WO2008123626A1 - 複合発光管容器 - Google Patents

複合発光管容器 Download PDF

Info

Publication number
WO2008123626A1
WO2008123626A1 PCT/JP2008/056963 JP2008056963W WO2008123626A1 WO 2008123626 A1 WO2008123626 A1 WO 2008123626A1 JP 2008056963 W JP2008056963 W JP 2008056963W WO 2008123626 A1 WO2008123626 A1 WO 2008123626A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc tube
alumina
tube member
composite
transparent
Prior art date
Application number
PCT/JP2008/056963
Other languages
English (en)
French (fr)
Inventor
Keiichiro Watanabe
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to JP2009509348A priority Critical patent/JPWO2008123626A1/ja
Priority to EP08740066A priority patent/EP2133904A4/en
Publication of WO2008123626A1 publication Critical patent/WO2008123626A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/361Seals between parts of vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/827Metal halide arc lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/265Sealing together parts of vessels specially adapted for gas-discharge tubes or lamps
    • H01J9/266Sealing together parts of vessels specially adapted for gas-discharge tubes or lamps specially adapted for gas-discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]

Definitions

  • the present invention relates to a polycrystalline alumina light emitting tube container fitted with a single crystal transparent alumina disk.
  • Single crystal alumina is transparent and excellent in heat resistance, wear resistance, and corrosion resistance, and has excellent properties that can be used even in harsh environments where metal materials and organic materials cannot be used. .
  • alumina is brought into a molten state at a temperature higher than the melting point (2500 ° C.) in a crucible, and the seed crystal is brought into contact and pulled up to grow. (CZ method), because the production process is such that the alumina powder is melted from the top of the seed crystal and is deposited (Bernuy method), only simple shaped materials such as plates and rods can be created. Can not.
  • sapphire is basically a hard and brittle material, so it is difficult to machine from the material, and the area of use has been limited.
  • polycrystalline alumina (P C A) is widely used as a sintered body in which almost no pores remain by firing a compact made of fine alumina powder at a temperature lower than the melting point. Since alumina fine powder can be shaped using various molding methods, alumina sintered bodies having various shapes and various shapes have been manufactured and used industrially.
  • polycrystalline alumina is basically transparent to light, its use has been limited to mere wear-resistant and heat-resistant materials, but the US C ob 1 e is used as a high-purity raw material with less impurities in the alumina raw material. Add growth inhibitor and sinter As a result, we succeeded in developing a translucent polycrystalline alumina sintered body, and high-pressure sodium lamps for general lighting have been used as arc tubes for metal halide lamps (US Pat. No. 3,026,210).
  • Japanese Patent Application Laid-Open No. 2-6 4 60 3 discloses an invention in which a sapphire disk is shrink-fitted inside a polycrystalline alumina tube and used as a glazing window. Disclosure of the invention
  • Japanese Patent Application Laid-Open No. 2-6 4 60 3 discloses an optical member in which a sapphire disk is shrink-fitted into a polycrystalline alumina tube. This member is used for the purpose of observing the internal state through a transparent sapphire window, and is intended for use in a high-intensity discharge lamp lamp arc tube. There is no formal disclosure.
  • An object of the present invention is to provide an arc tube for a high-intensity discharge lamp lamp that is provided with a transparent window portion and is highly reliable and inexpensive.
  • the present invention comprises an arc tube member made of polycrystalline alumina and a transparent disc made of one or more single crystal aluminas, and the transparent disc is airtight with respect to a circular opening of the arc tube member.
  • the present invention relates to a composite arc tube container that is directly fitted and integrated so as to express the above.
  • Polycrystalline alumina and single crystal alumina, which are constituent elements of the present invention, are chemically the same material, and even when used at high temperatures such as high-intensity discharge lamps, they do not react with each other and are stable. .
  • the thermal expansion coefficient of polycrystalline alumina is the weighted average of the thermal expansion coefficients of each crystal axis of the single crystal alumina, The difference in expansion coefficient is very small, and the thermal stress generated at each interface is also small.
  • concentration of stress generated at the boundary between the polycrystalline alumina part and the single crystal transparent alumina plate is avoided, and uniform thermal stress is generated throughout the arc tube container. Therefore, it is highly reliable.
  • the light generated by the discharge between the electrodes emitted through the transparent window has little loss due to scattering or the like. For this reason, lamp efficiency is improved. In a high-intensity discharge lamp using an arc tube made of translucent alumina, the light generated by the discharge between the electrodes is not directly emitted but scattered inside the arc tube and released to the outside. Was inevitable.
  • FIG. 1 (a) is a perspective view showing a composite arc tube container 20 of the present invention
  • FIG. 1 (b) is an enlarged perspective view showing a polycrystalline alumina arc tube portion. is there.
  • FIG. 2 (a) is a longitudinal sectional view showing a composite arc tube container 20A having the appearance shown in FIG. 1, and
  • FIG. 2 (b) is a transverse sectional view of the composite arc tube container 20A. .
  • FIG. 3 (a) is a longitudinal sectional view showing a composite arc tube container 20B having the appearance shown in FIG. 1, and FIG. 3 (b) is a transverse sectional view of the composite arc tube container 20B.
  • FIG. 4 (a) is a longitudinal sectional view showing a composite arc tube container 20C having the appearance shown in FIG. 1, and FIG. 4 (b) is a transverse sectional view of the composite arc tube container 20C.
  • FIG. 5 (a) is a perspective view of the structure 21 and FIG. 5 (b) is an enlarged view of the cylindrical end portion of FIG. 5 (a).
  • FIG. 6 is a cross-sectional view of the structure 2 1.
  • FIG. 7 is a perspective view of the structure 21 and shows the spread of light emitted from the virtual center of gravity.
  • Fig. 8 (a) is a perspective view of the structure 21 and Fig. 8 (b) is an enlarged view of the cylindrical end of Fig. 8 (a), showing an example of a step for positioning a claw-like transparent single crystal alumina disk. It is.
  • FIG. 9 is a perspective view of the structure 22.
  • FIG. 10 is a perspective view of the structure 23.
  • FIG. 11 is a photograph showing the entire molded body of the structure of the cylindrical part, which is manufactured in the example.
  • Fig. 12 is an enlarged photograph showing a part of the structure of the cylindrical part of the first produced in the example.
  • the thickness of the polycrystalline alumina arc tube member By setting the thickness of the polycrystalline alumina arc tube member to 0.3 mm or more, it is possible to secure a fitting force that allows the single crystal transparent alumina disc to exhibit sufficient airtightness.
  • the thermal stress due to the temperature difference caused by the thickness difference can be reduced.
  • the translucent polycrystalline alumina arc tube member can ensure the translucency when used in the arc tube of a high-intensity discharge lamp by setting the thickness to 3 mm or less.
  • one single crystal transparent alumina disk is integrally fitted and fixed without using a bonding material so as to exhibit hermeticity by utilizing the firing shrinkage difference in the circular opening.
  • the same hollow cylinder made of the same polycrystalline alumina as the arc tube member material is installed one by one in the left-right axial symmetry so as to be parallel to the single crystal transparent alumina disc. .
  • the luminescent material and gas are put inside, and the electrode rod is inserted and sealed so that the tip of the electrode does not come into contact with each other.
  • a gap is secured between the tip of the two electrodes near the center of gravity.
  • the polycrystalline alumina arc tube member can have a hollow, substantially spherical shape. For example, assuming an approximately spherical virtual shape for the arc tube member, three circular openings are formed so that a part of the virtual shape is cut and removed along a plane.
  • the polycrystalline alumina arc tube member has a cylindrical shape, so that two single-crystal transparent alumina discs, one on each of the opening ends on each side, have a difference in firing shrinkage. It is fitted and fixed as a unit without using any bonding material so that it can be used for airtightness.
  • a hollow chirality made of the same polycrystalline alumina as the cylindrical material is placed one by one in the left-right axial symmetry so that its center axis passes through the virtual center of gravity of the cylinder.
  • the luminescent material and gas are put inside, and the electrode bar is inserted and sealed so that the tip of the electrode does not come into contact with each other. A gap between the two electrode tips is secured at the position. By causing discharge between the gaps, the discharge of the high-intensity discharge lamp is performed as in the first preferred embodiment. It becomes possible to function as a light tube.
  • the gap at the electrode tip coincides with the center of gravity of the cylinder, so the distance between the plasma light emitting part generated by the discharge and the inner wall of the cylinder is isotropic, and the temperature of the plasma light emitting part Is kept uniform, so that a stable lighting state can be maintained.
  • the polycrystalline alumina arc tube member is basically composed of a regular triangular prism, and a single cylindrical member made of a plurality of hollow polycrystalline aluminas, one on each end face of the triangular prism, has a central axis.
  • a single cylindrical member made of a plurality of hollow polycrystalline aluminas, one on each end face of the triangular prism, has a central axis.
  • three single crystal transparent alumina discs are arranged in total in the circular openings provided on the sides of the triangular prism,
  • the inner side surface of the circular opening of the polycrystalline alumina arc tube member and the side surface of the sapphire disk are directly integrated so as to exhibit airtightness by sintering.
  • the aperture ratio of the single crystal transparent alumina disk can be increased as compared with a structure in which two single crystal transparent alumina disks are fitted on the side surface of the cylinder.
  • the through hole provided inside this first beam is provided in the same manner as in the first and second preferred embodiments. Gap formed from the tip of the two electrodes at the virtual center of gravity of the triangular prism by inserting the light emitting substance and gas inside and inserting and sealing the electrode rod so that the tip of the electrode does not contact each other Therefore, it becomes possible to function as an arc tube of a high-intensity discharge lamp.
  • the gap at the electrode tip coincides with the center of gravity of the triangular prism, the distance between the plasma light-emitting part generated during discharge and the inner wall of the triangular prism is isotropic, and the plasma temperature is kept uniform. To maintain Becomes easier.
  • the polycrystalline alumina arc tube member is basically composed of a cuboid (regular hexahedron), and is composed of hollow polycrystalline alumina at two symmetrical points passing through the virtual center of gravity of the cube.
  • a total of six single-crystal transparent alumina discs are arranged in each circular opening provided on each side of the cube. The inside of the opening side surface of the crystalline alumina arc tube member and the side surface of the single crystal transparent alumina disk are directly integrated so as to exhibit airtightness by sintering.
  • the through hole provided in the interior of the first column The luminescent material and gas are introduced into the interior, and the electrode rod is inserted and sealed in such a way that the tip of the electrode does not come into contact with each other, thereby forming a virtual center of gravity of the cube from the tip of the two electrodes. Therefore, it is possible to function as an arc tube for a high-intensity discharge lamp.
  • the gap at the electrode tip coincides with the center of gravity of the cube, the distance between the plasma light emitting part and the inner wall of the cube during discharge becomes uniform, and the plasma temperature becomes uniform, thus maintaining a stable lighting state. Becomes easier. If the angle formed between the axis passing through the virtual center of gravity and extending perpendicularly to the single crystal transparent alumina disc surface and the virtual line passing the virtual center of gravity from the side surface of the single crystal transparent alumina disc surface is less than 15 °, Relative opening of crystalline transparent alumina disk The area becomes small and it is not possible to secure a sufficient amount of light that can be used as a point light source.
  • light that has an axis that passes through the virtual center of gravity and extends perpendicularly to the surface of the single crystal transparent alumina disk and the virtual line through which the virtual center of gravity passes from the side surface of the single crystal transparent alumina disk is greater than 60 °. It is not used effectively because it is totally reflected on the surface of the transparent alumina disk. Even if a single crystal transparent alumina disc having a large opening area is fitted together, it is useless.
  • Single crystal transparent alumina disk for direct integration using firing shrinkage by forming a step for positioning the single crystal transparent alumina disk at the circular opening of the polycrystalline alumina arc tube member Can be easily fixed. If the thickness of the single crystal transparent alumina disc is 0.3 mm or more, it can withstand the stress when shrink-fitted on the polycrystalline alumina arc tube member. When shrink-fixing a single crystal transparent alumina disk with a thickness of more than 3 mm, the residual stress on the polycrystalline alumina side becomes too large, and cracks may be generated on the polycrystalline alumina side, maintaining airtightness. Becomes difficult.
  • the diameter of the single crystal transparent alumina disc is less than 2 mm, the opening area is small, and the effect of the present invention is not sufficient. In addition, the tightening force at the time of shrink fitting cannot be secured, and it is difficult to develop airtightness. If the diameter of the single crystal transparent alumina disc exceeds 50 mm, the residual stress generated on the polycrystalline alumina arc tube member side becomes too large, and cracks may be generated on the polycrystalline alumina arc tube member side. It becomes difficult to maintain airtightness.
  • Single crystal transparent alumina discs may contain slightly different crystal axes called subgrains. If shrink fitting is performed using a single crystal transparent alumina disk containing such subgrains, the single crystal transparent alumina disk may crack after shrink fitting. For this reason, it is preferable that the single crystal transparent alumina disc does not contain subgrains.
  • FIG. 1 (a) is a perspective view showing a composite arc tube container 20 of the present invention
  • FIG. 1 (b) is an enlarged perspective view showing a polycrystalline alumina arc tube portion
  • FIGS. 2 (a), 3 (a) and 4 (a) are longitudinal sectional views of the composite arc tube container having the appearance shown in FIG. 2 (b), 3 (b), and 4 (b) are cross-sectional views of the composite arc tube container having the appearance shown in FIG.
  • the composite luminous container structure 20 is composed of a hollow polycrystalline alumina luminous tube member 3 and a hollow filament la and lb made of polycrystalline alumina.
  • the arc tube 3 has an outer shape obtained by cutting one surface of a virtual substantially spherical body along a plane. A total of two capillaries la and lb are installed outside the side surface of the arc tube member so that the center axis of the virtual sphere passes through the virtual center of gravity.
  • One single crystal transparent alumina disc 2 in the circular opening 10 of the arc tube member 3 is 1 piece, using the step 4 for positioning. It is inserted.
  • the side surface 7 of the single crystal transparent alumina disc 2 and the inner surface of the circular opening are directly integrated so as to exhibit airtightness by sintering.
  • the inner shape of the hollow alumina arc tube member 3 is a rotationally symmetric curved surface with a virtual axis A passing vertically through the center of the circular opening 10.
  • the arc tube member 3 includes a hemispherical bottom portion 25 A and a cylindrical portion 26 extending thereon.
  • the inner surface 3 3 of the hemispherical bottom portion 25 8 and the inner surface 3 b of the cylindrical portion 26 are respectively rotationally symmetric with respect to an imaginary line A passing perpendicularly through the center of the circular opening.
  • the center axis E of each of the capillaries passes near the virtual center of gravity O of the arc tube member 3 and passes over the virtual center of gravity G of the virtual sphere.
  • the pair of capillaries are rotationally symmetric with respect to the virtual center of gravity G of the virtual sphere.
  • the arc tube member 3 includes a spheroidal bottom portion 25 B and a cylindrical portion 26 extending thereon.
  • the inner surface 3 a of the bottom portion 25 B and the inner surface 3 b of the spheroidal bottom portion 26 are respectively rotationally symmetric with respect to an imaginary line A that passes perpendicularly through the center of the circular opening.
  • the center axis E of each of the capillaries passes near the virtual center of gravity O of the arc tube member 3 and passes over the virtual center of gravity G of the virtual sphere.
  • the pair of capillaries are rotationally symmetric with respect to the virtual center of gravity G of the virtual sphere.
  • the arc tube member 3 includes a conical portion 25 B and a cylindrical portion 26 extending thereon.
  • the tip 25a of the conical portion 25B is curved in a spherical shape.
  • the inner surface 3 a of the conical portion 25 B and the inner surface 3 b of the cylindrical portion 26 are respectively rotationally symmetric with respect to an imaginary line A passing perpendicularly through the center of the circular opening.
  • the center axis E of each of the capillaries passes near the virtual center of gravity O of the light emitting tube member 3, and the virtual weight of the virtual sphere It passes over the point G.
  • the pair of capillaries are rotationally symmetric with respect to the virtual center of gravity G of the virtual sphere.
  • the composite luminous vessel structure 21 is composed of a hollow capillary pillar la, 1 b made of polycrystalline alumina, as in the case of the cylindrical polycrystalline alumina luminous tube member 3.
  • a hollow capillary pillar la, 1 b made of polycrystalline alumina as in the case of the cylindrical polycrystalline alumina luminous tube member 3.
  • the composite luminous vessel structure 21 is composed of a hollow capillary pillar la, 1 b made of polycrystalline alumina, as in the case of the cylindrical polycrystalline alumina luminous tube member 3.
  • a single crystal transparent alumina disk 2 a, 2 b at the openings on both ends of the cylinder. Is inserted using a total of 4 steps for positioning.
  • the side surface of the single crystal transparent alumina disk and the inner surface of the cylinder are directly integrated so as to exhibit airtightness by sintering.
  • FIG. 6 shows a cross section of the composite arc tube container structure 21.
  • the axis A passing through the virtual center of gravity 0 in the cylinder and extending perpendicularly to the single crystal transparent alumina disk and the virtual line passing through the virtual center of gravity from the peripheral surface of the single crystal transparent alumina disk.
  • the angle ⁇ formed by B is defined. When this angle is 15 ° or less, the ratio of the diameter and height of the cylinder becomes a small value of 0.26: 1 or less, and the opening of the cylinder becomes extremely small. This reduces the percentage of light that can be used as a point light source.
  • the shape of the cylinder is elongated, and the distance between the plasma generated by the gap discharge between the electrodes and the inner wall of the cylinder in the central part of the arc tube differs greatly depending on the direction, making it difficult to maintain a stable discharge. .
  • Figure 7 shows the area ratio (solid angle) of light emitted at the virtual center of gravity of the composite arc tube container and emitted through the transparent single crystal alumina disk.
  • the composite luminous vessel structure 21 is composed of a cylindrical polycrystalline alumina luminous tube member 3 and a hollow cylindrical la and lb made of polycrystalline alumina, and the central axis of the cylindrical is cylindrical. Axisymmetrically, each one of the two cylinders is installed outside the side of the cylinder so that it passes through the virtual center of gravity.
  • One single-crystal transparent alumina disc 2a, 2b is placed at each end of the cylinder.
  • the positioning steps 4a to 4d are used for fitting.
  • the positioning step 4 d is not shown in FIG. 8 in the shade of the cylindrical polycrystalline arc tube member 3.
  • the composite luminous vessel structure 2 2 is basically composed of a hollow capillary la, lb made of polycrystalline alumina in the same manner as the polycrystalline alumina luminous tube member 3 having a regular triangular prism shape.
  • the center axis is symmetrically installed so that it passes through the virtual center of gravity of the triangular prism, one in total, two regular triangular prisms are installed on both end faces, and one piece is installed in each circular opening provided on the side of the triangular prism.
  • a total of three single crystal transparent alumina disks 2 a, 2 b, 2 c are fitted.
  • the inner surface of the circular opening provided on the side surface of the single crystal transparent alumina disc and the side surface of the triangular prism is directly integrated so as to exhibit airtightness by sintering.
  • the single crystal transparent alumina disc 2 c is not shown in FIG. 9 in the shade of the cylindrical polycrystalline alumina arc tube member 3.
  • discs 2 b and 2 c are shown in FIG. 9, disc 2 a is hidden and not shown, and when discs 2 c and 2 a are shown in FIG. Plate 2b is hidden and not shown.
  • the corners at both ends of the regular triangular prism of the polycrystalline alumina arc tube member 3 Since it is not functionally necessary, it is rounded along a circular opening and smoothly connected to the chain. The corners on the side are also rounded.
  • the shape of the triangular prism may be designed so that the function as an arc tube can be expressed. It is desirable that the entire force-transmitting polycrystalline alumina arc tube member 3 has a uniform thickness as much as possible.
  • the composite luminous vessel structure 2 3 is basically composed of a hollow honeycomb 1 a , lb made of polycrystalline alumina in the same manner as the polycrystalline alumina luminous tube member 3 having a rectangular solid shape.
  • the center axis of the first beam is placed axisymmetrically so that it passes through the virtual center of gravity of the cuboid.
  • a total of six single crystal transparent alumina discs 2 a, 2 b, 2 c, 2 d, 2 e, and 2 f are fitted into the circular openings provided on each side of the cube.
  • the side surface of the single crystal transparent alumina disc and the inner surface of the circular opening provided on the side surface of the cube are directly integrated so as to exhibit hermeticity by sintering.
  • the disks 2a, 2b and 2c are shown, and the disks 2d, 2e and 2f are not shown hidden behind the arc tube member.
  • the disks 2d, 2e and 2f are shown in FIG. 10, the disks 2a, 2b and 2c are hidden by the arc tube member and are not shown.
  • each vertex of the cube of the polycrystalline alumina arc tube member 3 are rounded so as to follow a circular opening because they are unnecessary in terms of function. In addition, it is connected smoothly.
  • the shape of the apex of the cube may be designed so that the function as an arc tube can be expressed, but it is desirable that the entire polycrystalline alumina arc tube member 3 is as uniform as possible. .
  • a molded body consisting of a cavity and a cylindrical portion shown in FIGS. 11 and 12 was prepared by a gel cast molding method.
  • the molded body consists of a cylindrical part 3 with a maximum thickness of 3 mm and a cylindrical part l a, l b with a thickness of 1.1 mm.
  • the opening of the cylindrical part is 12 mm and the height of the cylindrical part is 8 mm.
  • a claw-shaped step 4 for positioning the single crystal alumina disks 2 a and 2 b is formed in the opening of the cylinder.
  • the molded body was fired at 1,300 ° C. in the atmosphere to remove the binder and perform temporary firing.
  • the shaped body after pre-firing shrinks about 10% by sintering.
  • a transparent single-crystal alumina circle having a diameter of 10 mm and a thickness of 0.8 mm polished to a surface roughness of Ra 0.09 ⁇ m is formed in the window of the calcined body thus obtained.
  • One plate is inserted into each opening, and fired in a hydrogen atmosphere at 1,800 ° C for 3 hours to further sinter the alumina pre-sintered material, further shrinking by about 20%.
  • Single-crystal transparent alumina disk is bonded to the inner surface of the cylindrical opening by firing and airtightness is developed, and single-crystal transparent alumina disk and translucent polycrystalline alumina member are directly integrated.
  • a tube container was prepared. The obtained composite arc tube container showed good airtightness.
  • the inside of the composite luminous vessel is evacuated by using the opening end of the capillary, helium gas is sprayed to the outside of the composite luminous vessel, and the amount of helium gas that enters the composite luminous vessel is used as a helium leak amount detection device.
  • a metal part in which an electrode part having a coil part made of tungsten and an introduction conductor part made of niobium are joined via molybdenum is inserted into one part of one of the composite arc tube containers thus obtained.
  • Conductor and molybdenum Temporarily fix it with a jig so that the introduction conductor comes out of the first part of the gap near the one end of the gap, and insert a ring-shaped sealing frit material from the introduction conductor. Then, the portion was heated and melted to a predetermined temperature and hermetically sealed.
  • this one end is hermetically sealed in a composite arc tube container.
  • mercury and luminescent metals such as Na, Tl, and Dy are used.
  • Insert an appropriate amount of iodide and insert a metal part in which the electrode part with the coil part made of tungsten and the lead conductor part made of nib are joined via molybdenum as before, and the joint part of the lead conductor part and molybdenum
  • a lead wire for supplying current is welded to the lead-in conductor of this composite arc tube, and inserted into a glass outer bulb to form a lamp. It could be turned on as a lamp.
  • molded articles composed of various sizes of cavities and cylindrical parts were made by gel casting using translucent alumina raw material powder. Molded so that the thickness of the cylindrical part after sintering is 1 to 3 mm, the thickness of part of the cylinder is also 0.5 to 1.2 mm, and the opening of the cylindrical part after sintering is 2 to 4 O mm
  • the body was fired at 1,300 ° C. in the atmosphere to remove the binder and to perform temporary firing.
  • the compact after calcining shrinks by about 10% by calcining.
  • the surface roughness Ra is 0.07 to 0.09 / xm.
  • a transparent single crystal alumina disk with a diameter of 2 to 40 mm and a thickness of 0.5 to 2.5 mm is inserted into each opening, and further in a hydrogen atmosphere, 1,800 After firing at ° C for 3 hours, the alumina calcined body is further sintered to shrink, and the side face of the single crystal transparent alumina disc is fired and joined to the inner surface of the cylindrical opening. And a light-emitting polycrystalline alumina member were directly bonded to produce a composite arc tube container.
  • the resulting composite arc tube container exhibits good airtightness, and furthermore, since the opening angle ⁇ of the single crystal alumina disk is 30 to 56 °, the opening ratio is 13 to 44% and is sufficiently visible. It was confirmed that it has light transmission and functions as an arc tube container for high-intensity discharge lamps.
  • this one end is hermetically sealed in a composite arc tube container.
  • mercury and luminescent metals such as Na, Tl, and Dy are used.
  • Insert an appropriate amount of iodide and insert a metal part in which the electrode part with the coil part made of tungsten and the lead conductor part made of nib are joined via molybdenum as before, and the joint part of the lead conductor part and molybdenum was temporarily fixed with a jig so that the lead-in conductor came out to the outside of the pinnage near one end of the pinch, and a ring-shaped sealing frit material was inserted from the lead-in conductor and placed at one end of the pinch After that, the part is heated and melted to a predetermined temperature and hermetically sealed to form a composite arc tube. It was.
  • a lead wire for supplying current is welded to the lead conductor of these composite arc tubes, inserted into an outer glass bulb to form a lamp, and a current is supplied by using a predetermined ballast power source. It was possible to light up as a high pressure discharge lamp.
  • Example Example Example Example 1 2 3 4 5 Number of discs 2 2 2 2 2 2 Surface roughness of the disc
  • a cylindrical, equilateral triangular prism, cubic shaped polycrystalline alumina arc tube member 3 and a single molded body were prepared by gel casting.
  • the thickness of the polycrystalline alumina arc tube member 3 after sintering is 0.8 to 1.5 mm
  • the thickness of a part of the cylinder is 0.5 to 1.5 mm
  • the polycrystalline alumina arc tube member after sintering is 0.8 to 1.5 mm
  • the molded body having an opening of 1 to 60 mm was fired at 1,300 ° C. in the atmosphere to remove the binder and perform temporary firing.
  • the compact after calcining contracted by about 10% by presintering.
  • the window of the calcined body thus obtained has a surface roughness Ra of 0.09 to l / xm, a diameter of 1 to 60 mm, and a thickness of 0.15.
  • a single crystal alumina disk of ⁇ 5 mm is inserted into each opening, and calcined at 1,800 to 1,860 ° C for 3 hours in a hydrogen atmosphere. Further, it was shrunk by sintering, and the side surface of the single crystal alumina disk was fired and bonded to the inner surface of the cylindrical opening to produce a composite arc tube container in which the single crystal alumina disk and the polycrystalline alumina member were directly bonded. .
  • Comparative Example 3 In the case of Comparative Example 3 in which the average particle diameter of the polycrystalline alumina was larger than 45 / zm and 40 ⁇ , cracks occurred in the polycrystalline alumina member, resulting in insufficient hermeticity. Furthermore, in the case of Comparative Example 1 where the surface roughness of the single crystal alumina disk is rougher than ⁇ and 0.01 / zm, the single crystal alumina disk does not become transparent, and visible light does not directly pass through. In the case of Comparative Examples 1 and 2 in which the opening angle 0 of the single crystal alumina disk is 14 ° and less than 15 °, the opening ratio of the single crystal alumina disk is 3% or less to secure a sufficient amount of light. It is difficult.
  • Polycrystalline alumina single crystal transparent alumina disc composite arc tube according to the present invention
  • the container can be applied to the arc tube of a high-intensity discharge lamp.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

多結晶アルミナ発光管部材(3)は、中空の多結晶アルミナキャピラリー(1)と1枚以上の透明な単結晶アルミナ円板(2)を備える。多結晶アルミナ発光管部材(3)は高輝度放電灯の発光部としての機能を有し、多結晶アルミナ発光管部材(3)の内部から放射された光は、透明な単結晶アルミナ円板を通して外部に放射される。透明な窓を通過して放出される光は散乱による損失が少なく、ランプ効率が向上できる。透明な単結晶アルミナを通して放出される光は、光源としての大きさが電極間の距離と同等の大きさとなり、点光源として利用できるため反射鏡やレンズとの組み合せにより光学的に制御可能で、一般照明のみならず自動車用ヘッドライトやプロジェクター用ランプの発光管(バーナー)として応用できる。

Description

明細書
複合発光管容器 発明の属する技術分野
本発明は、 単結晶透明アルミナ円板を嵌め込まれた多結晶アルミナ発 光管容器に関するものである。 背景技術
単結晶アルミナ (サフアイャ) は、 透明で耐熱性 · 耐磨耗性,耐蝕性 に優れており、 金属材料や有機材料が使用できないような厳しい環境下 に於いても使用できる、 優れた性質を持つ。 しかしながら、 単結晶アル ミナを製造するためには、 坩堝の中でアルミナを融点 ( 2 0 5 0 °C ) 以 上の高温にして融液状態とし、 種結晶を接触させて引き上げて育成した り (C Z法)、種結晶の上部からアルミナの粉末を融液状態にして堆積成 長 (ベルヌィ法) させたりする製法をとるため、 板や棒状等の単純な形 状の素材しか作成することができない。
また、 サファイアは、 基本的に硬くて脆い脆性材料であるため、 素材 からの機械加工が困難であり、 使用される領域が制限されてきた。 一方、 多結晶アルミナ (P C A ) は、 アルミナ微粉末からなる成形体 を融点より低い温度で焼成することにより、 殆ど気孔の残留しない状態 の焼結体として幅広く利用されている。 アルミナ微粉末は種々の成形法 を利用して形状付与できるため、 形状の自由度が高く色々な形状のアル ミナ焼結体が製造されて工業的に利用されてきた。
多結晶アルミナは基本的に光を通さないため、 その用途は単なる耐磨 耗 ·耐熱部材に限定されていたが、 米国の C o b 1 eがアルミナ原料の 不純物を少なく した高純度原料に、 粒成長抑制剤を添加して焼結するこ とにより、 透光性を有する多結晶アルミナ焼結体の開発に成功し、 一般 照明用の高圧ナトリ ゥム灯ゃメタルハラィ ドランプの発光管に利用され るようになった (米国特許 3,026,210号)。
透光性がさらに改善されて透明なアルミナ材料が開発できれば、 散乱 による光の損失が低減されるため発光効率が向上し、 更に一般照明用途 ばかりでなく点光源としての利用範囲が拡大されるため、 特開平 0 7 - 1 6 5 4 8 5号公報では、 多結晶アルミナ焼結体に、 単結晶アルミナを 接触させて単結晶化し透明体にすることにより、 多結晶アルミナの形状 の自由度と透明性を両立させる方法が提案されている。
また、 特表 2 0 0 1— 5 1 9 9 6 9号公報、 特開 2 0 0 3— 1 5 7 7 9 8号公報では、 単結晶アルミナ管に多結晶アルミナ焼結体を接合する ことにより、 メタルハライ ド用の発光管を作成することが提案されてい る。
特許出願公開平 2 - 6 4 6 0 3号公報では、 多結晶アルミナ管の内側 にサフアイャ円板を焼き嵌めて、 靦き窓として利用する発明が開示され ている。 発明の開示
しカゝし、 特開平 0 7— 1 6 54 8 5号公報の方法は、 部分的な単結晶 化は可能なものの、 部材全体の結晶の成長方向を任意の方向に制御する ことは難しく、 複雑な形状に自在に適用することは困難である。
特表 2 0 0 1— 5 1 9 9 6 9号公報、 特開 2 0 0 3— 1 5 7 7 9 8号 公報には、 サフアイャのチューブの両端に多結晶アルミナ部材を焼き嵌 めしたメタルハライ ド発光管を提案しているが、 サフアイャチューブは 製造することが困難でコス トも高く、 管の表面には結晶成長時に生ずる 結晶成長面に特有の表面の凹凸があり、 光の直進性が乱れる。 このため 表面を機械加工して滑らかな表面に仕上げることが必要になる場合があ るが、 その場合は更にコス トが高くなつてしまう。
特許出願公開平 2 - 6 4 6 0 3号公報には多結晶アルミナのチューブ にサフアイャの円板を焼き嵌めした、 光導部材が開示されている。 この 部材は透明のサフアイャ窓を通して、 内部の状態を視き見る目的に使わ れるものであり、 高輝度放電灯ランプ発光管への利用を狙った.ものでは なく、 気密性を発現するための技術的な開示もない。
本発明の課題は、 透明な窓部を備えており、 信頼性が高く コス ト的に も安価な、 高輝度放電灯ランプ用発光管を提供することである。
本発明は、 多結晶アルミナからなる発光管部材と、 1枚以上の単結晶 アルミナからなる透明円板とを備えており、 前記透明円板が前記発光管 部材の円形開口部に対して気密性を発現するよう直接嵌め込まれて一体 化していることを特徴とする、 複合発光管容器に係るものである。 本発明の構成要素である多結晶アルミナと単結晶アルミナは、 化学的 には同じ材料であり、 高輝度放電灯のような高温で使用しても、 互いに 反応することも無く、 安定している。 また、 温度差による応力が発生す る部材として使用しても、 多結晶アルミナの熱膨張係数は、 単結晶アル ミナの各結晶軸の熱膨張係数の加重平均であり、 単結晶アルミナとの熱 膨張係数の差は非常に小さく、 互いの界面に発生する熱応力も小さい。 単結晶透明アルミナ板の形状を円板状に限定することにより、 多結晶 アルミナ部と単結晶透明アルミナ板の境界に発生する応力の集中が避け られ、 発光管容器全体に均一な熱応力が発生するため、 信頼性が高い。 透明な窓を介して放出される電極間の放電で生じた光は、 散乱等によ る損失が少ない。 このためランプ効率が向上する。 透光性アルミナから なる発光管を用いた高輝度放電灯では、 電極間の放電で生じた光が直接 放出されず発光管内で散乱して外部に放出されるため、 散乱による損失 が避けられなかった。
透光性アルミナからなる発光管を用いた高輝度放電灯では、 電極間の 放電で生じた光が発光管内で散乱して外部に放出されるため、 光源の大 きさが発光管の大きさの制約になってしまい、 点光源ではなく拡散光源 になっていた。 拡散光源の場合、 反射鏡やレンズとの組合せによる光の 制御には限界があり、 自動車用へッ ドライ トゃプロジェクタ一等の光学 装置への応用は困難で、 一般照明用に用途が限定されてきた。
本発明では、 電極間の放電で生じた光が単結晶アルミナ透明窓を通し て出てくるので、 発光部から発生する光がそのまま直線的に放出され、 その放電距離が小さい場合は実質的に点光源として取り扱うことができ る。 点光源から出てきた光は種々の反射鏡やレンズと組合せることによ つて、 平行光に変換したり、 スポッ ト的に集光するなど光学的に自在に 制御することが可能になる。 図面の簡単な説明 . 図 1 ( a ) は、 本発明の複合発光管容器 2 0を示す斜視図であり、 図 1 ( b ) は、 多結晶アルミナ発光管部を拡大して示す斜視図である。 図 2 ( a ) は、 図 1に示す外観を有する複合発光管容器 2 0 Aを示す 縦断面図であり、 図 2 ( b ) は、 複合発光管容器 2 0 Aの横断面図であ る。
図 3 ( a ) は'、 図 1に示す外観を有する複合発光管容器 2 0 Bを示す 縦断面図であり、 図 3 ( b ) は、 複合発光管容器 2 0 Bの横断面図であ る。
図 4 ( a ) は、 図 1に示す外観を有する複合発光管容器 2 0 Cを示す 縦断面図であり、 図 4 ( b ) は、 複合発光管容器 2 0 Cの横断面図であ る。 図 5 ( a ) は構造体 2 1の斜視図であり、 図 5 ( b ) は図 5 ( a ) の 円筒端部の拡大図である。
図 6は、 構造体 2 1 の断面図である。
図 7は、 構造体 2 1の斜視図であり、 仮想重心点から放射された光の 広がりを示す。
図 8 ( a ) は構造体 2 1 の斜視図であり、 図 8 ( b ) は図 8 ( a ) の 円筒端部の拡大図で爪状の透明単結晶アルミナ円板位置決め用の段差の 例である。
図 9は、 構造体 2 2の斜視図である。
図 1 0は、 構造体 2 3の斜視図である。
図 1 1は、 実施例で作製したキヤビラリ一、 円筒部の構造体の成形体 全体を示す写真である。
図 1 2は、 実施例で作製したキヤビラリ一、 円筒部の構造体の一部を 拡大して示す写真である。 発明を実施するための最良の形態
多結晶アルミナ発光管部材の厚さを 0.3 m m以上とすることにより、 単結晶透明アルミナ円板を充分な気密性を発現するような嵌合力を確保 することができる。 また多結晶アルミナ発光管部材ではその厚さを 3 m m以下にすることにより、 肉厚差に起因する温度差による熱応力を小ざ くすることができる。 また透光性多結晶アルミナ発光管部材では、 その 厚さを 3 m m以下にすることにより、 高輝度放電灯の発光管などに用い たときの透光性も確保することができる。
更に、 多結晶アルミナ発光管部材の平均結晶粒子径を 40 / m 以下と することにより、 多結晶アルミナ部材の強度バラツキが小さくなり、 信 頼性が向上する。 第一の好適形態においては、 円形開口部に単結晶透明アルミナ円板 1 枚を焼成収縮差を利用して気密性を発現するよう、 接合材を用いること なく一体的に嵌合固定する。 発光管部材の外側には発光管部材材料と同 じ多結晶アルミナからなる中空のキヤビラリ一が、 単結晶透明アルミナ 円板と平行になるように、 左右軸対称にそれぞれ 1本づっ設置されてい る。 このキヤビラリ一内部に設けられた貫通穴を利用して内部に発光物 質とガスを入れ、 更に電極棒を電極の先端が接触しないようそれぞれ挿 入し密封固定することにより、 発光管部材の仮想重心点の近くに 2本の 電極先端で挟まれたギヤップが確保される。 このギヤップ間に放電を起 こさせることにより高輝度放電灯の発光管として機能させることが可能 になる。 ' .
多結晶アルミナ発光管部材は、 中空の略球形状とすることができる。 また、 発光管部材について例えば略球状の仮想形状を想定し、 この仮想 形状の一部を平面に沿って切断および除去した形状となるように、 円形 開口部を一^ 3形成する。
第二の好適形態においては、 多結晶アルミナ発光管部材を円筒形状と することにより、 単結晶透明アルミナ円板をその両側の開口端部にそれ ぞれ一枚ずつ合計 2枚、 焼成収縮差を利用して気密性を発現するよう、 接合材を用いることなく一体的に嵌合固定する。 円筒側面の外側には、 円筒材料と同じ多結晶アルミナからなる中空のキヤビラリ一が、 その中 心軸が円筒の仮想重心点を通るように、 左右軸対称にそれぞれ 1本づっ 設置されている。 このキヤビラリ一内部に設けられた貫通穴を利用して 内部に発光物質とガスを入れ、 更に電極棒を電極の先端が接触しないよ うそれぞれ挿入し密封固定することにより、 円筒内の仮想重心点位置に 2本の電極先端で挟まれたギャップが確保される。 このギャップ間に放 電を起こさせることにより第一の好適形態と同様に、 高輝度放電灯の発 光管と して機能させることが可能になる。
前述したような構造とすることにより、 電極先端のギヤップは円筒の 重心点と一致するため、 放電によって生じたプラズマ発光部と円筒内面 壁との距離が等方的になり、 プラズマ発光部の温度が均一に保たれるた め、 安定した点灯状態を維持することが可能になる。
第三の好適形態においては、 多結晶アルミナ発光管部材が基本的に正 三角柱からなり、 三角柱の両端面にそれぞれ一本づっ合計二本の中空の 多結晶アルミナからなるキヤビラリ一が、 その中心軸が三角柱の仮想重 心点を通るように、 左右軸対称に設置されており、 三角柱の側面に設け られた円形の開口部にそれぞれ一枚の単結晶透明アルミナ円板が合計三 枚配置され、 多結晶アルミナ発光管部材の円形の開口部の内側面とサフ アイャ円板の側面が焼結により気密性を発現するよう直接一体化してい る。
このような構造にすることにより、 円筒の側面に単結晶透明アルミナ 円板を二枚嵌合した構造に比較して、 単結晶透明アルミナ円板の開口率 を大きくすることができる。
また、 キヤビラリ一の中心軸の延長線が、 三角柱の仮想重心点を通る ように設けてあるため、 第一及び第二の好適形態と同様に、 このキヤピ ラリ一内部に設けられた貫通穴を利用して内部に発光物質とガスを入れ、 更に電極棒を電極の先端が接触しないようそれぞれ挿入し密封固定する ことにより、 三角柱の仮想重心点に 2本の電極の先端部から形成される ギヤップが確保され、 高輝度放電灯の発光管として機能させることが可 能になる。
さらに電極先端のギヤップが三角柱の重心点と一致するため、 放電時 によって生ずるプラズマ発光部と三角柱内面壁との距離が等方的になり プラズマ温度が均一に保たれるため、 安定した点灯状態を維持すること が容易になる。
第四の好適形態においては、 多結晶アルミナ発光管部材が基本的に立 方体 (正六面体) からなり、 立方体の仮想重心を通る二つの対称な項点 に、 それぞれ中空の多結晶アルミナからなるキヤビラリ一が一本づっ合 計二本軸対称に設置されており、 立方体の各側面に設けられた円形の開 口部にそれぞれ一枚の単結晶透明アルミナ円板が合計六枚配置され、 多 結晶アルミナ発光管部材の開口部側面の内側と単結晶透明アルミナ円板 の側面が焼結により気密性を発現するよう直接一体化している。
このよ うに六枚の単結晶透明アルミナ円板が嵌合された構造にするこ とにより、 円筒の側面に単結晶透明アルミナ円板を二枚.嵌合した構造や 三角柱の側面に単結晶透明アルミナ円板を三枚嵌合した場合に比較して、 複合発光管容器の単結晶透明アルミナ円板の開口率を更に大きくするこ とができる。
またキヤビラリ一の中心軸の延長線が、 立方体の仮想重心点を通るよ うに設けてあるため、 第一、 第二及び第三の好適形態と同様に、 このキ ャビラリー内部に設けられた貫通穴を利用して内部に発光物質とガスを 入れ、 更に電極棒を電極の先端が接触しないようそれぞれ揷入し密封固 定することにより、 立方体の仮想重心点に 2本の電極の先端から形成さ れるギヤップが確保され、 高輝度放電灯の発光管として機能させること が可能になる。
さらに電極先端のギヤップが立方体の重心点と一致するため、 放電時 のプラズマ発光部と立方体内面壁との距離が一様になり、 プラズマ温度 が均一化するため、 安定した点灯状態を維持することが容易になる。 仮想重心点を通り単結晶透明アルミナ円板面に垂直に延長した軸と単 結晶透明アルミナ円板面側面から仮想重心点が通過する仮想線が形成す る角度が 1 5 ° より小さいと、 単結晶透明アルミナ円板の相対的な開口 面積が小さくなり、 点光源として利用できる光量が充分確保できない。 同じく仮想重心点を通り単結晶透明アルミナ円板面に垂直に延長した軸 と単結晶透明アルミナ円板側面から仮想重心点が通過する仮想線が形成 する角度が 60° より大きい光は、単結晶透明アルミナ円板表面で全反射 するため、 有効に利用されない。 いたずらに開口面積が大きい単結晶透 明アルミナ円板を嵌め合わせても無駄になる。
多結晶アルミナ発光管部材の円形の開口部に単結晶透明アルミナ円板 の位置決めをするための段差を形成することにより、 焼成収縮を利用し て直接一体嵌合する場合の単結晶透明アルミナ円板の固定が容易になる。 単結晶透明アルミナ円板の厚みは 0.3 m m以上であると、 多結晶アル ミナ発光管部材に焼嵌めした時の応力に耐えることができる。 厚みが 3 m mを越える単結晶透明アルミナ円板の焼嵌め固定は、 多結晶アルミナ 側の残留応力が大きくなりすぎて、 多結晶アルミナ側にクラックが生成 することがあり、 気密性を維持することが困難になる。
単結晶透明アルミナ円板の直径が 2 m m未満では開口面積が小さく、 本願発明の効果が充分でない。 また焼き嵌め時の締め付け力を確保でき ず、 気密性を発現することが難しい。 単結晶透明アルミナ円板の直径が 5 0 m mを越えると、 多結晶アルミナ発光管部材側に発生する残留応力 が大きくなりすぎて、 多結晶アルミナ発光管部材側にクラックが生成す ることがあり、 気密性を維持することが困難になる。
単結晶アルミナ円板の平面部の表面粗さ (R a ) が 0 . 0 1 /z m以下 であれば、 表面の凹凸による散乱が低減され、 透明体と しての機能が確 保される。 '
単結晶透明アルミナ円板の平面と側面が交差する角部が鋭角であると、 焼き嵌め時にチッビングが発生し、 そこを起点として単結晶透明アルミ ナ円板にクラックが進行して、 気密性の発現が妨げられる原因となる。 このため、 単結晶透明アルミナ円板の平面と側周面が交差する角部に R 加工を施されていると、 このようなチッビングの防止に有効である。 単結晶透明アルミナ円板の C軸方向を厚み方向に対して ± 5° 以下に 一致させることにより、 単結晶透明アルミナ円板の平面方向の熱膨張係 数が等方的になり、 多結晶アルミナ発光管部材の円形開口部に嵌め込ま れた時に発生する応力もほぼ等方的になって均一化され、 応力集中を避 けることができる。
単結晶透明アルミナ円板には、 サブグレインと呼ばれる僅かに結晶軸 の異なった部分が含まれる場合がある。 そのようなサブグレインを含む 単結晶透明アルミナ円板を用いて焼き嵌めを行う と、 単結晶透明アルミ ナ円板が焼き嵌め後に割れてしまう場合がある。 このため単結晶透明ァ ルミナ円板にはサブグレインを含まない方が好ましい。
以下、本発明に係る実施例について、図面を参照しつつ更に説明する。 図 1 ( a ) は、 本発明の複合発光管容器 2 0を示す斜視図であり、 図 1 (b ) は、 多結晶アルミナ発光管部を拡大して示す斜視図である。 図 2 ( a )、 図 3 ( a )、 図 4 ( a ) は、 それぞれ、 図 1に示す外観を有す る複合発光管容器の縦断面図である。 図 2 ( b)、 図 3 (b)、 図 4 (b ) は、 それぞれ、 図 1に示す外観を有する複合発光管容器の横断面図であ る。
図 1に示す例においては、 複合発光菅容器構造体 2 0は、 中空の多結 晶アルミナ発光管部材 3と、 多結晶アルミナからなる中空のキヤビラリ 一 l a 、 l b からなる。 発光管 3は、 仮想的な略球体の一面を平面に沿 つて切断した外側形状を有している。 そして、 キヤピラリー l a、 l b の中心軸が前記仮想球体の仮想重心点を通るように合計 2本、 発光管部 材の側面外側に設置されている。 発光管部材 3の円形開口部 1 0に 1枚 の単結晶透明アルミナ円板 2が、 1枚、 位置決め用の段差 4を利用して 嵌め込まれている。 単結晶透明アルミナ円板 2の側面 7 と円形開口部の 内面は、 焼結により気密性を発現するよう直接一体化している。
図 2〜図 4には、 複合発光管容器構造体 2 0 A、 2 0 B、 2 0 Cの各 断面図を示している。 中空のアルミナ発光管部材 3の内側の形状は、 円 形開口部 1 0の中心を垂直に通過する仮想軸 Aを中心にして回転対称の 曲面で構成されている。
即ち、 図 2 ( a )、 ( b ) の例では、 発光管部材 3は、 半球状の底部 2 5 Aと、 その上に延びる円筒状部分 2 6 とを備えている。 半球状の底部 2 5八の内面3 3、 円筒状部分 2 6の内面 3 bは、 それぞれ、 円形開口 部の中心を垂直に通る仮想線 Aに対して回転対称をなしている。 また、 各キヤビラリ一の中心軸 Eは、 発光管部材 3の仮想重心点 Oの近くを通 り、 かつ、 仮想球体の前記仮想重心点 G上を通る。 一対のキヤビラリ一 は、 仮想球体の前記仮想重心点 Gに対して回転対称である。
図 3 ( a ) , ( b ) の例では、 発光管部材 3は、 回転楕円体状の底部 2 5 Bと、 その上に延びる円筒状部分 2 6 とを備えている。 底部 2 5 Bの 内面 3 a、 回転楕円体状の底部 2 6の内面 3 bは、 それぞれ、 円形開口 部の中心を垂直に通る仮想線 Aに対して回転対称をなしている。 また、 各キヤビラリ一の中心軸 Eは、 発光管部材 3の仮想重心点 Oの近くを通 り、 かつ、 仮想球体の前記仮想重心点 G上を通る。 一対のキヤビラリ一 は、 仮想球体の前記仮想重心点 Gに対して回転対称である。
図 4 ( a )、 ( b ) の例では、 発光管部材 3は、 円錐状部 2 5 Bと、 そ の上に延びる円筒状部分 2 6とを備えている。 円錐状部 2 5 Bの先端 2 5 aは球状に湾曲している。 円錐状部 2 5 Bの内面 3 a、 円筒状部分 2 6の内面 3 bは、 それぞれ、 円形開口部の中心を垂直に通る仮想線 Aに 対して回転対称をなしている。 また、 各キヤビラリ一の中心軸 Eは、 発 光管部材 3の仮想重心点 Oの近くを通り、 かつ、 仮想球体の前記仮想重 心点 G上を通る。 一対のキヤビラリ一は、 仮想球体の前記仮想重心点 G に対して回転対称である。
図 5に示す例においては、 複合発光容器構造体 2 1は、 円筒形状の多 結晶アルミナ発光管部材 3と同じく多結晶アルミナからなる中空のキヤ ピラリー l a 、 1 b からなり、 キヤビラリ一の中心軸が円筒の仮想重心 点を通るように軸対称にそれぞれ 1本づっ合計 2本円筒側面外側に設置 されており、 円筒両端の開口部にそれぞれ 1枚の単結晶透明アルミナ円 板 2 a 、 2 b が合計 2枚位置決め用の段差 4を利用して嵌め込まれてい る。 単結晶透明アルミナ円板の側面と円筒内面は、 焼結により気密性を 発現するよう直接一体化している。
図 6は、 複合発光管容器構造体 2 1の断面を示す。 この図において円 筒内の仮想重心点 0 を通り単結晶透明アルミナ円板に对して垂直に延 長した軸 A と単結晶透明アルミナ円板側周面から仮想重心点を通過す る仮想線 B が形成する角度 Θが規定される。 この角度が 1 5 ° 以下の場 合、 円筒の直径と高さの比が 0 . 2 6 : 1以下の小さい値となり、 円筒 の開口部が著しく小さくなってしまう。 このため点光源として利用でき る光の割合が小さくなる。 また円筒の形状が細長くなり、 発光管の中心 部において電極間のギヤップの放電で発生するプラズマと円筒内壁の距 離が方向によって大きく異なるため、 安定的に放電を維持することが困 難になる。
この角度 0が 6 0 ° を越える場合、円筒の直径と高さの比が 1 . 1 7 : 1をこえる値となり、 円筒の開口部を大きく取ることが可能になるが、 発光管の中心部から発せられ単結晶透明アルミナ円板に入射する光は入 射角 6 0 ° 以上では全反射し発光管の外部に放射されない。 更に円筒の 形状が扁平になり、 発光管の中心部において電極間のギャップの放電で 発生するプラズマと円筒内壁の距離が方向によって大きく異なるため、 安定的に放電を維持することが困難になる。
図 7においては、 複合発光管容器の仮想重心点に発生した光が、 透明 単結晶アルミナ円板を通して放出される光の面積割合 (立体角) を示し ている。
図 8に示す例においては、 複合発光容器構造体 2 1は、 円筒形状の多 結晶アルミナ発光管部材 3と多結晶アルミナからなる中空のキヤビラリ 一 l a 、 l b からなり、 キヤビラリ一の中心軸が円筒の仮想重心点を通 るように軸対称にそれぞれ 1本づっ合計 2本円筒側面外側に設置されて おり、 円筒両端の開口部にそれぞれ 1枚の単結晶透明アルミナ円板 2 a、 2 b が位置決め用の段差 4 a〜4 d を利用して嵌め込まれている。 位置 決め段差 4 d は、 円筒形状の多結晶アルミナ発光管部材 3の陰となって 図 8上には記載されていない。
図 9に示す例においては、 複合発光容器構造体 2 2は、 基本的に正三 角柱状の多結晶アルミナ発光管部材 3と同じく多結晶アルミナからなる 中空のキヤピラリー l a、 l b からなり、 キヤビラリ一の中心軸が三角 柱の仮想重心点を通るように軸対称にそれぞれ 1本づっ合計 2本正三角 柱の両端面に設置されており、 三角柱側面に設けられた円形の開口部に それぞれ 1枚の単結晶透明アルミナ円板 2 a 、 2 b 、 2 c が合計 3枚嵌 め込まれている。 単結晶透明アルミナ円板の側面と三角柱の側面に設け られた円形の開口部内面は、 焼結により気密性を発現するよう直接一体 化している。 ただし、 単結晶透明アルミナ円板 2 cは、 円筒形状の多結 晶アルミナ発光管部材 3の陰となって図 9上には図示されない。 なお、 図 9に円板 2 bおよび 2 cが図示される場合には、 円板 2 aは隠れて図 示されず、 図 9に円板 2 cおよび 2 aが図示される場合には、 円板 2 b は隠れて図示されない。
図 9においては多結晶アルミナ発光管部材 3の正三角柱の両端の角部 は、 機能上不要なため円形の開口部に沿うように丸められて、 滑らかに キヤビラリ一に繋がれている。 また側面の角部も丸められている。 三角 柱の形状は、 発光管としての機能を発現できるように設計されれば良い 力 透光性多結晶アルミナ発光管部材 3全体がなるべく均一な肉厚であ るようにすることが望ましい。 - 図 1 0に示す例においては、 複合発光容器構造体 2 3は、 基本的に立 方体形状の多結晶アルミナ発光管部材 3 と同じく多結晶アルミナからな る中空のキヤビラリ一 1 a 、 l b からなり、 キヤビラリ一の中心軸が立 方体の仮想重心点を通るように軸対称にそれぞれ 1本づっ合計 2本立方 体の軸対称な頂点に設置されている。 立方体の各側面に設けられた円形 の開口部にそれぞれ 1枚の単結晶透明アルミナ円板 2 a 、 2 b 、 2 c 、 2 d、 2 e、 2 f が合計 6枚嵌め込まれている。 単結晶透明アルミナ円板 の側面と立方体の側面に設けられた円形の開口部内面は、 焼結により気 密性を発現するよう直接一体化している。
ただし、 図 1 0においては、 円板 2 a、 2 bおよび 2 cが図示されて おり、 円板 2 d、 2 eおよび 2 f は発光管部材に隠れて図示されない。 図 1 0に円板 2 d、 2 eおよび 2 f が図示される場合には、 円板 2 a、 2 bおよび 2 cは発光管部材に隠れて図示されないことになる。
図 1 0においては多結晶アルミナ発光管部材 3の立方体の各頂点の角 部は、 機能上不要なため円形の開口部に沿うように丸められている。 ま た滑らかにキヤビラリ一に繋がれている。 立方体の頂点の形状は、 発光 管としての機能を発現できるように設計されれば良いが、 多結晶アルミ ナ発光管部材 3全体がなるべく均一な肉厚であるようにすることが望ま しい。 . 実施例 (実施例 1 )
透光性アルミナ用原料粉末を用いて、 図 1 1、 図 1 2に示すキヤビラ リーと円筒部からなる成形体をゲルキャス ト成形法により作成した。 成 形体は最大 3 mmの肉厚の円筒部 3 と肉厚 1. 1mmのキヤビラリ一部 l a、 l bからなる。 円筒部の開口部は 1 2 mm、 円筒部の高さは 8m mである。 円筒の開口部には、 単結晶アルミナ円板 2 a、 2 bの位置決 めをするための爪状の段差 4が形成されている。この成形体を大気中 1 , 3 0 0°Cで焼成してバインダーの除去と仮焼成を行った。 仮焼成後の成 形体は焼結により約 1 0%収縮する。 こう して得られた仮焼成体の窓部 に、 表面粗さが R aが 0. 0 0 9 μ mに研磨加工した直径 1 0 mm、 厚 さ 0. 8 mmの透明な単結晶アルミナ円板をそれぞれの開口部に 1枚ず つ挿入し、 水素雰囲気中 1 , 8 0 0°Cで 3 時間焼成して、 アルミナ仮焼 結体を更に焼結させることにより更に約 2 0 %収縮させ、 単結晶透明ァ ルミナ円板の側面を円筒開口部の内面に焼成接合することにより気密性 を発現させ、 単結晶透明アルミナ円板と透光性多結晶アルミナ部材が直 接一体化した複合発光管容器を作製した。 得られた複合発光管容器は良 好な気密性を示した。
なお、 本発明における 「気密性」 は、 ヘリ ウムリーク試験によって、 リ一ク量が 1 0— 8atm'cc/sec 以下であることを意味する。 ヘリ ウムリ —ク試験の方法は以下による。
複合発光容器の内部をキヤビラリ一の開口端を利用して真空状態にし、 複合発光管容器の外側にヘリ ゥムガスを噴きかけ、 複合発光管容器内に 浸入するヘリ ゥムガス量をヘリ ゥムリーク量検出装置にて測定する。 こう して得られた複合発光管容器の一方のキヤビラリ一部に、 タンダ ステンからなるコイル部を備えた電極部とニオブからなる導入導体部を モリブデンを介して接合した金属部品を挿入し、 導入導体部とモリブデ ンの接合部分の位置が、 キヤビラリ一端部近傍で導入導体がキヤビラリ 一の外側に出るように冶具で仮固定し、 リング状の封止用フリ ッ ト材料 を導入導体から挿入してキヤビラリ一端部に置いた後、 その部分を所定 の温度まで加熱溶融して気密に封止した。
更にアルゴン雰囲気のグローブボックス内で、 この片方の端部が気密 封止された複合発光管容器中に、 もう一方の封止されていないキヤビラ リー側から水銀および発光金属として Na、 Tl、 Dyのヨウ化物を適量入 れ、 先程と同様にタングステンからなるコイル部を備えた電極部とニォ ブからなる導入導体部をモリブデンを介して接合した金属部品を挿入し、 導入導体部とモリブデンの接合部分の位置が、 キヤビラリ一端部近傍で 導入導体がキヤビラリ一の外側に出るように冶具で仮固定し、 リング状 の封止用フリ ッ ト材料を導入導体から挿入してキヤビラリ一端部に置い た後、 その部分を所定の温度まで加熱溶融して気密に封止し複合発光管 とした。
この複合発光管の導入導体に電流供給のためのリード線を溶接し、 ガ ラス外球中に挿入してランプとし、 所定の安定器電源を利用して電流を 流すことにより、 メタルハラィ ド高圧放電ランプとして点灯させること ができた。
(実施例 2〜 5 )
表 1に示す様に、 透光性アルミナ原料粉末を用いて各種サイズのキヤ ビラリーと円筒部からなる成形体をゲルキャス トにより作成した。 焼結 後の円筒部肉厚は 1〜 3 m m、 キヤビラリ一部の肉厚は同じく 0 . 5〜 1 . 2 m m , 焼結後の円筒の開口部は 2〜4 O m mになるような成形体 を大気中 1 , 3 0 0 °Cで焼成してバインダ一の除去と仮焼成を行った。 仮焼後の成形体は仮焼結により約 1 0 %収縮する。 こう して得られた仮 焼成体の窓部に、 表面粗さ R aが 0 . 0 0 7〜 0 . 0 0 9 /x mに研磨カロ ェした直径が 2〜 4 0 m m、 厚さが 0 . 5〜 2 . 5 m mの透明な単結晶 アルミナ円板をそれぞれの開口部に 1枚ずつ挿入し、 更に水素雰囲気中 1 , 8 0 0 °Cで 3 時間焼成して、 アルミナ仮焼体を更に焼結することに より収縮させ、 単結晶透明アルミナ円板の側面を円筒の開口部の内面に 焼成接合し、 単結晶透明アルミナ円板と透光性多結晶アルミナ部材が直 接結合した複合発光管容器を作製した。 得られた複合発光管容器は良好 な気密性示し、 更に単結晶アルミナ円板の開口角 Θが 3 0〜 5 6 ° であ るため、 開口率が 1 3〜4 4 %と大きく充分な可視光の透過性を示し、 高輝度放電ランプ用の発光管容器としての機能を持っていることが確認 された。
こう して得られた実施例 2〜 5の複合発光管容器の一方のキヤビラリ 一部に、 タングステンからなるコイル部を備えた電極部とニオブからな る導入導体部をモリブデンを介して接合した金属部品を挿入し、 導入導 体部とモリブデンの接合部分の位置が、 キヤビラリ一端部近傍で導入導 体がキヤビラリ一の外側に出るように冶具で仮固定し、 リング状の封止 用フリ ツ ト材料を導入導体から挿入してキヤビラリ一端部に置いた後、 その部分を所定の温度まで加熱溶融して気密に封止した。
更にアルゴン雰囲気のグローブボッタス内で、 この片方の端部が気密 封止された複合発光管容器中に、 もう一方の封止されていないキヤビラ リー側から水銀および発光金属として Na、 Tl、 Dyのヨウ化物を適量入 れ、 先程と同様にタングステンからなるコイル部を備えた電極部とニォ ブからなる導入導体部をモリブデンを介して接合した金属部品を挿入し、 導入導体部とモリブデンの接合部分の位置が、 キヤビラリ一端部近傍で 導入導体がキヤビラリ一の外側に出るように冶具で仮固定し、 リング状 の封止用フリ ッ ト材料を導入導体から揷入してキヤビラリ一端部に置い た後、 その部分を所定の温度まで加熱溶融して気密に封止し複合発光管 とした。
これらの複合発光管の導入導体に電流供給のためのリ一ド線を溶接し、 ガラス外球中に挿入してランプとし、 所定の安定器電源を利用して電流 を流すことにより、 メタルハラィ ド高圧放電ランプとして点灯させるこ とができた。
表 1
実施例 実施例 実施例 実施例 実施例 1 2 3 4 5 円板の枚数 2 2 2 2 2 円板の表面粗さ
0.007 0.007 0.007 0.009 0.007
( m )
円板の直径 (mm) 10 8 5 2 40 円板の厚さ (mm) 0.8 0.8 0.5 0.5 2.5 円板側面角部 R
0.3 0.2 0.2 0.1 0.5 ( m m )
円板の厚み方向に対
< 1 < 1 < 1 4 < 1 する C軸の角度 (° )
円板の単結晶アルミ
ナのサブグレイ ンの 無し 無し 無し 無し 無し 右 fiE
円板の開口角 (° ) 30 45 56 45 45 円板の開口率 (%) 13 29 44 29 29 多結晶アルミナ部材
円筒 円筒 円筒 円筒 円筒 の形状
多結晶アルミ ナ部材
2 2 1.5 1 3 の肉厚 (mm)
キヤピラ リーの
0.8 0.8 0.6 0.5 1.2 肉厚 (mm)
キヤビラ リ一の
2.4 2.4 1.8 1.5 3.6 外径 (mm)
多結晶アルミナの
28 28 28 28 25 平均結晶粒径 (/X )
He リーク 10一8 10一8 10— 8 10一8 10一8 (atm - cc/sec) 以下 以下 以下 以下 以下 (実施例 6〜 7、 比較例 1〜 4 )
表 2に示す様に、 アルミナ原料粉末を用いて円筒、 正三角柱、 立方体 形状の多結晶アルミナ発光管部材 3とキヤビラリ一からなる成形体をゲ ルキャス トにより作成した。 焼結後の多結晶アルミナ発光管部材 3の肉 厚は 0. 8〜 1. 5 mm、 キヤビラリ一部の肉厚は 0. 5〜 1. 5 mm、 焼結後の多結晶アルミナ発光管部材の開口部は 1〜6 0 mmになるよう な成形体を大気中 1 , 3 0 0°Cで焼成してバインダ一の除去と仮焼成を 行った。 仮焼後の成形体は仮焼結により約 1 0 %収縮した。 こ う して得 られた仮焼成体の窓部に、 表面粗さ R aが 0. 0 0 9〜 l /x mに研磨加 ェした直径が 1〜 6 0 mm、 厚さが 0. 1 5〜 5 m mの単結晶アルミナ 円板をそれぞれの開口部に 1枚ずつ挿入し、 更に水素雰囲気中 1, 8 0 0〜 1, 8 6 0°Cで 3 時間焼成して、 アルミナ仮焼体を更に焼結するこ とにより収縮させ、 単結晶アルミナ円板の側面を円筒の開口部の内面に 焼成接合し、 単結晶アルミナ円板と多結晶アルミナ部材が直接結合した 複合発光管容器を作製した。
表 2
実施例 実施例 比較例 比較例 比較例 比較例 6 7 1 2 3 4 円板の枚数 3 6 2 2 2 2 円板の表面
0.009 0.009 1 0.009 0.009 0.009 粗さ (μ m )
円板の直径
5 5 5 1 6 0 5 円板の厚さ
0.5 0.5 0.5 0.15 5 0.5 、mm)
円板側面角部
0.2 0.2 ピン角 0.05 0.2 0.2 R ( m m )
円板厚み方向に
対する C軸角度 < 1 4 10 < 1 < 1 < 1 (° )
円板の単結晶ァ
ル ミ ナのサブグ 無し 無し 無し 無し 無し 有り レインの有無
円 板 の 開 口 角
54 39 14 10 45 56 (。 )
円板開口率 (%) 62 67 3 2 29 44 多結晶アル ミ ナ 正三角
AL ¾体 円筒 円筒 円筒 円筒 部材の形状 柱
多結晶アル ミ ナ
1.5 1.5 1.5 0.8 5 1.5 部材の肉厚(mm)
キ ヤ ビラ リ 一の
0.8 0.8 0.8 0.5 1.5 0.6 肉厚 (mm)
キ ヤ ピラ リ ーの
2.4 2.4 2.4 1.5 4.5 1.8 外径 (mm)
多結晶アル ミ ナ
平 均 結 晶 粒 径 25 20 28 28 45 28 ( μ )
He リーク 10—8 10一8 リーク リーク リーク リーク ( atm - cc/sec) 以下 以下 有 有 有 有 円板に 多結日日 割れ発 円板に アルミ 円板に 備考 生。 割れ発 ナ部材 割れ発 円板が 生 に割れ 生 不透明。 発生 その結果、 実施例 6の多結晶アルミナ部材の形状が正三角柱の場合、 透明な単結晶アルミナ円板を 3枚嵌合することができ、 気密性を確保し つつ 6 2 %の開口率が達成された。 更に実施例 7の多結晶アルミナ部材 の形状が立方体の場合、 透明な単結晶アルミナ円板を 6枚嵌合すること ができ、 気密性を確保しつつ 6 7 %の開口率が達成され、 高輝度放電ラ ンプ用の発光管容器として優れた特性を有することが確認された。
一方、 単結晶アルミナ円板の側面の角部がピン角で仕上げられた比較 例 1の場合、 焼嵌め後に単結晶アルミナ円板に割れが発生し、 充分な気 密性が得られなかった。 単結晶アルミナ円板の厚さが、 0. 1 5 mmと 0. 3 mmより薄い比較例 2の場合も単結晶アルミナ円板が割れて、 充 分な気密性が得られなかった。 単結晶アルミナ円板の直径が 6 Ommで 5 0 mmより大きく、厚さが 5 mmで 3 mmより厚い比較例 3の場合は、 多結晶アルミナ側に割れが発生した。 多結晶アルミナの平均粒径が 4 5 /z mと 4 0 μ πιより大きい比較例 3の場合も多結晶アルミナ部材に割れ が発生し気密性が不充分となった。 更に単結晶アルミナ円板の表面粗さ が Ι μ πιと 0. 0 1 /z mより粗い比較例 1の場合は、 単結晶アルミナ円 板が透明にならず、 可視光が直接透過しない。 また単結晶アルミナ円板 の開口角 0が 1 4° で 1 5° 未満の比較例 1及び 2の場合では、 単結晶 アルミナ円板の開口率が 3 %以下となって充分な光量を確保することが 難しい。 単結晶アルミナ円板の厚み方向に対する結晶の C 軸方向が 1 0° と 5° を越えてずれている比較例 1の場合、 単結晶アルミナ円板面 の熱膨張異方性に起因する応力が発生して、 単結晶円板に割れが発生し た。
また単結晶アルミナ円板にサブグレインが有る比較例 4の場合は、 焼 き嵌め後に単結晶アルミナ円板にクラックが発生した。
本発明にかかる多結晶アルミナ一単結晶透明アルミナ円板複合発光管 容器は、 高輝度放電灯の発光管への応用が可能である。 '
本発明の特定の実施形態を説明してきたけれども、 本発明はこれら特 定の実施形態に限定されるものではなく、 請求の範囲の範囲から離れる ことなく、 種々の変更や改変を行いながら実施できる。

Claims

請求の範囲
1 . 多結晶アルミナからなる発光管部材と、 1枚以上の単結晶アル ミナからなる透明円板とを備えており、 前記透明円板が前記発光管部材 の円形開口部に対して気密性を発現するよう直接嵌め込まれて一体化し ていることを特徴とする、 複合発光管容器。
2 . 前記発光管部材に前記円形開口部が一つ設けられており、 この 円形開口部と平行に取り付けられた多結晶アルミナからなる一対のキヤ ビラリ一が発光管部材に備えられており、 一対の前記キヤビラリ一が、 前記円形開口部の中心を前記円形開口部に対して垂直に通過する仮想軸 に対して対称に設けられており、 前記発光管部材と前記透明円板の側周 面とが気密性を発現するよう直接一体化していることを特徴とする、 請 求項 1記載の複合発光管容器。
3 . 前記発光管部材の内面が、 前記仮想軸を中心にして回転対称の 曲面で構成されていることを特徴とする、 請求項 2記載の複合発光管容 器。
4 . 前記発光管部材に取り付けられた多結晶アルミナからなる一対 のキヤビラリーを備えており、 前記発光管部材が円筒形状であって二つ の側面にそれぞれ前記円形開口部を有しており、 前記各キヤビラリ一の 各中心軸が前記発光管の仮想重心点を通り、 一対の前記キヤビラリ一が 前記仮想重心点に対して略対称に設けられており、 一対の前記円形開口 部にそれぞれ前記透明円板が 1枚毎嵌め込まれており、 前記発光管部材 と前記透明円板の側周面とが気密性を発現するよう直接一体化している ことを特徴とする、 請求項 1記載の複合発光管容器。 '
5 . 前記発光管部材に取り付けられた多結晶アルミナからなる一対 のキヤビラリ一を備えており、 前記発光管部材が中空の三角柱形状であ つて三個の側面にそれぞれ前記円形開口部を有しており、 前記各キヤピ ラリ一の各中心軸が前記発光管の仮想重心点を通り、 一対の前記キヤピ ラリ一が前記仮想重心点に対して略対称に設けられており、 前記円形開 口部にそれぞれ前記透明円板が 1枚毎嵌め込まれており、 前記発光管部 材と前記透明円板の側周面とが気密性を発現するよう直接一体化してい ることを特徴とする、 請求項 1記載の複合発光管容器。
6 . 前記発光管部材に取り付けられた多結晶アルミナからなる一対 のキヤビラリ一を備えており、 前記発光管部材が中空の立方体形状であ つて六個の側面にそれぞれ前記円形開口部を有しており、 前記各キヤピ ラリ一の各中心軸が前記発光管の仮想重心点を通り、 一対の前記キヤピ ラリーが前記仮想重心点に対して略対称に設けられており、 前記円形開 口部にそれぞれ前記透明円板が 1枚毎嵌め込まれており、 前記発光管部 材と前記透明円板の側周面とが気密性を発現するよう直接一体化してい ることを特徴とする、 請求項 1記載の複合発光管容器。
7 . 前記発光管部材の壁厚が 0.3 m rr!〜 3 m mであり、 前記発光管 部材を構成する多結晶アルミナの平均結晶粒子径が 40 /x m 以下である ことを特徴とする、 請求項 1〜 5のいずれか一つの請求項に記載の複合 発光管容器。
8 . 前記発光管の仮想重心点を通り前記透明円板に対して垂直な軸 と、 前記透明円板の側周面と前記仮想重心点とを結ぶ仮想線とが形成す る角度が、 1 5 ° 〜 6 0 ° の範囲であることを特徴とする、 請求項 1〜 7のいずれか一つの請求項に記載の複合発光管容器。 -
9 . 前記発光管部材の前記円形開口部に、 前記透明円板を位置決め するための段差が形成されていることを特徴とする、 請求項 1〜 8のい ずれか一つの請求項に記載の複合発光管容器。 - 1 0 . 前記発光管部材および前記中空キヤビラリ一が、 透光性を有 する多結晶アルミナ焼結体からなることを特徴とする、 請求項 1〜 9の いずれか一つの請求項に記載の複合発光管容器。
1 1 . 前記透明円板の厚みが 0.3 m m〜3 m mであり、 直径が 2 m π!〜 50m mであることを特徴とする、 請求項 1〜 1 0のいずれか一つの 請求項に記載の複合発光管容器。
1 2 . 前記透明円板の平面部の表面粗さ R aが 0.01 ミクロン以下で あることを特徴とする、請求項 1 〜 1 1のいずれか一つの請求項に記載 の複合発光管容器。
1 3 . 前記透明円板の平面部と側周面との間の角部に R加工が施さ れていることを特徴とする、 請求項 1〜 1 2のいずれか一つの請求項に 記載の複合発光管容器。
1 4 . 前記透明円板を構成する前記単結晶アルミナの C軸方向が厚 み方向に対してなす角度が ± 5 ° 以内であることを特徴とする、 請求項 1〜 1 3のいずれか一つの請求項に記載の複合発光管容器。
1 5 . 前記透明円板を構成する前記単結晶アルミナの中にサブダレ インが無いことを特徴とする、 請求項 1〜 1 4のいずれか一つの請求項 に記載の複合発光管容器。
PCT/JP2008/056963 2007-04-03 2008-04-02 複合発光管容器 WO2008123626A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009509348A JPWO2008123626A1 (ja) 2007-04-03 2008-04-02 複合発光管容器
EP08740066A EP2133904A4 (en) 2007-04-03 2008-04-02 COMPOSITE HOUSING OF A LIGHT-EMITTING TUBE

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007-097204 2007-04-03
JP2007097204 2007-04-03
US92600407P 2007-04-24 2007-04-24
US60/926,004 2007-04-24
JP2007324492 2007-12-17
JP2007-324492 2007-12-17

Publications (1)

Publication Number Publication Date
WO2008123626A1 true WO2008123626A1 (ja) 2008-10-16

Family

ID=39831076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056963 WO2008123626A1 (ja) 2007-04-03 2008-04-02 複合発光管容器

Country Status (4)

Country Link
US (1) US8092875B2 (ja)
EP (1) EP2133904A4 (ja)
JP (1) JPWO2008123626A1 (ja)
WO (1) WO2008123626A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013252978A (ja) * 2012-06-05 2013-12-19 Tosoh Corp 透光性セラミックス接合体および製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6707467B2 (ja) 2014-05-15 2020-06-10 エクセリタス テクノロジーズ コーポレイション レーザ駆動シールドビームランプ
US9741553B2 (en) 2014-05-15 2017-08-22 Excelitas Technologies Corp. Elliptical and dual parabolic laser driven sealed beam lamps
US10186416B2 (en) 2014-05-15 2019-01-22 Excelitas Technologies Corp. Apparatus and a method for operating a variable pressure sealed beam lamp
JP6657559B2 (ja) * 2014-12-24 2020-03-04 日亜化学工業株式会社 発光装置およびその製造方法
US10008378B2 (en) * 2015-05-14 2018-06-26 Excelitas Technologies Corp. Laser driven sealed beam lamp with improved stability
US10057973B2 (en) 2015-05-14 2018-08-21 Excelitas Technologies Corp. Electrodeless single low power CW laser driven plasma lamp
CN107709028B (zh) 2015-10-27 2019-10-11 惠普发展公司有限责任合伙企业 油墨固定液
US10109473B1 (en) 2018-01-26 2018-10-23 Excelitas Technologies Corp. Mechanically sealed tube for laser sustained plasma lamp and production method for same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3026210A (en) 1961-01-03 1962-03-20 Gen Electric Transparent alumina and method of preparation
JPH01182801A (ja) * 1988-01-14 1989-07-20 Toshiba Ceramics Co Ltd 金属蒸気セル光学フィルター
JPH0264603A (ja) 1988-08-31 1990-03-05 Kyocera Corp 光導部材及びその製法
JPH0750151A (ja) * 1993-08-03 1995-02-21 Ushio Inc エキシマ放電ランプ
JPH07165485A (ja) 1993-09-24 1995-06-27 General Electric Co <Ge> 多結晶質セラミック物体から単結晶物体への固相転化法
JPH08501270A (ja) * 1992-09-16 1996-02-13 パテント‐トロイハント‐ゲゼルシヤフト フユア エレクトリツシエ グリユーランペン ミツト ベシユレンクテル ハフツング アルミナ発光管用シール部材及びその製造方法
JPH08138628A (ja) * 1994-11-01 1996-05-31 Ushio Inc 誘電体バリア放電ランプ
JP2001519969A (ja) 1998-02-11 2001-10-23 ゼネラル・エレクトリック・カンパニイ サファイアcmhランプのモノリシックシール
JP2003157798A (ja) 2001-09-14 2003-05-30 Osram Sylvania Inc サファイアメタルハライドランプ用モノリシックシール
WO2005122214A1 (ja) * 2004-06-08 2005-12-22 Ngk Insulators, Ltd. 発光容器および高圧放電灯用発光容器
JP2007081131A (ja) * 2005-09-14 2007-03-29 Kyocera Corp 単結晶ウエハ及びそれを用いたエピタキシャル成長用基板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3424568A (en) 1965-09-09 1969-01-28 Corning Glass Works Method of sealing and resilient seal for elements having different coefficients of expansion
NL7602483A (nl) * 1976-03-10 1977-09-13 Philips Nv Spiegelkondensorlamp.
US5621275A (en) 1995-08-01 1997-04-15 Osram Sylvania Inc. Arc tube for electrodeless lamp
US6447937B1 (en) * 1997-02-26 2002-09-10 Kyocera Corporation Ceramic materials resistant to halogen plasma and components using the same
US6856092B2 (en) 2000-12-06 2005-02-15 Itw, Inc. Electrodeless lamp
JP2005340051A (ja) 2004-05-28 2005-12-08 Ushio Inc ショートアークランプ
US7521870B2 (en) 2004-06-08 2009-04-21 Ngk Insulators, Ltd. Luminous containers and those for high pressure discharge lamps
US20060279218A1 (en) * 2005-06-14 2006-12-14 Toshiba Lighting & Technology Corporation High-pressure discharge lamp, high-pressure discharge lamp operating apparatus, and illuminating apparatus
US8102121B2 (en) 2007-02-26 2012-01-24 Osram Sylvania Inc. Single-ended ceramic discharge lamp

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3026210A (en) 1961-01-03 1962-03-20 Gen Electric Transparent alumina and method of preparation
JPH01182801A (ja) * 1988-01-14 1989-07-20 Toshiba Ceramics Co Ltd 金属蒸気セル光学フィルター
JPH0264603A (ja) 1988-08-31 1990-03-05 Kyocera Corp 光導部材及びその製法
JPH08501270A (ja) * 1992-09-16 1996-02-13 パテント‐トロイハント‐ゲゼルシヤフト フユア エレクトリツシエ グリユーランペン ミツト ベシユレンクテル ハフツング アルミナ発光管用シール部材及びその製造方法
JPH0750151A (ja) * 1993-08-03 1995-02-21 Ushio Inc エキシマ放電ランプ
JPH07165485A (ja) 1993-09-24 1995-06-27 General Electric Co <Ge> 多結晶質セラミック物体から単結晶物体への固相転化法
JPH08138628A (ja) * 1994-11-01 1996-05-31 Ushio Inc 誘電体バリア放電ランプ
JP2001519969A (ja) 1998-02-11 2001-10-23 ゼネラル・エレクトリック・カンパニイ サファイアcmhランプのモノリシックシール
JP2003157798A (ja) 2001-09-14 2003-05-30 Osram Sylvania Inc サファイアメタルハライドランプ用モノリシックシール
WO2005122214A1 (ja) * 2004-06-08 2005-12-22 Ngk Insulators, Ltd. 発光容器および高圧放電灯用発光容器
JP2007081131A (ja) * 2005-09-14 2007-03-29 Kyocera Corp 単結晶ウエハ及びそれを用いたエピタキシャル成長用基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2133904A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013252978A (ja) * 2012-06-05 2013-12-19 Tosoh Corp 透光性セラミックス接合体および製造方法

Also Published As

Publication number Publication date
US20080280079A1 (en) 2008-11-13
JPWO2008123626A1 (ja) 2010-07-15
EP2133904A4 (en) 2011-04-20
US8092875B2 (en) 2012-01-10
EP2133904A1 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
WO2008123626A1 (ja) 複合発光管容器
CN100403489C (zh) 用于蓝宝石金属卤化物灯的整体密封
US7521870B2 (en) Luminous containers and those for high pressure discharge lamps
US3885181A (en) Electric discharge lamps
JP5214445B2 (ja) モリブデン−レニウム端部キャップを有するセラミックランプ、並びに該ランプを備えるシステム及び方法
US7843137B2 (en) Luminous vessels
JP2012510557A (ja) 窒化アルミニウム及び酸窒化アルミニウムセラミックを封止するための封止用組成物
US6741033B2 (en) High transmittance alumina for ceramic metal halide lamps
JP2008533664A (ja) 高輝度放電ランプ用の透明度の高いセラミック発光管
US20060222878A1 (en) Composite bodies
EP1755147B1 (en) Light-emitting vessel and light-emitting vessel for high-pressure discharge lamp
US20010053080A1 (en) Electric lamp/reflector unit
JP4754038B2 (ja) 電気白熱電球
JP2002528880A (ja) 白熱ランプ
JP2000067815A (ja) ランプ
JP4083487B2 (ja) 光源装置
JP2010272436A (ja) 高圧放電ランプおよび照明装置
JPH04233154A (ja) セラミックス放電灯用発光管
JP4083250B2 (ja) ダブルエンド型ハロゲン電球とその製造方法
JP5243153B2 (ja) 高輝度放電灯用発光容器
JPS60130045A (ja) メタルハライドランプ発光管の製造方法
JPH04371802A (ja) 高輝度放電灯用発光管の製造方法
JPH08148118A (ja) 高圧金属蒸気放電ランプ
HU195029B (en) Method for sealing ceramic cap of a high-pressure discharge lamp, preferably sodium discharge lamp and the lamp made by said method
JP2002231190A (ja) セラミック製放電ランプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740066

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009509348

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008740066

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE