构示意图
具体实施方式
本发明气液两相射流相撞的雾化装置实施例一,如图 1所示, 该雾化装置由 气体喷管 2、 气体管路 1、 气体加压装置、 液体喷管 5、 液体管路 4和液体加压 装置组成,气体喷管 2通过气体管路 1和气体加压装置相连接,液体喷管 4通过 液体管路 5和液体加压装置相连接,气体喷管 2和液体喷管 5分开设置,气体喷 管 2和液体喷管 5以其喷口相对的方式设置或气体喷管 2和液体喷管 5以其轴线 8、 9相交于喷口以外的方式设置。
本发明气液两相射流相撞的雾化装置实施例二,其中,气体喷管 2和液体喷 管 5以其喷口相对的方式设置时,所述气体喷管的轴线 8和液体喷管的轴线 9重 合或平行, 两轴线 8、 9之间的距离为 0〜0. 5米, 气体喷管 2的喷口和液体喷管 5的喷口之间的距离大于 0并且小于或等于 3米。
本发明气液两相射流相撞的雾化装置实施例三,其中,气体喷管 2和液体喷 管 5以其轴线 8、 9相交于喷口以外的方式设置时, 两轴线 8、 9之间的夹角为任 意可实现的角度,两轴线 8、 9的交点 10距离气体喷管 2的喷口和液体喷管 5的 喷口之间的距离分别大于 0并小于或等于 3米。
本发明气液两相射流相撞的雾化装置实施例四,其中,气体喷管 2是直喷管 或渐缩喷管或或渐扩喷管或渐縮渐扩喷管,液体喷管 5是直喷管或渐缩喷管或渐 扩喷管或渐缩渐扩喷管。
本发明气液两相射流相撞的雾化装置实施例五,其中,气体喷管 2和液体喷 管 5分别是 1个或 2-50个或根据需要设置更多个。
使用时,利用气体加压装置和液体加压装置分别对气体和液体进行加压,使 气体喷管 2喷出的气体射流 3和液体喷管 5喷出的液体射流 6相互喷射撞击,液 体射流 6被粉碎成雾化后的液滴 7而实现液体雾化。 该装置结构简单, 磨损小, 雾化效果好, 可避免液体喷管堵塞, 应用范围广, 是一种极具发展潜力的雾化装 置。
本发明喷淋烟气脱硫塔实施例一,如图 2所示,该喷淋烟气脱硫塔,它包括: 壳体 11、 雾化装置和除雾器 12, 壳体 11 内腔自下至上分为储液腔 13、 脱硫腔 14和除雾腔 18 , 储液腔 13具有出料口 15, 脱硫腔 14下部具有烟气进口 16, 除 雾器 12设于除雾腔 18内, 壳体 11顶部具有烟气出口 17, 其特征在于, 雾化装 置由气体喷管 2、 气体管路 1、 气体加压装置、 液体喷管 5、 液体管路 4和液体 加压装置组成, 气体喷管 2和液体喷管 5设于脱硫腔 14内, 液体加压装置和气 体加压装置设于壳体 1 1外,气体喷管 2通过气体管路 1和气体加压装置相连接, 液体喷管 5通过液体管路 4和液体加压装置相连接,气体喷管 2和液体喷管 5分 开设置,气体喷管 2和液体喷管 5以其喷口相对的方式设置或气体喷管 2和液体 喷管 5以其轴线 8、 9相交于喷口以外的方式设置。
本发明喷淋烟气脱硫塔实施例二,其中,气体喷管 2和液体喷管 5以其喷口 相对的方式设置时,气体喷管的轴线 8和液体喷管的轴线 9重合或平行设置,两 轴线 8、 9之间的距离为 0〜0. 5米,气体喷管 2的喷口和液体喷管 5的喷口之间 的距离大于 0并且小于或等于 3米。
本发明喷淋烟气脱硫塔实施例三,其中,气体喷管 2和液体喷管 5以其轴线 8、 9相交于喷口以外的方式设置时, 气体喷管的轴线 8和液体喷管的轴线 9之 间的夹角可为任意可实现的角度,气体喷管的轴线 8和液体喷管的轴线 9的交点 10距离气体喷管 2的喷口和液体喷管 5的喷口之间的距离分别大于 0并小于或 等于 3米。
本发明喷淋烟气脱硫塔实施例四,其中,气体喷管 2是直喷管或渐缩喷管或 渐扩喷管或渐縮渐扩喷管,液体喷管 5是直喷管或渐缩喷管或渐扩喷管或渐縮渐 扩喷管。
本发明喷淋烟气脱硫塔实施例四, 其中, 气体喷管 2和液体喷管 5分别是 1 个或 2-50个或根据需要设置更多个。
使用时,连续将燃煤烟气从烟气进口 16送入向壳体 1 1内,利用气体加压装 置和液体加压装置分别对气体管路 1中的空气和液体管路 2中的脱硫液体石灰石 溶液进行加压, 使气体喷管 2射出的气体射流 3和液体喷管 5射出的液体射流 6 相互撞击作用, 液体射流 6被粉碎雾化成为液滴 7, 液滴 7与进入壳体 1 1内的 烟气中的二氧化硫发生反应, 从而实现对燃煤烟气的脱硫。

Claims

权 利 要 求 书
1、 一种气液两相射流相撞的雾化装置, 其特征在于, 雾化装置由气体喷管、 气体管路、气体加压装置、 液体喷管、 液体管路和液体加压装置组成, 气体喷管 通过气体管路和气体加压装置相连接,液体喷管通过液体管路和液体加压装置相 连接,气体喷管和液体喷管分开设置,所述气体喷管和液体喷管以其喷口相对的 方式设置或所述气体喷管和液体喷管以其轴线相交于喷口以外的方式设置。
2、 如权利要求 1所述的气液两相射流相撞的雾化装置, 其特征在于, 所述 气体喷管和液体喷管以其喷口相对的方式设置时,所述气体喷管的轴线和液体喷 管的轴线重合或平行设置, 两轴线之间的距离为 0〜0. 5米, 所述气体喷管的喷 口和液体喷管的喷口之间的距离大于 0并且小于或等于 3米。
3、 如权利要求 1所述的气液两相射流相撞的雾化装置, 其特征在于, 所述 气体喷管和液体喷管以其轴线相交于喷口以外的方式设置时,两轴线的交点距离 所述气体喷管的喷口和液体喷管的喷口之间的距离分别大于 0 并小于或等于 3 米。
4、 如权利要求 1或 2或 3所述的气液两相射流相撞的雾化装置, 其特征在 于,所述气体喷管是直喷管或渐縮喷管或渐扩喷管或渐縮渐扩喷管,所述液体喷 管是直喷管或渐缩喷管或渐扩喷管或渐缩渐扩喷管。
5、 如权利要求 4所述的气液两相射流相撞的雾化装置, 其特征在于, 所述 气体喷管和液体喷管分别是一个或多个。
6、 一种喷淋烟气脱硫塔, 它包括: 壳体、 雾化装置和除雾器, 壳体内腔自 下至上分成储液腔、脱硫腔和除雾腔, 储液腔具有出料口, 脱硫腔下部具有烟气 进口, 除雾器设于除雾腔内, 壳体顶部具有烟气出口, 其特征在于, 雾化装置由 气体喷管、气体管路、气体加压装置、液体喷管、液体管路和液体加压装置组成, 气体喷管和液体喷管设于脱硫腔内, 液体加压装置和气体加压装置设于壳体外, 气体喷管通过气体管路和气体加压装置相连接,液体喷管通过液体管路和液体加 压装置相连接,气体喷管和液体喷管分开设置,所述气体喷管和液体喷管以其喷 口相对的方式设置或所述气体喷管和液体喷管以其轴线相交于喷口以外的方式 设置。
7、 如权利要求 6所述的喷淋烟气脱硫塔, 其特征在于, 所述气体喷管和液 体喷管以其喷口相对的方式设置时,所述气体喷管的轴线和液体喷管的轴线重合 或平行设置, 两轴线之间的距离为 0〜0. 5米, 所述气体喷管的喷口和液体喷管 的喷口之间的距离大于 0并且小于或等于 3米。
8、 如权利要求 6所述的喷淋烟气脱硫塔, 其特征在于, 所述气体喷管和液 体喷管以其轴线相交于喷口以外的方式设置时,气体喷管的轴线和液体喷管的轴 线的交点距离所述气体喷管的喷口和液体喷管的喷口之间的距离分别大于 0 并 小于或等于 3米。
9. 如权利要求 6或 7或 8所述的喷淋烟气脱硫塔, 其特征在于, 所述气体 喷管是直喷管或渐缩喷管或渐扩喷管或渐缩渐扩喷管,所述液体喷管是直喷管或 渐縮喷管或渐扩喷管或渐縮渐扩喷管。
10. 如权利要求 9所述的喷淋烟气脱硫塔, 其特征在于, 所述气体喷管和液 体喷管分别是一个或多个。
PCT/CN2007/001949 2007-04-20 2007-06-21 Dispositif de pulvérisation pour incidence de jets de liquide et gaz et tour de désulfurisation par fumée humide utilisant le dispositif de pulvérisation WO2008128387A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200720148858.8 2007-04-20
CNU2007201488588U CN201023084Y (zh) 2007-04-20 2007-04-20 一种气液两相射流相撞的雾化装置
CN200720148857.3 2007-04-20
CNU2007201488573U CN201023026Y (zh) 2007-04-20 2007-04-20 喷淋烟气脱硫塔

Publications (1)

Publication Number Publication Date
WO2008128387A1 true WO2008128387A1 (fr) 2008-10-30

Family

ID=39875049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001949 WO2008128387A1 (fr) 2007-04-20 2007-06-21 Dispositif de pulvérisation pour incidence de jets de liquide et gaz et tour de désulfurisation par fumée humide utilisant le dispositif de pulvérisation

Country Status (1)

Country Link
WO (1) WO2008128387A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102641635A (zh) * 2012-03-28 2012-08-22 广东红墙新材料股份有限公司 一种液体吸附式空气过滤器、葡萄糖酸钠生产设备及方法
CN103408420A (zh) * 2013-08-06 2013-11-27 广东红墙新材料股份有限公司 一种葡萄糖酸钠氧化设备及其实现方法
CN108355459A (zh) * 2017-12-08 2018-08-03 中国电子科技集团公司第十三研究所 气体烟尘颗粒尾气的处理装置
CN110201523A (zh) * 2019-07-12 2019-09-06 厚德九天(湖北)环保科技集团有限公司 一种超声雾化站硫的回收系统
CN108355459B (zh) * 2017-12-08 2024-05-03 中国电子科技集团公司第十三研究所 气体烟尘颗粒尾气的处理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954921A (en) * 1973-06-09 1976-05-04 Kobe Steel, Ltd. Gas-liquid contacting method and scrubber used therefor
CN1197414A (zh) * 1995-09-27 1998-10-28 葛兰素集团有限公司 雾化喷嘴
CN2619706Y (zh) * 2003-05-09 2004-06-09 于彦奎 工程烟气除尘脱硫一体化净化器
CN2636988Y (zh) * 2003-08-08 2004-09-01 江苏博际喷雾系统有限公司 超细雾化喷嘴
CN2696710Y (zh) * 2004-02-24 2005-05-04 武汉化工学院 撞击流气液反应器
JP2006068660A (ja) * 2004-09-03 2006-03-16 Oogawara Kakoki Kk 液体を微粒子にする方法及びこれに用いるノズル
CN2933601Y (zh) * 2006-04-12 2007-08-15 连祺祥 气液两相射流相撞的雾化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954921A (en) * 1973-06-09 1976-05-04 Kobe Steel, Ltd. Gas-liquid contacting method and scrubber used therefor
CN1197414A (zh) * 1995-09-27 1998-10-28 葛兰素集团有限公司 雾化喷嘴
CN2619706Y (zh) * 2003-05-09 2004-06-09 于彦奎 工程烟气除尘脱硫一体化净化器
CN2636988Y (zh) * 2003-08-08 2004-09-01 江苏博际喷雾系统有限公司 超细雾化喷嘴
CN2696710Y (zh) * 2004-02-24 2005-05-04 武汉化工学院 撞击流气液反应器
JP2006068660A (ja) * 2004-09-03 2006-03-16 Oogawara Kakoki Kk 液体を微粒子にする方法及びこれに用いるノズル
CN2933601Y (zh) * 2006-04-12 2007-08-15 连祺祥 气液两相射流相撞的雾化装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102641635A (zh) * 2012-03-28 2012-08-22 广东红墙新材料股份有限公司 一种液体吸附式空气过滤器、葡萄糖酸钠生产设备及方法
CN102641635B (zh) * 2012-03-28 2015-03-25 广东红墙新材料股份有限公司 一种液体吸附式空气过滤器、葡萄糖酸钠生产设备及方法
CN103408420A (zh) * 2013-08-06 2013-11-27 广东红墙新材料股份有限公司 一种葡萄糖酸钠氧化设备及其实现方法
CN108355459A (zh) * 2017-12-08 2018-08-03 中国电子科技集团公司第十三研究所 气体烟尘颗粒尾气的处理装置
CN108355459B (zh) * 2017-12-08 2024-05-03 中国电子科技集团公司第十三研究所 气体烟尘颗粒尾气的处理装置
CN110201523A (zh) * 2019-07-12 2019-09-06 厚德九天(湖北)环保科技集团有限公司 一种超声雾化站硫的回收系统

Similar Documents

Publication Publication Date Title
CN103769324B (zh) 内混式两相流喷嘴
CN206924919U (zh) 一种低压内混合空气雾化喷嘴
CN104667687B (zh) 无源板式湿式除尘除雾装置及其处理工艺
CN104772242A (zh) 雾化喷嘴
CN207385184U (zh) 一种三流道空气动力耐磨脱硫雾化装置
CN105879555B (zh) 一种船舶低速柴油机废气复合洗涤装置
CN104528852B (zh) 一种用于处理电厂脱硫废水的喷雾装置
CN203459195U (zh) 内混式雾化喷嘴装置
CN206508793U (zh) 一种顺流塔烟气除尘装置
CN203971652U (zh) 一种用于降低空气中pm2.5的气雾除霾装置
CN102343215A (zh) 一种双室多重吸收湿法烟气脱硫装置
WO2008128387A1 (fr) Dispositif de pulvérisation pour incidence de jets de liquide et gaz et tour de désulfurisation par fumée humide utilisant le dispositif de pulvérisation
CN102908738A (zh) 两相流超细水雾喷嘴
CN103990374A (zh) 一种新型燃煤烟气脱硫、脱硝、脱碳、除尘净化联合装置
CN204107255U (zh) 一种组合文氏管除尘器
CN106731356A (zh) 一种干雾抑尘设备
CN207667856U (zh) 多级雾化喷嘴及多级雾化装置
CN206508706U (zh) 一种用于粉尘车间的除尘设施
CN205182987U (zh) 一种双流式雾化除尘喷雾装置
CN202802613U (zh) 两相流超细水雾喷嘴
CN106377961B (zh) 一种湿式分级除尘装置和应用
CN202229184U (zh) 一种预膜式介质雾化喷嘴
CN201244442Y (zh) 喷淋管
CN206508792U (zh) 一种利用干雾技术的除尘装置
CN201023026Y (zh) 喷淋烟气脱硫塔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/03/2010)

122 Ep: pct application non-entry in european phase

Ref document number: 07721522

Country of ref document: EP

Kind code of ref document: A1