WO2008117886A1 - 燃焼煙中のカルボニル類含量が低減されたタバコ属植物およびその作製法 - Google Patents

燃焼煙中のカルボニル類含量が低減されたタバコ属植物およびその作製法 Download PDF

Info

Publication number
WO2008117886A1
WO2008117886A1 PCT/JP2008/056521 JP2008056521W WO2008117886A1 WO 2008117886 A1 WO2008117886 A1 WO 2008117886A1 JP 2008056521 W JP2008056521 W JP 2008056521W WO 2008117886 A1 WO2008117886 A1 WO 2008117886A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
tobacco
expression
gene
plant
Prior art date
Application number
PCT/JP2008/056521
Other languages
English (en)
French (fr)
Inventor
Yasuhito Saito
Soichiro Noguchi
Shoichi Suzuki
Naoto Yamaguchi
Daiki Matsuura
Takahiro Fujisaki
Toru Hiyoshi
Chitoshi Narimatsu
Original Assignee
Japan Tobacco Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc. filed Critical Japan Tobacco Inc.
Publication of WO2008117886A1 publication Critical patent/WO2008117886A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis

Definitions

  • the present invention relates to a tobacco genus plant having a reduced content of carbonyls in combustion smoke and a method for producing the same.
  • Cigarette combustion smoke contains various components such as book tar, nicotine, and carbonyls. Tar and nicotine are related to smoking satisfaction and flavor, and carbonyls are considered to be related to smoke irritation. Therefore, it is desirable to reduce the amount of carbonyls while keeping the amount of tar, nicotine, etc. at a relatively high level.
  • FB P ase chloroplast type F ructose _ 1, 6-bisphosphatase
  • PGI chloroplast type Phosphogluco 3 ⁇ 4 eis ome rase
  • ADP glucopyrophosphoryl ases malsubunit
  • AGP S The ADP—glucopyrophosphoryl ases malsubunit (AGP S) gene mediates the reaction of synthesizing AD P—g 1 ucose, a substrate for starch synthesis.
  • AD P subunit constituting glucosepyrophosphoryl ase (AGP ase) " ⁇ Code one. 1 988 T san— P iao L in et al., Arabidopsis In advents of Nazuna, the starch content of the leaf decreased to 140 or less of the control, and both AGP aselarge subunit (AGPL) and AGPS protein expression and AD P—g 1 ucosepyrophosphoryry 1 ase (AGP ase) activity were observed.
  • AGP ase AGP aselarge subunit
  • Non-patent Document 1 1 998 S hue—Mei Wang et al. Reported that the adgl mutant was due to a 1 amino acid substitution mutation in the AG PS gene (Non-patent Document 2). Examples of genetic recombination experiments using the AGPS gene were carried out in 1959 by K. Leidreiter et al. In transgenic potatoes expressing the antisense AGP S gene under the control of the 35 S promoter or ST-LS 1 promoter. It was reported that the starch content of leaves was reduced to 1 / 2-1 / 3 by reducing the AGPase activity of the leaves to 1 / 10- 1/15 (Non-patent Document 3). 1 988 Schuch Wolfgang Walter et al. Filed an application containing a plant that suppresses starch synthesis by expressing an antisense mRNA of a gene encoding AGPase (Patent Document 1). .
  • the chloroplast type F ructose— 1, 6— bisphosphatase (FBP ase) is converted to F ructose — 1, 6— blsphosphate, BP) in the Calvin cycle, a carbon fixation pathway of plants. It is known to catalyze the reaction of irreversible conversion into chloroplast-type FBPase cDNA from wheat for the first time in 988 by Raines CA et al. (Non-patent Document 4). 1 In 994 by J.
  • Chloroplast-type PG I uses F 6 P made from FBP ase as G lucose— 6— It is known to catalyze a reaction that reversibly converts to phosphate (G 6 P). So far, chloroplast-type PG I deletion mutants have been reported for Clarakia X antiana (1986, Non-Patent Document 7) and Arabidopsis (2000, Non-Patent Document 8). The former report halved chloroplast-type PGI activity and reduced the starch content of the leaves to 60% of the wild type, and the latter to 2% and 1.5% of the wild type, respectively. There have been no reports of literatures, patents, etc. that have increased or decreased the expression of chloroplast type PG I by gene recombination.
  • iso amy 1 ase gene the plant isoa my 1 ase gene (iso amy lasel) was isolated for the first time by MG James et al. Reference 9).
  • 2004 R. Bustos et al. Reported a 10-20% reduction in starch content in potato tubers introduced with antisense iso amy lase (iso amy l) c DNA under the control of the 35 S promoter. (Non Patent Literature 10).
  • 2005 T. D elatte et al. Non-patent document 1 1) and F. Wa tteb 1 ed et al.
  • Non-patent document 1 2 showed that the isoa my 1-deficient mutant of Arabidopsis thaliana contains leaf starch and soluble glucan Has been reported to be reduced by about 30% compared to the wild type. Isoamyl is known to be important for the synthesis of amylopectin, as well as catalyzing the reaction that cleaves the ⁇ -1,6 linkage branch of starch (amylopectin).
  • Patent Documents 2 to 8 disclose a technique for removing carbonyls in tobacco combustion smoke with a filter or the like, but these filters are not preferable because they remove tar and nicotine.
  • Patent Document 9 amino acids to remove aldehydes in tobacco smoke
  • Patent Document 1 filters added with hydrotalcite compounds that selectively remove formaldehyde
  • Patent Document 1 2 the use of crystalline zeolite with unique adsorption characteristics
  • Patent Document 1 2 the addition of a basic polypeptide
  • a highly functional high-performance filter has a drawback in that the ventilation resistance increases.
  • Non-Patent Documents 13 report that in the conventional study of carbonyls in tobacco smoke, the amount of carbonyls generated increases when sugars are added to tobacco cuts. However, if the content of sugars in tobacco is reduced, or if the starch content, which is another major non-structural carbohydrate in tobacco instead of sugar, is reduced, or It is not known whether the content of carbonyls in combustion smoke decreases when the total amount of starch, that is, the unstructured carbohydrate content (hereinafter referred to as “carbohydrate”) is reduced.
  • the carbohydrate content in the raw tobacco leaves is affected by both the carbohydrate content in the harvested tobacco and the drying method after harvesting.
  • the carbohydrate content in the tobacco material varies depending on the method used.
  • the main ingredient of cigarettes and flavored raw yellow leaf tobacco has a high carbohydrate content such as sugar and starch
  • Burley raw leaf tobacco has low carbohydrate content in leaf tobacco.
  • yellow-type raw leaf tobacco has more carbonyl generation in smoke than burre-type raw leaf tobacco.
  • Non-patent Document 14 For transformed tobacco with reduced starch, sugar content, etc. in tobacco leaves, chloroplast-type transketolase (Non-patent Document 14), Ru biscos ma 1 1 subunit (Rb c S) (Non-patent Document 15) ) Have been reported to be suppressed.
  • Non-patent Document 14 By suppressing target gene expression, leaf glucose, sucrose, and starch per fresh leaf weight are reduced to about 20-25% of the maximum, and in the latter, leaf starch, glucose, Fruct It is disclosed that sucrose and sucrose were reduced to about 5 to 30% of each control.
  • the plant is not a transformed plant that can be used as a raw material for tobacco.
  • Patent Document 1 British Patent Application No. 1 9 8 8 0026 356
  • Patent Document 2 Japanese Patent Laid-Open No. 59-0 0 8 0 78
  • Patent Document 3 JP 59 1 1 5 1 8 8 2
  • Patent Document 4 Japanese Patent Application Laid-Open No. 60-0 5 4 6 6 9
  • Patent Document 5 Japanese Patent Laid-Open No. 09-1 6 8 7 3 6
  • Patent Literature 6 Special Table 2002 _ 5 2 8 1 05
  • Patent Literature 7 Special Table 2002 _ 5 2 8 1 06
  • Patent Literature 8 Special Table 2003 _ 5 0 5 6 1 8
  • Patent Document 9 US Patent No. 29 6 8 3 0 6 Specification
  • Patent Document 1 0 International Publication No. 2 0 0 3/056947
  • Patent Document 1 US Patent Application Publication No. 2005 Z 0 1 33047 Specification Patent Document 1 2 JP 2006-34 1 27
  • Non-Patent Document 1 T s a n— P i a o L i n e t a 1.
  • Non-Patent Document 2 shue— Me i Wa ngeta 1.
  • Non-Patent Literature 3 K irsten L eidreitereta 1.
  • Non-Patent Document 4 Raines CA, L loyd JC, Longstaff M, Bradley D and Dyer TA "Chloroplastfructose—1, 6— bisphosphatase: theproductofa mo saicgeneucleic Acids R es. 1 6: 793 1-7942 (1 988)
  • Non-Patent Document 6 M. S ahrawy, C. A vila, A. C hueca, FM C anovasand J ulio L opez— G orge I ncreasedsucroselevela ndalterednitrogen me tabolismin Ar abidopsisthalianatran sgenicplantsexpressin gantisensechloroplast icfructose— p. B ot. 5 5 (408): 2495 — 2503 (2004)
  • Non-Patent Document 7 TWA J ones, LD G ott Kunststoffand E. P ichersky "R educed E nz yme Ac tivityand S tarch L evelinan Induced Mut antof C hloroplast P hoshog 1 ucose I somerase P 1 ant P hysio 1 8 1: 367- 3 7 1 (1 986)
  • Non-Patent Document 9 M. G. James, D, S. Robe rt s o n a n d
  • Non-Patent Literature 1 0 R. B u s t o s, B. F a h y, C. M. Hy 1 t o n,
  • Non-Patent Document 1 Th i e r r y D e 1 at e, M art i n e T r e
  • Non-Patent Document 1 F. Wa ttebled, Y. Dong, S. Dume z, D. D e 1 va 1 1 e, V. P lanchot, P. B erbezy, D. V yas, P. Colonna, M. Ch atterjee, S. B alland C. D 'Hu 1 st "M utantof A rabidopsis Lackinga Chloroplastic I so amy l a.se A ccumu 1 ate P hytoglycogenandan Ab nor ma l F ormof Amy lopectin "P lant P hysio .1. 1 3 8 (1): 1 84- 1 95 (2005)
  • Non-Patent Literature 1 3 F o o d a n d Ch em i c a l To x i c o l o g y 44, (2006) 1 789— 1 798, 1 799— 1 822
  • Non-Patent Literature 1 4 P l a n t C e l l v o l l 3, 535—55 1 (2 00 1)
  • An object of the present invention is to provide a tobacco plant having a reduced carbonyl content in the combustion smoke of the dry leaves of the tobacco plant and a method for producing the same.
  • the present inventors usually accumulate starch in mature leaves in tobacco cultivation, but conversely, if the accumulated amount of starch in mature leaves is reduced by, for example, genetic recombination, even in yellow dried leaf tobacco raw materials, The present inventors have found that the amount of carbonyls generated in tobacco smoke is reduced, and further has found that the swellability of the tobacco material is improved.
  • a tobacco genus plant in which expression of a gene involved in starch biosynthesis encoding any one of the following proteins (a) to (c) is suppressed, and the carbonyl content in combustion smoke is reduced.
  • a polynucleotide comprising a base sequence selected from the group consisting of SEQ ID NO: 4, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 12,
  • the carbonyl compound is selected from the group consisting of formaldehyde, acetoaldehyde, acetone, acrolein, propion aldehyde, croton aldehyde, methyl ketylketone, and butyl aldehyde, (1) or (2) Tobacco genus plant.
  • the base sequence shown in SEQ ID NO: 4, the base sequence shown in SEQ ID NO: 7, the base sequence shown in SEQ ID NO: 8, the base sequence shown in SEQ ID NO: 12, and 90% or more identity to these sequences A gene expression-suppressing vector, comprising a base sequence selected from the group consisting of a base sequence having a base sequence selected from the group consisting of a partial sequence of 20 bases or more of the base sequence.
  • Any cell or tissue of a tobacco genus plant selected from RNA interference method, antisense method, gene disruption method, artificial mutation method, ribozyme method, co-suppression method and method using transcription factor (1) and (2) are used to suppress the expression of any of the genes (a) to (g) defined in (1) and (2), and the plant body is regenerated, (1) to ( The method for producing a tobacco genus plant according to any one of 5).
  • the force in the smoke of the tobacco genus plant comprising suppressing the expression of any of the genes (a) to (g) defined in (1) or (2) A method for reducing the content of luponyls.
  • the suppression of gene expression is selected from the group consisting of RNA interference method, antisense method, gene disruption method, artificial mutation method, ribozyme method, co-suppression method and method using transcription factor. (19) The method as described in (19) including performing by this method.
  • the suppression of the gene expression is selected from the group consisting of RNA interference method, antisense method, gene disruption method, artificial mutation method, ribozyme method, co-suppression method and method using transcription factor. (22) The method according to (22).
  • Figure 1 shows the structure of the vector ⁇ S P 104.
  • the “spacer” of p S P 104 is the M 1 u I fragment (6 98 bp) of the GUS gene.
  • FIG. 2 shows PCR amplified fragments 1 and 2.
  • FIG. 3 shows the structure of the vector p S P 102.
  • pDNR_ l CLONTEC
  • the 35 S promoter, multiple cloning site (Xho I, N a e l, S p h l, S a c
  • Figure 4 shows the structure of the plasmid p S P 1 02—AGP S.
  • FIG. 5 shows the structure of the binary vector p S P 106.
  • FIG. 6 shows the structure of the binary vector p S P 1 06—AGP S.
  • Panels a and b in Fig. 7 show odor staining of transformants that suppress AGP S expression.
  • the top two rows are 32 A-1 transformants
  • the bottom two rows are c 0 nt-1 (control)
  • the right table shows the top two rows 32 A—1, bottom
  • Each row from the lower row of cont — 1 in two rows is shown.
  • the top two rows are 32 A-2 transformants
  • the bottom two rows are Cont-2 (control)
  • the left table is the top two rows 32 A-2, bottom 2
  • Each position from the lower leaf of cont—2 in the column is shown.
  • FIG. 8 shows the mRNA expression level of AGPS in the T0 generation of the AGPS expression-suppressing transformant.
  • FIG. 9 shows the expression of the AGP S protein in the TO generation of the AG PS expression-suppressed transformant.
  • FIG. 10 shows the carbohydrate content of the T0 generation of the AG PS expression-suppressed transformant.
  • FIG. 11 shows the mRNA expression level of the T1 generation AGPS of the transformant that suppresses the expression of AGPS. .
  • FIG. 12 shows the carbohydrate content of the T 1 generation of the AG PS expression-suppressed transformant.
  • Panel A in Figure 13 shows the amount of formaldehyde in the smoke of the T1 generation of the AG PS expression-suppressing transformant.
  • Panel B shows the amount of acrolein in the smoke of the T1 generation of the AG PS expression-suppressed transformant.
  • FIG. 14 shows the carbohydrate content of the T2 generation of the AG PS expression-suppressing transformant.
  • Panel A in Fig. 15 shows the amount of formaldehyde in the smoke of the T2 generation of the AG PS expression-suppressed transformant.
  • Panel B shows the amount of acrolein in the smoke of the T2 generation of an AGPS-suppressed transformant.
  • FIG. 16 shows PCR amplified fragments 1 and 2.
  • FIG. 17 shows the structure of the donor vector p S P 102-FBP.
  • Figure 18 shows the mR of F B P a s e in the T 0 generation of the transformant that suppresses the expression of F B P a s e
  • Figure 19 shows the FBP ase tamper of the T0 generation of the FBPase expression-suppressed transformant. The expression of the quality is shown.
  • FIG. 20 shows the carbohydrate content of the T0 generation of the FB P ase expression-suppressing transformant.
  • FIG. 21 shows the mRNA expression level of FBPase in the T1 generation of the transformant that suppresses the expression of FBPase.
  • FIG. 22 shows the carbohydrate content of the T1 generation of the FBPase expression-suppressing transformant.
  • Panel ⁇ of Fig. 23 shows the amount of formaldehyde in the smoke of the T1 generation of the transformant that suppresses the expression of FBPase.
  • Panel ⁇ ⁇ shows the amount of acrolein in the smoke of the T1 generation of the FB P ase expression-suppressed transformant.
  • - Figure 24 shows PCR amplified fragments 1 and 2.
  • FIG. 25 shows the structure of the donor vector p S P 1 02—PG I.
  • FIG. 26 shows the mRNA expression level of PG I in the T0 generation of the PG I expression-suppressing transformant.
  • FIG. 27 shows the PG I activity staining of the T0 generation of the PG I expression-suppressing transformant.
  • FIG. 28 shows the carbohydrate content of the TO generation of the PG I expression-suppressing transformant.
  • FIG. 29 shows the expression level of PG I mRNA in the T1 generation of the PG I expression-suppressing transformant.
  • FIG. 30 shows the expression of PG I protein in the T1 generation of the PG I expression-suppressing transformant.
  • FIG. 31 shows the carbohydrate content of the T1 generation of the PG I expression-suppressed transformant.
  • Panel A in FIG. 32 shows the amount of formaldehyde in the T1 generation of the PGI expression-suppressing transformant.
  • Panel B shows the amount of phlein rain in the T1 generation of the PGI expression-suppressed transformant.
  • FIG. 33 shows PCR amplified fragments 1 and 2.
  • FIG. 34 shows the structure of the donor vector p S P 1 02—iso a my 1.
  • FIG. 35 shows the mRNA expression level of isoamy1 of the T0 generation of the transformant that suppresses the expression of isoamyl.
  • FIG. 36 shows the expression of the i 0 a my 1 protein of the T 0 generation of the i o amy l expression-suppressing transformant.
  • Figure 37 shows the carbohydrate content of the T0 generation of iso amy 1 expression-suppressed transformants.
  • FIG. 38 shows the expression of the i soamy 1 protein of the T 1 generation of the transforming suppressor of the i soamy 1 expression.
  • FIG. 39 shows the carbohydrate content of the T 1 generation of the transformant that suppresses the expression of isoamy1.
  • FIG. 40 shows the amount of formaldehyde in the smoke of the T 1 generation of the transformant that suppresses the expression of isoa my 1 expression.
  • FIG. 41 shows the form of the T 1 generation of an AG PS expression-suppressed transformant.
  • FIG. 42 shows the form of the T1 generation of a transformant that suppresses the expression of PGI.
  • FIG. 43 shows the form of the T 1 generation of a transformant that suppresses expression of i so amy 1.
  • FIG. 44 shows the carbohydrate content of the T2 generation of the AG PS expression-suppressing transformant.
  • FIG. 45 shows the swelling property of the T 2 generation of the AG PS expression-suppressing transformant.
  • FIG. 46 shows the carbohydrate content of the T2 generation of the AGPS expression-suppressed transformant and the non-transformant.
  • FIG. 47 shows the swellability of the T 2 generation of AG PS expression-suppressed transformants and non-transformants.
  • FIG. 48 shows the increase / decrease rate of carbonyls in the smoke of cigarette produced using the leaves of the AGPS expression-suppressing transformant.
  • FIG. 49 shows the carbohydrate content of the T2 generation of the PGI expression-suppressing transformant.
  • FIG. 50 shows the swelling property of the T2 generation of the PG I expression-suppressing transformant.
  • FIG. 51 shows the carbohydrate content of the T2 generation of the transformant that suppresses the expression of isoamy1.
  • FIG. 52 shows the swelling property of the T 2 generation of a transformant that suppresses the expression of isoa my 1 expression.
  • the tobacco genus plant of the present invention is
  • a protein comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55 and SEQ ID NO: 56; (b) an amino acid sequence in which one or several amino acids are deleted, substituted or added in an amino acid sequence selected from the group consisting of SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, and SEQ ID NO: 56, and Proteins involved in starch biosynthesis, or
  • a polynucleotide comprising a base sequence selected from the group consisting of SEQ ID NO: 4, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 12,
  • the protein having the amino acid sequence represented by SEQ ID NO: 53 is AGP S (AD)
  • AGP S is an enzyme that catalyzes the reaction to synthesize ADP—g 1 ucose, which is a substrate for starch synthesis: ADP—glucosepyroohosphorylase, AGPase).
  • the ase serves to supply ADP—g 1 ucose, a substrate for the synthesis of denpun.
  • the protein having the amino acid sequence represented by SEQ ID NO: 54 is a chloroplast type FFBase (Fructose—1, 6-bisphosphatase, basic self-sequence: SEQ ID NO: 7).
  • FB Pase is an enzyme essential for the Calvin cycle, a carbon assimilation cycle, and F ructose-6,6-bisphosphate (FB P) is converted to F ructose -6, which is a substrate for the initial reaction in the metabolic pathway to starch synthesis.
  • FB P F ructose-6,6-bisphosphate
  • the protein having the amino acid sequence represented by SEQ ID NO: 55 is chloroplast type PG I (Phosphoglucoseis ome rase,; full length " ⁇ ⁇ ⁇ U: ⁇ ⁇ ⁇ U number 8). PG I is in the atmosphere.
  • the protein having the amino acid sequence represented by SEQ ID NO: 56 is iso amy l (Isomerasel, full-length base sequence: SEQ ID NO: 12). Isoamyl catalyzes the reaction that cleaves the branching of the linkages of amylorectine, a glucose polymer with many branches, and is important for the synthesis of amylopectin It has been known.
  • Suppressing the expression of at least one of the four protein-encoding genes suppresses the synthesis or accumulation of starch and saccharides (eg sucrose, glucose and fructose) and reduces the total amount of carbohydrates, It is possible to reduce carbonyls in tobacco smoke.
  • starch and saccharides eg sucrose, glucose and fructose
  • saccharides eg sucrose, glucose and fructose
  • isoamyl but also by reducing the expression of at least one gene involved in the metabolic pathway from the Calvin cycle to starch synthesis, tobacco burning It is thought that carbonyls in smoke can be reduced.
  • the swellability of tobacco plants can be improved.
  • the branch point that leads to the metabolic pathway from the carbon fixation cycle to starch synthesis, the substrate synthesis of starch synthesis, and the structural modification of starch Represents a series of pathways for the synthesis of cutin that spans the synthesis of cutin.
  • amino acid sequence in which one or several amino acids have been deleted, substituted or added is 1 to 10 amino acid sequences of SEQ ID NOs: 5, 3, 4, 5, 5 or 56, preferably 1.
  • the mutation may be an artificially introduced mutation or a naturally occurring mutation.
  • amino acid sequence having 85% or more identity to the amino acid sequence of SEQ ID NO: 53, 54, 55 or 56 is preferably 90% or more, more preferably 95% or more, More preferably, the identity is 98% or more and 99% or more.
  • Sequence identity can be determined by F A S T A search or B L A S T search.
  • the gene is a
  • a polynucleotide comprising a base sequence selected from the group consisting of SEQ ID NO: 4, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 12
  • the base sequence in which one or several bases are deleted, substituted or added is 1 to 10 base sequences shown in SEQ ID NO: 4, 7, 8 or 12, preferably 1 to 5 base sequences.
  • This sequence is a sequence in which the base is deleted by mutation, substituted with another base, or added.
  • the mutation may be an artificially introduced mutation or a naturally occurring mutation.
  • the nucleotide sequence having 85% or more identity to the nucleotide sequence shown in SEQ ID NO: 4, 7, 8, or 12 is preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more. 99% or more identity is desirable. Sequence identity can be determined by FASTA search or BLAST search.
  • Hybridization conditions are not particularly limited as long as hybridization is possible.
  • the hybridization conditions include 0.25M Na 2 HP0 4 , pH 7.2, 7% SDS, 1 mM EDTA, and 1 X Denhardt's solution.
  • Suppression of the expression of the genes encoding each of the above four proteins includes suppression of transcription of the gene and suppression of translation into the protein, and includes not only complete cessation of gene expression but also reduction of expression.
  • Genes are artificially or naturally mutated or destroyed, or expressed by using various genetic engineering methods such as RNA interference method, antisense method, ribozyme method, co-suppression method, method using transcription factor, etc. Impossible or suppressed.
  • mutants that are artificially or naturally mutated mutants in which the amino acid site important for activity is deleted or substituted can be obtained. These mutants may have normal or defective gene sequences. Gene expression and protein expression may be normal (S hue—Mei Wangeta 1., The Plant Journal 1 99 7, 1 1
  • the tobacco genus plant of the present invention is characterized in that carbonyls in the combustion smoke of plants, particularly dried leaves, are reduced. '
  • One of the sources of carbonyls in smoke is starch contained in tobacco plants.
  • Tobacco plant starch accumulates in large amounts during leaf maturation, but the starch is found in common plants, temporarily stored in leaves during the day, and assimilated starch that breaks down at night Unlike starch, which is not degraded at night (NK Ma theson et al., 1 96 2, 1963, Au st. J. Biol. Sci. 15, 445-458, Au s t. J. B iol. S ci. 1 6. 70
  • the flower part is removed, so that the translocation of the photosynthetic product to the flower part in the leaf is suppressed, and a large amount of starch is accumulated in the mature leaf.
  • Tobacco leaves are dried (yellow-dried in the case of yellow varieties) and used as raw materials for products. During this drying process, the content of leaves changes greatly.
  • starch contains sucrose, glucose, It is known to be broken down into sugars such as fructose.
  • sucrose sucrose + glucose + fructose
  • fructose sugars
  • starch + sucrose + glucose + fructose it is possible to reduce carbonyls in tobacco combustion smoke even if any individual component is reduced.
  • starch and trisaccharides sucrose + glucose + fructose
  • non-structural carbohydrates including other sugars can reduce the carbonyls in tobacco smoke. It is considered possible. .
  • components in cigarette combustion smoke can be measured by collecting smoke that has been smoked automatically under smoking conditions, etc., in accordance with ISO-compliant smoking conditions.
  • Thermal decomposition has been reported as a method for collecting and measuring components in combustion smoke from a smaller amount of sample more easily (Food Chemical Toxicolog y.; 42, 1409- 14 1 7 ), But canoleboninoles can be measured by this method (Food Chemical Toxicology 43, 559 _ 568.), but not limited to this.
  • tissues or cells of the tobacco genus plant of the present invention are also included.
  • the gene expression suppression vector of the present invention comprises:
  • a polynucleotide comprising a base sequence selected from the group consisting of SEQ ID NO: 4, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 12,
  • a nucleic acid molecule for suppressing the expression of is inserted into an appropriate vector.
  • the vector of the present invention includes, for example, the nucleotide sequence shown in SEQ ID NO: 4 and SEQ ID NO: 7.
  • a base sequence, a base sequence shown in SEQ ID NO: 8, a base sequence shown in SEQ ID NO: 12, a base sequence having 90% or more identity to these sequences, and a partial sequence of 20 bases or more of those base sequences A nucleotide sequence selected from the group consisting of:
  • Such vectors include antisense vectors or RNA interference induction vectors.
  • An antisense vector is a nucleic acid that suppresses the expression of a gene that encodes one of the above four proteins (AG PS, FB Pase, PG I, or isoa my 1), or a mutant or homologue thereof by the antisense method.
  • a homologue is a gene corresponding to a gene encoding any one of the above four proteins, and has a different base sequence between tobacco plant varieties or plants other than tobacco plants.
  • the antisense method expresses an antisense RNA complementary to the mRNA transcribed from the target gene, binds the antisense RNA complementary to the target gene, and prevents transcription of the target gene. As a result, it refers to a method of suppressing the expression of the gene. Specifically, downstream of a promoter that functions in plants, a gene encoding any one of the above four proteins, a mutant or homologue thereof, or a fragment thereof is connected in the antisense direction to plant cells or tissues. When introduced, an antisense RNA complementary to the above mRNA can be produced.
  • a nucleic acid molecule that suppresses the expression of a gene encoding any of the above four proteins to be introduced into an antisense vector, a mutant or a homologue thereof is, for example,
  • It may be an antisense nucleic acid molecule having a full length of 8 or 12), but it is 90% or more, more preferably 95% or more, more preferably 98% or more, 99% or more identical to the base sequence.
  • An antisense nucleic acid molecule having a sequence having a property may be used, and the base sequence of these nucleic acid molecules is 20 bases or more to less than the full length, preferably 10
  • antisense nucleic acid molecule having a base sequence consisting of 0 bases or more and less than the full length, more preferably 500 bases or more and less than the full length. Commonly used antisense
  • the length of the DNA is shorter than 5 kb, preferably shorter than 2.5 kb (references: JP-A-60-232092, JP-A-2000-23685).
  • the RNA interference induction vector is a vector containing DN A (hereinafter referred to as “trigger one”), which is a dsRNA (double-stranded RNA) that triggers RNA interference.
  • siRNA siRNA-induced silencing comp 1 ex
  • D icer double-stranded RNA-specific RNase (D icer)
  • RISC RNA-induced silencing comp 1 ex
  • RNA interference For plant RNA interference, a vector that is expressed as a hairpin dsRNA is preferably used.
  • a linker spacer
  • hairpin dsRNA is transcribed by a promoter highly expressed in, and siRNA is produced in the cell.
  • the siRNA expression system includes a tandem type. In the tandem type, sense RNA and antisense RNA are transcribed from two promoters and hybridized in the cell to produce siRNA.
  • the sequence of the trigger is, for example, 90% or more, more preferably 95% or more, more preferably 98% or more, 99% or more with respect to the nucleotide sequence of SEQ ID NO: 4, 7, 8 or 12 or those sequences.
  • a base sequence containing 20 or more base sequences, preferably 100 bases or more, more preferably 200 bases or more, and its complementary sequence are used (reference documents: WO 1 999 No 53050, WO 1 999). / 326 1 9 A, WO 200 1/75 1 64A, Chuang CF & M eyer ow itz EM: Proc Natl Ac ad Sci USA 9 7: 4985, 2000).
  • the RNA interference induction vector used in the present invention includes a sense strand having a base sequence shown in SEQ ID NO: 4, 7, 8 or 12, and an antisense strand complementary to the sense strand, a spacer (sequence forming a loop). It is preferable to include them in the same vector so as to be IR (inverted repeat) between For example, SEQ ID NO: 14 and 3 (AGP S), SEQ ID NO: 17 and 7 (FBP ase), The nucleotide sequences of SEQ ID NOs: 19 and 22 (PGI) and SEQ ID NOs: 25 and 11 (isoamyl) can be included in the vector, respectively.
  • IR inverted repeat
  • pBI, pPZP, and pSMA vectors that can introduce a target gene into a plant via agrobacterium are preferably used.
  • binary vector systems pBI 1 2 1, pBI 1 0 1, pBI 22 1, pBI 2 1 1 3, pBI 1 0 1.2, etc.
  • intermediate vector systems p LGV23Neo, p NCAT etc.
  • a binary vector contains the right border (RB) and left border (LB) of the T-DNA region, and can contain elements such as promoters and plant selection markers as well as target genes between both borders.
  • scherichiacoli and a shuttle vector that can replicate in agrobacterium, when a plant is infected with agrobacterium that holds a binary vector, the part surrounded by a border sequence consisting of LB and RB sequences on the vector Can be incorporated into plant nuclear DNA (EMBO Journal, 1 0 (3), 6 97—704 (1 99 1)).
  • pUC vectors can directly introduce genes into plants, and examples thereof include pUC18, pUC19, pUC9 and the like.
  • plant virus vectors such as force reflower mozai kui / res (C a MV), inggen mamemozai kui ⁇ (BGMV), tobacco mosaic virus (TMV), etc. can be used.
  • the target gene When using a binary vector-based plasmid, the target gene is inserted between the above-mentioned binary vector boundary sequences (LB, RB), and this recombinant vector is amplified in Escherichia coli. Next, the amplified recombinant vector is introduced into Agrobacterium tumefaciens C 58, LBA4404, EHA 1001, EHA 105, etc. by freeze-thawing method, electoral position method, etc. Terium is used for plant transformation.
  • the agglutacterium for plant infection containing the target gene can be obtained by the triple joining method (Nuc 1 eic Acids Research, 1 2: 8 7 1 1 (1 984)).
  • a zygobacterium for plant infection can be obtained by mixing and culturing E. coli containing Agrobacterium and agrobacterium and culturing on a medium containing rifampicillin and kanamycin.
  • the purified DNA should be cleaved with an appropriate restriction enzyme, inserted into an appropriate restriction site or multiple cloning site of vector DNA, and ligated to the vector. Adopted.
  • a promoter In addition to the target gene, for example, a promoter, a terminator, a poly A addition signal, a selection marker gene, and the like can be placed in the vector.
  • the promoter does not have to be derived from a plant as long as it is a DNA that can function in a plant cell and in a plant cell, and can induce expression in a specific tissue of a plant or a specific developmental stage.
  • Specific examples include cauliflower mosaic virus (CaMV) 35 S promoter, promoter of nopaline synthase gene (P nos), corn-derived ubiquitin promoter, rice-derived actin promoter, tobacco-derived PR protein promoter, etc. .
  • the terminator may be any sequence that functions in plants or plant cells and can terminate the transcription of the gene transcribed by the promoter.
  • the terminator of nopaline synthase (NOS) gene, octopine synthesis Examples include an enzyme (OC S) gene terminator and a CaMV 35 S terminator.
  • Selectable marker genes include, for example, drug resistance genes (tetracycline resistance gene, ampicillin resistance gene, kanamycin resistance gene, hygromycin resistance gene, spectinomycin resistance gene, chloramphenicol resistance gene, neomycin resistance gene, etc.) Fluorescent or luminescent reporter genes (luciferase, i3_galactosidase; 3-Dalcronitase (GUS), green fluorescent protein (GFP), etc.), neomycin phosphotransferase II (NPT I 1), dihydrofolate reductase, etc. These enzyme genes are listed.
  • the selection marker gene may be ligated to the same plasmid together with the target gene as described above to prepare a recombinant vector.
  • the selection marker gene A recombinant vector obtained by linking a gene to a plasmid and a recombinant vector obtained by linking a target gene to a plasmid may be prepared separately. If prepared separately, co-transform each vector into the host.
  • Example 1 An example of the construction of a binary vector that can be used in the present invention is shown in Example 1 described later. That is, the plasmid p SP 1 02 (Fig. 3) with 35 S promoter and NO S terminator inserted between 1 o XP of plasmid p DNR-1 (CLONTEC H) containing two 1 o XPs. Create and place a trigger between the NO S terminator and 35 S promoter so that the two target DN A fragments that trigger RN A i are placed in opposite directions with a spacer in between. (Fig. 4, Plasmid p SP 1 02_AG PS), and this RNA i hairpin d's RNA expression cassette was recombined with Cre-1 ox (US Patent No.
  • the binary vector p SP 106-AGP S (Fig. 6) can be prepared.
  • the plasmids p S P 1 02—F B P (FIG. 17)
  • p S P 1 02_P G I (FIG. 25)
  • p S P 1 02_i osamy 1 (FIG. 34) can be prepared.
  • the two triggers may be facing each other or facing each other back.
  • the spacer sequence may be any sequence that forms a hairpin, but examples include ras gene sequences and intron sequences, and the size is, for example, about several (1) to several hundred bases. is there.
  • an RNA interference method, an antisense method, a gene disruption method, an artificial mutation method, a ribozyme method, a co-suppression method, and a transcription factor are used for cells or tissues of a genus tobacco plant.
  • the expression of any of the genes encoding the proteins (a) to (c) and the gene comprising the polynucleotides (d) to (g) is suppressed. Including regenerating the plant body.
  • Tobacco plants are, for example, Nicotiana 'tomentifolmis (N icotianat ome ntosiformis), Nikotiana sinoleve tris (N i cotianasylvestris), Nicotiana Noresti force (N icotianarustica eight Nicotina 'Tanoku cam (N icotianatabac um), Nicotiana Purumbaginifolia),.
  • Nicotiana rustica is preferred, but Nicotiana 'tapacam is preferred, and for varieties, yellow seeds that are the main raw material for paper basket products, a kind of barre that is a relaxation agent for paper basket products, cigars Tobacco species used for this raw material, oriental species that are cultivated in the Orient region and have unique fragrances, and indigenous species that have adapted to the climate and climate of each region since tobacco seeds were introduced to Japan.
  • Plant materials for producing the tobacco genus plant of the present invention include plant bodies and plant tissues (eg, roots, stems, leaves, seeds, embryos, ovules, ovary, shoot tips, cocoons, pollen, etc.) and their Plant culture cells such as slices, cells, callus, proplasts that have been treated with enzymes to remove cell walls, and suspension culture cells.
  • plant tissues eg, roots, stems, leaves, seeds, embryos, ovules, ovary, shoot tips, cocoons, pollen, etc.
  • Plant culture cells such as slices, cells, callus, proplasts that have been treated with enzymes to remove cell walls, and suspension culture cells.
  • RNA interference method antisense method
  • gene disruption method gene disruption method
  • artificial mutation method ribozyme method
  • co-suppression methods and methods using transcription factors examples include co-suppression methods and methods using transcription factors.
  • the RNA interference method is 90% or more identical to the above-described RNA interference induction vector, or the polynucleotide shown in SEQ ID NO: 4, 7, 8, or 12, or SEQ ID NO: 4, 7, 8, or 12 It can be carried out by introducing into a plant cell or tissue a double-stranded RNA homologous to the polynucleotide of the present invention (continuous double-stranded RNA of, for example, about 15 to 35 bases is preferred).
  • the antisense method can be performed, for example, by introducing the antisense vector into a plant cell or tissue.
  • Examples of introducing these vectors include an agglomerate method, an electroporation method, a particle gun method, a PEG-calcium phosphate method, a liposome method, and a microinjection method, although not particularly limited.
  • the agrobacterium method is preferred.
  • tissue pieces (leaf pieces, callus, etc.) may be used.
  • DNA-specific primers are designed, and PCR is performed. After PCR, the amplified product is electrophoresed, stained with bromide zyme, SYBR Green solution, etc., and the amplified product is detected as a single band to confirm that it has been transformed. be able to.
  • amplification products can be detected by performing PCR using primers previously labeled with a fluorescent dye or the like.
  • the amplification product is bound to a solid phase such as a microplate, and the amplification product is confirmed by fluorescence or enzymatic reaction, etc., or DNA is quantified based on the amplification rate using the comparative Ct method with real-time PCR. Moyo-Ryo.
  • a vector in which the above-mentioned various reporter genes are linked to the downstream region of the target gene is prepared, a plant is transformed with the vector-introduced agrobacterium, and the expression of the reporter gene is measured. This may be confirmed.
  • the gene disruption method can be performed using various transposons and T-DNA.
  • Gene disruption using a transposon is a method that utilizes the gene insertion mechanism of the transposon into the genome.
  • the method using an endogenous transposon is superior in that a large number of gene disruption lines can be produced at a time as a non-recombinant.
  • An example of a tobacco plant transposon is the retrotransposon (LTR). -retrotransposon) T to 1 is known, and gene disruption methods using T to 1 have been reported (P lant J. 28, 307— 3 1 7, 2 00 1., WO 00/07 1 6 99).
  • Gene disruption using T-DNA creates a T-DNA vector by inserting a foreign gene such as a drug resistance gene into the target gene and inserting it between the right border (RB) and left border (LB).
  • RB right border
  • LB left border
  • Gene disruption using T-DNA creates a T-DNA vector by inserting a foreign gene such as a drug resistance gene into the target gene and inserting it between the right border (RB) and left border (LB).
  • RB right border
  • LB left border
  • Artificial mutagenesis involves, for example, irradiating plants with various types of radiation (electromagnetic waves, ultraviolet rays, X rays, ⁇ rays, particle rays, neutron rays, ⁇ rays, three rays, electrons, ion beams, etc.) It can also be carried out by treating with various mutagenic chemical substances (alkylating agents, nucleobase analogs, sodium azide, etc.).
  • radiation electromagnetic waves, ultraviolet rays, X rays, ⁇ rays, particle rays, neutron rays, ⁇ rays, three rays, electrons, ion beams, etc.
  • the co-suppression method is a method that suppresses the expression of a gene homologous to the sense sequence by introducing and expressing the sense sequence while introducing and expressing the antisense sequence of the gene targeted by the antisense method.
  • the level of gene expression suppression is higher than that of the antisense method.
  • the gene used for co-suppression need not be completely identical to the target gene, but at least 70% or more, preferably 8,0% or more, more preferably 90% or more, most preferably 95% or more. Have the same identity.
  • the sequence identity can be determined by the method described above.
  • a ribozyme is a general term for an RNA molecule having catalytic activity, but in this specification, it specifically refers to an RNA molecule designed to cleave RNA in a site-specific manner.
  • Some ribozymes are larger than 400 nucleotides, such as group I introns and M1 RNA contained in RNase P, but the hammerhead type is called hairpin type and has an activity of about 40 nucleotides. Some have domains (Makoto Koizumi and Eiko Otsuka: Protein Nucleic Acid Enzymes, 35: 2 1 9 1, 1 990).
  • Ribozymes designed to cleave targets are transcribed in plant cells.
  • RNA is linked to a promoter and transcription termination sequence, such as the Lazymovirus 35S promoter.
  • a promoter and transcription termination sequence such as the Lazymovirus 35S promoter.
  • the expression of the gene can be suppressed by specifically cleaving the transcription product of the target gene in the present invention using a ribozyme.
  • the method using a transcription factor is a method of indirectly increasing or decreasing the expression of a target gene by increasing or decreasing the expression of a transcription factor that regulates the expression of the target gene.
  • the transcription factor controls the expression of the gene by binding to a specific sequence (cis element) in the promoter region of the target gene.
  • gene expression of a metabolic gene can be suppressed by expressing a transcription factor (P 1 ant Molecular Biology 2006 62: 809-823).
  • a transcription factor P 1 ant Molecular Biology 2006 62: 809-823.
  • an organ or an individual may be regenerated from the obtained plant tissue or cells by a known tissue culture method. Such an operation can be easily performed by those skilled in the art by a method generally known as a method for regenerating plant cells from plant cells. Regeneration from plant cells to plants can be performed, for example, as follows.
  • plant tissues or protoplasts are used as the plant material to be transformed, these are converted into inorganic elements, vitamins, carbon sources, sugars as energy sources, Plant growth regulators (plant hormones such as auxin and cytokinin) 'are added and cultured in a sterilized callus formation medium to form dedifferentiated callus that grows indefinitely (hereinafter referred to as “callus induction”). ).
  • the callus formed in this way is transferred to a new medium containing a plant growth regulator such as oxine and further grown (subcultured).
  • redifferentiation induction organ redifferentiation
  • redifferentiation induction organ redifferentiation induction
  • Induction of regeneration can be performed by appropriately setting the kind and amount of various components such as plant growth regulators such as auxin and cytokinin, carbon sources, light, temperature, etc. in the medium.
  • the tobacco genus plant produced by the method of the present invention is obtained from the seed of the plant using the 0th generation plant as a parent, in addition to the “TO generation” which is a regenerated generation that has undergone transformation treatment.
  • Various tobacco products such as cigarettes, pipe tobacco and cigars can be produced using these tobacco genus plants or their leaves as the raw material of tobacco products.
  • Swellability is the compression characteristic of the ticks that express the filling effect, and is an important property that determines the amount of raw material used in the production of cigarettes. This is an index indicating the physical properties of a sample, expressed as the volume per gram, and is the volume when a given time and load conditions are given for a given sample weight. For example, if the swellability is high, the amount of raw material used to produce one cigarette can be reduced. If there is little raw material to fill per bottle, reduction of the components in the combustion smoke generated per bottle can be expected.
  • EXAMPLES Hereinafter, the present invention will be specifically described by way of examples. However, these examples do not limit the present invention. ' Example
  • the saddle type used for total RNA and PCR cloning was prepared as follows. About 2 months after planting, a leaf disc with a diameter of about 10 mm was punched out from a tobacco variety (Tsukuba No. 1) and stored in RNA 1 ater (Amb ion) as a material for RNA preparation. . Total RNA was extracted using RN easy Plant Mini Kit (QI AG EN), and the reverse transcription reaction product, which is a type of PCR cloning using Omn iscript RT Kit (QI AGEN). Obtained.
  • the specific oligo primer shown in 2 (AGP S_R 1) was designed and chemically synthesized.
  • the cloning of the AG PS gene fragment was carried out by using the combination of the primer of SEQ ID NO: 1 and the primer of SEQ ID NO: 2 to make the above reverse ⁇ reaction product into a saddle shape, 95 ° C for 2 minutes, 95 ° C for 30 seconds, 65 Obtained by PCR amplification with 35 cycles at ° C for 2 minutes and an additional 10 minutes at 72 ° C.
  • PCR product was inserted into the cloning vector pCR4Blunt—TOPO (registered trademark, Invitrogene) and transformed into E. coli TOP10.
  • LB containing 5 Omg / I ampicillin
  • plasmid DNA using QI Ap rep Spin Miniprep Kit (QI AGEN). was refined and used as a model for sequence analysis. Sequence analysis using the B ig D ye TM T erminatorv 3.
  • Fragment 2 contains the same sequence as SEQ ID NO: 3 (AGP S—F 3 R 1), and contains plasmid pCR4—AGP S—F 3 R 1 with restriction enzymes Not I and P st I. And prepared by digestion ( Figure 2). Fragment prepared in this way 1
  • an expression cassette for expressing a DNA structure containing an inverted repeat sequence constructed as described above in a plant is a donor vector for C re _ 1 ox P recombination. 1. 11 1 6. 11 companies) ⁇ 1 1 11 ⁇ 1 1 1 1 1 Between recognition site and Eco RI recognition site, 35 S promoter, multiple cloning site (Xho I, Nae I, S phl , Sac 1) and NOS terminator were inserted in this order, and p SP 1 02 (Fig. 3) was used.
  • the two 1 o XP fragments containing the expression cassette on the plasmid pSP102-AGPS constructed as described above were recombined with Cre_1ox recombination (Saue, 1 9 94 , Cu rr. Op i n. B iotechnol. 5: 52 1-527; Abre em skieta 1., 1 984, J. B iol. Ch em. 259: 1 5 09-1 5 14)
  • the binary vector p SP 1 06—AGP S was prepared by replacing the 1 ox P site on the binary vector p SP 1 06 (FIG. 5) (FIG. 6).
  • the binary vector p SP 1 06 (Fig.
  • the collected leaves were surface sterilized with sodium hypochlorite solution containing 1% effective chlorine (add a few drops of Twen 20 ZL) for about 5 minutes, washed 3 times with sterilized water, and then washed with a scalpel. 5 mm square leaf pieces were prepared.
  • Inorganic salts and Shiyukurosu 30 g ZL force of the leaf and Ag Robacteri introduced each constructor preparative um t ume faciens about 1 0 8 cells and 3 ⁇ 4 M urashigeand S koog, was about 48 hours co-culture at al made a liquid medium .
  • Controls (not including triggers and spacers, using a vector that expresses only the GFP gene and npt II gene) should be co-cultured in parallel.
  • inorganic salts of Mu rashigeand S koog, sucrose 30 g / L, indoleacetic acid 0.3 mgZL, 6-( ⁇ ⁇ -dimethylallyl-amino) purinel OmgZL kanamycin ⁇ Omg / L, cefotaxime 250 mgZL, calpenicillin 250 mg / L, and gellan gum 0.3% were placed on a primary selection medium (pH 5.8).
  • a callus-like cell cluster showing kanamycin resistance was cultured in a secondary selection medium for about 3 weeks, and then the G FP fluorescence of the re-differentiated foliage was measured by Amersham Flour Imager. Individuals in which GFP fluorescence was observed were placed again in the secondary selection medium (plant box). After 3 weeks of cultivation, the rooted transformed tobacco was transplanted to a No. 4 clay pot in a closed greenhouse and acclimatized with a plastic bag for 1 week.
  • RNA was extracted using RN easy Plant Mini Kit (QI AG EN), and Omn iscript RT Reverse transcription reaction was performed using Kit (QI AGEN). A part of this reverse transcription reaction solution was subjected to real-time PCR. TaqMan used for real-time PCR
  • Primer and Probe are designed using PrimerExpress (Applied Biosyst ems), Sigma Aldrich Japan Co., Ltd. Life Science Division Requested commissioned synthesis. J3—pri me r (SEQ ID NO: 37, 38) and Probe (SEQ ID NO: 39) for actin, pri me r (SEQ ID NO: 40, 41) and Probe (SEQ ID NO: 42) for AGP S ) was used.
  • AGP S real-time PCR is performed using Quanti Tect Multiplex PCR Kit (QI AGEN) according to the “D up 1 e X real-time quantitative PCR using TaqMan probe” protocol attached to the kit. 95 ° C on a 7500 real-time PCR system (Applied Biosyst ems)
  • Lamina (collected from transformed tapaco after about 1 and a half months after potting) whose raw weight (FW) was measured in advance was pulverized with liquid nitrogen. 2-3 m 1 extraction buffer per g of FW
  • Bovine serum albumin Fraction V, sigma
  • Protein assembly staining solution BioRad
  • Final concentration is 50 mM Hepes— KOH; pH 7, 5 mM MgCl 2 , 1 mM j3— Nicotinamideadeninedin ucleotide ( ⁇ —NAD) 10 ⁇ G lucose— 1, 6—bisphosphate (G l, 6 P), 2.5 mM S odi um pyrophosphate (N a PP i), 1 U phoshoglucomutase (PGM), 1 U g 1 ucose— 6—phosphatedehydrogenas e (G 6 PD H; from L. me senteroides)
  • a premix was prepared to give 5 mM DTT, and the absorbance at 340 nm (A 3 40) was used as a blank.
  • Extraction solution was added 50/1, and 8340 was measured at 25, AD P-glucose was added to a final concentration of 2 mM, and A340 was measured again at 25 ° C. The difference was A 34 0 before and after AD P-glucose addition was defined as the activity, and the activity was calculated from the molar extinction coefficient 6 2 20 of NADH.
  • SDS-PAGE was performed by an ordinary method using 8 ⁇ g of the protein extracted for activity measurement using 6-pager (Atoichi Co., Ltd.) having an acrylamide concentration of 10%.
  • SDS-PAGE genomics were equilibrated in a transfer buffer (48 mM Tris, 39 mM glycine, 1.3 mM SDS) for 20 minutes at room temperature.
  • Semi-drive porting device Plotted on PVDF membrane for 30 minutes at a voltage of 15 V using transfer buffer with Transblot SD (Bio Rad). The operation after blotting was performed according to the manual of ECL Plus (Amersham Bioscience) until the detection of the band. Band detection was performed using an ECL mini camera.
  • Purified antibody is used as primary antibody, TB S buffer
  • T B S_T—SK 0.5—TB S buffer added to 1% skim milk
  • Secondary antibody is goat anti-usagi HR P-labeled antibody (Stressgen) or Anti-IgG (H + L) Rabbit, Goat-poly, HRP (KP L) with TB S and T-SK. It was diluted 1 0000 to 5000 Q times and reacted at room temperature for 2 hours.
  • T 0 seed was obtained by self-pollination of T 0 generation transformed tobacco. Obtained T1 seeds from Mu r a s h i g e a n d S k o o g 1 Z2 inorganic salts, sucrose
  • a homozygote having the transgene on both homologous chromosomes
  • a Hemizygote having the transgene only on one of the homologous chromosomes
  • a homozygote for the GFP gene with GFP fluorescence intensity or It is known that it can be determined whether it is a Nu 1 1 zygote (no transgene on the chromosome). So this time G
  • AGP S—Ho Homozygotes
  • AG PS—He Hemizygotes
  • T1 generation transformed tobacco was analyzed using the three lines (32) of which the AG PS gene expression, protein expression, AGP ase activity, and carbohydrate content were high in the T0 generation.
  • AGP S_Ho, AGP S—He, and AGP S—Nu of A—2, 32A—3, 32 A-7) were used.
  • T 2 seeds that were self-pollinated from individual individuals that were considered to be homo, hemi, and Nu 11 zygotes in the T 1 generation were collected, and the separation ratio by kanamycin and GFP fluorescence was the same as in the T 1 generation. Tests were also performed. As a result, it was confirmed that all discrimination results in the T 1 generation were correct.
  • Each AG PS-Ho, AGP S_He, and AGP S-Nu selected on the seeding medium were transplanted again to the seeding medium, and after about one month, they were transferred to a No. 4 clay pot in a closed greenhouse. Went.
  • the cultivation conditions are the same as for TO generation transformed tobacco.
  • each AGP S_Ho, AGP S—He, and AGPS—Nu were analyzed in the same way as the T0 generation. went.
  • the expression level was 20% or less in AGP S-Ho and AGPS-He compared to AGP S-Nu, and the gene expression suppression effect was confirmed even in the T1 generation (Fig. 1 1). .
  • the gene expression suppression effect was inherited to progeny.
  • the values in Fig. 1 1 are the average values of three individuals, and the error bars indicate the standard deviation (SD).
  • a portion of the sample after hot-air drying used for quantification of carbohydrate content was conditioned for 2 hours at 40 ° C and 95% relative humidity (RH), and a tobacco shredder was prepared using a shredder. Finally, the tobacco was conditioned in a room at 25 ° C and 60% RH for a week or more, and used as a sample for the pyrolysis test.
  • RH relative humidity
  • the temperature was raised to 800 ° C at a rate of 7 ° C / s, and the temperature was fixed at 800 ° C for 5 seconds.
  • TPC-1 000 program am emp erarure control 1 er (U lvac-R iko I n c.) was used.
  • Smoke generated by pyrolysis was collected by an impinger containing 100 ml of 2,4-dinitrophenylhydrazin e solution and a 44 nm filter (Heinr. B or gwa ldt T echnik). The method described above is based on Torii et al. (K. lor 1 kai, 3 ⁇ 4. Y oshidaand H.
  • the Trizmabase solution was mixed at a ratio of 2: 3, filtered through a 0.45 ⁇ p o ly te ra a f l u o er o te h y len e membrane fistlet, and then analyzed by high performance liquid chromatography.
  • the above method followed the method of Torikai et al. (2004).
  • the analysis method using high performance liquid chromatography is the He a 1 t h C a n a d a method (O i f i c i a l Me t h o d s ma d e b y
  • T r i z m a b a s e solution weighs 0.4 g of T r i zma b a s e and adds 40 m of ultrapure water.
  • Non-Patent Documents 2 and 3 Abnormal growth has been reported in transformed tabacco (Non-Patent Documents 2 and 3), which has been reported in the past and has reduced tobacco starch and sugar content.
  • AGP S—Ho and AGP S—He T 1 generation showed growth similar to AGP S—Nu after about 1 month of potting (FIG. 41). Since AGP S_Ho and AGP S—He ( ⁇ ⁇ 'generation) showed the same growth as AGP S—Nu even in the harvest period, this transformed tobacco does not contain any abnormal growth. It is considered superior in that it can be reduced.
  • the leaves were harvested at the appropriate harvest time when the measured value of the S PAD meter (Koni Minolta Co., Ltd.) was 10 to 20, and yellow drying was performed with a program dryer. This yellow dried sample is It was used for the following carbohydrate quantification and analysis of formaldehyde and acrolein in smoke. The yellow drying conditions are shown in Table 2.
  • Fragment 1 (SEQ ID NO: 17), which is homologous to the F B P a se gene,
  • Fragment 2 contains the same sequence as SEQ ID NO: 7 (FB P_F 2 R 1), and the plasmid p CR 4— FBP— F 2 R 1 was used with restriction enzymes Not I and P st I.
  • Fragment 1 (SEQ ID NO: 17) and fragment 2 prepared in this manner were treated in the same way as the AGP S gene, and plasmid p containing a DNA structure in which the partial sequence of the FB Pase gene was inverted repeats.
  • SP 104—FB P—FR was built.
  • Transformed tobacco (TO generation) of 20 individuals (29A-1 to: 1, 6 6 and 29 P-1 to 4) expressing GFP fluorescent protein was obtained.
  • 6 individuals (29 C_1 to 6) of tobacco transformed with a vector not containing a trigger and a spacer were obtained. These individuals were used for the following analysis.
  • FBPase primer SEQ ID NO: 43, 4 4
  • Probe SEQ ID NO: 45
  • the lamina (collected from the green leaves of transformed tobacco approximately 1 month after potting) whose raw weight (FW) was measured in advance was ground with liquid nitrogen.
  • FW1 g per 3.M 1 extraction buffer one A 50 mM H epes- KOH; pH 7. 5, 5 mM M g C 1 2, 0. 1% T riton X- 1 00, l mM EDTA) to a final Concentration 2 mM DTT, 4% (W / V) PVP-40, 1 x coplete (Roche Diagnostics) was added and ground and extracted with a mortar and pestle.
  • the ground solution was collected in a 2 ml Eppendorf tube and centrifuged at 15,000 rpm (20000 g) for 10 minutes at 4 ° C. The supernatant was collected, pre-column buffer A (5 OmM H epes -KOH: p H 7. 5, 5 mM Mg C l 2, 1 mM EDTA, 2 mM D TT) PD 1 0 column equilibrated in 25 m 1 Then, 2.5 ml was applied to the solution and eluted with 3.5 ml column buffer A for desalting.
  • pre-column buffer A 5 OmM H epes -KOH: p H 7. 5, 5 mM Mg C l 2, 1 mM EDTA, 2 mM D TT
  • Protein serum staining solution (Bio Rad) was prepared by Bradford method using bovine serum albumin (Fraction V, sigma) as a standard. Used.
  • the fragment of the FBPase gene inserted into pMA L-c 2 X Ve ctor is the above-mentioned plasmid p CR 4—FBP—F 2 R 1, and the SEQ ID NO: with the Sac I recognition sequence
  • the PCR product obtained using the combination of the primer shown in 28 (FB P_pMAL_F_S ca I) and the primer shown in SEQ ID NO: 29 (FB P_pMAL_R_Mun I) to which the M 1 u I recognition sequence has been added is used as the restriction enzyme S ca I. And prepared by digestion with MluI.
  • the fragment thus obtained was inserted into the recognition site of the restriction enzyme Eco RI which forms the same sticky end as the seal recognition site of pMAL-c 2 X Ve ctor and the restriction enzyme M 1 u I.
  • PMAL-FBP was produced that produced a fusion protein of maltose-binding protein (MBP) and the FB Pase partial amino acid sequence shown in SEQ ID NO: 30.
  • the cells were lysed by treating them with Out p u t c o t r o l: 8—10, Duty cy c l: 90 for 1 minute—5 to 10 times in a 1 minute cycle on ice.
  • the MBP fusion protein was purified using amylose resin according to the kit manual. The purified MBP fusion protein was used as an antigen and was commissioned to Shibayagi Co., Ltd. to obtain a rabbit antiserum.
  • Example 1 (4) (V) The procedure was the same as Example 1 (4) (V) except that transformed tobacco leaves about one month after potting were used.
  • Six transformant tobacco and six control individuals quantified starch + trisaccharide (sucrose + glucose + fructose) as a carbohydrate, and all six transformant tobacco significantly decreased compared to the control ( ( Figure 20).
  • the control value in Fig. 20 shows the average value of 6 individuals, and the error bar shows its standard deviation (SD).
  • SD standard deviation
  • the white part of the bar of the bar graph is starch, and the shaded part is trisaccharide.
  • Example 1 The same method as in (i) was performed.
  • the homozygote was hereinafter referred to as FB P—Ho
  • the Hemi conjugate was hereinafter referred to as FBP_He
  • the Nu 1 conjugate was hereinafter referred to as FB P—Nu.
  • P—Ho, FB P—He, and FB P—Nu were used.
  • T 2 seeds that were self-pollinated from each individual considered to be ⁇ ⁇ m ⁇ , Hem i, and Nu l 1 zygotes in the T 1 generation were collected, and as in the 1st generation, kanamycin and GF A separation ratio test was also performed. As a result, it was confirmed that all the discrimination results in the first generation were correct. (ii) Cultivation.
  • Example 1 The same method as in (ii) was performed.
  • Example 1 The same method as in (iv) was performed.
  • 29 A-7 the 1st to 2nd leaf positions from the 8th to 29th from the bottom of each 2 individuals (as a control, a non-transformant of the same size as that of the gene recombinant was used, and a similar leaf In FB P—Ho and FB P_He, the carbohydrate (starch + 3 sugar) content was significantly reduced in all leaf positions compared to non-transformants (Fig. 22). . Therefore, it was confirmed that the carbohydrate content decreased regardless of the leaf position.
  • Each value in Fig. 22 is shown as an average value of two individuals, excluding missing data.
  • Example 1 The same method as in (V) was performed. 29A-5, 29A-7, 29A-10, 1 generation, 2 individuals each, using upper leaves (from 23 to 27 from the bottom), FBP-Ho was not transformed A decrease in formaldehyde and acrolein was confirmed compared to (Fig. 23). The average of the three lines decreased formaldehyde and acrolein to 38% and 74% of the non-transformants, respectively. Therefore, it was confirmed that smoke-converted tobacco, such as formaldehyde and acrolein, reduced in smoke. Each value in Fig. 23 is shown as an average value of two individuals.
  • Chloroplast phosphoglucoseis ome rase (PG I) gene full-length c DNA clones were obtained by homology search from the applicant's c DNA library (NGRL 00 1 5— 1— B 1 1) .
  • SEQ ID NO: 8 shows the full-length cDNA sequence.
  • Fragment 1 (SEQ ID NO: 1 9) consists of the NGR L 00 1 5_1— B 11 clone, which encodes the full-length PG I gene, as a saddle, and the following PG I— F_B am I primer (SEQ ID NO: 20) and PG I— R— S ph I primer (SEQ ID NO: 2
  • the PCR product obtained using the combination of 1) was prepared by digesting with restriction enzymes BamHI and Sphl (Fig. 24). Fragment 2 (SEQ ID NO: 2
  • Fragment 1 the PCR product obtained using a combination of the PG I—F—Not I primer (SEQ ID NO: 23) and the PG I—R 3 primer (SEQ ID NO: 24) is added to the primer.
  • Fragment 1 (SEQ ID NO: 19) and Fragment 2 (SEQ ID NO: 22) prepared in this manner were constructed in the same manner as the AG PS gene, and the DNA structure in which the partial sequence of the PGI gene was inverted repeats.
  • a plasmid p SP 1 04—PG I—FR was constructed.
  • an expression cassette donor vector p S P 102-PG I (FIG. 25) and a binary single vector p S P 106-PG I were constructed.
  • Example 1 (3) The same method as in Example 1 (3) was performed. Twenty individuals (34A— 0 1 to 09, 34 P — 0 1 to: L 1) transformed tobacco (T 0 generation) expressing GFP fluorescent protein were obtained. As a control, .6 individuals (34 C_0 1-06) of tobacco transformed with a vector without trigger and spacer were obtained. These individuals were used for the following analysis.
  • a lamina (collected from green leaves of transformed Tabako approximately 1.5 months after potting) whose raw weight (FW) was measured in advance was pulverized with liquid nitrogen.
  • PG I for extraction buffer FWL g per 3m l: 0. 1M B icine- Na OH:. PH8 5, 5 mM M g C l 2, 1 mM EDTA, 2 mM DTT, 1 xc omp lete ( lock Xu Die Agnostics Co., Ltd.), 4% PVP P (poly (viny 1 po 1 yprro 1 idone)) was added and the mixture was ground and extracted with a mortar and pestle. The ground solution was collected in a 2 ml 1 Eppen tube and centrifuged at 15000 rpm (20000 g) for 10 minutes at 4 ° C. The supernatant was collected and placed on ice, and the activity was measured immediately.
  • Bovine serum albumin Fraction V, sigma
  • Protein assembly staining solution BioRad
  • Panta (1 994) 1 94 Refer to 95 _ 1 0 1 in a 1 m 1 reaction system, final concentration 50 mM Bicine—NaOH: pH 8.5, 10 mM Mg 1 2 , 0. 5 mM] 3—N icotinamid e.
  • Adeninedinuc 1 eotide (j3— NAD), 1 ⁇ / m 1 G lucose— 6— phosphatedehydrogenas e (G6 PDH; fr om L. Me sentero id es) pr em ix Prepare 25 ml of sample and add + ⁇ — 1 mM F ructose— 6—phosphate (F 6 P)
  • N ati V e -PAGE was carried out by a conventional method using 30 ⁇ g of soluble protein and e-pager (Ato Co., Ltd.) having an acrylamide concentration of 7.5%.
  • PGI activity staining was performed with reference to I sozymesin Plant Genetic Sand Breeding, Part A p 4 9 5 _ 4 96.
  • Example 1 (4) (V) the procedure was the same as Example 1 (4) (V) except that transformed tobacco leaves were used.
  • PG I mRNA expression level decreased to 1 Z8 or less of control 5 starches and 6 controls 6 starch + 3 sugars
  • sucrose + glucose + fructose as carbohydrate was quantified, it was significantly reduced in all 5 transformed tobaccos compared to the control
  • Figure 28 In other words, it was confirmed that the content of carbohydrates (dampening + 3 sugars) was greatly reduced in tobacco with reduced PGI gene expression and activity.
  • the control in Fig. 28 shows the average of 6 individuals, and the error bar shows the standard deviation (SD).
  • SD standard deviation
  • the white part of the bar indicates starch, and the shaded part indicates trisaccharide.
  • Example 1 The same method as in (i) was performed.
  • the homozygote was hereinafter referred to as PG I—Ho
  • the Hemi conjugate was hereinafter referred to as PG I—He
  • the Nu 1 conjugate was hereinafter referred to as PG I_Nu.
  • two lines (34A_6, 34A-8) of PGI_Ho, PGI gene expression, PGI activity and carbohydrate content reduction were high in TO generation.
  • PG I _He and PG I _ Nu were used.
  • T 2 seeds that were self-pollinated from individual individuals that were considered to be homo, hemi, and Nu l 1 zygotes in the T 1 generation were collected, and the separation ratio by kanamycin and GF ⁇ fluorescence was the same as that in the ⁇ 1 generation. Tests were also performed. As a result, it was confirmed that all discrimination results in the T 1 generation were correct.
  • Example 1 The same method as in (ii) was performed.
  • the fragment of the PGI gene inserted into MA L-c 2 XV ector is the above-mentioned full-length clone 00 1 5_1_B 11 and is given a seal recognition sequence SEQ ID NO: 3 1 (PG I _pMAL_F_S ca I) Primer and Eco R shown in
  • Example 2 (4) (iii) It was expressed in E. coli as in (a), and the MBP fusion protein was purified. This MBP fusion protein was entrusted to Asahi Techno Glass Co., Ltd. as an antigen.
  • Two to three leaf discs with a diameter of about 1 Omm were punched out from the lamina of green leaves, and the extract buffer A was dispensed in 200 to 300 ⁇ 1 in advance for 2 m 1. It was placed in a tube and frozen in liquid nitrogen. The metal cone was placed and subjected to multi-bead shocker treatment at 2200 rpm for 30-60 seconds. The supernatant centrifuged at 1 0000 rpm, 4 ° C for 5 minutes was taken in a new tube, and the supernatant centrifuged again at 15,000 rpm, 4 ° C for 5 minutes was used for Western plotting and protein quantification.
  • Example 1 The same method as in (iv) was performed.
  • 34 A—8 T 1 generation
  • the 1st and 2nd leaf positions of the 1st to 6th to 2nd 7th leaves were investigated.
  • PG I—Ho and PG I—He carbohydrates (starch) + 3 sugars)
  • the content was greatly reduced compared to PG I—N u (Fig. 31). Therefore, it was confirmed that the carbohydrate content of transformed tobacco decreased regardless of the leaf position.
  • Each value in Fig. 1 is shown as the mean value of the three individuals, except for the case where some missing data exists, and the error bar is shown as standard deviation (SD).
  • Example 1 The same method as in (V) was performed. Investigating the 3 individuals of 34A-6 and 34A-8 (T 1 generation) using the upper leaves (from the lower 19th to 23rd), PG I _H o is combusted compared to PG I-Nu Formaldehyde in smoke was significantly reduced, and acrolein was also found to be lower in PGI-Ho than in PGI-Nu (Fig. 32). The average value was the maximum, reducing to 70% and 78% of PG I-Nu respectively. Therefore, it was confirmed that tobacco carbs such as formaldehyde and acrolein in combustion smoke decreased in tobacco with reduced PGI gene expression, protein expression, and activity. Each value in Fig. 32 is the average of three individuals, and the error bar is the standard deviation (SD).
  • SD standard deviation
  • Non-Patent Documents 2 and 3 Abnormal growth has been reported in transformed tabacco (Non-Patent Documents 2 and 3), which has been reported in the past and has reduced tobacco starch and sugar content.
  • PG I _Ho and PG I—He T 1 generation
  • PG I—Nu FOG. 42
  • Cloning of the isoa my 1 gene fragment was performed in the same manner as the cloning of the AG PS gene fragment using a combination of the primer of SEQ ID NO: 9 and the primer of SEQ ID NO: 10, and SEQ ID NO: 1 1 (isoa my l—F A plasmid pCR4-isoamy1-F1R2 containing a DNA fragment consisting of 1 1 9 7 bases as shown in 1R2) was obtained.
  • the applicant's cDNA library is a full-length cDNA clone of Tsukuba No. 1 isolated and organized with terminal sequence information.
  • Full-length cDNA clone GR 0 0 7 6— 3 — F 1 1 contains the cDNA shown in SEQ ID NO: 1 2 considered to be the full length of the base sequence of SEQ ID NO: 1 1 described above, and A ccession N o. AY 1 3 2 9 9 6 and 9 2% homology was observed.
  • Fragment 1 (SEQ ID NO: 2 5), which is homologous to the isoa my 1 gene, was first assigned a Sph I recognition sequence using pCR 4_ isoa my l_F l R 2 as a saddle type SEQ ID NO: 2 6 (isoa my 1— F_B a mH I) and the PCR product amplified using the primers shown in SEQ ID NO: 2 7 (isoamy 1—R—Sphi)
  • Fragment 2 contains the same sequence as SEQ ID NO: 1 1 (isoa my 1—F 1 R 2), and the plasmid p CR 4_ isoa my 1—F 1 R 2 is converted into restriction enzymes Not I and P st. Prepared by digestion with I ( Figure 33). Fragment 1 (SEQ ID NO: 25) and Fragment 2 prepared in this way were subjected to inverted repeats in the partial sequence of the i so a my 1 gene in the same manner as in the AG P S gene.
  • a plasmid p SP 1 0 4— isoa my 1— FR containing the DN A structure was constructed.
  • Example 2 The same method as in Example 1 (3) was performed. Twenty individuals (25A_1-20) transformed tobacco (T O generation) expressing GFP fluorescent protein were obtained. As a control tool, 6 individuals (25 C—:! ⁇ 6) were obtained by transforming the vector without trigger and spacer. These individuals were used for the following analysis.
  • the isoamy primer (SEQ ID NO: 49, 50) and Probe (SEQ ID NO: 51) used for real-time PCR were designed separately, but the other procedures were performed in the same manner as in Example 1 (4) (ii). It was.
  • the mRNA expression level of isoamy l was examined by real-time PCR, it was confirmed that 1 out of 20 transformed tobacco plants showed a remarkable reduction of 10% or less of the average of 6 control consoles (Fig. 35).
  • the fragment of the iso amy l gene to be inserted into p MA L-c 2 X Ve ctor is the above-mentioned plasmid p CR4—isoa my 1_F 1 R 2 and is assigned the H pa I recognition sequence SEQ ID NO: 34 ( isoa my 1—pMAL—F—Hp a I) and a primer combination shown in SEQ ID NO: 35 (isoa my 1—pMAL—R—H ind III) to which a Hind III recognition sequence was added.
  • the PCR product was prepared by digestion with the restriction enzymes Hpa I and Hind III.
  • Example 1 (4) (iii) Performed in the same manner as (a) and (b).
  • Example 2 This was carried out in the same manner as in Example 1 except that protein 30 / g was used and the antiserum was diluted 5,000 times with TBS_T_SK as the primary antibody.
  • Example 1 (4) The same method as in (V) was performed.
  • the content of starch + trisaccharide saccharide + glucose + fructose
  • Fig. 37 The content of starch + trisaccharide (sucrose + glucose + fructose) as a carbohydrate was quantified in 6 transformed tobacco and 6 control plants.
  • Fig. 37 The controls in Figure 37 are shown as the mean of 6 individuals, and the error bars show the standard deviation (SD).
  • SD standard deviation
  • the white part of the bar of the bar graph is empty, and the shaded part is trisaccharide.
  • Example 1 The same method as in (i) was performed.
  • the homozygous homozygote is hereinafter referred to as iso amy l—Ho
  • the Hemi conjugate is hereinafter referred to as isoa my l_He
  • the Nu 1 1 conjugate is referred to as isoamy l_Nu hereinafter.
  • Transformation of T1 generation Tobacco analysis was performed using three lines (25 A-6, 25 A-15, and 25 A-1 15, with a high degree of reduction in isoamyl gene expression, protein expression, and carbohydrate content in the TO generation.
  • 25 A— 1 6) iso amy l— Ho
  • isoamy 1 and Nu were used.
  • T 2 seeds that were self-pollinated from each individual considered to be a Homo, Hemi, or Nu 1 1 zygote in the T 1 generation were collected, and a separation ratio test using kanamycin and GF ⁇ fluorescence as in the 1st generation. Also went. As a result, it was confirmed that all the discrimination results in the first generation were correct.
  • Example 1 The same method as in (ii) was performed.
  • Example 1 (5) (iv) except that transformed tobacco leaves were used after 5 months.
  • T 1 generation we investigated the 1 1 leaf position from the 2nd to the 22nd sheet from the bottom. Iso amy 1—Ho, isoa my 1—He, The carbohydrate (starch + 3 sugar) content was reduced compared to iso amy l—N u (Fig. 39). Therefore, it was confirmed that the carbohydrate content of the transformed tabaco decreased regardless of the leaf position.
  • Each value in Fig. 39 is shown as the average value of each of the three individuals, except when there is some missing data, and the error bar shows the standard deviation (SD).
  • Example 1 The same method as in (V) was performed. 25A—6, 25A—15, 25A 1 1 6 (T 1 generation) 3 individuals were prepared using the upper leaves (from the lower 19th to 22nd), and the results were shown to iso amy l—Ho. Let's go iso amy l—Nu J; A significant decrease in formaldehyde was confirmed (Fig. 40). The system with the most reduction was less than 50% of isoa my l — Nu. Therefore, it was confirmed that smoke carbohydrates such as formaldehyde in the smoke were reduced in transformed tobacco. Each value in Fig. 40 is shown as an average of three individuals, and error bars indicate standard deviation (SD).
  • SD standard deviation
  • Non-Patent Documents 2 and 3 Abnormal growth has been reported in transformed tabacco (Non-Patent Documents 2 and 3), which has been reported in the past and has reduced tobacco starch and sugar content.
  • isoa my l — Ho isoa my l — He (T 1 generation) showed the same growth as isoa my 1 _ N u (Fig. 4 3).
  • Ls .oa my l — Ho isoa my l— He ( ⁇ 1 ⁇ 3- ⁇ soa my l ⁇ Since it showed the same growth as Nu, this transformed tobacco is considered excellent in that it can specifically reduce carbohydrates without causing abnormal growth.
  • AD P further analysis of g l u c o s e p y r o p h o s p h o r y l a s e s m a l l s u b u n i t (AG P S)
  • Example 1 Cultivated according to the description in (i) and (ii) and dried in yellow.
  • a closed greenhouse naturally day length, constant at 23 ° C
  • fertilizer for soil sowing, and 24 days after sowing, temporary soil was transplanted.
  • the eighth sheet (middle leaves and synthetic leaves) was subjected to the conditions shown in Table 5, and the 19th to 23rd sheets (main leaves) from the bottom were subjected to the conditions shown in Table 6.
  • Table 5 The eighth sheet (middle leaves and synthetic leaves) was subjected to the conditions shown in Table 5, and the 19th to 23rd sheets (main leaves) from the bottom were subjected to the conditions shown in Table 6.
  • the dried leaves after yellow drying are conditioned in a laboratory at a temperature of 22 ° C and a humidity of 60%, and then the middle bone is removed, and the width is 0 with a Takahashi type high-speed cutter (Takahashi type 200 A, Takahashi Seisakusho).
  • a step of 8 mm and a length of 1 Omm was prepared.
  • AGP S—Ho prepared in (a) above, from the bottom of the Tsukuba No. 14, 14th (middle leaf), 17th (going leaf), 22nd (real leaf) ticks
  • AG P S_Ho the content of carbohydrates (dampened + trisaccharide) in all three leaf positions was greatly reduced compared to AGP S_Nu (Fig. 46). Therefore, a large reduction in carbohydrates was confirmed even for dry yellow leaves that were cultivated under conditions similar to those in the field and dried like leaf tobacco.
  • Figure 46 shows AGP S—Ho and Tsukuba No. 1 at each leaf level as the average of three individuals, and error bars indicate standard deviation (SD).
  • AGP S—Ho prepared in (a) above, from the bottom of Tsukuba No. 1, 14th sheet (middle leaf), 17th sheet (joint leaf), 22nd sheet (main leaf) It was measured. The measurement was performed in the same manner as in the above (iii) analysis of swellability.
  • AGP S-Ho showed increased puffiness compared to AGP S-Nu (Fig. 47).
  • the 14th sheet (middle leaf) and the 17th sheet (going leaf) showed a remarkable increase of 2 times, but the second sheet (main leaf) showed an increase of about 10%.
  • Cigarette specifications for evaluating smoke components include filling weight and ventilation resistance. If the swellability is significantly different from AGP S-Ho and Tsukuba 1, the cigarettes produced with a constant filling weight have different combustion resistance due to the significantly different ventilation resistance. It is difficult to evaluate correctly. On the other hand, it is possible to adjust the combustion conditions to some extent by adjusting the filling weight and creating a cigarette with constant ventilation resistance. The product tobacco is adjusted in weight so that the airflow resistance is uniform. Therefore, by comparing the components in the smoke per cigarette with the same ventilation resistance, it was judged that the evaluation when used as a raw material for tobacco products could be made appropriately. Refer to the cigarette ventilation resistance of the product, approx.
  • Cigarettes were prepared to match Pa (60 mmH 2 O). Manual winding machine (rolling machine made by Rizla), wrapping paper (5 7 mmX 27 mm, 4 P 35), glue (4.3% C
  • cigarettes with a ventilation resistance in the range of about 0.54 to Q.64 kpa (55 to 65 mmH 2 0) were selected and the components in the smoke were measured.
  • the amount of carbonyls in cigarette smoke produced in this way was determined according to the ISO method for smoking and the Canadian federal method for testing. Both reduced carbohydrate content and increased puffiness in chopped ingredients 1
  • 4th sheet (middle leaf) and 17th sheet (joint leaf) all 8 carbonyls examined showed a reduced content per bottle compared to Tsukuba No. 1 cigarette.
  • the content per formaldehyde, acrolein, and crotonaldehyde decreased (Fig. 48).
  • PG I—Ho and PG I _Nu were cultivated for one line used for analysis of the T 1 generation. Cultivation was carried out in the same manner as in Example 1 (6) (i). However, cultivation after pot No. 6 transplantation was also conducted under natural day length conditions, and was cultivated at 23 ° C using an air conditioner in a closed greenhouse. In addition, the plants were cultivated under the short-day conditions of 8 hours and 12 hours from room temperature 2!
  • Example 1 The same method as in (ii) was performed.
  • PG I—Ho and PG I— Nu were used to dry the yellow dry dry leaf lamina from the 8th to 24th leaf positions from the lower leaves to the upper leaves.
  • the carbohydrate content of each was quantified.
  • the quantification method was the same as the analysis for the T1 generation.
  • PG I—H o the carbohydrate (starch + trisaccharide) content in all leaf positions was greatly reduced compared to PG I _Nu (Fig. 49). Therefore, it was confirmed that even in dry leaves that were harvested in a suitable time for the transformed tobacco and dried in the same way as the leaf tobacco, the carbohydrate content was greatly reduced regardless of the leaf position.
  • Fig. 49 shows the average value of 2 individuals each of PG I-Ho and PG I- Nu, and the error bar shows the standard error (SE).
  • Example 5 The swelling property was measured in the same manner as in Example 5 (1) (iii). However, dry leaf lamina from 10 leaves to 17 leaves is the same as PG I—Ho and PG I—Nu. A sample was mixed by weight. In PG I _Ho, a marked increase (about 1.3 times) in puffiness was confirmed compared to PG I _Nu (Fig. 50). Both PG I _Ho and PG I— Nu are shown as the average of the two samples, and the error bar shows the standard deviation (SD).
  • SD standard deviation
  • Example 1 (6) For one line used for the analysis of T 1 generation, i so a my 1 _Ho and i so a my 1 Nu were cultivated. Cultivation was carried out in the same manner as in Example 1 (6) (i). However, cultivation after pot No. 6 transplantation was also carried out at 23 ° C using an air conditioner in a closed greenhouse under natural light. In addition, from 14 days after transplantation, the plants were cultivated under the short-day conditions of 8 hours and 13 to 22 ° C. for 13 days.
  • Example 1 The same method as in (ii) was performed.
  • Example 5 The measurement was performed in the same manner as in Example 5 (1) (iii). However, dry leaf lamina from 9 leaves to 21 leaves is mixed with iso amy l—Ho and iso amy l—Nu Ik in each leaf position to prepare 7 samples. In iso amy l— ⁇ o, a marked increase in puffiness (approximately 1.4 times) was observed compared to iso amy l—Nu (Fig. 52). Figure 52 Both iso amy l—Ho and iso amy l _Nu are shown as the average of two samples, and the error bar shows the standard deviation (SD). Industrial applicability
  • the present invention in tobacco plants and dry leaf tobacco that can be used as raw materials for leaf tobacco, it is possible to reduce the accumulation of starch in mature tobacco leaves and to reduce the content of strength ruponiles in the combustion smoke of dry leaves. An effect can be provided.
  • a transformed tobacco plant having improved swellability can be provided. With the transformed tobacco plant of the present invention, carbonyls in the combustion smoke are reduced, and a leaf tobacco excellent in swelling property can be produced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Nutrition Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

 植物の燃焼煙中のカルボニル類含量が低減された形質転換タバコ属植物および膨こう性が向上された形質転換タバコ属植物を提供することを課題とする。 以下の(a)~(c)に示すいずれかのタンパク質をコードする遺伝子の発現が抑制され、燃焼煙中のカルボニル類含量が低減され、膨こう性が向上されたタバコ属植物が提供される:(a)配列番号53、配列番号54、配列番号55および配列番号56からなる群から選択されたアミノ酸配列からなるタンパク質、(b)配列番号53、配列番号54、配列番号55および配列番号56からなる群から選択されたアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、かつデンプン生合成に関与するタンパク質、(c)配列番号53、配列番号54、配列番号55および配列番号56からなる群から選択されたアミノ酸配列に対して85%以上の同一性を有するアミノ酸配列からなり、かつデンプン生合成に関与するタンパク質。

Description

燃焼煙中のカルボニル類含量が低減されたタバコ属植物およびその作製法 技術分野
本発明は、 燃焼煙中のカルボ二ル類含量が低減されたタバコ属植物およびその 作製法に関する。
背景技術
タバコの燃焼煙中には様々な成分、 例えば書タール、 ニコチン、 カルボニル類な どが含まれている。 タール、 ニコチンなどは、 喫煙の満足感や香喫味に関連し、 カルボニル類は、 煙の刺激性に関連すると考えられている。 従って、 タール、 二 コチンなどの量を相対的に高いレベルに保ったまま、 カルボニル類の量を低減す ることか望まれる。
煙中カルボ二ル類を生成する原因物質の 1つが、 糖類である可能性が示唆され ている。 乾燥処理により葉タバコ中のデンプンは分解されて、 糖類が生成するこ とが知られている。 植物のデンプン合成に関与する遺伝子は、 例えば ADP— g l u c o s e p y r o p h o s p h o r y l a s e s ma l l s u b u n i t (AG P S) 遺伝子、 葉緑体型 F r u c t o s e _ 1, 6 -b i s p h o s p h a t a s e (FB P a s e) 遺 子、 葉緑体型 P h o s p h o g l u c o ¾ e i s ome r a s e ( P G I ) 遺 isナ、 i s o a my l a s e逾伝子、 S o
1 u b 1 e s t a r c h s y n t h a s e ( S S S ) 遺伝子、 G r a n u 1 e b o u n d s t a r c h s y n t h a s e
Figure imgf000003_0001
B S S) 遺 to十、 B r a n c h i n g e n z yme (B E) 遺伝子などが知られている。
ADP— g l u c o s e p y r o p h o s p h o r y l a s e s ma l l s u b u n i t (AGP S) 遺伝子は、 デンプン合成の基質である AD P— g 1 u c o s eを合成する反応を角虫媒する.酵素: AD P— g l u c o s e p y r o p h o s p h o r y l a s e (AGP a s e) を構成するサブュニットの"^つを コードしている。 1 988年 T s a n— P i a o L i nらによって、 シロイヌ ナズナの a d g 1変異体では葉のデンプン含量が対照の 1 40以下に低下し、 AGP a s e l a r g e s u b u n i t ( A G P L )、 A G P S両方のタンパ ク質の発現と AD P— g 1 u c o s e p y r o p h o s p h o r y 1 a s e (AGP a s e) 活性が検出限界以下であることが報告された (非特許文献 1)。 1 998年 S h u e— Me i Wa n gらによって a d g l変異体は AG P S遺 伝子の 1ァミノ酸置換変異によることが報告された (非特許文献 2 )。 A G P S遺 伝子を用いた遺伝子組換え実験例としては、 1 995年 K. L e i d r e i t e rらによって、 35 Sプロモーターあるいは ST— L S 1プロモーター制御下で アンチセンス AGP S遺伝子を発現させた形質転換ポテトにおいて、 葉の AGP a s e活性を 1/10- 1/1 5に低下させることにより葉のデンプン含量が 1 /2— 1 3に低下したことが報告された(非特許文献 3)。 1 988年 S c h u c h Wo l f g a n g Wa l t e r らによって、 AGP a s eをコードする 遺伝子のアンチセンス mRNAを発現させることにより、 デンプン合成を抑制す る植物を請求項に含む出願がなされている (特許文献 1)。
葉緑体型 F r u c t o s e— 1, 6— b i s p h o s p h a t a s e ( F B P a s e) は、 植物の炭酸固定経路であるカルビン回路において F r u c t o s e — 1, 6— b l s p h o s p h a t e , B P) を F r u c t o s e— 6— p h o s p h a t e (F 6 P) に不可逆的に変換する反応を触媒することが知られて おり、 1 988年に R a i n e s C Aらによって小麦から初めて葉緑体型 F B P a s eの c DN Aが単離された (非特許文献 4)。 1 994年に J . K o s s m a n nらによって、 35 Sプロモーター制御下においてアンチセンス F B P a s e c DNAを導入したポテトの活性が野生株の 1 2%に低下した個体では、 葉 面積当たりのグルコース、 フルク トース、 ショ糖、 デンプンの含量が低下したこ とが報告された (非特許文献 5)。 .2004年に M. S a h r a wyらによって、 35 Sプロモーター支配下でアンチセンス葉緑体型 F B P a s e c DNAを導 入したシロイヌナズナでは、 活性が最大 4 1%低減したが葉の炭水化物含量 (グ ルコース +フルク トース +ショ糖 +デンプン) は大きな低減はしなかったことが 報告された (非特許文献 6)。
葉緑体型 PG Iは、 F B P a s eによりできた F 6 Pを G l u c o s e— 6— p h o s p h a t e (G 6 P) に可逆的に変換する反応を触媒することが知られ ている。 これまで葉緑体型 PG Iの欠損変異体は、 C l a r k i a X a n t i a n a (1 986年、 非特許文献 7 ) とシロイヌナズナ (2000年、 非特許文 献 8) について報告がある。 前者の報告では葉緑体型 PG I活性が半減し、 葉の デンプン含量が野生株の 60%に低減し、 後者では各々野生株の 2 %、 1. 5% に低減した。 遺伝子組換えにより葉緑体型 PG Iの発現を増減させた文献、 特許 等の報告はこれまでのところない。
i s o amy 1 a s e遺伝子につレヽては、 1 995年に M. G. J a m e s ら によってトウモロコシ s u g a r y 1変異体の原因遺伝子として植物の i s o a my 1 a s e遺伝子 ( i s o amy l a s e l) が初めて単離された (非特許文 献 9)。 2004年 R. B u s t o s らによって、 35 Sプロモーター制御下でァ ンチセンス i s o amy l a s e ( i s o amy l) c DN Aを導入したポテト の塊茎のデンプン含量が 1 0— 20%低下することが報告された (非特許文献 1 0)。 2005年 T. D e l a t t eら (非特許文献 1 1 ) 及び F. Wa t t e b 1 e dら (非特許文献 1 2) によってシロイヌナズナの i s o a my 1欠損変異 体では、 葉のデンプンと可溶性グルカンを合わせた含量が野生株に比べて 30% 程度減少したことが報告された。 I s o amy lはデンプン (アミロぺクチン) の α_ 1, 6結合の枝分かれを切断する反応を触媒するとともに、 アミロぺクチ ンの合成に重要であることが知られている。
一方、 特許文献 2〜 8には、 タバコ燃焼煙中のカルボ二ル類をフィルタ一等で 除去する技術が開示されているが、 これらのフィルタ一はタールやニコチンも除 去するので好ましくない。
また、 他の特許文献には、 タバコ煙中のアルデヒ ド類を除去するためのアミノ 酸の使用 (特許文献 9)、ホルムアルデヒ ドを選択除去するハイ ドロタルサイ ト類 化合物を添加したフィルター (特許文献 1 0)、特異な吸着特性をもつ結晶性ゼォ ライ トの利用 (特許文献 1 1)、 塩基性ポリペプチドを添加したフィルター (特許 文献 1 2) が開示されており、 たばこ製品の燃焼煙中に含まれる低級アルデヒ ド を特異的に低減する方法として、 特異的吸着剤を添加したフィルターの利用が有 効であると考えられる。 し力 し、 これらのような選択性の高い高機能フィルタ一は通気抵抗が増大して しまうという欠点がある。
従って、 フィルターによらず、 燃焼煙中のカルボ二ル類を低減すること、 例え ば燃焼煙中のカルボ二ル類を低減可能な葉タバコ原料の開発が望まれる。 また、 そのような葉たばこ原料を提供可能なタバコ新品種の開発は、 たばこ産業上重要 である。
非特許文献 1 3には、従来のタバコの燃焼煙中のカルボニル類の研究において、 糖類をタバコ刻みに添加した場合にカルボニル類の発生量が増加することが報告 されている。 しかし、 葉タバコ中の糖類の含量を減少させた場合、 または糖類で はなく葉タバコ中のもうひとつの主要な非構造性炭水化物であるデンプン含量を 低減させた場合、 あるいは葉タバコ中の糖類とデンプンの総量つまり非構造性炭 水化物含量 (以下、 「炭水化物」 という。) を減少させた場合に、 燃焼煙中のカル ボニル類含量が減少するかどうかは未知である。
また、 原料葉タバコ中の炭水化物含量には、 収穫時の葉タバコ中の炭水化物含 量と収穫後の乾燥法の両者が影響を及ぼす。 前者では、 タバコ品種、 栽培時の気 候条件、 施肥条件、 収穫時期などの違いによって、 後者では、 黄色種を中心に用 いられる風火力乾燥を行うカ バーレ一種を中心に用いられる自然乾燥を行うか によって、 葉タバコ原料中の炭水化物含量が異なってくることが知られている。 一般に、 紙巻タバコの主要原料でありかつ香味原料である黄色種の原料葉タバコ で糖やデンプンといった炭水化物含量が高く、 バーレー種の原料葉タバコなどで 葉タバコ中の炭水化物含量が低いことが知られている。 また、 黄色種の原料葉タ バコは、 バーレ一種の原料葉タバコと比較して、 煙中カルボニルの発生が多いこ とが知られている。
また、 タバコの葉のデンプン、 糖含量等を低減させた形質転換タバコについて は、葉緑体型 T r a n s k e t o l a s e (非特許文献 14)、Ru b i s c o s ma 1 1 s u b u n i t (Rb c S) (非特許文献 1 5) の発現を抑制させた例 などが報告されている。 前者では標的遺伝子発現を抑制することにより、 生葉重 当たりの葉中グルコース、ショ糖、デンプンが最大でコントロールの 20〜25 % 程度に低減し、 後者では、 生葉重当たりの葉中デンプン、 グルコース、 フルク ト ース、 ショ糖が各々コントロールの 5〜30%程度に減少したことが開示されて いる。
しかしながら、 前者ではシュートの生葉重、 長さが減少し、 後者では強く生育 が阻害され、 葉タバコの原料になり得る形質転換植物ではないと考えられる。
特許文献 1 英国特許出願第 1 9 8 8 0026 356号
特許文献 2 特開昭 59 -0 8 8 0 7 8号公報
特許文献 3 特開昭 59一 1 5 1 8 8 2号公報
特許文献 4 特開昭 60-0 5 4 6 6 9号公報
特許文献 5 特開平 09— 1 6 8 7 3 6号公報
特許文献 6 特表 2002 _ 5 2 8 1 05号公報
特許文献 7 特表 2002 _ 5 2 8 1 06号公報
特許文献 8 特表 2003 _ 5 0 5 6 1 8号公報
特許文献 9 米国特許第 29 6 8 3 0 6号明細書
特許文献 1 0 国際公開第 2 0 0 3/056947号パ
特許文献 1 1 米国特許出願公開第 2005 Z 0 1 33047号明細書 特許文献 1 2 特開 2006— 34 1 27号
非特許文献 1 T s a n— P i a o L i n e t a 1 ."A S t a r c h D e f i c i e n t Mu t a n t o f Ar a b i s o p s i s t h a 1 i a n a w i t h L ow ADP— g l u c o s e P y r o P h o s
P h o r y 1 a s e A c t i v i t y L a c k s O n e o f t h e
Ί w o S u b u n i t s o f t h e E n z yme P 1 a n t P h y s i o 1 88. 1 1 75 - 1 1 8 1 ( 1 988)
非特許文献 2 s h u e— Me i Wa n g e t a 1 ."Ch a r a c t e r i z a t i o n o f ADG 1, a n A r a b i d o p s i s 1 o c u s e n c o d i n g f o r ADPG p y r o P h o s h o r y 1 a s e s m a 1 1 s u b u n i t , d e mo n s t r a t e s t h a t t h e p r e s e n c e o f t h e s ma l l s u b u n i t i s r e q u i r e d f o r l a r g e s u b u n i t s t a b i 1 i t y P l a n t J 1 3 (1) 6 3— 70 ( 1 998) 非特許文献 3 K i r s t e n L e i d r e i t e r e t a 1. " L e a f — S p e c i f i c An t i s e n s e I n h i b i t i o n o f S t a r c h B i o s y n t h e s i s i n T r a n s g e n i c P o t a t o P l a n t s L e a d s t o a n I n c r e a s e i n P h o t o a s s i m i l a t e E x p o r t f r om S o u r c e L e a v e s d u r i n g t h e L i g h t P e r i o d" P l a n t C e l l P h y s i o l . 36 (4) : 6 1 5-6 24 ( 1 995)
非特許文献 4 R a i n e s C A, L l o y d J C, L o n g s t a f f M, B r a d l e y D a n d Dy e r TA "Ch l o r o p l a s t f r u c t o s e— 1, 6— b i s p h o s p h a t a s e : t h e p r o d u c t o f a mo s a i c g e n e u c l e i c Ac i d s R e s . 1 6 : 793 1 - 7942 (1 988)
非特許文献 5 J .Ko s s ma n n,U. S o n n e wa 1 d a n d L . W i 1 l m i t z e r "R e d u c t i o n o f t h e c h l o r o p l a s t i c f r u c t o s e— 1, 6 ~ b i s p h o s p h a t a s e i n t r a n s g e n i c p o t a t o p l a n t s i mp a i r s p h o t o s y n t h e s i s a n d p l a n t g r ow t h "P I a n t J. 6 (5), 63 7 - 6 50 (1 994)
非特許文献 6 M. S a h r a w y , C. A v i l a, A. C h u e c a , F. M. C a n o v a s a n d J u l i o L o p e z— G o r g e I n c r e a s e d s u c r o s e l e v e l a n d a l t e r e d n i t r o g e n me t a b o l i s m i n Ar a b i d o p s i s t h a l i a n a t r a n s g e n i c p l a n t s e x p r e s s i n g a n t i s e n s e c h l o r o p l a s t i c f r u c t o s e— 1, 6— b i s p h o s p h a t a s e" J . E x p. B o t . 5 5 (408) : 2495 — 2503 (2004)
非特許文献 7 T. W. A. J o n e s , L. D. G o t t l i e b a n d E. P i c h e r s k y "R e d u c e d E n z yme Ac t i v i t y a n d S t a r c h L e v e l i n a n I n d u c e d Mu t a n t o f C h l o r o p l a s t P h o s h o g 1 u c o s e I s o m e r a s e P 1 a n t P h y s i o 1 8 1 : 367- 3 7 1 ( 1 986) 非特許文献 8 T一 S. Yu, W- L L u e , S— M • W a n g a n d
J - Ch e n "M u t a t i o n o f A r a b i d o p s i s p 1 a s t i d p h o s p h o g l u c o s e i s ome r a s e a f f e c t s
1 e a f s t a r c h s y n t h e s i s a n d f 1 o r a 1 i n i t i a t i o n P l a n t P h y s i o 1 1 23 : 3 1 9一 3 25 (20
00)
非特許文献 9 M. G. J ame s , D, S. R o b e r t s o n a n d
A - M M e y e r s し h a r a c t e r i z a t i o n o f t h e M a i z e G e n e s u g a r y l , a D e t e r m i n a n t o f
S t a r c h C o mp o s i t i o n i n K e r n e 1 s P l a n t c e 1 1 1 7 : 4 1 7 -429 (1 9 95)
非特許文献 1 0 R. B u s t o s , B. F a h y, C. M. Hy 1 t o n ,
R - S e a I e , N. M. N e b a n e , A. E dwa r d s C. Ma r t i n a n d A. M. S m i t h "S t a r c h g r a n u 1 e i n i t i a t i o n i s c o n t r o l 1 e d b y a h e t e r o m u 1 t i m e r i c i s o amy l a s e i n p o t a o t u b e r s " PNA
S 1 0 1 (7) : 22 1 5- 2220 (2004)
非特許文献 1 1 Th i e r r y D e 1 a t e , M a r t i n e T r e
V i s a n , M a r y し. P a r k e r a n d S am u e 1 C . Z e e m a n Ar a b i d o p s i s m u t a n t s A t i s a 1 a n d A t i s a 2 h a v e i d e n t i c a l p h e n o t y P e s a n d
1 a c k t h e s ame mu l t i me r i c i s o a m y 1 a s e , w h i c h i n f l u e n c e s t h e b r a n c h P o i n t d i s t r i b u t i o n o f a m y 1 o p e c t i n d u r i n g s t a r c h s y n t h e s i s" P l a n t J . 4 1 : 8 1 5一 8 3 0 (200
5)
非特許文献 1 2 F. Wa t t e b l e d, Y. D o n g, S . Dume z, D. D e 1 v a 1 1 e , V. P l a n c h o t, P. B e r b e z y, D. V y a s , P. C o l o n n a, M. Ch a t t e r j e e, S . B a l l a n d C . D ' H u 1 s t "M u t a n t o f A r a b i d o p s i s L a c k i n g a Ch l o r o p l a s t i c I s o amy l a. s e A c c u m u 1 a t e P h y t o g l y c o g e n a n d a n Ab n o r ma l F o r m o f Amy l o p e c t i n" P l a n t P h y s i o .1. 1 3 8 (1) : 1 84- 1 95 (2005)
非特許文献 1 3 F o o d a n d Ch em i c a l T o x i c o l o g y 44, (2006) 1 789— 1 798, 1 799— 1 822
非特許文献 1 4 P l a n t C e l l v o l l 3, 535— 55 1 (2 00 1)
非特許文献 1 5 P l a n t J. 30 (6), 66 3 - 6 77 (2002) 発明の開示
本発明の目的は、 タバコ属植物の乾燥葉の燃焼煙中のカルボニル類含量を低減 させたタバコ属植物およびその作製法を提供することにある。
本発明者ら'は、 通常タバコ栽培ではデンプンを成熟葉に蓄積させるが、 これと は逆に、成熟葉のデンプンの蓄積量を例えば遺伝子組み換えにより低減させると、 黄色乾燥した葉タバコ原料においてもタバコ煙中のカルボニル類の発生量が減少 することを見出し、 さらに葉タバコ原料の膨こう性を向上させることを見出し、 本発明を完成した。
本発明の特徴は、 要約すると以下の通りである。
(1) 以下の (a) 〜 (c) に示すいずれかのタンパク質をコードするデンプン 生合成に関与する遺伝子の発現が抑制され、 燃焼煙中のカルボニル類含量が低減 された、 タバコ属植物。
( a ) 配列番号 5 3、 配列番号 54、 配列番号 55および配列番号 56からなる 群から選択されたァミノ酸配列からなるタンパク質
( b ) 配列番号 5 3、 配列番号 54、 配列番号 55および配列番号 56からなる 群から選択されたアミノ酸配列において 1もしくは数個のアミノ酸が欠失、 置換 もしくは付加されたアミノ酸配列からなり、 かつデンプン生合成に関与するタン パク質
( c ) 配列番号 5 3、 配列番号 5 4、 配列番号 5 5および配列番号 5 6からなる 群から選択されたアミノ酸配列に対して 8 5%以上の同一性を有するアミノ酸配 列からなり、 かつデンプン生合成に関与するタンパク質
(2) 前記遺伝子が、
( d ) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列からなるポリヌクレオチド、
(e) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列に対して 8 5%以上の同一性を有し、 かつデンプン生合成に 関与するタンパク質をコードするポリヌクレオチド、
( f ) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列において 1もしくは数個の塩基が欠失、 置換もしくは付加さ れた塩基配列からなり、 かつデンプン生合成に関与するタンパク質をコードする ポリヌクレオチド、 または
(g) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列と相補的な塩基配列からなるポリヌクレオチドとス トリンジ ェントな条件でハイブリダィズし、 かつデンプン生合成に関与するタンパク質を コードするポリヌクレオチド
を含む、 (1 ) に記載のタバコ属植物。
(3) 前記カルボニル類が、 ホルムアルデヒ ド、 ァセ トアルデヒ ド、 アセ トン、 ァクロレイン、 プロピオンアルデヒ ド、 クロ トンアルデヒ ド、 メチルェチルケト ンおよびブチルアルデビドからなる群から選択される、 (1 ) または (2) に記載 のタバコ属植物。
(4) 前記カルボニル類が、 ホルムアルデヒ ドまたはァクロレインである、 (3) に記載のタバコ属植物。
(5) 膨こう性が向上された、 (1 ) 〜 (4) のいずれかに記載のタバコ属植物。
(6) ( 1 ) 〜 (5) のいずれかに記載のタバコ属植物の組織または細胞。
(7) 前記組織が葉である、 (6) に記載の組織または細胞。 (8) 配列番号 4に示す塩基配列、 配列番号 7に示す塩基配列、 配列番号 8に示 す塩基配列、 配列番号 1 2に示す塩基配列、 それらの配列に対して 90%以上の 同一性を有する塩基配列、 およびそれらの塩基配列の 20塩基以上の部分配列か らなる群から選択される塩基配列を含む、 遺伝子発現抑制用ベクター。
(9) 前記塩基配列の連続した 20塩基以上からなる塩基配列をアンチセンス方 向に含む、 (8) に記載のベクター。
(1 0) 前記塩基配列のセンス鎖および該センス鎖に対合するアンチセンス鎖を 含む、 (8) に記載のベクター。
(1 1) 前記センス鎖およびアンチセンス鎖が、 前記塩基配列の連続した 20塩 基以上からなる、 (1 0) に記載のベクター。
(1 2) 前記センス鎖とアンチセンス鎖の間にスぺーサーを有する、 (1 0) また は (1 1) に記載のベクター。
(1 3) 植物細胞内で作動可能なプロモーターを有する、 (8) 〜 (1 2) のいず れかに記載のベクター。
(14) タバコ属植物の細胞または組織を、 RNA干渉法、 アンチセンス法、 遺 伝子破壊法、 人為的突然変異法、 リボザィム法、 共抑制法及び転写因子を用いた 方法から選択されるいずれかの方法を用いて、( 1 )および(2)に定義された(a) 〜( g ) のいずれかの遺伝子の発現を抑制し、植物体を再生することを含む、 ( 1 ) 〜 (5) のいずれかに記載.のタバコ属植物を作製する方法。
(1 5) (8) 〜 (1 3) のいずれかに記載のベクターを、 植物細胞または組織に 導入し、 植物体を再生する、 (14) に記載の方法。
(1 6) 前記植物体を母本として後代を作出する、 (1 5) に記載の方法。
(1 7) (1) 〜 (5) のいずれかに記載のタバコ属植物の後代であって、 (1) または (2) に定義された (a) 〜 (g) のいずれかの遺伝子の発現が抑制され たことを特徴とする、 後代。
(1 8) (1) 〜 (5) のいずれかに記載のタパュ属植物または (1 7) に記載の 後代の葉から作製されたタバコ製品。 '
(1 9) タバコ属植物において、 (1) または (2) に定義された (a) 〜 (g) のいずれかの遺伝子の発現を抑制することを含む、 タバコ属植物の燃焼煙中の力 ルポニル類含量を低減する方法。
(20) 前記遺伝子の発現の抑制を、 RNA干渉法、 アンチセンス法、 遺伝子破 壊法、 人為的突然変異法、 リボザィム法、 共抑制法及び転写因子を用いた方法か らなる群から選択される方法によって行うことを含む、 (1 9) に記載の方法。
(2 1) (8) 〜 (1 3) のいずれかに記載のベクターを植物細胞または組織に導 入する、 (1 9) または (20) に記載の方法。
(22) タバコ属植物において、 (1) または (2) に定義された (a) 〜 (g) のいずれかの遺伝子の発現を抑制することを含む、 タバコ属植物の膨こう性を向 上させる方法。
(23) 前記遺伝子の発現の抑制を、 RNA干渉法、 アンチセンス法、 遺伝子破 壊法、 人為的突然変異法、 リボザィム法、 共抑制法及び転写因子を用いた方法か らなる群から選択される方法によって行うことを含む、 (22) に記載の方法。
(24) (8) 〜 (1 3) のいずれかに記載のベクターを植物細胞または組織に導 入する、 (22) または (23) に記載の方法。
本明細書は本願の優先権の基礎である日本国特許出願 2007— 08323 1 号の明細書および または図面に記載される内容を包含する。 図面の簡単な説明
図 1は、 ベクター ρ S P 1 04の構造を示す。 p S P 1 04の 「スぺーサ一」 は G US遺伝子の M 1 u I断片 (6 98 b p) である。
図 2は、 PCR増幅されたフラグメント 1および 2を示す。
図 3は、 ベクター p S P 1 02の構造を示す。 pDNR_ l (CLONTEC
H社) の H i n d I I I認識部位および E c o R I認識部位の間に、 35 Sプロ モーター、 マルチクローニングサイ ト (Xh o I、 N a e l、 S p h l、 S a c
1 )、 NO Sターミネータ一の順で挿入して作製した。
図 4は、 プラスミ ド p S P 1 02— AGP Sの構造を示す。
図 5は、 バイナリーベクター p S P 1 06の構造を示す。 p B I 1 2 1 (CL
ONT E CH社) の H i n d I I I認識部位に p r o K_ l o x P断片 (C r e a t o r Ac c e p t o r V e c t o r C o n s t r u c t i o n K i t、 C l o n t e c h社) を導入して作製した。
図 6は、 バイナリーベクター p S P 1 06— AGP Sの構造を示す。
図 7のパネル aおよびパネル bは、, AGP S発現抑制形質転換体のョード染色 を示す。 パネル aの左の図において、 上 2列が 32 A— 1形質転換体、 下 2列が c 0 n t - 1 (コントロール) であり、 右の表は、 上 2列の 32 A— 1、 下 2列 の c o n t— 1の下位葉からの各着位を示している。パネル bの左の図において、 上 2列が 32 A— 2形質転換体、下 2列が C o n t - 2 (コントロール)であり、 左の表は、 上 2列の 32 A— 2、 下 2列の c o n t— 2の下位葉からの各着位を 示している。
図 8は、 AG P S発現抑制形質転換体の T 0世代の AG P Sの mRNA発現量 を示す。
図 9は、 AG P S発現抑制形質転換体の TO世代の AGP Sタンパク質の発現 を示す。
図 1 0は、 AG P S発現抑制形質転換体の T 0世代の炭水化物含量を示す。 図 1 1は、 AG P S発現抑制形質転換体の T 1世代の AG P Sの mRNA発現 量を示す。 .
図 1 2は、 AG P S発現抑制形質転換体の T 1世代の炭水化物含量を示す。 図 1 3のパネル Aは、 AG P S発現抑制形質転換体の T 1世代の煙中ホルムァ ルデヒ ド量を示す。 パネル Bは、 AG P S発現抑制形質転換体の T 1世代の煙中 ァクロレイン量を示す。
図 14は、 AG P S発現抑制形質転換体の T 2世代の炭水化物含量を示す。 図 1 5のパネル Aは、 AG P S発現抑制形質転換体の T 2世代の煙中ホルムァ ルデヒ ド量を示す。 パネル Bは、 AG P S発現抑制形質転換体の T 2世代の煙中 ァクロレイン量を示す。
図 1 6は、 PCR増幅されたフラグメント 1および 2を示す。
図 1 7は、 ドナーベクター p S P 1 02— F B Pの構造を示す。
図 1 8は、 F B P a s e発現抑制形質転換体の T 0世代の F B P a s eの mR
NA発現量を示す。
図 1 9は、 F B P a s e発現抑制形質転換体の T 0世代の F B P a s eタンパ ク質の発現を示す。
図 20は、 FB P a s e発現抑制形質転換体の T 0世代の炭水化物含量を示す。 図 2 1は、 F B P a s e発現抑制形質転換体の T 1世代の F B P a s eの mR NA発現量を示す。
図 22は、 F B P a s e発現抑制形質転換体の T 1世代の炭水化物含量を示す。 図 23のパネル Αは、 F B P a s e発現抑制形質転換体の T 1世代の煙中ホル ムアルデヒ ド量を示す。 パネル Βは、 FB P a s e発現抑制形質転換体の T 1世 代の煙中ァクロレイン量を示す。 - 図 24は、 PCR増幅されたフラグメント 1および 2を示す。
図 25は、 ドナ一ベクター p S P 1 02— PG Iの構造を示す。
図 26は、 PG I発現抑制形質転換体の T 0世代の PG Iの mRNA発現量を 示す。
図 27は、 PG I発現抑制形質転換体の T 0世代の PG I活性染色を示す。 図 28は、 PG I発現抑制形質転換体の T O世代の炭水化物含量を示す。
図 29は、 PG I発現抑制形質転換体の T 1世代の PG Iの mRNA発現量を 示す。
図 30は、 PG I発現抑制形質転換体の T 1世代の PG Iタンパク質の発現を 示す。
図 3 1は、 PG I発現抑制形質転換体の T 1世代の炭水化物含量を示す。
図 32のパネル Aは、 PG I発現抑制形質転換体の T 1世代の煙中ホルムアル デヒ ド量を示す。 パネル Bは、 PG I発現抑制形質転換体の T 1世代の煙中ァク 口レイン量を示す。
図 33は、 PCR増幅されたフラグメント 1および 2を示す。
図 34は、 ドナーベクター p S P 1 02— i s o a my 1の構造を示す。
図 35は、 i s o amy l発現抑制形質転換体の T 0世代の i s o a my 1の mRNA発現量を示す。
図 36は、 i s o amy l発現抑制形質転換体の T 0世代の i s o a my 1タ ンパク質の発現を示す。
図 37は、 i s o amy 1発現抑制形質転換体の T 0世代の炭水化物含量を示 す。
図 38は、 i s o amy 1発現抑制形質転換体の T 1世代の i s o amy 1タ ンパク質の発現を示す。
図 39は、 i s o amy 1発現抑制形質転換体の T 1世代の炭水化物含量を示 す。
図 40は、 i s o a my 1発現抑制形質転換体の T 1世代の煙中ホルムアルデ ヒ ド量を示す。
図 4 1は、 AG P S発現抑制形質転換体の T 1世代の形態を示す。
図 42は、 PG I発現抑制形質転換体の T 1世代の形態を示す。
図 43は、 i s o amy 1発現抑制形質転換体の T 1世代の形態を示す。 図 44は、 AG P S発現抑制形質転換体の T 2世代の炭水化物含量を示す。 図 45は、 AG P S発現抑制形質転換体の T 2世代の膨こう性を示す。
図 46は、 AG P S発現抑制形質転換体の T 2世代および非形質転換体の炭水 化物含量を示す。
図 47は、 AG P S発現抑制形質転換体の T 2世代および非形質転換体の膨こ う性を示す。
図 48は、 AG P S発現抑制形質転換体の葉を用いて作製されたシガレツトの 煙中カルボニル類の増減割合を示す。
図 49は、 PG I発現抑制形質転換体の T 2世代の炭水化物含量を示す。 図 50は、 PG I発現抑制形質転換体の T 2世代の膨こう性を示す。
図 5 1は、 i s o amy 1発現抑制形質転換体の T 2世代の炭水化物含量を示 す。
図 52は、 i s o a my 1発現抑制形質転換体の T 2世代の膨こう性を示す。 発明を実施するための最良の形態
1. 本発明のタバコ属植物
本発明のタバコ属植物は、
( a ) 配列番号 53、 配列番号 54、 配列番号 55および配列番号 56からなる 群から選択されたァミノ酸配列からなるタンパク質、 ( b ) 配列番号 53、 配列番号 54、 配列番号 55および配列番号 56からなる 群から選択されたアミノ酸配列において 1もしくは数個のアミノ酸が欠失、 置換 もしくは付加されたァミノ酸配列からなり、 かつデンプン生合成に関与するタン パク質、 または
( c ) 配列番号 53、 配列番号 54、 配列番号 55および配列番号 56からなる 群から選択されたアミノ酸配列に対して 85%以上の同一性を有するアミノ酸配 列からなり、 かつデンプン生合成に関与するタンパク質
をコードする遺伝子の発現が抑制されるか、 または
(d) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列からなるポリヌクレオチド、
(e) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列に対して 85%以上の同一性を有し、 かつデンプン生合成に 関与するタンパク質をコードするポリヌクレオチド、
( f ) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列において 1もしくは数個の塩基が欠失、 置換もしくは付加さ れた塩基配列からなり、 かつデンプン生合成に関与するタンパク質をコードする ポリヌクレオチド、 または
(g) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジ ェントな条件でハイブリダィズし、 かつデンプン生合成に関与するタンパク質を コードするポリヌクレオチド
を含む遺伝子の発現が抑制されることを特徴とする。
配列番号 53で示されるアミノ酸配列を有するタンパク質は、 AGP S (AD
P— g l u c o s e p y r o p h o s p h o r y l a s e s ma l l s u b u n i t、 完全長塩基配列:配列番号 4) である。 AGP Sは、 デンプン合成 の基質である ADP— g 1 u c o s eを合成する反応を触媒する酵素: ADP— g l u c o s e p y r o o h o s p h o r y l a s e 、AG P a s e ) 構成 する大、 小のサブユニットのうち小サブユニットであり、 AGP a s eはデンプ ン合成の基質である ADP— g 1 u c o s eを供給する働きをしている。 配列番号 54で示されるアミノ酸配列を有するタンパク質は、 葉緑体型 FB P a s e (F r u c t o s e— 1, 6— b i s p h o s p h a t a s e、 基目己列: 配列番号 7) である。 FB P a s eは、 炭酸同化回路であるカルビン回路に必須 の酵素であり、 F r u c t o s e— 1, 6— b i s p h o s p h a t e (FB P) を、 デンプン合成への代謝経路の初発反応の基質である F r u c t o s e -6 - p h o s p h a t e (F 6 P) に不可逆的に変換する反応を触媒する。
配列番号 55で示されるアミノ酸配列を有するタンパク質は、 葉緑体型 PG I (P h o s p h o g l u c o s e i s ome r a s e、 ; ^全長"^ 酉己歹 U:酉己歹 U 番号 8) である。 PG Iは、 大気中の二酸化炭素を固定するカルビン回路からデ ンプン合成への代謝経路の初発反応である、 FB P a s eによりできた F 6 Pを G l u c o s e— 6_p h o s p h a t e (G 6 P) に可逆的に変換する反応を 触媒する。
配列番号 56で示されるアミノ酸配列を有するタンパク質は、 i s o amy l ( I s ome r a s e l、 完全長塩基配列:配列番号 1 2) である。 i s o a m y lは、 デンプンのうち、 分枝を多く持つグルコースポリマーであるアミ口べク チンのひ _ 1, 6.結合の枝分かれを切断する反応を触媒するとともに、 アミロぺ クチンの合成に重要であることが知られている。
上記 4つのタンパク質をコードする遺伝子の少なくとも 1つの発現を抑制すれ ば、 デンプンおよび糖類 (例えばショ糖、 グルコースおよびフルク トース) の合 成または蓄積が抑制され、 炭水化物の総量が低減されることによって、 タバコ燃 焼煙中のカルボ二ル類を低減させることが可能である。 また、 AG P S、 FB P a s e、 PG Iおよび i s o amy lに限らず、 カルビン回路からデンプン合成 への代謝経路に関与する少なく とも 1つの遺伝子の発現を低減させることによつ ても、 タバコ燃焼煙中のカルボ二ル類を低減させることが可能であると考えられ る。 さらには、 上記遺伝子の発現の抑制により、 タバコ属植物の膨こう性を向上 させることができる。
上記 4つのタンパク質をそれぞれコードする遺伝子は、
( a ) 配列番号 53、 配列番号 54、 配列番号 55および配列番号 56からなる 群から選択されたアミノ酸配列からなるタンパク質 ( b ) 配列番号 5 3、 配列番号 5 4、 配列番号 5 5および配列番号 5 6からなる 群から選択されたアミノ酸配列において 1もしくは数個のアミノ酸が欠失、 置換 もしくは付加されたアミノ酸配列からなり、 かつデンプン生合成に関与するタン パク質
( c ) 配列番号 5 3、 配列番号 5 4、 配列番号 5 5および配列番号 5 6からなる 群から選択されたアミノ酸配列に対して 8 5 %以上の同一性を有するアミノ酸配 列からなり、 かつデンプン生合成に関与するタンパク質
をコードする遺伝子を含み、デンプンを合成する代謝経路のうち、炭酸固定回路、 炭酸固定回路からデンプン合成への代謝経路につながる分岐点、 デンプン合成の 基質合成、 デンプンの構造修飾を含むアミ口べクチンの合成にわたる一連のデン プン合成経路を代表している。
ここで、 1もしくは数個のアミノ酸が欠失、 置換もしくは付加されたアミノ酸 配列とは、 配列番号 5 3、 5 4、 5 5または 5 6のァミノ酸配列の 1〜 1 0個、 好ましくは 1〜5個のアミノ酸が変異により欠失、 または他のアミノ酸に置換、 あるいは付加された配列をいう。 変異は、 人為的に導入された変異または天然に 存在する変異でもよい。
また、 配列番号 5 3、 5 4、 5 5または 5 6のアミノ酸配列に対して 8 5 %以 上の同一性を有するアミノ酸配列は、 好ましくは 9 0 %以上、 より好ましくは 9 5 %以上、 更に好ましくは 9 8 %以上、 9 9 %以上の同一性であることが望まし い。 配列の同一性は、 F A S T A検索や B L A S T検索により決定することがで さる。
また、 上記遺伝子は、
( d ) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列からなるポリヌクレオチド
( e ) 配列番号 4、 配列番号 7、 配列番号 8およぴ配列番号 1 2からなる群から 選択された塩基配列に対して 8 5 %以上の同一性を有し、 かつデンプン生合成に 関与するタンパク質をコードするポリヌクレオチド
( f ) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列において 1もしくは数個の塩基が欠失、 置換もしくは付加さ れた塩基配列からなり、 かつデンプン生合成に関与するタンパク質をコードする ポリヌクレオチド
(g) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列と相補的な塩基配列から—なるポリヌクレオチドとストリンジ ヱントな条件でハイブリダィズし、 かつデンプン生合成に関与するタンパク質を コードするポリヌクレオチド
を含む。 '
ここで、 1もしくは数個の塩基が欠失、置換もしくは付加された塩基配列とは、 配列番号 4、 7、 8または 1 2に示す塩基配列の 1〜 1 0個、 好ましくは 1〜 5 個の塩基が変異により欠失、 または他の塩基に置換、 あるいは付加された配列を いう。 変異は、 人為的に導入された変異または天然に存在する変異でもよい。 配列番号 4、 7、 8または 1 2に示す塩基配列に対して 85%以上の同一性を 有する塩基配列は、 好ましくは 90%以上、 より好ましくは 95%以上、 更に好 ましくは 98%以上、 99%以上の同一性であることが望ましい。 配列の同一性 は、 F AS TA検索や B LAST検索により決定することができる。
ハイブリダィゼーション条件は、 ハイブリダィズ可能であれば特に限定されな いが、 例えば、 0. 25M Na 2HP04、 p H 7. 2、 7%SDS、 1 mM E DTA、 1 Xデンハルト溶液からなる緩衝液中で 60°C、 好ましくは 65°C、 さ らに好ましくは 68 °Cの条件下で 1 6〜 24時間ハイブリダイズさせ、 さらに 2 0 mM Na 2HPO4、 p H 7. 2、 1 %SDS、 1 mM EDTAからなる緩 衝液中で 60 °C、 好ましくは 6 5 °C、 さらに好ましくは 68 °Cの条件下で 1 5分 間の洗浄を 2回実施する条件が好ましい。
上記 4つのタンパク質をそれぞれコードする遺伝子の発現の抑制には、 該遺伝 子の転写の抑制およびタンパク質への翻訳の抑制が含まれ、 遺伝子の発現の完全 な停止のみならず発現の減少も含まれる。 遺伝子が人為的または天然に変異、 破 壊されたり、 あるいは各種遺伝子工学的手法、 例えば RNA干渉法、 アンチセン ス法、 リボザィム法、共抑制法、転写因子を用いた方法などを用いることにより、 発現不能または抑制される。
上記 4つのタンパク質をそれぞれコードする遺伝子の発現を抑制してもしなく ても、 結果的に活性を抑制することになれば、 遺伝子の発現を抑制したことと同 じ効果が達成きれる。 例えば、 人工的あるは自然に変異が生じた変異体を選抜す ることにより、 活性に重要なァミノ酸部位が欠損あるいは置換した変異体を得る ことができる。これらの変異体は遺伝子配列に欠損あるいは置換が生じている力 遺伝子発現及びタンパク質発現は正常である場合がある (S h u e— Me i W a n g e t a 1. , Th e P l a n t J o u r n a l 1 99 7, 1 1
(5), 1 1 2 1— 1 1 26、 S c h e i b l e WR e t a 1. , P l a n t a 1 99 7, 203 (3), 304— 3 1 9 )。 遺伝子組換えの手法を用いる とすれば、 活性に重要なアミノ酸部位が欠損あるいは置換されるように配列を改 変した遺伝子を植物内で高発現させることによって達成可能である。 タンパク質 が複数個で高次構造を形成することによって活性を持つ場合は、 配列を改変した 遺伝子から作られたタンパク ,質が内生タンパク質と高次構造を形成することによ り、 内生タンパク質同士の高次構造形成が阻害され、 活性低下を引き起こすこと が可能である ( J o a n n a M. C r o s s e t a 1. , Th e P I a n t J o u r n a l 2005, P l a n t J . 4 1, 50 1— 5 1 1)。 本発明のタバコ属植物は、 植物、 特に乾燥された葉の燃焼煙中のカルボニル類 が低減することを特徴とする。 '
たばこ製品の燃焼煙中には多種多様な成分が存在することが知られており (G r e e n し e t. a 1. , 1 996, R e c e n t Ad v. T o b a c c o S c に 22 : 1 3 1— 304)、 これら燃焼煙中の成分は複雑に関係し ながら喫煙の満足感や香喫味に繋がると考えられている。 特にカルボ-ル類は、 煙の刺激性と関連すると考えられ、 具体的には、 例えばホルムアルデヒ ド、 ァセ トアルデヒ ド、 アセ トン、 ァクロレイン、 プロピオンアルデヒ ド、 クロ トンアル デヒ ド、 メチルェチルケトン、 ブチルアルデヒ ドが挙げられる。 本発明では、 こ れらのカルボ-ル類、 特にホルムアルデヒ ドとァクロレインの含量を有意に低減 することができた。 また、 カルボニル類以外にも、 炭素骨格を持つ化合物が低減 する可能性が考えられ、 そのような化合物として、 例えば Hy d r o q u i n o n e、 R e s o r c i n o l、 C a t e c h o l、 . P h e n o l、 m, p—し r e s o l、 o - C r e s o 1 といった煙中フエノーノレ化合物やベンツピレン、 C oが挙げちれる。
また、 煙中のカルボニル類の起源となる物質の 1つに、 タバコ属植物に含まれ るデンプンがある。
タバコ属植物のデンプンは、 葉の成熟過程において多量に蓄積されるが、 その デンプンは、 一般的な植物に確認されている、 日中一時的に葉に蓄えられ、 夜間 に分解される同化デンプンとは異なり、夜間に分解されないデンプンである(N. K. Ma t h e s o nら、 1 96 2年、 1 963年、 Au s t . J . B i o l . S c i . 1 5, 445— 458、 Au s t. J . B i o l . S c i . 1 6. 70
_ 76)。特にタバコ栽培においては花部を切除することから、葉における光合成 産物の花部への転流が抑制されるために、 成熟葉においては多量のデンプンが蓄 積される。
タバコの葉は、 乾燥 (黄色種の場合は黄色乾燥) されて、 製品の原料として使 用されるが、 この乾燥過程で、 葉の内容成分が大きく変化し、 例えばデンプンは ショ糖、グルコース、フルク トースといった糖に分解されることが知られている。 本発明においては、 デンプン +ショ糖 +グルコース +フルク トースの総量とし て低下していれば、 個々のどの成分が低下してもタバコ燃焼煙中のカルボニル類 を低減ざせることが可能である。 デンプンと 3糖 (ショ糖 +グルコース +フルク トース) に限らず、 それ以外の糖を含めて非構造性炭水化物についても低減させ ることができればタバコ燃焼煙中のカルボ二ル類を低減させることが可能と考え られる。 .
一般に、 たばこの燃焼煙中の成分の測定は、 刻んだ乾燥葉たばこを巻紙で巻い たものを I SO準拠の喫煙条件等で自動喫煙させた煙を捕集して行うことができ る。 より簡便に、 より少量のサンプルから燃焼煙中の成分を捕集、 測定する方法 として、 熱分解による方法が報告されており (F o o d Ch em i c a l T o x i c o l o g y. ; 42, 1409— 14 1 7)、 その方法によりカノレボニノレ 類の測定が可能であるが (F o o d Ch em i c a l T o x i c o l o g y 43, 559 _ 568.)、、これに限定されなレヽ。
なお、 本発明には、 本発明のタバコ属植物の組織または細胞 (例えば根、 茎、 葉、 花、 種子、 胚、 胚珠、 子房、 茎頂、 葯、 花粉、 カルス、 プロ トプラスト、 懸 濁培養細胞など) も包含される。
2 . 遺伝子発現抑制用ベクター
本発明の遺伝子発現抑制用ベクターは、
( a ) 配列番号 5 3、 配列番号 5 4、 配列番号 5 5および配列番号 5 6からなる 群から選択されたァミノ酸配列からなるタンパク質、
( b ) 配列番号 5 3、 配列番号 5 4、 配列番号 5 5および配列番号 5 6からなる 群から選択されたアミノ酸配列において 1もしくは数個のアミノ酸が欠失、 置換 もしくは付加されたアミノ酸配列からなり、 かつデンプン生合成に関与するタン パク質、 または
( c ) 配列番号 5 3、 配列番号 5 4、 配列番号 5 5および配列番号 5 6からなる 群から選択されたアミノ酸配列に対して 8 5 %以上の同一性を有するアミノ酸配 列からなり、 かつデンプン生合成に関与するタンパク質
をコードする遺伝子、 あるいは
( d ) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列からなるポリヌクレオチド、
( e ) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列に対して 8 5 %以上の同一性を有し、 かつデンプン生合成に 関与するタンパク質をコードするポリヌクレオチド、
( f ) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列において 1もしくは数個の塩基が欠失、 置換もしくは付加さ れた塩基配列からなり、 かつデンプン生合成に関与するタンパク質をコードする ポリヌクレオチド、 または
( g ) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジ ェントな条件でハイブリダィズし、 かつデンプン生合成に関与するタンパク質を コードするポリヌクレオチド
の発現を抑制するための核酸分子を適当なベクターに挿入したものである。 本発明のベクターは、 例えば、 配列番号 4に示す塩基配列、 配列番号 7に示す 塩基配列、 配列番号 8に示す塩基配列、 配列番号 1 2に示す塩基配列、 それらの 配列に対して 90%以上の同一性を有する塩基配列、 およびそれらの塩基配列の 20塩基以上の部分配列からなる群から選択される塩基配列を含む。 このような ベクターとして、 アンチセンスベクターまたは RN A干渉誘導ベクターなどがあ る。
アンチセンスベクターとは、 アンチセンス法にて上記 4つのタンパク質 (AG P S、 FB P a s e、 PG I、 i s o a my 1 ) のいずれかをコードする遺伝子、 その変異体または相同体の発現を抑制する核酸分子を含むベクターをいう。 相同 体とは、 上記 4つのタンパク質のいずれかをコードする遺伝子に対応する遺伝子 であって、 タバコ属植物品種間で、 またはタバコ属植物以外の植物で、 異なる塩 基配列を有する遺伝子をいう。
アンチセンス法とは、 目的遺伝子から転写された mRN Aと相補的なアンチセ ンス RN Aを発現させて、 該アンチセンス RN Aを目的遺伝子と相補的に結合さ せ、 目的遺伝子の転写を妨げ、 その結果として該遺伝子の発現を抑制する方法を いう。 具体的には、 植物で機能するプロモーターの下流に、 上記 4つのタンパク 質のいずれかをコードする遺伝子、 その変異体または相同体、 あるいはそれらの 断片をアンチセンス方向につないで植物細胞または組織に導入すると、 上記 mR N Aと相補的なアンチセンス RN Aを産生することができる。
アンチセンスベクターに導入する上記 4つのタンパク質のいずれかをコードす る遺伝子、 その変異体または相同体の発現を抑制する核酸分子は、 例えば、 上記
4つのタンパク質のいずれかをコードする遺伝子の塩基配列 (配列番号 4、 7、
8または 1 2) の全長のアンチセンス核酸分子であってもよいが、 それらの塩基 配列に対して 90%以上、 より好ましくは 95%以上、 更に好ましくは 98%以 上、 99%以上の同一性を有する配列のアンチセンス核酸分子でもよく、 これら の核酸分子の塩基配列中の連続した 20塩基以上から全長未満、 好ましくは 1 0
0塩基以上から全長未満、 より好ましくは 500塩基以上から全長未満からなる 塩基配列を有するアンチセンス核酸分子でもよい。 通常用いられるアンチセンス
DNAの長さは 5 k bよりも短く、好ましくは 2. 5 k bよりも短い(参考文献: 特開昭 60— 232092、 特開 2000— 23685)。 RN A干渉誘導ベクターは、 RN A干渉の引き金となる d s RNA (2本鎖1 NA、 d o u b l e— s t r a n d RNA) の铸型となる DN A (以下トリガ 一という) を含むベクターである。 該ベクターを用いて細胞内で形成された d s RNAは、 2本鎖 RNA特異的な RN a s e (D i c e r) により約 2 1〜 25 塩基の s i RNA( s m a 1 1 i n t e r f e r i n g RNA)に切断され、 その後、 R I S C (RNA- i n d u c e d s i l e n c i n g c o m p 1 e x) の一部として複合体を形成し、 標的 mRNAを相同性により認識 ·分解す る。
植物の RN A干渉では、 ヘアピン型 d s RNAとして発現するベクターが好適 に利用される。これは例えば十数〜数十塩基または数 ^〜数百塩基のリンカー(ス ぺーサ一) 配列の両端に I R ( i n v e r t e d r e p e a t :逆位反復) と なるように RNA干渉トリガ一を配置し、 植物体内で高発現するプロモーターに よりヘアピン型 d s RNAを転写し、 細胞内で s i RNAを産生するシステムで ある。 また、 s i RNA発現システムには上記のようなヘアピンタイプのほか、 タンデムタイプもある。 タンデムタイプでは、 2つのプロモーターからセンス R NAとアンチセンス RNAが転写され、 細胞内でハイブリダィズして s i RNA が産生される。 トリガーの配列は、 例えば、 配列番号 4、 7、 8または 1 2の塩 基配列またはそれらの配列に対して 90%以上、 より好ましくは 95%以上、 更 に好ましくは 98%以上、 99%以上の同一性を有する配列の連続した 20塩基 以上、 好ましくは 1 00塩基以上、 さらに好ましくは 200塩基以上を含む塩基 配列およびその相補配列が用いられる (参考文献: WO 1 999ノ 53050、 WO 1 999/326 1 9 A, WO 200 1/75 1 64A, Ch u a n g C F &M e y e r ow i t z EM : P r o c Na t l Ac a d S c i U S A 9 7 : 4985, 2000)。
本発明において用いる RNA干渉誘導ベクターとしては、 配列番号 4、 7、 8 または 1 2に示す塩基配列のセンス鎖とそのセンス鎖に相補的なアンチセンス鎖 を、スぺーサー(ループを形成する配列) をはさんで I R ( i n v e r t e d r e p e a t :逆位反復) となるように同一のベクターに含むものが好ましい。 例 えば、配列番号 14および 3 (AGP S)、配列番号 1 7および 7 (F B P a s e)、 配列番号 1 9および 22 ( P G I )、 配列番号 25および 1 1 ( i s o amy l) の塩基配列を、 それぞれベクターに含めることができる。
ここで、 ベクターとしては、 ァグロパクテリゥムを介して植物に目的遺伝子を 導入することができる、 p B I系、 p PZ P系、 p SMA系のベクターなどが好 適に用いられる。 特に、 バイナリーベクター系 (p B I 1 2 1、 p B I 1 0 1、 p B I 22 1、 p B I 2 1 1 3、 p B I 1 0 1. 2等)、または中間ベクター系(p LGV23Ne o、 p NCAT等) のプラスミ ドが好ましい。 バイナリーベクタ 一は T— DNA領域の右側ボーダー (RB) と左側ボーダー (LB) を含み、 両 ボーダー間に目的遺伝子とともにプロモーターや植物選抜マーカーなどのエレメ ントを含むことができ、 通常、 大腸菌 (E s c h e r i c h i a c o l i ) お よびァグロパクテリゥムにおいて複製可能なシャトルベクターで、 バイナリーべ クタ一を保持するァグロバクテリムを植物に感染させると、 ベクター上にある L B配列と R B配列より成るボーダー配列で囲まれた部分の D N Aを植物核 D N A に組み込むことが可能である (EMBO J o u r n a l , 1 0 (3), 6 97— 704 (1 99 1))。 一方、 p UC系のベクターは、 植物に遺伝子を直接導入す ることができ、 例えば、 pUC 1 8、 pUC 1 9、 pUC 9等が挙げられる。 ま た、 力リフラワーモザィクウイ/レス (C a MV)、 ィンゲンマメモザィクウイ^^ス (BGMV)、 タバコモザイクウィルス (TMV) 等の植物ウィルスベクターも用 いることができる。
バイナリーベクター系プラスミ ドを用いる場合、 上記のバイナリーベクターの 境界配列 (LB、 RB) 間に、 目的遺伝子を挿入し、 この組換えベクターを大腸 菌中で増幅する。 次いで、 増幅した組換えベクターをァグロバクテリウム · ッメ ファシエンス C 58、 LBA4404、 EHA 1 0 1、 EHA 1 05等に、 凍結 融解法、 エレク ト口ポレーシヨン法等で導入し、 該ァグロバタテリゥムを植物の 形質転換に用いる。
また、 .上記の方法以外にも、 三者接合法 (Nu c 1 e i c Ac i d s R e s e a r c h, 1 2 : 8 7 1 1 (1 984)) によって、 目的遺伝子を含む植物感 染用ァグロパクテリゥムを調製することができる。 すなわち、 目的遺伝子を含む プラスミ ドを保有する大腸菌、 ヘルパープラスミ ド (例えば、 p RK20 1 3等) を保有する大腸菌、 およびァグロパクテリゥムを混合培養し、 リファンピシリン およびカナマイシンを含む培地上で培養することにより植物感染用の接合体ァグ ロバクテリゥムを得ることができる。
ベクターに目的遺伝子を挿入するには、 まず、 精製された DNAを適当な制限 .酵素で切断し、 適当なベクター DNAの制限酵素部位またはマルチクローニング サイ トに挿入してベクターに連結する方法などが採用される。
また、 ベクターには、 目的遺伝子のほかに、 例えばプロモーター、 ターミネ一 ター、 ポリ A付加シグナル、 選抜マーカー遺伝子などを配置することができる。 プロモーターとしては、 植物体内まだは植物細胞において機能し、 植物の特定 の組織内あるいは特定の発育段階において発現を導くことのできる DNAであれ ば、 植物由来のものでなくてもよい。 具体例としては、 カリフラワーモザイクゥ ィルス (C aMV) 35 Sプロモーター、 ノパリン合成酵素遺伝子のプロモータ 一 (P n o s)、 トウモロコシ由来ュビキチンプロモーター、 イネ由来のァクチン プロモーター、 タバコ由来 PRタンパク質プロモーター等が挙げられる。
ターミネータ一としては、 植物体内または植物細胞において機能し、 プロモー ターにより転写された遺伝子の転写を終結できる配列であればよく、 例えば、 ノ パリン合成酵素 (NOS) 遺伝子のターミネータ一、 ォク トピン合成酵素 (OC S) 遺伝子のターミネータ一、 C aMV 35 S ターミネータ一等が挙げられ る。
選抜マーカー遺伝子としては、 例えば、 薬剤耐性遺伝子 (テトラサイクリン耐 性遺伝子、 アンピシリン耐性遺伝子、 カナマイシン耐性遺伝子、 ハイグロマイシ ン耐性遺伝子、 スぺクチノマイシン耐性遺伝子、 クロラムフヱニコール耐性遺伝 子、 ネオマイシン耐性遺伝子など)、 蛍光または発光レポーター遺伝子 (ルシフエ ラーゼ、 i3 _ガラク トシダーゼ、 ;3—ダルクロニターゼ (GUS)、 グリーンフル ォレツセンスプロテイン (GFP) など)、 ネオマイシンホスホ トランスフェラー ゼ I I (NPT I 1 )、 ジヒ ドロ葉酸レダクダーゼなどの酵素遺伝子が挙げられ る。
また、 選抜マーカー遺伝子は、 上記のように目的遺伝子とともに同一のプラス ミ ドに連結させて組換えベクターを調製してもよいが、 あるいは、 選抜マーカー 遺伝子をプラスミ ドに連結して得られる組換えベクターと、 目的遺伝子をプラス ミ ドに連結して得られる組換えベクターとを別々に調製してもよい。 別々に調製 した場合は、 各ベクターを宿主にコトランスフエク ト (共導入) する。
本発明で使用可能なバイナリーベクターの構築例は、 後述の実施例 1に示され ている。 即ち、 2個の 1 o X Pを含むプラスミ ド p DNR— 1 (CLONTEC H社) の 1 o X P間に 35 Sプロモーター、 NO Sターミネータ一を挿入したプ ラスミ ド p S P 1 02 (図 3) を作製し、 NO Sターミネータ一と 35 Sプロモ 一ターの間に RN A iのトリガーとなる 2種の目的 DN A断片を間にスぺーサー を挟んで互いに逆向きに配置するようにトリガーを揷入し (図 4、 プラスミ ド p S P 1 02_AG P S)、 この RNA iヘアピン型 d's RN A発現カセッ トを、 C r e - 1 o x組換え (米国特許第 6, 4 1 0, 3 1 7号) によって、 プラスミ ド p S P 1 06 (図 5) に組み換えて、 バイナリーベクター p S P 1 06— AGP S (図 6) を作製することができる。 同様に、 プラスミ ド p S P 1 02— F B P (図 1 7)、 p S P 1 02_P G I (図 25) および p S P 1 02_i s o amy 1 (図 34) を作製することができる。
2個のトリガーは、 互いに向き合う方向でもよいし、 あるいは互いに背を向け 合う方向でもよい。 またスぺーサ一の配列は、 ヘアピンを形成する配列であれば いかなるものでもよいが、 例えば r a s遺伝子配列、 イントロン配列を例示する ことができ、 そのサイズは例えば数 ■"〜数百ベース程度である。
3. 本発明のタバコ属植物の作製方法
本発明のタバコ属植物の作製方法は、 タバコ属植物の細胞または組織を、 RN A干渉法、 アンチセンス法、 遺伝子破壊法、 人為的突然変異法、 リボザィム法、 共抑制法及び転写因子を用いる方法から選択されるいずれかの方法を用いて、 上 記 (a) 〜 (c) のタンパク質をコードする遺伝子および (d) 〜 (g) のポリ ヌクレオチドを含む遺伝子のいずれかの発現を抑制し、 植物体を再生することを 含む。
タバコ属植物は、 例えば、 ニコチアナ ' トメントシフオルミス (N i c o t i a n a t ome n t o s i f o r m i s)、 二コチアナ ·シノレべス ト リス (N i c o t i a n a s y l v e s t r i s)、 ニコチアナ ·ノレスティ力 (N i c o t i a n a r u s t i c a八 ニコチ ナ 'タノくカム (N i c o t i a n a t a b a c um)、 ニコチアナ ·プルムバギニフォリア (N i c o t i a n a p 1 u m b a g i n i f o l i a)、. ノヽナタノく: 3 (N i c o t i a n a x s a n d e r a e )、マノレ タノくコ (N i c o t i a n a r u s t i c a)などが挙げられ、 特に限定されないが、 ニコチアナ ' タパカムが好ましい。 また品種については、 紙卷製品の主原料となる黄色種、 紙卷製品の緩和料となるバーレ一種、 葉巻たば この原料に用いられる葉巻種、 オリエント地域で栽培され独自の香気を持つオリ ェント種、 たばこ種子が日本に伝来して以来、 各地の気候風土に適応し分化した 在来種を含む。
また本発明のタバコ属植物を作製するための植物材料としては、 植物体および 植物組織 (例えば根、 茎、 葉、 種子、 胚、 胚珠、 子房、 茎頂、 葯、 花粉等) やそ の切片、 細胞、 カルス、 それを酵素処置して細胞壁を除いたプロプラスト、 懸濁 培養細胞等の植物培養細胞が挙げられる。
上記遺伝子の発現を抑制するには、 種々の遺伝子工学的手法を用いることがで き、 特に限定されないが、 たとえば RNA干渉法、 アンチセンス法、 遺伝子破壊 法、 人為的突然変異法、 リボザィム法、 共抑制法及び転写因子を用いる方法を挙 げることができる。
RNA干渉法は、 上記 RN A干渉誘導ベクター、 または、 例えば配列番号 4、 7、 8もしくは 1 2に示されるポリヌクレオチドあるいは配列番号 4、 7、 8も しくは 1 2と 90%以上同一性を有するポリヌクレオチドに相同な 2重鎖 RN A (その中の連続した例えば約 1 5〜35塩基の 2重鎖 RNAが好ましい) を植物 細胞または組織に導入して行うことができる。
また、 アンチセンス法は、 例えば上記アンチセンスベクターを植物細胞または 組織に導入することにより、 行うことができる。
これらのベクターを導入するには、 例えばァグロバタテリゥム法、 エレク ト口 ポレーシヨン法、 パーティクルガン法、 P EG—リン酸カルシウム法、 リポソ一 ム法、 マイクロインジェクション法が挙げられ、 特に限定されないが、 ァグロバ クテリゥム法が好ましい。 ァグロパクテリゥム法を用いる場合は、 プロ トプラス トを用いる場合、 培養細胞を用いる場合、 組織片 (葉片、 カルスなど) を用いる 場合がある。
プロ トプラストを用いる場合は、 T iプラスミ ドをもつァグロパクテリゥムと 共存培養する方法、 スフエロプラスト化したァグロバグテリゥムと融合する方法
(スフエロプラスト法)、培養細胞を用いる場合は、 T iプラスミ ドをもつァグロ パクテリゥムと共存培養する方法、 組織片を用いる場合は、 対象植物の無菌培養 葉片 (リーフディスク) に感染させる方法やカルスに感染させる等により行うこ とができる。
遺伝子が植物体に組み込まれたか否かの確認は、 PCR法、 サザンハイブリダ ィゼーシヨン法、 ノーザンハイブリダィゼーシヨン法、 ウェスタンブロッテイン グ法等により行うことができる。 例えば、 形質転換植物体から DN Aを調製し、 DNA特異的プライマーを設計して P CRを行う。 PCRを行った後は、 増幅産 物について電気泳動を行い、 臭化工チジゥム、 SYBR G r e e n液等により 染色し、 そして増幅産物を 1本のバンドとして検出し、 形質転換されたことを確 認することができる。 また、 予め蛍光色素等により標識したプライマーを用いて PCRを行い、 増幅産物を検出することもできる。 さらに、 マイクロプレート等 の固相に増幅産物を結合させ、 蛍光または酵素反応等により増幅産物を確認した り、 リアルタイム P CRで比較 C t法を用いて増幅率に基づいた DNAの定量を 行ってもよレヽ。
あるいは、 上述の種々のレポーター遺伝子を目的遺伝子の下流域に連結したベ クタ一を作製し、 該ベクター導入したァグロバクテリムを用いて上記と同様にし て植物を形質転換させ、 該レポーター遺伝子の発現を測定することにより確認し てもよい。
遺伝子破壊法は、 各種トランスポゾン、 T— DNAなどを用いて行うことがで さる。
トランスポゾンを利用した遺伝子破壊は、 トランスポゾンのゲノムへの遺伝子 挿入機構を利用した方法である。 特に内在性のトランスポゾンを用いる方法は、 非組換え体として、 一度に多数の遺伝子破壊系統を作出することができる点で優 れている。 タバコ属植物のトランスポゾンの例はレトロ トランスポゾン (LTR - r e t r o t r a n s p o s o n) T t o 1が知られており、 T t o 1を用レヽ た遺伝子破壊法が報告されている (P l a n t J . 28, 307— 3 1 7, 2 00 1., WO 00/07 1 6 99)。
T— DNAを利用した遺伝子破壊は、 標的遺伝子の中に薬剤耐性遺伝子などの 外来遺伝子を組込み、 これを右ボーダー (RB) と左ボーダー (LB) の間に挿 入した T— DNAベクターを作製し、 ァグロパクテリゥム法にてタバコ属植物を 形質転換する方法である。
人為的突然変異法は、 例えば、 各種放射線 (電磁波、 紫外線、 X線、 γ線、 粒 子線、 中性子線、 α線、 ]3線、 電子、 イオンビームなど) を植物に照射すること により、 また各種変異原性化学物質 (アルキル化剤、 核酸塩基アナログ、 アジ化 ナトリウムなど) で処理することにより、 行うことができる。
共抑制法は、 アンチセンス法が標的とする遺伝子のアンチセンス配列を導入、 発現させるのに対し、 センス配列を導入、 発現させることにより、 センス配列に 相同な遺伝子の発現を抑制する方法である (Smy t h DR : C u r r B i o 1 7 : R 793 , 1 99 7, Ma r t i e n s s e n R : C u r r B i o 1 6 : 8 1 0, 1 996)。 一般的に、 アンチセンス法に比べて遺伝子発現抑 制程度が高く、 RNA依存型RNAポリメラーゼで導入遺伝子の 2本鎖 RN Aが 形成された後は、 RNA i と同様のメカニズムで RN Aの分解が起こると考えら れている。 共抑制に用いる遺伝子は、 標的遺伝子と完全に同一である必要はない が、 少なく とも 70 %以上、 好ましくは 8, 0 %以上、 さらに好ましくは 90 %以 上、 最も好ましくは 95%以上の配列の同一性を有する。 また、 配列の同一性は 上述した手法により決定できる。
リボザィムとは触媒活性を有する RN A分子の総称であるが、 特に本明細書で は RN Aを部位特異的に切断するよう設計された RN A分子のことを指す。 リボ ザィムには、グループ Iイントロン型や RN a s e Pに含まれる M 1 R N Aのよ うに 400ヌクレオチド以上の大きさのものもあるが、 ハンマーへッド型ゃヘア ピン型と呼ばれる 40ヌクレオチド程度の活性ドメインを有するものもある (小 泉誠および大塚栄子:蛋白質核酸酵素, 35 : 2 1 9 1, 1 990)。 標的を切断 できるように設計されたリボザィムは、 植物細胞中で転写される.ように、 カリフ ラヮーモザィクウィルスの 35 Sプロモーターなどのプロモーターおよび転写終 結配列に連結される。 このとき、 転写された RNAの 5 ' 端や 3, 端に余分な配 列が付加されていると、 リボザィムの活性が失われることがあるが、 こういった 場合は、 転写されたリボザィムを含む RNAからリボザィム部分だけを正確に切 り出すために、 リボザィム部分の 5, 側や 3 ' 側にシスに働く^のトリ ミングリ ボザィム を配置させることも可能である (T a i r a K, e t a 1 : P r o t e i n En g 3 : 733, 1 990、 D z i a n o t t AM & B u j a r s k i J J : P r o c Na t l Ac a d S c i USA 86 : 4823, 1 989, G r o s s h a n s C A & C e c hTR : Nu c l Ac i d s R e s 1 9 : 38 75, 1 99 1、 T a i r a K, e t a 1 : N u c 1 Ac i d s R e s 1 9 : 5 1 25, 1 99 1)。 また、 このよ うな構成単位をタンデムに並べ、 標的遺伝子内の複数の部位を切断できるように することで、 より効果を高めることもできる (Yu y a m a N, e t a 1 : B i o c h em B i o p h y s R e s C o mm u n 1 86 : 1 27 1 , 1 992)。 このように、 リボザィムを用いて本発明における標的遺伝子の転写産 物を特異的に切断することで、 該遺伝子の発現を抑制することができる。
転写因子を用いる方法は、 標的遺伝子の発現を調節する転写因子の発現を増減 させることにより、 間接的に標的遺伝子の発現を増減させる方法である。 転写因 子は標的遺伝子のプロモーター領域の特定配列 (シスエレメント) に結合するこ とにより、 当該遺伝子の発現をコントロールする。 例えば、 転写因子を発現させ ることによって、 代謝遺伝子の遺伝子発現を抑制することが可能である (P 1 a n t Mo l e c u l a r B i o l o g y 2006 62 : 809-823), 上記遺伝子工学的手法において植物組織または細胞を材料とした場合は、 得ら れた植物組織または細胞から既知の組織培養法により器官または個体を再生させ ればよい。 このような操作は、 植物細胞から植物体への再生方法として一般的に 知られている方法により、 当業者であれば容易に行うことができる。 植物細胞か ら植物体への再生については、 例えば、 以下のように行うことができる。
まず、 形質転換の対象とする植物材料として植物組織またはプロ トプラストを 用いた場合、 これらを無機要素、 ビタミン、炭素源、エネルギー源としての糖類、 植物生長調節物質 (オーキシン、 サイ トカイニン等の植物ホルモン)'等を加えて 滅菌したカルス形成用培地中で培養し、 不定形に増殖する脱分化したカルスを形 成させる (以下 「カルス誘導」 という)。 このように形成されたカルスをォーキシ ン等の植物生長調節物質を含む新しい培地に移しかえて更に増殖 (継代培養) さ せる。
カルス誘導は寒天等の固型培地で行い、 継代培養は例えば液体培養で行うと、 それぞれの培養を効率良くかつ大量に行うことができる。.次に、 上記の継代培養 により増殖したカルスを適当な条件下で培養することにより器官の再分化を誘導 し (以下、 「再分化誘導」 という)、 最終的に完全な植物体を再生させる。 再分化 誘導は、 培地におけるオーキシンやサイ トカイニン等の植物生長調節物質、 炭素 源等の各種成分の種類や量、 光、 温度等を適切に設定することにより行うことが できる。 かかる再分化誘導により、 不定胚、 不定根、 不定芽、 不定茎葉等が形成 され、 更に完全な植物体へと育成させる。
なお、 本発明の方法により作製されたタバコ属植物は、 形質転換処理を施した 再分化当代である 「T O世代」 のほか、 Τ 0世代の植物を母本として、 その植物 の種子から得られた後代である 「Τ 1世代」、薬剤選抜あるいはサザン法等による 解析により トランスジエニックであることが判明した 「Τ 1世代」 植物の花を自 家受粉して得られる次世代 (Τ 2世代) などの後代植物をも含むものとする。 これらのタバコ属植物、またはその葉をタバコ製品の原料として、シガレツト、 パイプタバコ、 葉巻などの各種タバコ製品を製造することができる。
また、 本発明のタバコ属植物でタバコ製品を製造することにより、 シガレット 製造に関わる重要な因子である葉たばこ原料の膨こう性を向上させることができ る。 膨こう性とは、 填充効果を表す刻みの圧縮特性であって、 紙卷たばこの製造 作業においては原料使用量を左右する重要な性質である。 1 g当たりの容積で表 される、 試料の物性を示す一つの指標であり、 一定の試料重量に対して、 一定の 時間及び負荷条件を与えた場合の容積である。 例えば、 膨こう性が高ければ、 1 本のシガレツトを製造するために必要な原料使用量が少なくて済む。 1本当たり に充填する原料が少なければ、 1本当たりに発生する燃焼煙中成分の低減も期待 できる。 以下、 実施例により本発明を具体的に説明するが、 これらの実施例は本発明を 限定するものではない。 ' 実施例
[実 M例 1] ADP— g l u c o s e p y r o p h o s p h o r y l a s e s ma l l s u b u n i t (A GP S)
(1) 遺伝子の単離
全 RNAおよび P CRクローニングに用いる铸型の調製は以下の通り行った。 鉢上げ後約二ヶ月のタバコ品種 (つくば 1号) から、 直径約 1 0 mmのリーフ ディスクをポンチで打ち抜き、 RNA 1 a t e r (Amb i o n社) 中で保存し たものを RNA調製の材料とした。 全 RNAは RN e a s y P l a n t M i n i K i t (Q I AG EN社) を用いて抽出し、 さらに、 Omn i s c r i p t RT K i t (Q I AGEN社) を用いて P C Rクローニングの铸型となる 逆転写反応産物を得た。
ADP— g l u c o s e p y r o p h o s p h o r y l a s e s ma l l s u b u n i t (AGP S) をコードする既知の mRN A (Ac c e s s i o n No. L 4 1 1 26、 X 6 1 1 86 ) を基に、 配列番号 1 (AGP S_F 3) お よび配列番号 2 (AGP S_R 1) に示す特異的なオリゴプライマーを設計して 化学合成した。
AG P S遺伝子断片のクローニングは、 配列番号 1のプライマーと配列番号 2 のプライマーの組み合わせを用いて、 上述の逆転^反応産物を铸型にし、 95°C 2分の後、 95°C30秒、 65 °C 2分で 35サイクル、 72°Cでさらに 1 0分反 応させる P CR増幅により得た。 P CRには、 P f uU 1 t r a ΤΜ H i g h — F i d e l i t y D N A P o l yme r a s e ( s t r a t a g e n e 社) および G e n e Am p TM PCR S y s t em 9 700 (A p p 1 i e d B i o s y s t e m s社) を用いた。 P CR産物を 1. 5%ァガロースゲ ルで電気泳動したところ、 約 500 b pのバンドが確認できた。
次に、 P CR産物をクローニングベクター p C R 4 B l u n t— TOPO (登 録商標、 I n V i t r o g e n e社) に挿入し、 大腸菌 TOP 1 0に形質転換し て LB (5 Omg/ Iアンピシリ ンを含む) 寒天培地上で培養した。 さらに、 得 られたコロニーの約 1 0個を LB ( 50 m gZ 1アンピシリンを含む) 液体培地 中で終夜培養し、 Q I Ap r e p S p i n M i n i p r e p K i t (Q I AGEN社) を用いてプラスミ ド DNAを精製し、 シークェンス解析の铸型とし た。シークェンス解析は, B i g D y e TM T e r m i n a t o r v 3. 1 C y c l e S e q u e n c i n g K i t (Ap p l i e d B i o s y s t e m s社) および 3 700 DNA An a l y z e r (Ap p l i e d B i o s y s t em s社) を用いて、 キッ トおよび装置の指示書に従って行った。 この ようにして配列番号 3 (AGP S— F 3 R 1) に示す 5 1 5塩基からなる D N A 断片を含むプラスミ ド p CR 4— AG P S— F 3 R 1を得た。 また、 AGP S遺 伝子の完全長クローンも出願人保有の c DNAライブラリ一から相同性検索によ り得ることができた。完全長 c DNAクローン NGRL 0078— 1— B 04は、 上述の配列番号 3の完全長と考えられる配列番号 4に示す c DNAを含んでいた。
(2) ベクター構築
逆向反復配列を含む DN A構造物の構築には、 pUC 1 8の H i n d i I I -
E c o R I間を改変し、 マルチクローニングサイ ト 2 (MC S 2)、 スぺーサー配 列、 マルチクローニングサイ ト 1 (MC S 1) の順で配置した p S P 1 04 (図
1 ) を利用した。 すなわち、 図 1に示す様にして、 p S P 1 04の MC S 1にフ ラグメント 1を挿入し、 次に、 MC S 2にフラグメント 1と相補なフラグメント
2を導入することにより、 行った。 AG P S遺伝子に相同であるフラグメント 1
(配列番号 14) は、 まず、 B a mH I認識配列を付与した配列番号 1 5 (AG
P S— F— B amH I ) と配列番号 1 6 (AG P S_R_S p h i ) に示すプラ イマ一を用いて、 95 °C 2分の後、 95°C30秒、 60 °C 2分で 30サイクル、
72°Cでさらに 1 0分反応させることによって得た PCR産物を制限酵素 B am
H Iおよび S p h Iを用いて消化することによって調製した(図 2)。 フラグメン ト 2は、 配列番号 3 (AGP S— F 3 R 1) と同一の配列を含んでおり、 プラス ミ ド p CR4— AGP S— F 3 R 1を制限酵素 N o t Iおよび P s t Iを用いて 消化することによって調製した (図 2)。 このようにして作製したフラグメント 1
(配列番号 14) およびフラグメント 2 (配列番号 3) を、 制限酵素 B amH I および S p h Iで二重消化した p S P 1 04の MC S 1に挿入し、 さらに、 フラ グメント 2を制限酵素 N o t Iおよび P s t Iで二重消化した MC S 2に揷入す ることによって、 AG P S遺伝子の部分配列が逆向反復となる DN A構造物を含 むプラスミ ド p S P 1 04— AG P S— F Rを構築した。
上記のようにして構築した逆向反復配列を含む DN A構造物を植物で発現させ るための発現カセットの構築は、 C r e _ 1 o x P組換えのためのドナーべクタ 一 pDNR— 1 (〇 1 。 11 1 6 。 11社) の^1 1 11 {1 1 1 1認識部位および E c o R I認識部位の間に、 35 Sプロモーター、 マルチクローニングサイ ト (Xh o I、 N a e I、 S p h l、 S a c 1)、 NOSターミネーターの順で挿入した p S P 1 02 (図 3) を用いて行った。 すなわち、 プラスミ ド p S P 1 04_AG P S— FRを制限酵素 Xh o Iおよび S p h Iで二重消化することによって得た、 逆向反復配列を含む DN A構造物を p S P 1 02の X h o I— S p h I間に揷入 し、 プラスミ ド p S P 1 02— AGP S (図 4) を作製した。
上記のようにして構築した、 プラスミ ド p S P 1 02— AGP S上の発現カセ ッ トを含む 2個の 1 o X P間の断片を、 C r e _ 1 o x組換え (S a u e , 1 9 94, Cu r r . Op i n. B i o t e c h n o l . 5 : 52 1 - 527 ; Ab r em s k i e t a 1. , 1 984, J . B i o l . Ch em. 259 : 1 5 09 - 1 5 14) を利用してバイナリーベクター p S P 1 06 (図 5) 上の 1 o x P部位に載せ替えることにより、 バイナリーベクター p S P 1 06— AGP S を作製した (図 6)。 前記バイナリーベクター p S P 1 06 (図 5) は、 p B I 1 2 1 (C l o n t e c h社) の H i n d I I I認識部位に p r oK— Ι ο χ Ρ断i c r e a t o r Ac c e p t o r . Ve c t o r C o n s t r u c t i o n K i t、 C l o n t e c h社) を導入し、 さらに、 GU S遺伝子を G F P 遺伝子に置換して作製したものである。また、 C r e - 1 o x組換えは C r e R e c omb i n a s e k i t (C l o n t e c h社) を用レヽ、 その指示書に従 つて行った。
(3) 形質転換および閉鎖系温室での栽培
(i)ァグロパクテリゥム法を用いた形質転換
温室で 4号素焼き鉢に移植してから約 1 0日目のつくば 1号の最上位展開葉よ り採取した葉を、 有効塩素 1%の次亜塩素酸ナトリウム溶液 (Twe e n 20 を数滴 ZL加える) で約 5分間表面殺菌を行い、 滅菌水で 3回洗浄した後、 メス を用いて約 5mm角の葉片を調製した。 この葉片と各コンストラク トを導入した Ag r o b a c t e r i um t ume f a c i e n s約 1 08細胞と ¾ M u r a s h i g e a n d S k o o gの無機塩類とシユークロース 30 g Z L力、ら 成る液体培地中で約 48時間共存培養を行った。 なお、 コントロール (トリガー とスぺーサーを含まず、 GF P遺伝子と n p t I I遺伝子のみ発現させるベクタ 一を使用) も同時並行して共存培養を行う。 その後、 葉片^セフオタキシム 25 0 m g/L及びカルべニシリン 25 OmgZLを含む滅菌水で 3回洗浄し、 Mu r a s h i g e a n d S k o o gの無機塩類、 シユークロース 30 g/L, ィンドール酢酸 0. 3mgZL、 6 - (γ , γ— d i me t y l a l l y l— a m i n o) p u r i n e l OmgZL カナマイシン ί θ Omg/L、 セフォ タキシム 250mgZL、 カルペニシリン 250mg/L、 及びゲランガム 0. 3%を含む一次選抜培地 (pH5. 8) に置床した。
培養約 2週間後、 カナマイシン耐性を示すカルス様の細胞塊を Mu r a s h i g e a n d S k o o gの 1 2無機塩類、 シユークロース 1 5 g/L、 カナ マイシン 1 0 Omg/L、セフオタキシム 250 m g L及びゲランガム 0. 3% を含む二次選抜培地 (pH5. 8) に置床した。
(ii) GF Pタンパク質発現個体の選抜 ·順化
二次選抜培地にてカナマイシン耐性を示すカルス様の細胞塊を約 3週間培養し た後、 再分化した茎葉の G F P蛍光をアマシャム社 F l o u r I ma g e rで 測定した。 GF P蛍光が観察された個体を再び二次選抜培地(プラントボックス) に置床した。 培養 3週間後、 発根した形質転換タバコを閉鎖系温室内で 4号素焼 き鉢に移植し、 1週間ビニール袋をかけて順化を行った。
(iii)閉鎖系温室内での栽培
形質転換タバコは、 4号素焼き鉢(約 0. 5リツトル鉢用肥土 鉢) に移植後、 自然光のもと冷房装置およびボイラ一装置を用いて昼夜温度が約 23 °Cに調節さ れた閉鎖系温室内で栽培した。 鉢用肥土は土:堆肥:赤玉土 (大)、 赤玉土 (小) : バーミキユラィ ト = 3 : 4 : 1 : 1 : 1の組成の肥土 1 00リツトル当たりバー レー S 6 25 (肥料) 1 k gを混合したものを使用した。 また、 夏季期間中 (8 月〜 9月) は自然日長条件では花芽誘導が大幅に遅れるため短日処理を行った。 短日処理は、 22°C、 8時間日長条件に設定された短日処理室内に植物体を移動 し、 そこで約 1ヶ月間栽培して行った。
(iv)閉鎖系温室内で栽培中の形質転換体の GF P蛍光測定
閉鎖系温室にて約 1ヶ月間栽培を行った形質転換タバコの最上位展開葉から、 内径 14 mmの金属ポンチを用いて葉片のサンプリングを行い、 アマシャム社 F l o u r I ma g e rを用いて G F P蛍光の測定を行った。
以上の操作により、 GF P蛍光タンパク質が発現している 14個体 (32 A— 0 1〜 1 4) の形質転換タバコ (T O世代) を得た。 コントロールとしてトリガ 一とスぺーサーを含まないベクターを形質転換したタバコを 6個体 (32 C_ 1 〜6) 得た。 これらの個体は以下の解析に用いた。
(4) T O世代の解析
(i) AG P S形質転換体のョード染色
閉鎖系温室に移植後 79日目の形質転換タバコ 2個体 (32A_ 1、 32 A- 2) 及びコントロール (32 C_ 1、 2) の、 下から数えて 9枚目の葉から 1 5 枚目の葉までを内径 1 2 mm金属ポンチを用いてサンプリングを行い、 80%ェ タノール中で約 2時間脱色を行った。 脱色後、 ョード染色溶液 ( l u g o 1 s o 1 u t i o n : s i gma社) 中で 5日間染色を行った後、 水で葉片を洗浄し 観察を行った。 ョード染色を行った結果、 下から 9〜 1 5枚目の葉のラミナにお いて 32A— 1、 2の両者ともコントロールに比べて着色程度が弱く、 アミロー ス含量が低下していることが示唆された (図 7)。
(ii)リアルタイム PCRによる遺伝子発現確認
リアルタイム PCR (Wo n g e t a l . (2005) B i o t e c h n i q u e s 39 : 75— 8 5) により標的遺伝子の発現確認を行った。
鉢上げ後約 1ヶ月後の形質転換タバコの緑葉から直径約 1 0 mmのリーフディ スクを打ち抜き、 RNA l a t e r (Amb i o n社) 中で保存したものを用い て以下の通り解析を行った。 RNAは RN e a s y P l a n t M i n i K i t (Q I AG EN社) を用いて抽出し、 さらに、 Omn i s c r i p t RT K i t (Q I AGEN社) を用いて逆転写反応を行った。 この逆転写反応液の一 部をリアルタイム PCRに供試した。 リアルタイム P CRに用いる T a qMa n
( 録商標、 R o c h e Mo l e c u l a r S y s t em s) p r i me r と P r o b eは P r i me r E x p r e s s (Ap p l i e d B i o s y s t em s) を用いて設計し、 シグマアルドリッチジャパン株式会社ライフサイェン ス事業部に受託合成を依頼した。 J3— a c t i nに対しては p r i me r (配列 番号 37、 38) と P r o b e (配列番号 39)、 AGP Sに対しては p r i me r (配列番号 40、 4 1) と P r o b e (配列番号 42) を用いた。 AGP Sリ アルタイム P C Rは Q u a n t i T e c t Mu l t i p l e x PCR K i t (Q I AGEN社) を用いて行い、 キット添付の 「T a qMa nプローブを用 いた D u p 1 e Xリアルタイム定量 P C R」 プロ トコールに従い、 7500リア ルタイム PCRシステム(Ap p l i e d B i o s y s t em s社)上で 95 °C
1 5分の後、 94°C1分、 60°C1分で 45サイクル反応させることによって行 つた。比較 C t法(U s e r B u l l e t i n # 2, AB I PR I SM 7
700 S e q u e n c e D e t e c t i o n S y s t em, Ap p l i e d B i o s y s t e m s ) により解析した。 リアルタイム PCRにより AGP
Sの mRN A発現量を調査したところ、 14個体のうち 1 0個体はコントロール の 20%以下に低減していることが確認できた (図 8)。
Uii) AD P— g 1 u c o s e p y r o p h o s p h o r y 1 a s e ( A G P a s e) 活性測定
(a) タンパク質抽出
予め生重量 (FW) を測定したラミナ (鉢上げ後約 1ヶ月半後の形質転換タパ コから採取) を液体窒素で粉砕した。 FW1 g当たり 2〜3m 1の抽出バッファ
— A ( 50 mM H e p e s -KOH ; pH 7. 5、 5 mM M g C 1 2、 0.
1 % T r i t o n X— 1 00、 l mM E D T A)に最終濃度 2 mM DTT、
4 % (W/V) PVP— 40、 1 x c omp l e t e (ロッシュ . ダイァグノ スティックス株式会社) を添加して乳鉢と乳棒で磨砕抽出した。 磨砕液を 2m l エツペンチューブに回収し、 1 5000 r pm (20000 g) で 1 0分間 4 °C の条件で遠心した。 上清を回収して抽出液とした。 それを氷上に置き、 すぐに活 性測定を行った。
(b)タンパク質定量
牛血清アルブミン (F r a c t i o n V、 s i gma社) をスタンダードとし て、 B r a d f o r d法によりプロティンアツセィ染色液 (B i o R a d社) を 用いて行った。
(c) AGP a s e活性測定
抽出液を用いて 1 m 1の反応系で活性を測定した。 P l a n t C e l l 1 4, 2 1 9 1 - 2 2 1 3, 2 0 0 2を参考に、 以下の通り行った。
最終濃度が 5 0 mM H e p e s— KOH ; p H 7、 5 mM Mg C l 2、 1 mM j3— N i c o t i n a m i d e a d e n i n e d i n u c l e o t i d e ( β— N AD) 1 0 μΜ G l u c o s e— 1 , 6— b i s p h o s p h a t e (G l, 6 P)、 2. 5 mM S o d i um p y r o p h o s p h a t e (N a P P i )、 1 U p h o s h o g l u c o mu t a s e (PGM)、 1 U g 1 u c o s e— 6— p h o s p h a t e d e h y d r o g e n a s e (G 6 PD H ; f r o m L. me s e n t e r o i d e s )、 5 mM DTTとなるように プレミ ックスを調製し、 34 0 nmの吸光度 (A 3 4 0) をブランクとした。 抽 出液を 5 0 / 1添加して 2 5 で八34 0を測定、 最終濃度 2 mMとなるように AD P- g l u c o s eを添加して再度 2 5°Cで A 34 0を測定した。 AD P— g l u c o s e添加前後の A 34 0の差を活性とし、 NADHのモル吸光係数 6 2 2 0から活性を算出した。
形質転換タバコ 9個体とコントロール 3個体の AG P a s e活性を測定したと ころ、 コントロール 3個体の平均で 0. 1 1 3 UZm g p r o t e i nに対し て、 形質転換タバコ 9個体のうち 7個体で活性は検出限界以下にまで低減したこ とが確認された (表 1)。 表 1
Figure imgf000041_0001
(iv)抗 AGP S抗体を用いたウェスタンプロットによるタンパク質発現確認
(a)抗 AGP S抗体の作製
N末 iffi— C y s A s p A s n V a 1 L y s I 1 e. l i e A s n S e r A s p A s n V a 1 G i n G l u A 1 a _C末端(配列番号 52) の合成べ プチドの合成、 KLHキャリアコンジュケーシヨン、 ゥサギを用いたポリクロー ナル抗体の作製は日本バイォサービスに委託して行つた。 抗血清の一部は合成べ プチドを用いたァフィ二ティーカラムで精製し、 精製抗体を得た。
(b)ウェスタンブロット
活性測定用に抽出したタンパク質 8 μ gをァクリルアミ ド濃度 1 0%の 6 _パ ジエル (株式会社アト一) を用いて、 常法により SD S— PAGEを行った。 S D S— PAGEしたゲノレはトランスファーバッファー (48mM T r i s、 3 9 mM g l y c i n e, 1. 3 mM S DS) で、 20分間室温で振とうして 平衡化した。 セミ ドライブ口ッティング装置: トランスブロッ ト SD (B i o R a d社) でトランスファーバッファーを用いて電圧 1 5 Vで 30分間 PVDF膜 にプロットした。ブロッティング以後の操作はバンドの検出まで E C Lプラス(ァ マシャムバイオサイエンス社) のマニュアルに従って行った。 バンドの検出は E CLミニカメラを用いて行った。 1次抗体は精製抗体を用い、 TB Sバッファー
( 20 mM T r i s · C 1、 1 50 mM N a C 1 ) に 0. 0 1 %Twe e n
20、 0. 5— 1 %スキムミルクとなるように加えた TB Sバッファー (以下 T B S_T— SKという) で 1 000倍に希釈して 4°C、 一晩反応した。 2次抗体 はャギ抗ゥサギ HR P標識抗体 (S t r e s s g e n社) もしくは An t i— I g G (H+ L) R a b i t、 G o a t— p o l y、 HRP (KP L社) を TB S 一 T— SKで 1 0000〜 5000 Q倍に希釈して室温で 2時間反応させた。 形 質転換タバコ 9個体とコントロール 3個体の AG P Sタンパク質発現を調査した ところ、 コントロールでは発現が確認されたが、 形質転換タバコ 9個体すべてに おいて検出限界以下であった (図 9)。 活性測定の結果と合わせて、 AGP Sの遺 伝子発現抑制した個体においては、 AGP Sタンパク質の発現が低減するととも に、 AGP a s e活性として低減していることが確認された。
(V)炭水化物含量の定量
(a)サンプル調製、 粉碎
鉢上げ後約 2ヶ月後の形質転換タバコから、 少し色落ちを開始した中位葉の半 葉 (中骨を含まないラミナ) を午後に採取し、 70°Cで熱風乾燥した。 この試料 をマルチビーズショッカー専用チューブ (安井器械) に入れ、 マルチビーズショ ッカー(安井器械 MB 30 1) を用いて 3, 000 r pm、 30 s e c粉砕した。
(b)可溶性糖抽出、 デンプン可溶化
粉碎したラミナ粉末 2 Omgを量って 1 5m lチューブに入れ、 80%ェタノ ール ( V Z V ) 1 m lに懸濁した後、 遠心分離 (1 , 780 g、 5m i n、 TO MY LX— 1 30) により上清を回収し可溶性糖画分とした。 遠心分離後の残 渣を 60°Cで乾燥後、 3m 1ジメチルスルホキシドおよび 0. 75m l塩酸 (8 N) を加え、 ウォーターバスにより 80°C、 30 m i n加水分解を行った。 空冷 後、 0. 75m l水酸化ナトリウム (8 N) および 0. 5m l酢酸ナトリウム (2 N、 pH4. 5) を加え懸濁した後、 遠心分離 (1 , 780 g、 5m i n、 TO MY LX— 1 30) により上清を回収しデンプン画分とした。
(。定量
可溶性糖およびデンプンの測定は、 F— k i t (R o c h e社、 No. 1 02
07 748035および N o. 1 0 7 1 6260035) を用いて、 添付のマ二 ュアルに従って行った。 吸光度 (A340) の測定は 96穴プレート对応のプレ ートリーダー (Wa k o社、 S PECTRA F LUOR) を用いた。 測定は 2 反復実施し、 2回の平均値をデンプンおよび 3糖含量 (G l c、 F r u、 S u e め合計量) とした。 デンプンおよび 3糖含量の評価は、 乾物重量あたりの百分率 で行った。 形質転換タバ の 6個体とコントロール 6個体についてデンプン + 3 糖 (ショ糖 +グルコース +フルク トース) を炭水化物として含量を定量したとこ ろ、形質転換タバコの 6個体全てにおいてコント口一ル比 1 5 %以下となった(図 1 0)。 つまり、 AGP Sの遺伝子発現、 タンパク質発現および AG P S a s e活 性が低減した形質転換タバコでは、 炭水化物 (デンプン + 3糖) が大きく低減す ることが確認された。 図 1 0のコントロールの値は 6個体の平均値、 エラーバー はその標準偏差 (SD) で示した。 また棒グラフのバーの白の部分はデンプン、 斜線部分は 3糖を示す。
(5) T 1世代の解析
(i)Homo、 Hem i、 Nu 1 1接合体の選抜
T 0世代の形質転換タバコを自家受粉して T 1種子を得た。 得られた T 1種子 を Mu r a s h i g e a n d S k o o gの 1 Z2無機塩類、 シユークロース
1 5 g/Lおよびゲランガム 0. 3%を含む播種培地 (pH 5. 8) に無菌播種 し、 播種後 9日目に幼苗から葉片を切り出して一次選抜培地に置床した。 約 2週 間後、葉片からカナマイシン耐性のカルス様細胞塊が誘導されたか否かによって、 カナマイシン分離比検定を行った。カナマイシン耐性:カナマイシン感受性が 3 :
1に分離した系統は導入遺伝子が 1遺伝子座に挿入された候補として、 再び播種 培地に無菌播種を行った。 播種後 9日目にアマシャム社の F l o u r I m a g e rを用いて幼苗の GF P蛍光を測定し、 G F P蛍光が観察される個体: GF P 蛍光が観察されない個体が 3 : 1に分離する事を確認し、 導入遺伝子が 1遺伝子 座に挿入されたとみなした。 一方、 GF P蛍光強度でもって GF P遺伝子に関し て H o mo接合体(導入遺伝子を両方の相同染色体上に持つ)、 H e m i接合体(導 入遺伝子を相同染色体の片方のみに持つ)、 あるいは Nu 1 1接合体(導入遺伝子 を染色体上に持たない) であるかが判別できる事が知られている。 そこで今回 G
F P蛍光が観察された系統 (T 1植物) の内、 GF P蛍光強度が 2パターンに明 確に分離し、かつ、 GF P蛍光強度が強い個体: GF P蛍光強度が弱い個体が 1 :
2に分離した系統を選抜した。 そして、 GF P蛍光が強い個体を導入遺伝子に関 して Homo接合体 (以下、 AGP S— Hoとする) とみなし、 GF P蛍光が弱 い個体を導入遺伝子に関して H e m i接合体 (以下、 AG P S—Heとする) と みなし、 GF P蛍光が観察されない個体を導入遺伝子に関して Nu 1 1接合体(以 下、 AGP S_Nuとする)とみなした。 T 1世代の形質転換タバコの解析には、 上記で犟抜した系統の内、 T 0世代において AG P S遺伝子発現、 タンパク質発 現、 AGP a s e活性及び炭水化物含量の低減程度が高かった 3系統 (32 A— 2、 32A— 3、 32 A- 7) の AGP S_Ho、 AGP S— He、 AGP S— Nuを用いた。 尚、 T 1世代において H o m o、 Hem i、 Nu 1 1接合体とみ なしたそれぞれの個体から自家受粉を行った T 2種子を採種し、 T 1世代と同様 にカナマイシンおよび GF P蛍光による分離比検定も行った。 その結果、 T 1世 代における判別結果は全て正しかった事を確認している。
(ii)栽培
播種培地上で選抜されたそれぞれの AG P S—H o、 AGP S_He、 AGP S-Nuを再び播種培地に移植して約 1力月後、 閉鎖系温室で 4号素焼き鉢に移 植して栽培を行った。 尚、 栽培条件は T O世代の形質転換タバコと同様である。
(iii)リアルタイム P CRによる遺伝子発現確認
上記で選抜を行った 3系統(32 A- 2、 32 A— 3、 32 A— 7) について、 AGP S_Ho、 AGP S— He、 A G P S— N u各 3個体を T 0世代と同様に 解析を行った。 調査した 3系統とも AGP S— Nuに比べて AGP S— Ho、 A G P S— H eでは 20%以下の発現量であり、 T 1世代においても遺伝子発現抑 制効果が確認された (図 1 1)。 つまり、遺伝子発現抑制効果は後代に遺伝するこ とが確認された。 図 1 1の値は各々 3個体の平均値であり、 エラーバーは標準偏 差 (SD) を示す。
(iv)炭水化物含量の定量
T 1世代において遺伝子発現抑制程度が高かった 32A— 7の AGP S— Ho、
AGP S— Nu各 3個体について、 下位から 1 6葉位〜 27葉位の 1 2枚につい て調査した。 発蕾期の生殖生長期の個体を用い、 下位の白化した過熟葉から上位 の未熟な緑葉までを午後に一斉採取し、 70°Cで熱風乾燥した試料を用いて、 炭 水化物の定量を行った。 定量方法は T 0世代の解析と同様に行った。 下位から 1 6枚目〜 27枚目の 1 2葉位について調査したところ、 AGP S— Ho、 AGP S— Heでは全葉位において炭水化物 (デンプン + 3糖) 含量が AGP S—Nu に比べて大きく低減していた (図 1 2)。 よって、 形質転換タバコでは葉位を問わ ず炭水化物含量が低下することが確認された。 図 1 2の各値は一部欠損データが ある場合を除き、 3個体の平均値で示し、エラーバーは標準偏差(SD) を示す。
(V)煙中ホルムアルデヒ ドおよぴァクロレインの解析
(a)サンプル調製
炭水化物含量の定量に用いた熱風乾燥後の試料の一部を、 40°C、 9 5%相対 湿度 (RH) で 2時間調湿し、 シュレッダーを用いてタバコ刻の調製を行った。 最後にタバコ刻を 25°C、 60%RHの部屋で 1週間以上調湿し、 熱分解試験に 用いるサンプルとした。
(b)熱分解装置
熱分解装置として、 石英管をリアクターとする赤外線イメージ炉 (U 1 V a c
-R i k o I n c.) を用いた。 キヤリヤーガスとしては 1 00%の窒素ガスを 用いて、流量は S EC— B 40 ma s s f l ow c o n t r o l l e r (H o r i b a S t e c I n c . ) を用いて 1 000 m 1 Zm i nに調製した。 サ ンプルとしてはタバコ刻 1 50 tn gを用いて、 石英管の中央に 1 2. 5 mmの幅 に詰めた。 1分間キヤリァーガスで石英管内の空気を置換した後、室温から 1 6.
7°C/ sの割合で温度を 800°Cまで上昇させ、 800°Cで 5秒間温度を固定し た。 この温度制御に関しては、 TPC— 1 000 p r o g r am t emp e r a r u r e c o n t r o l 1 e r (U l v a c— R i k o I n c.) を用レヽ た。 熱分解により生成した煙は、 1 00m lの 2, 4- d i n i t r o p h e n y l h y d r a z i n e溶液を含むィンピンジャーと 44 nmフィルター (H e i n r . B o r gwa l d t T e c h n i k) に捕集した。 上記の手法は鳥飼 ら (K. l o r 1 k a i , ¾ . Y o s h i d a a n d H. Γ a k a h a s h i E f f e c t s o f t emp e r a t u r e, a t mo s p h e r e a n d p H o n g e n e r a t i o n o f s mo k e c o m p o u n d s d u r i n g t o b a c c o p y r o l y s i s F o o d a n d Ch em i c a l T o x i c o l o g y 42 : 1 409 - 14 1 7 (2004)) の方法に従った。 なお 2, 4- d i n i t r o p h e n y l h y d r a z i n e溶液は、 2 , 4— d i n i t r o p h e n y l h y d r a z i n e
(水分 50%含有品) 9. 5 1 07 gを枰量し、 ァセトニトリル 50 OmLに溶 解させ、 60%過塩素酸 2. 8mLを加えて混合した後、 超純水を加えて 1しの 水溶液とした。
(c)煙中ホルムアルデヒ ドおよぴァクロレインの定量
煙を捕集した 2, 4 - d i n i t r o p h e n y l h y d r a z i n e溶液(ィ ンピンジャー) を 70分間室温で静置した。 また、 煙を捕集じた 44 nmフィル ターは 40分間室温で静置した後、 30m lの 2, 4- d i n i t r o p h e n y l h y d r a z i n eを加えて 30分間振とうさせた。 そして最後に両者を混 合し、 2, 4 _ d i n i t r o p h e n y 1 h y d r a z i n e混合溶液を調製 した。 この 2, 4-d i n i t r o p h e n y l h y d r a z i n e混合溶液と
T r i zma b a s e溶液を 2 : 3の割合で混合し、 0. 45 μπι p o l y t e t r a f l u o r o e t h y l e n eメンブレンフィスレターでろ過した後、 高速液体クロマトグラフィーによる分析を行った。上記手法は鳥飼ら (2004) の方法に従った。 また高速液体クロマトグラフィーによる分析方法は、 He a 1 t h C a n a d a法 (O i f i c i a l Me t h o d s ma d e b y
D e p a r tme n t o f He a l t h (C a n a d a)、 1 999年 1 2月
3 1 日、 Me t h o d o f No. T— 1 04) に準拠した。 なお T r i z m a b a s e溶液は、 T r i zma b a s eを 0. 4 g抨量し、 超純水 40 m
Lに溶解させ、 ァセトニトリルを加えて 20 OmLの水溶液とした。
炭水化物低減効果のみられた 3系統 (32 A— 2、 32A_ 3、 32 A- 7) について、 各 3個体の上位葉 (下位から 1 8〜24枚目) を用いて測定した。 調 査した 3系統とも、 AGP S— Hoにおいて AG P S _N uに比べてホルムアル デヒ ドとァクロレインの両方の有意な減少が確認された (図 1 3のパネル Aおよ びパネル B)。 ホルムアルデヒ ドは AGP S_Nuの 2.5〜30%程度に、 ァク口 レインは AGP S_Nuの 55〜70%程度に減少した。 よって、 タバコ燃焼煙 中のホルムアルデヒ ド、 ァクロレインといった煙中カルボニル類が低減すること が確認された。 図 1 3の各値は 32A— 2AGP S—H Oのみ 2個体、 それ以外 は 3個体の平均値で示し、 エラーバーは標準偏差を示す。
(vi)植物体の形態
過去に報告のある、 タバコの葉のデンプン、 糖含量等を低減させた形質転換タ バコ (非特許文献 2、 3) では生育異常が報告されている。 それに対して、 鉢上 げ約 1ヶ月後において、 AGP S— Ho、 AGP S— He (T 1世代) は AGP S— Nuと同様な生育を示した (図 4 1)。 収穫期においても AGP S_Ho、 A GP S—He (Τ Ι'世代) は AGP S—Nuと同様な生育を示したことから、 本 形質転換タバコは、 生育異常を伴わずに特異的に炭水化物を低減できる点で、 優 れていると考えられる。
(6) T 2世代の解析
(i)栽培
T 1世代の解析に用いた 1系統について、 AG P S— H oと AG P S— Nuを 栽培した。 閉鎖系温室において市販の播種用肥土に播種し、 20日後に仮植用肥 土に移植した。 肥土は土:堆肥:赤玉土 (小) :バーミキユライ ト = 3 : 4 : 2 : 1の組成の肥土 1 00リットル当たり、 苗床専用肥料 500 gと過リン酸石灰 3 50 gを混合したものを使用した。 閉鎖系温室で自然光のもと空調装置を用いて 23 °Cで栽培を行った。 仮植 1 9日後に 6号鉢 (外径 20 Omm、 高さ 1 6 Om m) に移植し、 1 2時間日長、 温度は明期 26°C 喑期 1 8°C、 相対湿度 60% で収穫まで人工光形グロースキャビネット : コイ ト トロン (KGBH— 24 1 6 SHL P 1型) 内で栽培した。 ただし、 6号鉢に移植後 1 6日後から 1 2日間 は、 8時間日長、 温度 1 8 °C—定、 相対湿度 60%の短日条件で栽培した。 鉢用 肥土は土:堆肥:赤玉土 (大) :赤玉土 (小) :桐生砂:バーミキユライ ト =2. 5 : 4 : 1 : 1 : 1. 5 : 1の組成の肥土 1 1 0リツ トル当たりバーレ一 S 6 2 5 (肥料) 1 k gを混合したものを使用した。発蕾が確認された時期に心止め (花 部の切除) を行った。 2枚の子葉を含めて下から数えて 24枚目と 25枚目の間 で心止めを行った。
(ii)黄色乾燥
S PADメーター (コニ力ミノルタ社) の測定値が 1 0〜 20の収穫適期に葉 を収穫し、プログラム乾燥機で黄色乾燥を行った。この黄色乾燥を行った試料は、 以下の炭水化物定量、 煙中ホルムアルデヒ ド及びァクロレインの解析に用いた。 黄色乾燥条件は表 2に示した。
表 2
Figure imgf000048_0001
(iii)炭水化物定量
T 1世代の解析と同様の方法で行った。 下位から 1 3枚目の葉位のラミナを用 いて、 32A— 7 (T 2世代) の AGP S— Ho 2個体、 AGP S— Nu 5個体 について測定したところ、 AGP S— Hoでは AG P S—Nuに比べて炭水化物 (デンプン + 3糖) 含量が顕著に低減することが確認された (図 14)。 T 1世代 の解析結果と比べると、 黄色乾燥を行ったことによりデンプンの割合が減少して 3糖の割合が増加した。 これは黄色乾燥により、 AGP S_Ho、 AGP S-N uともデンプンが分解して 3糖が生成したからと考えられる。
4) 煙中ホルムアルデヒ ドおよびァクロレインの解析
T 1世代の解析と同様の方法で行った。 炭水化物定量を行った試料について調 查したところ、 AGP S— Hoにおいて AG P S— N uに比べてホルムアルデヒ ドとァクロレインの両方に有意な減少が確認された (図 1 5のパネル Aおよびパ ネル B)。 ホルムアルデヒ ドは AG P S—N uの 23 %、 ァクロレインは AG P S 一 Nuの 55%であった。 黄色乾燥の有無に依らず、 AGP a s e活性を低減さ せた形質転換タバコではホルムアルデヒ ド、 ァクロレインといった煙中カルボ二 ル類の低減が確認された。 図 1 5の AG P S— H oは 2個体の平均値、 AGP S 一 Nuは 4個体の平均値で示し、 エラーバーは標準偏差 (SD) を示す。
[実施例 2 ] 葉緑体型 F r u c t o s e— 1 , 6 -b i s p h o s p h a t a s e (F B P a s e )
(1) 遺伝子の単離
葉緑体型 F r u c t o s e— 1, 6— b i s p h o s p h a t a s e ( F B P a s e ) をコードする既知の mRNA (Ac c e s s i o n No. AF 1 3
405 1. 1) を基に、 配列番号 5 (F B P_F 2) および配列番号 6 (FB P _R 1) に示す特異的なオリゴプライマーを設計して化学合成した。 FB P a s e遺伝子の部分長 DNA断片は、 AGP S遺伝子断片のクローニングと同様にし て行い、 配列番号 7 (FB P— F 2 R 1) に示す D N A断片を含むプラスミ ド p C R 4— F B P_F 2 R 1を得た。
(2) ベクター構築
F B P a s e遺伝子に相同であるフラグメント 1 (配列番号 1 7 ) は、 まず、
5 p h I認識配列を付与した配列番号 1 8 (F B P_F_S p h i ) と配列番号
6 (FB P— R 1) に示すプライマーを用いて得た PCR産物を制限酵素 S p h
Iおよび P S P 1 04の MC S 1の制限酵素 B a mH I と同一の粘着末端を生成 する制限酵素 B g 1 I Iを用いて消化することによって調製した(図 1.6)。 フラ グメント 2は、 配列番号 7 (F B P_F 2 R 1 ) と同一の配列を含んでおり、 プ ラスミ ド p CR 4— F B P— F 2 R 1を制限酵素 N o t Iおよび P s t Iを用い て消化することによって調製した(図 1 6)。 このようにして作製したフラグメン ト 1 (配列番号 1 7) およびフラグメント 2を AGP S遺伝子の場合と同様にし て、 FB P a s e遺伝子の部分配列が逆向反復となる DNA構造物を含むプラス ミ ド p S P 104— FB P— F Rを構築した。 さらに、 AGP S遺伝子の場合と 同様にして、 発現カセッ トのドナーべクタ一 p S P 1 02— FB P (図 1 7) お よびバイナリーベクター p S P 1 06— F B Pを構築した。 (3) 形質転換および閉鎖系温室での栽培
実施例 1 (3) と同様の方法で行った。
G F P蛍光タンパク質が発現している 20個体 (29A— 1〜: 1 6、 29 P - 1〜4) の形質転換タバコ (TO世代) を得た。 コントロールとしてトリガーと スぺーサーを含まないベクターを形質転換したタバコを 6個体(29 C_ 1〜6) 得た。 これらの個体は以下の解析に用いた。
(4) TO世代の解析
(i)リアルタイム PCRによる遺伝子発現確認
リアルタイム P C Rに用いた F B P a s eの p r i me r (配列番号 43、 4 4) と P r o b e (配列番号 45) は別途設計したが、 それ以外は実施例 1 (4) (ii)と同様の方法で行った。 リアルタイム PCRにより FBP a s eの mRNA 発現量を調査したところ、 形質転換タバコ 20個体のうち 1 5個体はコントロー ル 6個体平均の 2%以下に低減していることを確認した (図 1 S - Ui) F B P a s e活性測定
(a)タンパク質抽出
予め生重量 (FW) を測定したラミナ (鉢上げ後約 1ヶ月後の形質転換タバコ の緑葉から採取) を液体窒素で粉砕した。 FW1 g当たり 3.m 1の抽出バッファ 一 A ( 50 mM H e p e s— KOH ; pH 7. 5、 5 mM M g C 12、 0. 1 % T r i t o n X— 1 00、 l mM E D T A)に最終濃度 2 mM DTT、 4 % (W/V) P V P— 40、 1 x c omp l e t e (ロッシュ .ダイァグノ スティックス株式会社) を添加して乳鉢と乳棒で磨砕抽出した。 磨砕液を 2m l エツペンチューブに回収し、 1 5000 r pm ( 20000 g) で 1 0分間 4°C の条件で遠心した。 上清を回収し、 予めカラムバッファー A (5 OmM H e p e s -KOH: p H 7. 5、 5 mM Mg C l 2、 1 mM EDTA、 2 mM D TT) 25m 1で平衡化した PD 1 0カラムに 2. 5m lアプライし、 3. 5 m 1のカラムバッファー Aで溶出して脱塩を行った。
(b)タンパク質定量
牛血清アルブミン (F r a c t i o n V、 s i gma社) をスタンダードとし て、 B r a d f o r d法によりプロティンァッセィ染色液 (B i o R a d社) を 用いて行った。
(C)活性測定
P l a n t P h y s i o l . ( 1 9 8 4) 7 6 : 4 9 - 5 4を参考にし、 脱塩 抽出液を用いて 1 m 1の反応系で以下の通り測定した。 最終濃度が 1 0 O mM H e p e s -KOH ; p H 7. 5、 5 mM Mg C l 2、 0. 5 mM β -N i c o t i n a m i d e a d e n i n e d i n u c l e o t i d e p h o s p h a t e ( β—NAD P), 2 U h e x o s e P i s o m e r a s e、 1 U G l u c o s e— 6— p h o s p h a t e d e h y d r o g.e n a s e (d 6 P DH ; f r o m y e a s t ) となるようにプレミ ックスを調製し、 脱塩抽出 液 5 0 1を加えて 2 5 °Cで A 3 4 0を測定した。 最終濃度 0. 5 mMとなるよ う こ F r u c t o s e — 1, 6— b i s p h o s p h a t e 1 , 6 PJ を添 加して再度 2 5 °Cで A 3 4 0を測定し、 F l, 6 P添加前後の A 3 4 0の差を活 性とした。 NAD PHのモル吸光係数 6 2 2 0から活性を算出した。
形質転換タバコ 4個体とコントロール 3個体の F B P a s e活性を測定したと ころ、 形質転換タバコ 4個体の平均はコントロール 3個体の平均の 1 2以下で あった (表 3)。 緑葉の F B P a s e活性は細胞質型と葉緑体型の両方からなり、 細胞質型の活性が全体の約半分を占めているという報告 (P l a n t P h y s i o l . 1 9 8 8 8 6, 6 6 7— 6 7 1 ) があることから、 葉緑体型の活性は ほとんどないことが推測された。
表 3
Figure imgf000051_0001
(iii)抗 F B P a s e抗体を用いたウェスタンブロッ トによるタンパク質発現 確認 (a)抗 F B P a s e抗体の作製
抗原の作製に向けて、 キッ ト : pMAL P r o t e i n F u s i o n a n d P u r i f i c a t i o n S y s t em (Ne w E n g l a n d B i o 1 a b s社) の p MA L - c 2 X Ve c t o rへの各遺伝子断片の挿入す ることにより、 ma l t o s e— b i n d i n g p r o t e i n (MB P) と 各遺伝子産物との融合タンパク質を生産するベクターを構築した。
p MA L- c 2 X Ve c t o rへ揷入する F B P a s e遺伝子の断片は、 上 述のプラスミ ド p CR 4— F B P— F 2 R 1を铸型として、 S a c I認識配列を 付与した配列番号 28 (F B P_pMAL_F_S c a I )に示すプライマーと、 M 1 u I認識配列を付与した配列番号 29 (F B P_pMAL_R_Mu n I ) に示すプライマーの組み合わせを用いて得た P CR産物を制限酵素 S c a Iおよ び M l u Iを用いて消化することによって調製した。 このようにして得た断片を p MA L- c 2 X Ve c t o rの S e a l認識部位と制限酵素 M 1 u I と同一 の粘着末端を形成する制限酵素 E c o R Iの認識部位に挿入することによって、 ma l t o s e -b i n d i n g p r o t e i n (MB P) と配列番号 30に 示す FB P a s e部分アミノ酸配列との融合タンパク質を生産する p MAL— F B Pを作製した。
D H 5 α— 1 Ma x e f f i e n c y c h em i c a l l y c omp e t e n t c e l l s ( I n v i t r o g e n社) を用いて、 p MA L一 F Β Pをヒートショック法により形質転換した。 アンピシリン耐性大腸菌から、 キッ トマニュアルに従って、 I PTGにより MB P融合タンパク質を誘導発現した。 ただし、 25°Cで 8〜9時間発現誘導を行った。 超音波ホモジナイザー (BRA N SON/ SON I F I ER 250) を用い、 Ou t p u t c o n t r o l : 8— 1 0、 Du t y c y c l e : 90で 1分間処理— 1分間氷上のサイクルで 5〜 1 0回行って溶菌させた。 キッ トマニュアルに従って、 アミロース樹脂を用 いて MB P融合タンパク質を精製した。 精製した MB P融合タンパク質を抗原と して、 (株) シバヤギに委託してゥサギの抗血清を得た。
(b)ウェスタンブロッ ト
活性測定用に抽出したタンパク質 1 0 n gを用い、 1次抗体として抗血清を T B S— T_SKで 1 0000倍に希釈して使用した以外は実施例 1 (4) (iv) (b) と同様の方法で行った。
形質転換タバコ 1 0個体とコントロール 3個体の F B P a s eタンパク質発現 を調査したところ、 コントロールでは発現が確認されたが、 形質転換タバコ 9個 体では検出限界以下であった (図 1 9)。 活性測定結果と合わせて考えると、 形質 転換タバコでは F B P a s eタンパク質発現が大きく低減することによって、 葉 緑体型 FB P a s e活性が大きく低減したと考えられた。
(iv)炭水化物含量の定量
鉢上げ後約 1ヶ月後の形質転換タバコの葉を使用した点を除き、実施例 1 (4) (V)と同様の方法で行った。形質転換タバコ 6個体とコントロール 6個体について デンプン + 3糖 (ショ糖 +グルコース +フルク トース) を炭水化物として含量を 定量したところ、 形質転換タバコ 6個体全てにおいてコントロールに比べて顕著 に減少していた (図 20)。 つまり、 F B Pの遺伝子発現、 タンパク質発現、 活性 が低減したタバコでは、 炭水化物 (デンプン + 3糖) の含量が大きく低減するこ とが確認された。 図 20のコントロールの値は 6個体の平均値、 エラーバ一はそ の標準偏差 (SD) を示す。 棒グラフのバーの白部分はデンプン、 斜線の部分は 3糖を示す。
(5) T 1世代の解析
(i) H o m o、 H e m i、 Nu l l接合体の選抜
実施例 1 (5) (i)と同様の方法で行った。 導入遺伝子に関して Ho mo接合体 を以下 FB P—Hoとし、 H e m i接合体を以下 F B P _H eとし、 Nu l 1接 合体を以下 FB P— Nuとした。 T 1世代の形質転換タバコの解析には、 T O世 代において F B P遺伝子発現、 タンパク質発現、 F B P活性及び炭水化物含量の 低減程度が高かった 3系統 (29A_ 5、 29A_ 7、 29 A- 10) の FB P — Ho、 FB P— He、 FB P— Nuを用いた。 尚、 T 1世代において Η ο m ο、 Hem i、 Nu l 1接合体とみなしたそれぞれの個体から自家受粉を行った T 2 種子を採種し、 Τ 1世代と同様にカナマイシンおよび GF Ρ蛍光による分離比検 定も行った。 その結果、 Τ 1世代における判別結果は全て正しかった事を確認し ている。 (ii)栽培.
実施例 1 (5) (ii)と同様の方法で行った。
(iii)リアルタイム P CRによる遺伝子発現確認
上記で選抜した 3系統 (29A— 5、 29A— 7、 29A— 1 0) について、 F B P_Ho、 FB P— He、 F B P— N u各 2個体を T 0世代と同様に解析を行 つた。 調査した 3系統とも FB P— Nu FB P_Ho、 FB P_He、 では FB P— Nuの 1 0%以下の発現量であり、 T 1世代においても遺伝子発現抑制効果 が確認された (図 2 1)。 つまり.、 遺伝子発現抑制効果は後代に遺伝することが確 認された。 図 2 1の各値は 2個体の平均値で示した。
(iv)炭水化物含量の定量
実施例 1 (5) (iv)と同様の方法で行った。 29 A— 7について、 各 2個体の 下位から 1 8枚目〜 29枚目の 1 2葉位 (コントロールとしては大きさが遺伝子 組換え体と同程度の非形質転換体を用い、 同様な葉位の 1 2枚) について調査し たところ、 FB P— Ho、 F B P_H eでは全葉位において炭水化物 (デンプン + 3糖) 含量が非形質転換体に比べて大きく低減していた (図 22)。 よって、 葉 位を問わず炭水化物含量が低下することが確認された。 図 22の各値は欠損デー タを除き、 2個体の平均値で示した。
(V)煙中ホルムアルデヒ ドおよびァクロレインの解析
実施例 1 (5) (V)と同様の方法で行った。 29A— 5、 29A— 7、 29 A- 1 0の丁 1世代、 各 2個体について上位葉 (下位から 23から 2 7枚目) を用い て調査したところ、 F B P— H oにおいて非形質転換体に比べてホルムアルデヒ ドとァクロレインの減少が確認された (図 23)。 3系統の平均でホルムアルデヒ ド、 ァクロレインは各々非形質転換体の 38 %、 74%に減少した。 よって、 形 質転換タバコにおいては燃焼煙中のホルムアルデヒ ド、 ァクロレインといった煙 中カルボニル類が低減することが確認された。 図 23の各値は 2個体の平均値で 示した。
[ 施例 3 ]葉緑体型 P h o s p h o g l u c o s e i s ome r a s e ( P G I ) (1) 遺伝子の単離
葉緑体型 p h o s p h o g l u c o s e i s ome r a s e (PG I ) 遺 伝子の完全長 c DNAクローンは出願人保有の c DNAライブラリーから相同性 検索により得ることができた(NGRL 00 1 5— 1— B 1 1)。配列番号 8に完 全長 c DNA配列を示す。
(2) ベクター構築
フラグメント 1 (配列番号 1 9) は、 完全長 PG I遺伝子をコードする NGR L 00 1 5_1— B 1 1クローンを铸型として、 下記に示す PG I— F_B a m Iプライマー (配列番号 20) と PG I— R— S p h Iプライマー (配列番号 2
1 ) の組み合わせを用いて得た P CR産物を制限酵素 B a mH Iおよび S p h I を用いて消化することによって調製した (図 24)。 フラグメント 2 (配列番号 2
2) は、 フラグメント 1と同様に、 PG I— F— N o t Iプライマー (配列番号 23) と PG I— R 3プライマー (配列番号 24) の組み合わせを用いて得た P CR産物をプライマーに付与した N o t I認識部位および完全長 c DNA配列の 1 229塩基目に存在する P s t I認識部位を制限酵素消化することによって調 製した (図 24)。 このようにして作製したフラグメント 1 (配列番号 1 9) およ びフラグメント 2 (配列番号 22) を、 AG P S遺伝子の場合と同様にして、 P G I遺伝子の部分配列が逆向反復となる DN A構造物を含むプラスミ ド p S P 1 04— PG I— FRを構築した。 さらに、 AGP S遺伝子の場合と同様にして、 発現カセットのドナーベクター p S P 1 02— PG I (図 25) およびバイナリ 一ベクター p S P 1 06— PG Iを構築した。
(3) 形質転換および閉鎖系温室での栽培 '
実施例 1 (3) と同様の方法で行った。 GF P蛍光タンパク質が発現している 20個体 (34A— 0 1〜09、 34 P— 0 1〜: L 1) の形質転換タバコ (T 0 世代) を得た。 コントロールとしてトリガーとスぺーサーを含まないベクターを 形質転換したタバコを.6個体 (34 C_0 1〜06) 得た。 これらの個体は以下 の解析に用いた。
(4) T O世代の解析
(i)リアルタイム PCRによる遺伝子発現確認 リアルタイム P CRに用いた PG Iの p r i me r (配列番号 46、 47) と P r o b e (配列番号 48) は別途設計したが、 それ以外は実施例 1 (4) (ii) と同様の方法で行った。 リアルタイム PCRにより PG Iの mRNA発現量を調 査したところ、 形質転換タバコ 2.0個体のうち 1 0個体はコントロール 6個体平 均の 1 0%以下であった (図 26)。
(ii) PG I活性測定
(a)タンパク質抽出
予め生重量 (FW) を測定したラミナ (鉢上げ後約 1. 5ヶ月後の形質転換タ バコの緑葉から採取) を液体窒素で粉砕した。 FWl g当たり 3m lの PG I用 抽出バッファー: 0. 1M B i c i n e— Na OH : pH8. 5、 5 mM M g C l 2、 1 mM EDTA、 2 mM DTT、 1 x c omp l e t e (ロッ シュ ·ダイァグノスティックス株式会社)、 4% PVP P (p o l y (v i n y 1 p o 1 y p r r o 1 i d o n e)) を添加して乳鉢と乳棒で磨砕抽出した。磨砕 液を 2m 1エツペンチューブに回収し、 1 5000 r pm ( 20000 g ) で 1 0分間 4°Cの条件で遠心した。 上清を回収して、 氷上に置き、 すぐに活性測定を 行った。
(b)タンパク質定量
牛血清アルブミン (F r a c t i o n V、 s i gma社) をスタンダードとし て、 B r a d f o r d法によりプロティンアツセィ染色液 (B i o R a d社) を 用いて行った。
(c) PG I活性測定
P l a n t a ( 1 994) 1 94 : 95 _ 1 0 1を参考にし、 1 m 1の反応系 で、 最終濃度 50 mM B i c i n e— Na OH : pH8. 5、 1 0 mM Mg し 12、 0. 5 mM ]3— N i c o t i n a m i d e. a d e n i n e d i n u c 1 e o t i d e (j3— NAD)、 1 \ / m 1 G l u c o s e— 6— p h o s p h a t e d e h y d r o g e n a s e (G6 PDH ; f r om L . me s e n t e r o i.d e s) となるように p r em i xを調製し、 サンプル 25 1 カ卩え、 +Ζ— 1 mM F r u c t o s e— 6— p h o s p h a t e (F 6 P) で
A340を 25°Cで測定し、 NAD Hのモル吸光係数 6220から活性を算出し た。形質転換タバコ 8個体とコントロール 3個体の P G I活性を測定したところ、 形質転換タバコ 8個体の平均はコントロール 3個体の平均の 4 0 %程度であった (表 4)。
表 4
Figure imgf000057_0001
(d) P G I活性染色
可溶性タンパク質 3 0 μ gをアクリルアミ ド濃度 7. 5 %の e—パジヱル (株 式会社ァトー) を用いて、 常法により N a t i V e — P AG Eを行った。 P G I 活性染色は I s o z y m e s i n P l a n t G e n e t i c s a n d B r e e d i n g、 P a r t A p 4 9 5 _ 4 9 6を参考に行った。 電気泳動後 のゲノレを、 最終濃度 5 0 mM B i c i n e -N a OH : p H 8. 5、 1 0 mM M g C l 2、 5 mM F 6 P、 0. 2 m g / r 1 MTT ( 3— (4 , 5 - d i m e t h y l - 2 - t h i a z o l y l ) 2 , 5 - d i p h e n y l - 2 H- t e t r a z o i l um b r o m i d e ) 5 0 m g m l P h e n a z i n e m e t h o s u l f a t e (PMS), 1 mM β -NAD, 0. 6 U/m 1 G 6 P DH ( f r o m L. m e s e n t e r o i d e s ) の反応液中で 3 7°C、 6 0分間喑所で振とうした。
活性染色の結果、 形質転換タバコ 8個体ではコントロールでは検出された葉緑 体型 P G Iバンドはほとんど検出されないが、 細胞質型 P G Iバンドはコントロ ールと同様に検出された (図 2 7)。 これらの結果から、 形質転換タバコでは葉緑 体型 P G I活性が特異的に抑制されていることが示された。 (iii)炭水化物含量の定量
鉢上げ後約 1. 5ヶ月後の形質転換タバコの葉を使用した点を除いて、 実施例 1 (4) (V)と同様の方法で行った。 PG Iの mRNA発現レベルがコントロール の 1 Z8以下に減少した 5個体とコントロール 6個体についてデンプン + 3糖
(ショ糖 +グルコース +フルク トース)を炭水化物として含量を定量したところ、 形質転換タバコ 5個体全てにおいてコントロールに比べて顕著に減少していた
(図 28)。つまり、 PG Iの遺伝子発現、活性が低減したタバコでは炭水化物(デ ンプン + 3糖) の含量が大きく低減することが確認された。 図 28のコントロー ルは 6個体の平均値で示し、 エラーバーは標準偏差 (SD) を示す。 棒グラフの バーの白の部分はデンプン、 斜線の部分は 3糖を示す。
(5) T 1世代の解析
(i) Homo、 Hem i、 Nu 1 1接合体の選抜
実施例 1 (5) (i)と同様の方法で行った。 導入遺伝子に関して Ho mo接合体 を以下 PG I—Hoとし、 H em i接合体を以下 PG I— Heとし、 Nu l 1接 合体を以下 PG I _Nuとした。 T 1世代の形質転換タバコの解析には、 T O世 代において PG I遺伝子発現、 PG I活性及び炭水化物含量の低減程度が高かつ た 2系統 (34A_ 6、 34 A - 8 ) の PG I _Ho、 PG I _He、 PG I _ Nuを用いた。 尚、 T 1世代において H o m o、 Hem i , Nu l 1接合体とみ なしたそれぞれの個体から自家受粉を行った T 2種子を採種し、 Τ 1世代と同様 にカナマイシンおよび GF Ρ蛍光による分離比検定も行った。 その結果、 T 1世 代における判別結果は全て正しかった事を確認している。
(ii)栽培
実施例 1 (5) (ii)と同様の方法で行った。
(iii)リアルタイム PCRによる遺伝子発現確認
上記で選抜した 2系統 (34A— 6、 34 A- 8) について、 PG I— Ho、
PG I _He、 PG I— Nu各 3個体を T 0世代と同様に解析を行った。 調査し た 2系統とも PG I _Ho、 PG I—Heでは PG I— Nuの 1 0%以下の発現 量であり、 T 1世代においても遺伝子発現抑制効果が確認された (図 29)。 つま り、 遺伝子発現抑制効果は後代に遺伝することが確認された。 図 29の各値は 3 個体の平均値で示し、 エラーバーは標準偏差 (SD) を示す。
(iv)抗 PG I抗体を用いたウェスタンプロットによるタンパク質発現確認
(a)抗 PG I抗体の作製
MA L- c 2 X V e c t o rへ揷入する P G I遺伝子の断片は、 上述の完 全長クローン 00 1 5_1_B 1 1を铸型として、 S e a l認識配列を付与した 配列番号 3 1 (PG I _pMAL_F_S c a I ) に示すプライマーと E c o R
I認識配列を付与した配列番号 32 (PG I— pMAL— R— E c o R I ) に示 すプライマーの組み合わせを用いて得た P CR産物を制限酵素 H p a Iおよび H i n d l I Iを用いて消化することによって調製した。 このようにして得た断片 を p MA L - c 2 X Ve c t o rの S e a l認識部位と E c o R Iの認識部位 に揷入することによって、 ma 1 t o s e— b i n d i n g p r o t e i n (M B P) と配列番号 33に示す PG I部分アミノ酸配列との融合タンパク質を生産 する pMAL— P G Iを作製した。
実施例 2 (4) (iii) (a)と同様に大腸菌で発現させ、 MB P融合タンパク質を 精製した。 この MB P融合タンパク質を抗原として旭テクノグラス株式会社に委 託した。
(b)タンパク質抽出
緑葉のラミナから直径約 1 Ommのリーフディスク 2〜 3枚を打ち抜き、 予め 抽出バッファー Aを 200〜300 μ 1分注したマルチビーズショッカー専用 2 m 1.チューブに入れて液体窒素で凍結させた。 メタルコーンを入れて 2200 r p m、 30〜60秒、間マルチビーズショッカー処理を行った。 1 0000 r pm、 4°C、 5分間遠心した上清を新しいチューブにとり、再度 1 5000 r pm、4°C、 5分間遠心した上清をウェスタンプロット、 タンパク質定量に用いた。
(c)ウェスタンブロッ ト
実施例 2 (4) (iii) (b)と同様に行った。
調査した 2系統 (34 A— 6、 34A—8) とも P G I— N uにおいては確認 されたタンパク質の発現は P G I— H o、 P G I— H eでは確認できなかった(図
30)。 T O世代の解析において、 葉緑体型 PG I活性が特異的に低減したのは、 葉緑体型 P G Iタンパク質の発現が低減したことによることが確認された。 (v)炭水化物含量の定量 一
実施例 1 (5) (iv)と同様の方法で行った。 34 A— 8 (T 1世代) について、 下位から 1 6枚目〜 2 7枚目の 1 2葉位について調査したところ、 PG I— Ho、 PG I— H eでは全葉位において炭水化物 (デンプン + 3糖) 含量が PG I— N uに比べて大きく低減していた (図 3 1)。 よって、 形質転換タバコでは葉位を問 わず炭水化物含量が低下することが確認された。 図 3 1の各値は一部欠損データ がある場合を除き、 3個体の平均値、 エラーバーは標準偏差 (SD) で示した。
(vi)煙中ホルムアルデヒ ドおよぴァク口レインの解析
実施例 1 (5) (V)と同様の方法で行った。 34A— 6、 34 A- 8 (T 1世代) の各 3個体について上位葉(下位から 1 9〜23枚目)を用いて調査したところ、 PG I _H oは PG I—Nuに比べて燃焼煙中のホルムアルデヒ ドが有意に低減 し、 ァクロ レインも P G I -Hoでは P G I -N uに比べて低い傾向が確認され た (図 32)。 平均値としては最大で、 各々 PG I— Nuの 70%、 78%に低減 した。 よって、 PG Iの遺伝子発現、 タンパク質発現、 活性が低減したタバコで は、 燃焼煙中のホルムアルデヒ ド、 ァクロレインといった煙中カルボ-ル類が低 減することが確認された。 図 32の各値は 3個体の平均値、 エラーバーは標準偏 差 (SD) で示した。
(vii)植物体の形態
過去に報告のある、 タバコの葉のデンプン、 糖含量等を低減させた形質転換タ バコ (非特許文献 2、 3) では生育異常が報告されている。 それに対して、 鉢上 げ約 1ヶ月後において、 PG I _Ho、 PG I— He (T 1世代) は PG I— N uと同様な生育を示した (図 42)。 収穫期においても PG I _Ho、 PG I _H e (T l世代) は PG I—Nuと同様な生育を示したことから、 本形質転換タパ コは、 生育異常を伴わずに特異的に炭水化物を低減できる点で、 優れていると考 えられる。
[ 施例 4」 i s o a my l .a s e 1
(1) 遺伝子の単離
I s o amy l a s e l ( i s o amy l)をコードする既知の mR N A (A c c e s s i o n N o . AY 1 3 2 9 9 6 ) を基に、 配列番号 9 ( i s o a m y 1_F 1 ) および配列番号 1 0 ( i s o a my l— R 2) に示す特異的なオリ ゴプライマーを設計して化学合成した。 i s o a my 1遺伝子断片のクローニン グは、 配列番号 9のプライマーと配列番号 1 0のプライマーの組み合わせを用い て、 AG P S遺伝子断片のクローニングと同様にして行い、 配列番号 1 1 ( i s o a my l— F 1 R 2) に示す 1 1 9 7塩基からなる D N A断片を含むプラスミ ド p CR 4— i s o a my 1— F 1 R 2を得た。
また、 i s o a my 1遺伝子の 2種の完全長クローンも出願人保有の c DNA ライブラリ一から相同性検索により得ることができた。 出願人保有の c DNAラ イブラリーとは、 つくば 1号の完全長 c DNAクローンを個別に単離し、 末端配 列情報とともに整理したものである。 完全長 c DNAクローン GR 0 0 7 6— 3 — F 1 1は、 上述の配列番号 1 1の塩基配列の完全長と考えられる、 配列番号 1 2に示す c DNAを含んでおり、 A c c e s s i o n N o . AY 1 3 2 9 9 6 と 9 2 %の相同性が認められた。 このほかに、 配列番号 1 2および A c c e s s i ひ n N o . AY 1 3 2 9 9 6とそれぞれ 9 7 %および 9 1 %の相同性を持つ、 配列番号 1 3に示す配列を含む完全長 c DNAクローン GR 0 0 1 6_2_E 0 1も得ることができた。
( 2) ベクター構築
i s o a my 1遺伝子に相同であるフラグメント 1 (配列番号 2 5)は、まず、 p C R 4_ i s o a my l_F l R 2を铸型として S p h I認識配列を付与した 配列番号 2 6 ( i s o a my 1— F_B a mH I ) と配列番号 2 7 ( i s o a m y 1— R— S p h i ) に示すプライマーを用いて増幅した P C R産物を制限酵素
B a mH Iおよび S p h Iを用いて消化することによって調製した (図 3 3)。 フ ラグメント 2は、 配列番号 1 1 ( i s o a my 1— F 1 R 2) と同一の配列を含 んでおり、 プラスミ ド p CR 4_ i s o a my 1— F 1 R 2を制限酵素 N o t I および P s t Iを用いて消化することによって調製した (図 3 3)。 このようにし て作製したフラグメント 1 (配列番号 2 5) およびフラグメント 2を、 AG P S 遺伝子の場合と同様にして、 i s o a my 1遺伝子の部分配列が逆向反復となる
DN A構造物を含むプラスミ ド p S P 1 0 4— i s o a my 1— F Rを構築した。 さらに、 AGP S遺伝子の場合と同様にして、 発現カセットのドナーベクター p S P 1 02— i s o amy l (図 34) およびバイナリーベクター p S P 1 06 ― i s o amy lを構築し 7こ。
(3) 形質転換および閉鎖系温室での栽培
実施例 1 (3) と同様の方法で行った。 GF P蛍光タンパク質が発現している 20個体 (25A_ 1〜20) の形質転換タバコ (T O世代) を得た。 コント口 ールとしてトリガ一とスぺーサーを含まないベクターを形質転換したタバコを 6 個体 (25 C— :!〜 6) 得た。 これらの個体は以下の解析に用いた。
(4) T O世代の解析
(i)リアルタイム P CRによる遺伝子発現確認
リアルタイム P C Rに用いた i s o amy lの p r i m e r (配列番号 49、 50) と P r o b e (配列番号 5 1)は別途設計したが、それ以外は実施例 1 (4) (ii)と同様の方法で行った。 リアルタイム P CRにより i s o amy lの mRN A発現量を調査したところ、 形質転換タバコ 20個体のうち 1 7個体はコント口 ール 6個体平均の 1 0%以下と顕著な低減が確認された (図 35)。
(ii)抗 i s o a my 1抗体を用いたウェスタンブロッ トによるタンパク質発現 確認 ·
(a)抗 i s o amy 1 1饥体の作製
p MA L - c 2 X Ve c t o rへ挿入する i s o amy l遺伝子の断片は、 上述のプラスミ ド p CR4— i s o a my 1_F 1 R 2を铸型として、 H p a I認識配列を付与した配列番号 34 ( i s o a my 1— pMAL— F— Hp a I ) に示すプライマーと H i n d I I I認識配列を付与した配列番号 35 ( i s o a my 1— pMAL— R— H i n d I I I ) に示すプライマーの組み合わせを用い て得た P CR産物を制限酵素 H p a Iおよび H i n d I I Iを用いて消化するこ とによって調製した。 このようにして得た断片を pMAL— c 2 X Ve c t o rの Hp a I認識部位と H i n d I I Iの認識部位に揷入することによって、 m a l t o s e— b i n d i n g p r o t e i n (MB P) と配列番号 36に示 す i s o amy 1部分アミノ酸配列との融合タンパク質を生産する p MA L— i s o amy l .を作製した。 実施例 2 (4) (iii) (a)と同様に大腸菌発現、 MB P融合タンパク質の精製を 行い、 精製タンパク質を抗原として、 (株) シバヤギに委託してゥサギの抗血清を 得た。
(b)タンパク質抽出、 (c)タンパク質定量
実施例 1 (4) (iii) (a) (b)と同様に行った。
(d)ウェスタンブロッ ト
タンパク質 30 / gを用いて、 1次抗体として抗血清を T B S _T_ S Kで 5 000倍に希釈して用いた点を除き、 実施例 1と同様に行った。
mRNA発現量がコントロールの 1 0%以下に低減したことが確認された形質 転換タバコ 7個体とコントロール 2個体の i s o a my 1タンパク質発現を調査 したところ、 形質転換タバコ 7個体ではほとんど検出限界以下であり、 コント口 ールに比べて顕著に発現レベルが低かった (図 36)。遺伝子組換えタバコでは m RN Aに加えてタンパク質の発現量も低減していることが確認された。
(iii)炭水化物含量の定量
実施例 1 (4) (V)と同様の方法で行った。 形質転換タバコ 6個体とコントロー ル 6個体についてデンプン + 3糖 (ショ糖 +グルコース +フルク トース) を炭水 化物として含量を定量したところ、 形質転換タバコ 6個体全てにおいてコント口 ールに比べて有意に減少していた(図 3 7)。つまり、 i s o a my 1遺伝子発現、 タンパク質発現が低減した形質転換タバコでは炭水化物 (デンプン + 3糖) の含 量が大きく低減することが確認された。 図 3 7のコントロールは 6個体の平均値 で示し、 エラーバーは標準偏差 (SD) を示す。 棒グラフのバーの白の部分はデ ンプン、 斜線の部分は 3糖を示す。
(5) T 1世代の解析
(i) H o m o、 H e m i、 Nu 1 1接合体の選抜
実施例 1 (5) (i)と同様の方法で行った。 導入遺伝子に関して Ho mo接合体 を以下 i s o amy l— Hoとし、 Hem i接合体を以下 i s o a my l _He とし、 Nu 1 1接合体を以下 i s o amy l _Nuとした。 T 1世代の形質転換 タバコの解析には、 T O世代において i s o amy l遺伝子発現、 タンパク質発 現、及び炭水化物含量の低減程度が高かった 3系統(25 A— 6、 25 A— 1 5、 25 A— 1 6 ) の i s o amy l— Ho、 i s o a my 1— He、 i s o a m y 1一 Nuを用いた。 尚、 T 1世代において Homo、 Hem i、 Nu 1 1接合体 とみなしたそれぞれの個体から自家受粉を行った T 2種子を採種し、 Τ 1世代と 同様にカナマイシンおよび GF Ρ蛍光による分離比検定も行った。 その結果、 Τ 1世代における判別結果は全て正しかつた事を確認している。
(ii)栽培
実施例 1 (5) (ii)と同様の方法で行った。
(iii)抗 i s o amy 1抗体を用いたウェスタンブロットによるタンパク質発 実施例 3 (5) (iv) (b)と同様の方法でタンパク質を抽出し、 抽出タンパク質を 1 0 μ g用いた以外は T 0世代の解析と同様に行った。 2系統 (25A_6、 2 5A— 1 5) の i s o amy l— Ho、 i s o amy l— N u各 2個体について i s o a my 1タンパク質の発現確認を行ったところ、 i s o amy l _Hoで はほとんど検出限界以下であり、 i s o a my 1— Nuに比べて顕著な発現レべ ルの低減が確認された(図 38)。 タンパク質発現抑制効果は後代に遺伝すること が確認された。
(iv)炭水化物含量の定量
鉢上げ後約 1. 5ヶ月後の形質転換タバコの葉を使用した点を除き、 実施例 1 (5) (iv)と同様の方法で行った。 25A— 1 5 (T 1世代) について、 下位か ら 1 2枚目〜 22枚目の 1 1葉位について調査したところ、 i s o amy 1—H o、 i s o a my 1—H eでは全葉位において炭水化物 (デンプン + 3糖) 含量 が i s o amy l— N uに比べて低減していた (図 39)。 よって、 形質転換タバ コでは葉位を問わず炭水化物含量が低下することが確認された。 図 39の各値は 一部欠損データがある場合を除いて各 3個体の平均値で示し、 エラーバーは標準 偏差 (SD) を示す。
(V)煙中ホルムアルデヒ ドの解析
実施例 1 (5) (V)と同様の方法で行った。 25A— 6、 25A— 1 5、 25 A 一 1 6 (T 1世代) の各 3個体について上位葉 (下位から 1 9〜22枚目) を用 いて調查したところ、 i s o amy l— Hoにおレヽて i s o amy l— Nuに J;匕 ベてホルムアルデヒ ドの有意な減少が確認された (図 4 0)。最も低減がみられた 系統では i s o a my l — N uの 5 0%以下であった。 よって、 形質転換タバコ では燃焼煙中のホルムアルデヒ ドといった煙中カルボ-ル類が低減することが確 認された。 図 4 0の各値は 3個体の平均値で示し、 エラーバーは標準偏差 (S D) を示す。
(vi)植物体の形態
過去に報告のある、 タバコの葉のデンプン、 糖含量等を低減させた形質転換タ バコ (非特許文献 2、 3) では生育異常が報告されている。 それに対して、 鉢上 約 1ヶ月後にぉレヽて、 i s o a my l — H o、 i s o a my l — H e (T 1世 代) は i s o a my 1 _ N uと同棒な生育を示した (図 4 3)。 収穫期においても l s .o a my l — H o、 i s o a my l— H e ( Γ 1
Figure imgf000065_0001
ί3- ι s o a my l一 Nuと同様な生育を示したことから、 本形質転換タバコは、 生育異常を伴わずに 特異的に炭水化物を低減できる点で、 優れていると考えられる。
L実 ¾1列 5 ] AD P— g l u c o s e p y r o p h o s p h o r y l a s e s m a l l s u b u n i t (AG P S) の更なる解析
( 1 ) T 2世代の追加解析
(i)栽培、 黄色乾燥
実施例 1 ( 6 ) (i)および(ii)の記載に従って栽培し、 黄色乾燥を行った。
(ii)下位葉から上位葉の炭水化物含量の定量
3 2 A- 7 (T 2世代) の AG P S— H o、 AG P S _N uを用いて、 下位葉か ら上位葉までの 8葉位から 2 4葉位の 9葉位について、 黄色乾燥した乾葉ラミナ の炭水化物含量を定量した。 定量は T 1世代の解析と同様の方法で行った。 AG P S— H oでは全葉位において炭水化物 (デンプン + 3糖) 含量が AG P S—N uに比べて大きく低減していた (図 4 4)。 よって、 形質転換タバコでは適期に収 穫し、 葉タバコ原料と同様に黄色乾燥した乾葉においても、 葉位を問わず炭水化 物含量が大きく低下することが確認された。 図 4 4は、 AG P S— H o 3個体、 AG P S—N u 4個体の平均値で示し、 エラーバーは標準誤差 (S E) を示す。
(iii)膨こう性の解析 1 0葉位〜 24葉位の黄色乾燥した乾葉のラミナをシュレッダー (MS SH REDDER 43 1 0M) で刻み、 膨こう性測定器 (BORGWALDT社: D e n s i me t e r DD-60A) を用いて測定を行った。各葉位の刻み重量 を AGP S— Hoと AG P S— Nuで同量となるように混合して試料とした。 温 度 22°C、 湿度 60%の実験室内で十分調湿した試料を測定当たり 1 5 g用い、 負荷条件 3 k g、 負荷時間 30秒で測定を行った。 膨こう性 (c c/g) は試料重 量当たりの負荷後の容積で算出した。 AGP S—Hoでは AG P S— Nuに比べ て、 膨こう性が約 2倍に増加することが確認された (図 45)。 AGP S_Ho、 AGP S— Nuとも 3試料の平均値で示し、 エラーバーは標準偏差 (SD) を示 す。 -
(iv)シガレツトの燃焼煙中カルボニル類の解析
(a)特定網室における栽培、 黄色乾燥及び刻みの調製
T 1世代の解析に用いた 1系統の AG P S -H oと非組換えタバコのつくば 1 号(コントロール) をタバコ栽培適期に栽培した。 閉鎖系温室(自然日長、 23°C 一定) において市販の播種用肥土に播種し、 播種後 24日目に仮植用肥土移植し た。 肥土は土:堆肥:赤玉土 (小) :バーミキユライ ト = 3 : 4 : 2 : 1の組成 肥土 1 00リツ トル当たり、 苗床専用肥料 500 gと過リン酸石灰 350 gを混 合したものを使用した。 移植 22日目に直径約 9. 2 cmの素焼き鉢 ( 3寸鉢) に移植し、 特定網室 (自然日長、 外気に開放される部分には網を張ることにより 網室内温度が外気温と同調する条件) で栽培した。 移植 1 0日目に更に菊鉢 (直 径 28 c m、 高さ 25. c m) に移植した。 菊鉢には、 日向土を 1 リットル、 タバ コ肥土 (堆肥を 36 %、 原野土を 23 %、 桐生砂を 14 %、 赤玉土 ·中を 9 %、 赤玉土 ·小を 9%、 バーミキユラィ トを 9%、 バーレ一 625を 0. 9%含む) を 5リ ツトルの順に充填した。 実際の圃場栽培条件に合わせ、 株間 43 cm、 畦 間 1 20 c mで鉢を配置して栽培を行った。 菊鉢移植後 40ないし 45日目に心 止め (花部の切除) を行い、 葉の成熟に従い、 下位葉から適期に 1枚/週のぺー スで収穫した。 収穫した葉は当日黄色乾燥に供した。 黄色乾燥は下から 1 3〜 1
8枚目 (中葉及び合葉) については表 5に示す条件で、下から 1 9〜23枚目 (本 葉) については表 6に示す条件で行った。 表 5
Figure imgf000067_0001
表 6
Figure imgf000067_0002
黄色乾燥後の乾葉は、 温度 22°C、 湿度 60%の実験室内で調湿した後、 中骨 を除去し、 高橋式高速裁断機 (タカハシ式 200 A型、 高橋製作所) で幅 0. 8 mm、 長さ 1 Ommの刻みを調製した。
(b)炭水化物の定量
上記 (a) で調製した、 AGP S— Ho、 つくば 1号の下から 14枚目 (中葉)、 1 7枚目 (合葉)、 22枚目 (本葉) の刻みについて、 T 1世代の解析と同様に炭 水化物の定量を行った。 AG P S_Hoでは 3葉位全てにおいて炭水化物 (デン プン + 3糖) 含量が AGP S_Nuに比べて大きく低減していた (図 46)。 よつ て、 圃場に類似した栽培条件栽培し、 葉タバコ原料と同様の黄色乾燥した乾葉に ついても、 炭水化物の大きな低減が確認された。 図 46は、 各葉位の AGP S— Ho、 つくば 1号とも 3個体の平均値で示し、 エラーバーは標準偏差 (SD) を 示す。
(c)膨こう性の解析 上記(a)で調製した、 AGP S— Ho、 つくば 1号の下から 14枚目 (中葉)、 1 7枚目 (合葉)、 22枚目 (本葉) の刻みについて、 膨こう性を測定した。 測定 は上記(iii)膨こう性の解析と同様の方法で行った。 いずれの葉位においても、 A GP S— Hoでは AGP S— Nuに比べて、膨こう性の増加がみられた(図 47)。 14枚目 (中葉)、 1 7枚目 (合葉) では 2倍という顕著な増加がみられたが、 2 2枚目 (本葉) では 1 0%程度の増加であった。
(d)シガレツ トの煙中カルボニル類の定量
煙中成分を評価するためのシガレツトのスペックは、 填充刻み重量と通気抵抗 がある。 AGP S— Hoとつくば 1号のように膨こう性が大きく異なる場合は、 填充刻み重量一定でシガレツトを作製すると、 通気抵抗が大きく異なることによ り燃焼条件が異なることから、 煙中成分を正しく評価することが困難である。 一 方、 填充刻み重量を調節し、 通気抵抗一定のシガレッ トを作成することにより、 燃焼条件をある程度そろえることが可能である。 製品タバコは通気抵抗を揃える ために、 填充刻み重量を調節している。 よって、 通気抵抗を揃えたシガレッ ト 1 本当たりの煙中成分を比較することにより、 製品タバコ原料として用いた場合の 評価を適正に行えると判断した。 製品タバコの通気抵抗を参考に、 約 0. 59 k
P a (60mmH2O) に揃えてシガレッ トを作製した。 手巻き器 (リズラ社製 ローリングマシーン)、 巻紙 (5 7 mmX 27 mm, 4 P 35)、 糊 (4. 3 %C
MC) を用いて、 手巻きでシガレットを作製した。 ( i ) で調製し、 温度 22°C、 湿度 60%の実験室内で保存した AG P S_Ho、 AGP S_Nuの下から 14 枚目 (中葉)、 1 7枚目 (合葉)、 22枚目 (本葉) の刻みを、 通気抵抗が揃うよ うに一定量用いた。 AG P S— H oは 1本当たり、 14枚目 (中葉) : 0. 539 g、 1 7枚目 (合葉) : 0. 6 1 7 g、 22枚目 (本葉) : 1. 035 g使用し、 つくば 1号は 14枚目 (中葉) : 0. 823 g、 1 7枚目 (合葉) : 0. 8 70 g、
22枚目 (本葉) : 0. 9 94 g使用した。 作製したシガレッ トのうち、 通気抵抗 が約 0. 54〜Q. 64 k p a (55〜6 5mmH20) の範囲内のシガレッ ト を選別し、 煙中成分の測定を行った。 このように作製したシガレットの燃焼煙中 カルボニル類の定量は、 喫煙方法は I SO法、 試験方法はカナダ連邦法に準じて 行った。 刻み原料中の炭水化物含量の低減と膨こう性の増加の両方がみられた 1 4枚目 (中葉)、 1 7枚目 (合葉) については、 調査した 8種のカルボニル類全て において、つくば 1号のシガレツトと比較して 1本当たりの含量の低減がみられ、 刻み原料中の炭水化物含量の低減のみがみられた 22枚目 (本葉) においては、 ホルムアルデヒ ド、 ァクロレイン、 クロ トンアルデヒ ドについて 1本当たりの含 量の低減がみられた (図 48)。
L吴施例 6」 葉; r 体型 P h o s p h o g l u c o s e i s ome r a s e PG I ) の更なる解析
(1) T 2世代の解析
(i)栽培
T 1世代の解析に用いた 1系統について、 PG I— Hoと PG I _Nuを栽培 した。 栽培は実施例 1 (6) (i)と同様の方法で行った。 ただし、 6号鉢移植後の 栽培も自然日長条件で、 閉鎖系温室において空調装置を用いて 23°Cで栽培を行 つた。 加えて、 移植 1 5日後から 1 2日間は 8時間日長、 室温 2 :!〜 22°Cの短 日条件で栽培を行った。
(ii)黄色乾燥
実施例 1 (6) (ii)と同様の方法で行った。
(iii)炭水化物の定量
34 A-6 (T 2世代) の PG I—Ho、 PG I— Nuを用いて、 下位葉から上 位葉までの 8葉位から 24葉位の 9葉位について、 黄色乾燥した乾葉ラミナの炭 水化物含量を定量した。 定量方法は T 1世代の解析と同様に行った。 PG I— H oでは全葉位において炭水化物 (デンプン + 3糖) 含量が PG I _Nuに比べて 大きく低減していた (図 49)。 よって、 形質転換タバコでは適期に収穫し、 葉タ バコ原料と同様に黄色乾燥した乾葉においても、 葉位を問わず炭水化物含量が大 きく低下することが確認された。 図 49は PG I— Ho、 PG I— Nu各 2個体 の平均値で示し、 エラーバーは標準誤差 (S E) を示す。
(iv)膨こう性の解析
膨こう性の測定は実施例 5 (1) (iii)と同様の方法で行った。 ただし、 1 0葉 位〜 1 7葉位の葉位の乾葉ラミナを、 各葉位とも PG I— Ho、 PG I—Nu同 重量混合し、 試料とした。 PG I _Hoでは PG I _Nuに比べ、 膨こう性の顕 著な増加 (約 1. 3倍) が確認された (図 50)。 PG I _Ho、 PG I— Nuと も 2試料の平均値で示し、 エラーバーは標準偏差 (SD) を示す。
[実施例 7] i s o a my 1 a s e 1の更なる解析
(1) T 2世代の解析
(i)栽培
T 1世代の解析に用いた 1系統について、 i s o a my 1 _H oと i s o a m y 1一 Nuを栽培した。栽培は実施例 1 (6) (i)と同様の方法で行った。ただし、 6号鉢移植後の栽培も閉鎖系温室で自然光のもと、 空調装置を用いて 23°Cで栽 培を行った。加えて、移植 14日後から 1 3日間は 8時間日長、室温 2 1〜22°C の短日条件で栽培した。
(ii)黄色乾燥
実施例 1 (6) (ii)と同様の方法で行った。
(iii)炭水化物の定量
24 A- 1 5 (T 2世代) の i s o amy l _Ho、 i s o amy l -Nuを用 いて、 下位葉から上位葉までの 8葉位から 24葉位の 9葉位について、 黄色乾燥 した乾葉ラミナの炭水化物含量を定量した。 定量方法は T 1世代の解析と同様に 行った。 i s o amy 1— H oでは全葉位において炭水化物 (デンプン + 3糖) 含量が i s o a my 1— N uに比べて大きく低減していた (図 5 1)。 よって、 形 質転換タバコでは適期に収穫し、 葉タバコ原料と同様に黄色乾燥した乾葉におい ても、 葉位を問わず炭水化物含量が大きく低下することが確認された。 図 5 1は i s o amy l— Ho、 i s o a m y 1— N u各 2個体の平均値で示し、 エラー バーは標準誤差 (S E) を示す。
(iv)膨こう性の解析
測定は実施例 5 (1) (iii)と同様の方法で行った。 ただし、 9葉位〜 2 1葉位 の葉位の乾葉ラミナを、 各葉位とも i s o amy l— Ho、 i s o amy l— N u同 Ik量混合し、 試料とし 7こ。 i s o amy l— Ή oでは i s o amy l— Nu に比べ、 膨こう性の顕著な増加 (約 1. 4倍) が確認された (図 52)。 図 52は i s o amy l— Ho、 i s o amy l _Nuとも 2試料の平均値で示し、 エラ 一バーは標準偏差 (SD) を示す。 産業上の利用可能性
本発明によれば、 葉たばこの原料となり うるタバコ植物および乾燥葉たばこに おいて、 タバコの成熟葉のデンプンの蓄積を減少させて、 乾燥葉の燃焼煙中の力 ルポニル類含量を低減するという格別の作用効果を提供することができる。また、 膨こう性が向上された形質転換タバコ植物を提供することができる。 本発明の形 質転換タバコ植物により、 燃焼煙中のカルボニル類が低減され、 膨こう性に優れ たた葉タバコを製造することができる。 本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。

Claims

請求の範囲
1 . 以下の (a ) 〜 (c ) に示すいずれかのタンパク質をコードするデンプ ン生合成に関与する遺伝子の発現が抑制され、 燃焼煙中のカルボニル類含量が低 減された、 タバコ属植物。
( a ) 配列番号 5 3、 配列番号 5 4、 配列番号 5 5および配列番号 5 6からなる 群から選択されたアミノ酸配列からなるタンパク質
( b ) 配列番号 5 3、 配列番号 5 4、 配列番号 5 5および配列番号 5 6からなる 群から選択されたアミノ酸配列において 1もしくは数個のアミノ酸が欠失、 置換 もしくは付加されたァミノ酸配列からなり、 かつデンプン生合成に関与するタン パク質
( c ) 配列番号 5 3、 配列番号 5 4、 配列番号 5 5および配列番号 5 6からなる 群から選択されたアミノ酸配列に対して 8 5 %以上の同一性を有するアミノ酸配 列からなり、 かつデンプン生合成に関与するタンパク質
2 . 前記遺伝子が、
( d ) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列からなるポリヌクレオチド、
( e ) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列に対して 8 5 %以上の同一性を有し、 かつデンプン生合成に 関与するタンパク質をコードするポリヌクレオチド、
( f ) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列において 1もしくは数個の塩基が欠失、 置換もしくは付加さ れた塩基配列からなり、 かつデンプン生合成に関与するタンパク質をコードする ポリヌクレオチド、 または
( g ) 配列番号 4、 配列番号 7、 配列番号 8および配列番号 1 2からなる群から 選択された塩基配列と相補的な塩基配列からなるポリヌクレオチドとス トリンジ ェントな条件でハイブリダィズし、 かつデンプン生合成に関与するタンパク質を コードするポリヌクレオチド
を含む、 請求項 1に記載のタバコ属植物。 .
3. 前記カルボニル類が、 ホルムアルデヒ ド、 ァセトアルデヒ ド、ァセトン、 ァクロレイン、 プロピオンアルデヒ ド、 クロ トンアルデヒ ド、 メチルェチルケト ンおよびブチルアルデヒ ドからなる群から選択される、 請求項 1または 2に記載 のタバコ属植物。
4. 前記カルボニル類が、 ホルムアルデヒ ドまたはァクロレインである、 請 求項 3に記載のタバコ属植物。
5. 膨こう性が向上された、 請求項 1〜4のいずれか 1項に記載のタバコ属 植物 o
6. 請求項 1〜 5のいずれか 1項に記載のタバコ属植物の組織または細胞。
7. 前記組織が葉である、 請求項 6に記載の組織または細胞。
8. 配列番号 4に示す塩基配列、 配列番号 7に示す塩基配列、 配列番号 8に 示す塩基配列、 配列番号 1 2に示す塩基配列、 それらの配列に対して 90%以上 の同一性を有する塩基配列、 およびそれらの塩基配列の 20塩基以上の部分配列 からなる群から選択される塩基配列を含む、 遺伝子発現抑制用べクタ一。
9. 前記塩基配列の連続した 20塩基以上からなる塩基配列をアンチセンス 方向に含む、 請求項 8に記載のベクター。
1 0. 前記塩基配列のセンス鎖および該センス鎖に対合するアンチセンス鎖 を含む、 請求項 8に記載のベクター。
1 1. 前記センス鎖およびアンチセンス鎖が、 前記塩基配列の連続した 20 塩基以上からなる、 請求項 1 0に記載のベクター。
1 2. 前記センス鎖とアンチセンス鎖の間にスぺーサーを有する、 請求項 1 0または 1 1に記載のベクター。
1 3. 植物細胞内で作動可能なプロモーターを有する、 請求項 8〜1 2のい ずれか 1項に記載のベクター。
14. タバコ属植物の細胞または組織を、 RNA干渉法、 アンチセンス法、 遺伝子破壊法、 人為的突然変異法、 リボザィム法、 共抑制法及び転写因子を用い た方法から選択されるいずれかの方法を用いて、 請求項 1および 2に定義された
(a) 〜 (g) のいずれかの遺伝子の発現を抑制し、 植物体を再生することを含 む、 請求項 1〜 5のいずれか 1項に記載のタバコ属植物を作製する方法。
1 5. 請求項 8〜1 3のいずれか 1項に記載のベクターを、 植物細胞または 組織に導入し、 植物体を再生する、 請求項 14に記載の方法。
1 6. 前記植物体を母本として後代を作出する、 請求項 1 5に記載の方法。
1 7. 請求項 1〜5のいずれか 1項に記載のタバコ属植物の後代であって、 請求項 1または 2に定義された (a) 〜 (g) のいずれかの遺伝子の発現が抑制 されたことを特徴とする、 後代。
1 8. 請求項 1〜5のいずれか 1項に記載のタバコ属植物または請求項 1 7 に記載の後代の葉から作製されたタバコ製品。
1 9. タバコ属植物において、 請求項 1または 2に定義された (a) 〜 (g) のいずれかの遺伝子の発現を抑制することを含む、 タバコ属植物の燃焼煙中の力 ルボ二ル類含量を低減する方法。
20. 前記遺伝子の発現の抑制を、 RNA干渉法、 アンチセンス法、 遺伝子 破壊法、 人為的突然変異法、 リボザィム法、 共抑制法及び転写因子を用いた方法 からなる群から選択される方法によって行うことを含む、 請求項 1 9に記載の方 法。
2 1. 請求項 8〜 1 3のいずれか 1項に記載のベクターを植物細胞または組 織に導入する、 請求項 1 9または 20に記載の方法。
22. タバコ属植物において、 請求項 1または 2に定義された (a) 〜 (g) のいずれかの遺伝子の発現を抑制することを含む、 タバコ属植物の膨こう性を向 上させる方法。
23. 前記遺伝子の発現の抑制を、 RNA干渉法、 アンチセンス法、 遺伝子 破壊法、 人為的突然変異法、 リボザィム法、 共抑制法及び転写因子を用いた方法 からなる群から選択される方法によって行うことを含む、 請求項 22に記載の方 法。
24. 請求項 8〜1 3のいずれか 1項に記載のベクターを植物細胞または組 織に導入する、 請求項 22または 23に記載の方法。
PCT/JP2008/056521 2007-03-28 2008-03-26 燃焼煙中のカルボニル類含量が低減されたタバコ属植物およびその作製法 WO2008117886A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-083231 2007-03-28
JP2007083231A JP2010136623A (ja) 2007-03-28 2007-03-28 燃焼煙中のカルボニル類含量が低減されたタバコ属植物およびその作製法

Publications (1)

Publication Number Publication Date
WO2008117886A1 true WO2008117886A1 (ja) 2008-10-02

Family

ID=39788614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056521 WO2008117886A1 (ja) 2007-03-28 2008-03-26 燃焼煙中のカルボニル類含量が低減されたタバコ属植物およびその作製法

Country Status (2)

Country Link
JP (1) JP2010136623A (ja)
WO (1) WO2008117886A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805641A (zh) * 2017-10-19 2018-03-16 昆明理工大学 烟草14‑3‑3c基因的植物表达载体及其应用
US10070664B2 (en) 2014-07-17 2018-09-11 Nicoventures Holdings Limited Electronic vapor provision system
CN114503060A (zh) * 2019-10-10 2022-05-13 韩国烟草人参公社 用于在虚拟现实中提供吸烟体验的吸烟系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6129746B2 (ja) * 2010-12-20 2017-05-17 トマス・シュミュリング Ahp6遺伝子の破壊は種子収量が向上した植物をもたらす

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273177A (ja) * 1988-11-10 1990-11-07 Imperial Chem Ind Plc <Ici> Adp−グルコース・ピロホスホリラーゼをコードするdna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273177A (ja) * 1988-11-10 1990-11-07 Imperial Chem Ind Plc <Ici> Adp−グルコース・ピロホスホリラーゼをコードするdna

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BAKER RR ET AL.: "Pyrolysis of saccharide tobacco ingredients: a TGA-FTIR investigation.", J. ANAL. APPL. PYROLYSIS, vol. 74, 2005, pages 171 - 180, XP027671810 *
CHEN BY ET AL.: "PCR cloning and characterization of multiple ADP-glucose pyrophosphorylase cDNAs from tomato.", PLANT SCI., vol. 136, no. 1, 1998, pages 59 - 67, XP055352271 *
KOHEI SAITO ET AL.: "Tobacco Kizami no Morosa, Bokosei, Heiko Suibun ni Ataeru Glycerine to Sato no Heiyo Tenka no Koka", JOURNAL OF THE SOCIETY OF MATERIALS SCIENCE, vol. 27, no. 296, 1978, pages 82 - 87 *
KOHEI SAITO ET AL.: "Tobacco Kizami no Morosa, Bokosei, Heiko Suibun ni Ataeru Sato, Sorbit no Tenka no Koka", JOURNAL OF THE SOCIETY OF MATERIALS SCIENCE, vol. 27, no. 293, 1978, pages 202 - 207 *
KWAK MS ET AL.: "A sepal-expressed ADP-glucose pyrophosphorylase gene (NtAGP) is required for petal expansion growth in 'Xanthi' tobacco.", PLANT PHYSIOL., vol. 145, no. 1, 27 July 2007 (2007-07-27), pages 277 - 289, XP055352273 *
MULER-ROBER B ET AL.: "Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes.", EMBO J., vol. 11, no. 4, 1992, pages 1229 - 1238, XP002058763 *
TALHOUT R ET AL.: "Sugars as tobacco ingredient: Effects on mainstream smoke composition.", FOOD CHEM. TOXICOL., vol. 44, no. 11, 2006, pages 1789 - 1798, XP027918547 *
TIESSEN A ET AL.: "Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply.", PLANT CELL, vol. 14, no. 9, 2002, pages 2191 - 2213, XP055352262 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10070664B2 (en) 2014-07-17 2018-09-11 Nicoventures Holdings Limited Electronic vapor provision system
CN107805641A (zh) * 2017-10-19 2018-03-16 昆明理工大学 烟草14‑3‑3c基因的植物表达载体及其应用
CN107805641B (zh) * 2017-10-19 2021-04-09 昆明理工大学 烟草14-3-3c基因的植物表达载体及其应用
CN114503060A (zh) * 2019-10-10 2022-05-13 韩国烟草人参公社 用于在虚拟现实中提供吸烟体验的吸烟系统
CN114503060B (zh) * 2019-10-10 2024-03-22 韩国烟草人参公社 吸烟系统及其控制方法和计算机可读记录介质

Also Published As

Publication number Publication date
JP2010136623A (ja) 2010-06-24

Similar Documents

Publication Publication Date Title
US11981903B2 (en) Tobacco having altered leaf properties and methods of making and using
US11452275B2 (en) Tobacco plants having altered amounts of one or more alkaloids in leaf and methods of using such plants
KR102524798B1 (ko) 니트레이트 동화 경로의 변경을 통한 담배 특이적 니트로소아민의 감소
JP6225108B2 (ja) ニコチアナ・タバカムからのトレオニン合成酵素ならびにその方法および使用
CN106459923B (zh) 植物中烟碱向降烟碱转化的减少
AU2012301349B2 (en) Isopropylmalate synthase from nicotiana tabacum and methods and uses thereof
US20240218386A1 (en) Compositions and Methods for Producing Tobacco Plants and Products Having Altered Alkaloid Levels
JP5719784B2 (ja) ホスホエノールピルビン酸カルボキシキナーゼおよび/またはピルビン酸正リン酸ジキナーゼをコードする構築物を含む形質転換植物
KR20130137620A (ko) 식물계에서의 중금속 감소
WO2008117886A1 (ja) 燃焼煙中のカルボニル類含量が低減されたタバコ属植物およびその作製法
WO2008117887A1 (ja) 燃焼煙中のカルボニル類含量が低減されたタバコ属植物及びその作製法
KR101370768B1 (ko) 식물체 내 액포로부터 세포질로의 자당 수송 증가용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08739634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP