WO2008114843A1 - 対向式斜板型ピストンポンプ/モータ - Google Patents

対向式斜板型ピストンポンプ/モータ Download PDF

Info

Publication number
WO2008114843A1
WO2008114843A1 PCT/JP2008/055176 JP2008055176W WO2008114843A1 WO 2008114843 A1 WO2008114843 A1 WO 2008114843A1 JP 2008055176 W JP2008055176 W JP 2008055176W WO 2008114843 A1 WO2008114843 A1 WO 2008114843A1
Authority
WO
WIPO (PCT)
Prior art keywords
swash plate
piston
engagement pin
pin
center
Prior art date
Application number
PCT/JP2008/055176
Other languages
English (en)
French (fr)
Inventor
Takeo Shimizu
Original Assignee
Kayaba Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co., Ltd. filed Critical Kayaba Industry Co., Ltd.
Priority to DE112008000714.4T priority Critical patent/DE112008000714B4/de
Priority to CN2008800085021A priority patent/CN101680435B/zh
Priority to KR1020117026660A priority patent/KR101172237B1/ko
Priority to KR1020097021489A priority patent/KR101204599B1/ko
Priority to US12/531,464 priority patent/US8235681B2/en
Publication of WO2008114843A1 publication Critical patent/WO2008114843A1/ja
Priority to US13/537,222 priority patent/US8727743B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • F04B1/30Control of machines or pumps with rotary cylinder blocks
    • F04B1/32Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • F04B1/30Control of machines or pumps with rotary cylinder blocks
    • F04B1/32Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block
    • F04B1/324Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block by changing the inclination of the swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/122Details or component parts, e.g. valves, sealings or lubrication means
    • F04B1/124Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2035Cylinder barrels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2078Swash plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2092Means for connecting rotating cylinder barrels and rotating inclined swash plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/22Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H39/00Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution
    • F16H39/04Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit
    • F16H39/06Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit pump and motor being of the same type
    • F16H39/08Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit pump and motor being of the same type each with one main shaft and provided with pistons reciprocating in cylinders
    • F16H39/10Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit pump and motor being of the same type each with one main shaft and provided with pistons reciprocating in cylinders with cylinders arranged around, and parallel or approximately parallel to the main axis of the gearing
    • F16H39/14Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit pump and motor being of the same type each with one main shaft and provided with pistons reciprocating in cylinders with cylinders arranged around, and parallel or approximately parallel to the main axis of the gearing with cylinders carried in rotary cylinder blocks or cylinder-bearing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/11Kind or type liquid, i.e. incompressible

Definitions

  • the present invention relates to an opposed swash plate in which a first swash plate and a second swash plate are arranged facing both sides of a cylinder block. This is related to the capacity control of Z type hydraulic pump Z motor.
  • Background Art J PH 1 1- 247990A issued by the Japan Patent Office in 1999 discloses a hydraulic support mechanism that changes the swash plate inclination angle in order to change the capacity of the swash plate type hydraulic pump. .
  • JP 2005-105898 A issued by the Japan Patent Office in 2005 is an opposed swash plate type hydraulic pump with a first swash plate and a second swash plate facing both ends of the cylinder block.
  • a motor is disclosed.
  • Each cylinder of the cylinder block is provided with a first piston that is in sliding contact with the first swash plate and a second piston that is in sliding contact with the second swash plate.
  • the first piston is driven axially by the first swash plate
  • the second piston is driven axially by the second swash plate, and reciprocates in the cylinder.
  • Opposite swash plate type biston pump In the Z motor, using the servo mechanism as disclosed in the above-mentioned JPH I 1-247990 A, the inclination angle of the first swash plate and the second swash plate If you want to control the tilt angle of the two, naturally two servo mechanisms are required.
  • Opposite swash plate hydraulic The pump z motor can increase the amount of change in capacity compared to a single swash plate hydraulic pump / motor, but for this reason, the manufacturing cost must be significantly higher.
  • an object of the present invention is to realize control of the inclination angles of the two swash plates of the opposed swash plate type piston pump z motor with a simple configuration.
  • a first swash plate and a second swash plate are arranged on both sides of a cylinder block, and a plurality of cylinders are arranged in the cylinder block. Is placed parallel to the center axis of the cylinder block, the first piston and the second piston are inserted into the same cylinder relative to each other, and the first piston is In the opposed swash plate type Biston pump Z motor, the first piston and the second piston expand and contract the cylinder by sliding the second piston on the second swash plate. And a servo mechanism for inclining the first swash plate, and an inclination interlocking rod for inclining the second swash plate in conjunction with the inclination of the first swash plate.
  • FIG. 1 is a longitudinal sectional view of an essential part of HST equipped with an opposed swash plate type piston motor according to the present invention.
  • FIG. 2 is a front view of the first swash plate including a cross-sectional view of the tilt interlock mechanism according to the present invention and a vertical cross-sectional view of the servo mechanism.
  • F I G. 3 is a side view of the tilt interlock mechanism.
  • 4A-4C is a rear view of the first swash plate and a side view viewed from two directions.
  • F I G. 5 is a cross-sectional view of the case.
  • F IG s. 6 A and 6 B are side views of the tilt interlock mechanism for explaining the operation status of the tilt interlock mechanism.
  • FIG. 7 is a side view of an inclination interlocking mechanism showing another embodiment according to the present invention.
  • FIG. 8 is similar to FIG. 7 or shows the maximum capacity swash plate and tilt interlock mechanism.
  • BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the present invention is applied to a hydrostatic transmission (hereinafter abbreviated as HST) used as a continuously variable transmission of a working vehicle will be described below.
  • HST hydrostatic transmission
  • H S T 3 includes a variable displacement hydraulic piston pump 9 1 and a variable displacement hydraulic piston motor 1.
  • the Biston pump 9 1 is rotationally driven by the internal combustion engine via the pump shaft 92.
  • the Biston motor 1 is driven to rotate by hydraulic fluid discharged from the biston pump 9 1.
  • the rotation of the motor shaft 5 of the piston motor I is transmitted to the left and right drive wheels of the work vehicle via a gear such as a differential gear.
  • the biston motor 1 is composed of a counter-type swash plate type hydraulic motor provided with a first swash plate 30 and a second swash plate 40 on both sides of the cylinder block 4.
  • the structure of the opposed swash plate hydraulic pump Z motor is known from JP 2 0 0 5-1 0 5 8 9 8 A described above.
  • the piston motor I includes a case 25 and a port block 50 that seals the case 25.
  • a working chamber 24 is formed inside the case 25 sealed by the port block 50.
  • a cylinder block 4, a first swash plate 30, and a second swash plate 40 are accommodated in the working chamber 24.
  • the cylinder block 4 is fixed to the outer periphery of the motor shaft 5 that is rotatably supported by the case 25 and the port block 50, and rotates integrally with the motor shaft 5.
  • a plurality of cylinders 6 forces are formed through the cylinder block 4 in the axial direction.
  • the cylinders 6 are formed at equal angular intervals in the rotation direction of the cylinder block 4.
  • the first piston 8, the second piston 9, and the force are inserted into the cylinder 6 from the openings at both ends of each cylinder 6.
  • a volume chamber 10 is defined by pistons 8 and 9.
  • the first piston 8 and the second piston 9 protrude from the both end surfaces of the cylinder block 4 outward in the axial direction.
  • the projecting end of the first piston 8 is attached with a force of 21 s.
  • a second force s 2 is applied to the protruding end of the second piston 9.
  • the sleeve 21 is in sliding contact with the first swash plate 30 through the port plate 60.
  • the sheath 22 is in sliding contact with the second swash plate 40 directly.
  • the port plate 60 is a disk-like member that slidably locks the cylinder 21 of each cylinder 6 within a predetermined range, and is in free contact with the swash plate 30 in the rotational direction. .
  • the second piston 9 rotates while the slide 22 is brought into sliding contact with the second swash plate 40, and reciprocates in the cylinder 6 by the axial force generated by the second swash plate 40.
  • Piston 8 and 9 force reciprocating in cylinder 6 Volume chamber 10 in cylinder 6 is expanded and contracted.
  • the second piston 9 reaches the most contracted position at the same time as the first piston 8 force reaches the maximum contraction position, and the second piston 9 reaches the maximum extension at the same time as the first piston 8 force reaches the maximum extension position.
  • the inclination direction of the first swash plate 30 and the inclination direction of the second swash plate 40 are set in advance so as to reach the position.
  • a pair of ports 16 are selected according to the rotational position of the cylinder 6 through the same number of valve ports 6 1 formed in the port plate 60 as the cylinder 6 and ports 19 formed in the sh Therefore, it communicates with the volume chamber 10.
  • the first swash plate 30 includes a rear journal portion 31 having a sliding surface with a half-log cross-sectional shape.
  • the port block 50 is provided with a first concave bearing 32 force that slidably supports the rear journal portion 31 along the sliding surface.
  • the second swash plate 40 includes a rear journal portion 41 having a half-log shaped sliding surface.
  • Case 2 5 is provided with a second concave bearing 4 2 which supports the rear journal portion 41 so as to slide freely along the sliding surface.
  • the pair of ports 16 are always in communication with a pair of bearing ports formed in the first concave bearing 32, and are connected to the discharge passage of the piston pump 91 through an oil passage that penetrates the port block 50 from the bearing port. Connected to the suction passage.
  • the piston motor 1 operates as follows.
  • the pressurized hydraulic fluid in the discharge passage of the piston pump 9 I is supplied from one bearing port through the one port 16, the valve port 6 1, and the single port 19, and the cylinder chamber 10.
  • the first piston 8 and the second piston 9 are driven in the extending direction by expanding the volume chamber 10.
  • First swash plate 30 The cylinder block 4 is rotated by the rotational torque exerted on 8 and the rotational torque exerted on the second piston 9 in which the second swash plate 40 extends.
  • first piston 8 and the second piston 9 After the first piston 8 and the second piston 9 reach the maximum extension position, they are guided to the first piston 8 that rotates while being guided by the first swash plate 30 and to the second swash plate 40.
  • the second piston 9 rotating while being displaced is displaced in a direction in which the volume chamber 10 is contracted.
  • the hydraulic fluid in the volume chamber 10 is discharged through the show port I 9, the pulp port 61, the other port 16 and the other bearing port, and sucked into the suction passage of the piston pump 91. Is included.
  • the HST 3 uses the inclination angle of the first swash plate 30 and the second swash plate.
  • 40 Servo mechanism 33 shown in Fig. 2 for changing the tilt angle of 0 is provided.
  • the change of the inclination angle of the first swash plate 30 is caused by the fact that the rear journal portion 31 of the first swash plate 30 is moved with respect to the first concave bearing 3 2 along the sliding surface of the half cross section. This is done by sliding it.
  • the change in the inclination angle of the second swash plate 40 is caused by sliding the rear journal portion 41 of the second swash plate 40 with respect to the second concave bearing 42 along the sliding surface having a half-log sectional shape. It is done by moving.
  • Piston motor 1 which is a counter-type swash plate hydraulic motor, can set the variable capacity ratio from the maximum capacity to the minimum capacity approximately twice that of the conventional non-opposite swash plate hydraulic pump.
  • HST 3 speed range can be set wide.
  • the piston motor 1 further has a mechanism for changing the inclination angle of the first swash plate 30 and the inclination angle of the second swash plate 40 under the single servo mechanism 33. Prepare.
  • the servo mechanism 33 includes a servo regulator piston 34 slidably mounted on the port block 50.
  • the first swash plate 30 is provided with driving engagement pins 65 that protrude laterally.
  • a slide metal 6 6 is attached to the driving engagement pin 65.
  • the piston 3 4 is formed with a recess 6 7 in which the slide metal 6 6 is slidably engaged.
  • cylinder portions 5 1 and 5 2 are continuously formed on the same axis.
  • the servo-regulator piston 34 is composed of a piston part 35 that is slidably fitted to the cylinder part 51 and a piston part 36 that is slidably fitted to the cylinder part 52. Inside the cylinder portion 51 is formed a hydraulic chamber 28 force s that faces the piston portion 35. A hydraulic chamber 2 9 force s is formed on the inner side of the cylinder section 52, facing the piston section 36.
  • the diameter of the cylinder section 51 is smaller than that of the cylinder section 52.
  • the pressure receiving area of the piston section 35 Is smaller than the pressure receiving area of the piston part 36.
  • the first hydraulic chamber 28 is guided with hydraulic pressure from a hydraulic source.
  • the second hydraulic chamber 29 receives the hydraulic pressure from the hydraulic source via the proportional electromagnetic pressure reducing valve.
  • the stroke position of the support piston 3 4 changes according to the hydraulic pressure guided to the hydraulic chamber 29.
  • the servoregulator piston 3 4 has a FI G. 2 It is located at one stroke end as shown.
  • the sur- posure regulator piston 34 moves to the other stroke end.
  • the hydraulic pressure source includes a shuttle valve that extracts the discharge pressure of the hydraulic piston pump 91 of H ST 3 and a pressure reducing valve that reduces the hydraulic pressure guided from the shuttle valve to a predetermined value.
  • the movement of the servo piston piston 34 is transmitted to the first swash plate 30 through the slide metal 66 and the driving engagement pin 65.
  • the piston motor 1 includes a tilt interlock mechanism 45 that interlocks the first swash plate 30 and the second swash plate 40.
  • the tilt interlock mechanism 4 5 is supported by the case 2 5 A swing link 48 supported swingably on the holding pin 49, a first engagement pin 54 for engaging the first swash plate 30 with one end of the swing link 48, and a second swash plate 40 A second engagement pin 53 to be engaged with the other end of the swing link 48.
  • the first engagement pin 54 engages with a notch 58 formed at one end of the swing link 48 via a slide metal 75 so as to be slidable in the axial direction of the swing link 48.
  • the first engaging pin 54 is protruded laterally from the first swash plate 30 as shown in FIG.
  • the second engagement pin 53 engages with a notch 55 formed at the other end of the swing link 48 via a slide metal 62 so as to be slidable in the axial direction of the swing link 48.
  • the second engaging pin 53 protrudes sideways from the arm 46 projecting from the second swash plate 40 toward the first swash plate 30.
  • the central axes of the second engagement pin 53, the first engagement pin 54, and the drive engagement pin 65 shown in FIG. 2 are respectively the inclined central axis 030 and the second axis of the first swash plate 30.
  • the swash plate 40 is parallel to the inclined central axis 040.
  • the servo mechanism 33 and the tilt interlock mechanism 45 are arranged so as to sandwich the first swash plate 30, and the driving engagement pin 65 and the first engagement pin 54 are connected to the first swash plate 30. Projecting in opposite directions from both sides of the swash plate 30.
  • FI G. 4 A is one side view of the second swash plate 40
  • FI G. 4 B is the rear view of the second swash plate 40
  • FI G. 4 C is the other side of the second swash plate 40.
  • a side view is shown.
  • the arm 46 protrudes from one side of the second swash plate 40 in the direction of the first swash plate 30, and the second from the tip of the arm 46 to the side.
  • the engaging pin 53 protrudes.
  • the second engaging pin 53 is arranged on the cylinder block 4! L from the inclined central axis 040 of the second swash plate 40 as shown in FIG.
  • the sensor shaft 57 via the bracket 56 is coaxial with the inclined central axis 040 of the second swash plate 40. Is established.
  • a potentiometer 59 shown in FIG. 1 is attached to the sensor shaft 57. The potentiometer 59 detects the inclination angle of the second swash plate 40.
  • FIG. 5 shows the situation of the tilt interlock mechanism 45 when the Biston motor 1 is in the minimum capacity state.
  • the tilt angle TH 4 of the first swash plate 30 is 0 degree
  • the tilt angle TH 5 of the second swash plate 40 is 6.67 degrees.
  • F I G. 6 B shows the situation of the tilt interlock mechanism 45 when the piston motor 1 is in the maximum capacity state.
  • the inclination angle TH1 of the first swash plate 30 is 16.3 degrees
  • the inclination angle TH3 of the second swashplate 40 is also 16.3 degrees.
  • a / B (L r-s i n (TH0)) / (L s-s i n (TH2)) (6)
  • A Distance between the center of the first engagement pin 54 and the support pin 49;
  • L r the distance between the center of the first engaging pin 54 and the inclined central axis 030 of the first swash plate 30;
  • L s the center of the second engaging pin 53 and the inclined center of the second swash plate 40 Distance from axis 040; D-displacement distance in the direction perpendicular to the rotation center axis 0 of the cylinder block 4 with respect to the center of the support pin 4 9 at the center of the second engagement pin 5 3;
  • the piston motor I has two swash plates under a single servo mechanism 33, without providing two servo mechanisms and proportional electromagnetic pressure reducing valves.
  • the tilt angles of 30 and 40 can be changed synchronously.
  • tuning of acceleration and deceleration is conventionally performed by using a servo mechanism that drives the swash plate of the piston pump 91 and the first swash plate 30 and the first swash plate of the piston motor 1. This was done by adjusting each servomechanism that adjusts the tilt angle of the swash plate 40 and three servomechanisms. According to this HST 3, the same result can be obtained by adjusting the servo mechanism that drives the swash plate for piston pump 91, the servo mechanism for piston motor 1, and the two servo mechanisms. it can.
  • the servo mechanism 3 3 and the tilt interlock mechanism 4 5 are arranged so as to sandwich the first swash plate 30, the servo mechanism 3 3 and the tilt interlock mechanism are interlocked in a limited space in the case 25.
  • the mechanism 45 can be accommodated in a compact manner.
  • the single servo mechanism 33 adjusts the tilt angle of the first swash plate 30, but the single servo mechanism adjusts the tilt angle of the second swash plate 40. It may be adjusted. It is also possible to configure so that a single servo mechanism 3 3 force s tilt interlock mechanism 4 5 is driven directly.
  • the second engaging pin 53 is disposed on the opposite side of the cylinder block 4 with respect to the inclined central axis 0 40 of the second swash plate 40, and the first engaging pin 54 is
  • the plate 30 can be disposed on the second swash plate 40 side, that is, on the cylinder block 4 side from the inclined central axis 0 30.
  • the first swash plate 30 and the second swash plate 40 are interlocked via an inclination interlocking mechanism 70.
  • the tilt interlock mechanism 70 includes a slide bar 71, a first engaging pin 73 that engages the first swash plate 30 with one end of the slide bar 71, and a second swash plate 40. And a second engaging pin 7 4 to be engaged with the other end of 7 1.
  • Slide par 7 1 is relative to case 2 5, rotation center axis 0 4 of cylinder block 4, tilt center axis 0 30 of first swash plate 30, and tilt center axis 0 of second swash plate 40 It is supported via a pair of guides 72 so that it can be displaced only in the direction perpendicular to the plane formed by 40.
  • the first engagement pin 73 is engaged with a notch 7 7 formed at one end of the slide bar 71 so as to be slidable in the axial direction of the slide bar 71.
  • the first engaging pin 73 is protruded laterally from the first swash plate 30.
  • the first engaging pin 73 is located on the opposite side of the cylinder block 4 with respect to the inclined central axis 0 30 of the first swash plate 30.
  • the second engagement pin 74 engages with a notch 78 formed on the other end of the slide bar 71 so as to be slidable in the axial direction of the slide bar 71.
  • the second engaging pin 74 protrudes laterally from an arm 76 projecting from the second swash plate 40 in the direction opposite to the first swash plate 30.
  • the second engagement pin 74 is located on the opposite side of the cylinder block 4 with respect to the inclined central axis 0 40 of the second swash plate 40. .
  • the central axes of the first engaging pin 7 3, the second engaging pin 7 4, and the driving engaging pin 65 shown in FIG. 2 are the inclined central axes of the first swash plate 30. 0 30 and the second swash plate 40 are parallel to the inclined central axis 0 40.
  • F IG. 7 shows the state of the tilt interlock mechanism 70 when the piston motor 1 is in the minimum capacity state.
  • the tilt angle T H 3 of the first swash plate 30 is 0 degree
  • the tilt angle T H 4 of the second swash plate 40 is 6.67 degrees.
  • F IG. 8 shows the state of the tilt interlock mechanism 70 when the piston motor 1 is in the maximum capacity state.
  • the tilt angle T H 1 of the first swash plate 30 is 16.3 degrees
  • the tilt angle T H 2 of the second swash plate 40 is also 16.3 degrees.
  • the first swash plate 3 0 is tilted via the driving engagement pin 6 5 and the second swash plate 4 0 is tilted. It tilts in conjunction with the first swash plate 30 via the interlocking mechanism 70.
  • the capacity of the Biston motor 1 can be changed steplessly and continuously in accordance with the stroke position of the servo piston piston 34 between the minimum capacity state shown in FIG. 7 and the maximum capacity state shown in FIG.
  • the first engagement pin 73 and the first swash plate Arrange the two engagement pins 74. For this reason, the dimensions of each part of the tilt interlock mechanism 70 shown in FIG. 8 are set to satisfy the following formula (7).
  • D 1 the diameter of the locus of displacement of the center 073 of the first engaging pin 73 around the inclined central axis 030 of the first swash plate 30;
  • the piston motor 1 does not have two servo mechanisms and a proportional electromagnetic pressure reducing valve, but two swash plates 30 and a single servo mechanism 33. 40 tilt angles can be changed.
  • this embodiment can provide the same preferable effects as those of the first embodiment.
  • the present invention can be applied to an opposed swash plate type hydraulic pump.
  • Industrial applicability As described above, according to the present invention, the inclination angle of the two swash plates of the opposed swash plate type hydraulic motor or hydraulic pump can be controlled with a simple configuration. Therefore, if this invention is applied to an HST that uses a counter-type swash plate type hydraulic motor or hydraulic pump, a wide gear ratio range can be achieved with a simple and compact configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reciprocating Pumps (AREA)
  • Hydraulic Motors (AREA)

Abstract

シリンダブロック(4)の両側に第1の斜板(30)と第2の斜板(40)を配置し、シリンダブロック(4)に複数のシリンダ(6)をシリンダブロック(4)の中心軸(O40)を中心とする円周上にシリンダブロック(4)の中心軸(O40)と平行に配置する。同一のシリンダ(6)に第1のピストン(8)と第2のピストン(9)とを相対して挿入し、第1のピストン(8)を第1の斜板(30)に摺接させ、第2のピストン(9)を第2の斜板(40)に摺接させる。第1の斜板(30)を傾斜させるサーボ機構(33)と、第1の斜板(30)の傾斜に連動して第2の斜板(40)を傾斜させる傾斜連動機構(40、70)とを備えることで、単一のサーボ機構(33)による2つの斜板(30、40)の傾斜角制御を可能にする。

Description

明細書 対向式斜板型ピストンポンプ Zモ―夕 技術分野 この発明は、 シリンダブ口ックの両側に面して第 1の斜板と第 2の斜板とを配置し た、 対向式斜板型油圧ポンプ Zモ一タの容量制御に関する。 背景技術 日本国特許庁が 1 999年に発行した J PH 1 1— 247990Aは、 斜板型油圧ポ ンプの容量を変化させるために、 斜板傾斜角を変化させる油圧サーポ機構を開示して いる。
日本国特許庁が 2005年に発行した J P 2005- 105898 Aは、 シリンダブ ロックの両端面に面して第 1の斜板と第 2の斜板とを配置した対向式斜板型油圧ポン プ/モータを開示している。 シリンダブ口ックの各シリンダには第 1の斜板に摺接する 第 1のピストンと、 第 2の斜板に摺接する第 2のピストンとが収装される。 シリンダ ブロックの回転に応じて、 第 1のピス トンは第 1の斜板により軸方向に駆動され、 第 2のピストンは第 2の斜板により軸方向に駆動され、 シリンダ内をそれぞれ往復動す る。 ふたつの斜板の傾斜角を変化させることで, 単一の斜板を用いた油圧ポンプノ モータと比べて容量をより大幅に変化させることができる。 発明の開示 対向式斜板型ビストンポンプ Zモー夕ににおいて、 前記の J PH I 1-247990 Aが開示するようなサーボ機構を用いて、 第 1の斜板の傾斜角度と第 2の斜板の傾斜 角度を制御するとすれば、 当然ふたつのサーボ機構が必要になる。 対向式斜板型油圧 ポンプ zモータは単一斜板の油圧ポンプ/モータと比べて、 容量の変化量を大きくで きるものの、 このような理由から製造コストも大幅に高くならざるを得ない。
この発明の目的はしたがって、 対向式斜板型ピストンポンプ zモータのふたつの斜 板の傾斜角の制御を簡易な構成で実現することである。
以上の目的を達成するために、 この発明はシリンダブ口ックの両側に第 1の斜板と 第 2の斜板を配置し、 シリンダブ口ックに複数のシリンダをシリンダブ口ックの中心軸 を中心とする円周上にシリンダブ口ックの中心軸と平行に配置し、 同一のシリンダに 第 1のピストンと第 2のピストンとを相対して揷入し、 第 1のピストンを第 1の斜板 に摺接させ、 第 2のピストンを第 2の斜板に摺接させることで、 第 1のピストンと第 2のビストンがシリンダを拡縮する、 対向式斜板型ビストンポンプ Zモータにおい て、 第 1の斜板を傾斜させるサーボ機構と、 第 1の斜板の傾斜に連動して第 2の斜板を 傾斜させる傾斜連動謹と、 を備えている。
この発明の詳細並びに他の特徴や利点は、 明細書の以降の記載の中で説明されると ともに、 添付された図面に示される。 図面の簡単な説明
F I G. 1はこの発明による対向式斜板型ピストンモータを備えた H S Tの要部縦 断面図である。
F I G. 2はこの発明による傾斜連動機構の横断面図と、 サーボ機構の縦断面図 と、 を含む第 1の斜板の正面図である。
F I G. 3は傾斜連動機構の側面図である。
F I G s . 4 A- 4 Cほ第 1の斜板の背面図と 2方向から眺めた側面図である。 F I G. 5はケースの横断面図である。
F I G s . 6 Aと 6 Bは傾斜連動機構の動作状況を説明する、 傾斜連動機構の側面 図である。
F I G. 7はこの発明による他の実施例を示す傾斜連動機構の側面図である。
F I G . 8は F I G . 7に類似するか, 最大容量状態の斜板と傾斜連動機構を示 す。 発明を実施するための最良の形態 作業用車両の無段変速機として用いられるハイドロスタティックトランスミツショ ン (以下 H S Tと略称する) に、 この発明を適用した実施例を以下に説明する。
図面の F I G . Iを参照すると、 H S T 3は可変容量形油圧ピストンポンプ 9 1 と 可変容量形油圧ピストンモータ 1 とを備える。 ビストンポンプ 9 1は内燃エンジンに よりポンプシャフト 9 2を介して回転駆動される。 ビストンモータ 1はビストンポン プ 9 1が吐出する作動油によって回転駆動される。 ピストンモータ Iのモ一タシャフ ト 5の回転は、 ディフアレンシャルなどのギヤを介して作業用車両の左右の駆動輪に伝 達される。
ビストンモータ 1は、 シリンダブ口ック 4の両側に第 1の斜板 3 0と第 2の斜板 4 0とを備えた対向式斜板型油圧モータで構成される。 対向式斜板型油圧ポンプ Zモー 夕の構造は前述の J P 2 0 0 5— 1 0 5 8 9 8 Aにより公知である。
ピストンモータ Iは、 ケース 2 5と、 ケース 2 5を封鎖するポートブロック 5 0と を備える。 ポートブロック 5 0に封鎖されたケース 2 5の内側には作動室 2 4が形成さ れる。 作動室 2 4にはシリンダブロック 4、 第 1の斜板 3 0、 及び第 2の斜板 4 0が 収装される。
シリンダブ口ック 4は、 ケース 2 5とポートプロック 5 0に回転自由に支持された モータシャフト 5の外周に固定され、 モータシャフト 5と一体に回転する。 シリンダ プロック 4を軸方向に貫通して複数のシリンダ 6力形成される。 シリンダ 6はシリンダ ブロック 4の回転方向に等しい角度間隔で形成される。 第 Iのピストン 8と、 第 2の ビストン 9と力各シリンダ 6の両端の開口部からシリンダ 6の内側に挿入される。 シ リンダ 6の内側にはピストン 8と 9により容積室 1 0が画成される。
第 1のピストン 8と、 第 2のピストン 9はシリンダブ口ック 4の両端面からそれぞ れ軸方向外側に突出する。 第 1のピストン 8の突出端にはシ 2 1力 s装着される。 第 2のピストン 9の突出端にはシ 2 2力 s装着される。 シ 2 1はポートプレート 6 0を介して第 1の斜板 3 0に摺接する。 シ 2 2は直接第 2の斜板 4 0に摺接す る。 ポートプレート 6 0は各シリンダ 6のシュ一 2 1を所定の範囲で摺動可能に係止し たディスク状の部材であり、 斜板 3 0に対して回転方向に摺動自由に接している。 シリンダブ口ック 4が回転すると、 第 1のピストン 8はポートプレート 6 0及び シユー 2 1とともに回転し、 第 1の斜板 3 0に措接しつつ回転するポートプレート 6 0 がもたらす軸方向力によりシリンダ 6内を往復動する。
第 2のピストン 9はシユー 2 2を第 2の斜板 4 0に摺接させつつ回転し、 第 2の斜 板 4 0がもたらす軸方向力によりシリンダ 6内を往復動する。
シリンダ 6内を往復動するピストン 8と 9力 シリンダ 6内の容積室 1 0を拡縮す る。 なお、 第 1のピストン 8力最収縮位置に到達すると同時に第 2のピストン 9も最 収縮位置に到達し、 第 1のピストン 8力最伸張位置に到達すると同時に第 2のピスト ン 9も最伸張位置に達するように、 第 1の斜板 3 0の傾斜方向と、 第 2の斜板 4 0の 傾斜方向をあらかじめ設定する。
各シリンダ 6内の容積室 1 0へ作動油を供給する油通路と、 容積室 1 0から作動油 を排出する油通路と力 F I G. 2に示す第 1の斜板 3 0に一対のポート 1 6として 形成される。 一対のポート 1 6はポートプレート 6 0に形成された、 シリンダ 6と同 数のパルブポート 6 1と、 シュ一 2 1に形成したポート 1 9とを介し、 シリンダ 6の回 転位置に応じて選択的に容積室 1 0に連通する。
F I G. 3を参照すると、 第 1の斜板 3 0はハーフログ断面形状の摺動面を有する 背面ジャーナル部 3 1を備える。 ポートブロック 5 0には背面ジャーナル部 3 1を摺動 面に沿って摺動自由に支持する第 1の凹状べァリング 3 2力 s設けられる。 第 2の斜板 4 0はハーフログ形状の摺動面を有する背面ジャーナル部 4 1を備える。 ケース 2 5に は背面ジャーナル部 4 1を摺動面に沿って摺動自由に支持する第 2の凹状べァリング 4 2力設けられる。 一対のポート 1 6は第 1の凹状ベアリング 3 2に形成された一対の 軸受ポートと常時連通し、 軸受ポートからポートブロック 5 0を貫通する油通路を介 してピストンポンプ 9 1の吐出通路と吸込通路に接続される。
ピストンモータ 1は次のように作動する。
すなわち、 ピストンポンプ 9 Iの吐出通路の加圧作動油が、 一方の軸受ポートか ら、 一方のポート 1 6、 パルブポート 6 1、 シュ一ポ ト 1 9を介してシリンダ 6の容 積室 1 0に送り込まれ、 容積室 1 0を膨張させることで第 1のピストン 8と第 2のピ ストン 9を伸張方向にそれぞれ駆動する。 第 1の斜板 3 0力伸張する第 Iのピストン 8に及ぼす回転トルクと、 第 2の斜板 4 0が伸張する第 2のピストン 9に及ぼす回転 トルクによりシリンダブ口ック 4が回転する。
第 1のピストン 8と第 2のピストン 9が最伸張位置に達した後は、 第 1の斜板 3 0 に案内されつつ回転する第 1のピストン 8と、 第 2の斜板 4 0に案内されつつ回転す る第 2のピストン 9は、 それぞれ容積室 1 0を収縮する方向に変位する。 これに伴 い、 容積室 1 0の作動油はシユーポート I 9、 パルプポート 6 1、 もう一方のポート 1 6、 もう一方の軸受ポートを介して吐き出され、 ピストンポンプ 9 1の吸込通路に吸 い込まれる。
ピストンモータ 1の容量、 すなわち第 1のピストン 8と第 2のピストン 9の 1往復 当たりの押しのけ容積を可変とするため、 H S T 3は第 1の斜板 3 0の傾斜角度と第 2の斜板 4 0の傾斜角度とを変化させる F I G. 2に示すサーボ機構 3 3を備える。 第 1の斜板 3 0の傾斜角度の変化は、 第 1の斜板 3 0の背面ジャーナル部 3 1をハ一 フログ断面形状の摺動面に沿って第 1の凹状べァリング 3 2に対して摺動させることで 行なわれる。 第 2の斜板 4 0の傾斜角度の変化は、 第 2の斜板 4 0の背面ジャーナル 部 4 1をハーフログ断面形状の摺動面に沿って第 2の凹状ベアリング 4 2に対して摺動 させることで行なわれる。
H S T 3の作動時には、 ピストンポンプ 9 Iから吐出される作動油が上述のように ピストンモータ 1を回転駆動する。 ピストンモータ 1の第 1の斜板 3 0と第 2の斜板 4 0の各傾斜角度を変えることにより、 ピストンモータ 1の容量が変化する。 このよ うにしてピストンモータ 1の容量が変化することで, ピストンポンプ 9 1のポンプシャ フト 9 2とピストンモータ 1のモ一タシャフト 5の回転速度比が変化する。
対向式斜板型油圧モータであるピストンモータ 1は、 最大容量から最小容量までの 可変容量比率を、 従来の非対向式斜板型油圧ポンプに比べて略 2倍に設定することが 可能であり、 H S T 3の変速レンジを広く設定することができる。
この発明による、 ピストンモータ 1は、 さらに第 1の斜板 3 0の傾斜角度と第 2の 斜板 4 0の傾斜角度とを単一のサーボ機構 3 3のもとで変化させるための仕組みを備 える。
F I G. 2を参照して、 まずサーボ機構 3 3の仕組みを説明する。 サーボ機構 3 3は、 ポートブロック 5 0に摺動可能に収装されるサーポレギュレー タピストン 3 4を備える。 第 1の斜板 3 0は側方へ突出する駆動用係合ピン 6 5を備 える。 駆動用係合ピン 6 5にはスライドメタル 6 6力装着される。 サーポレギユレ一夕 ピストン 3 4にはスライ ドメタル 6 6を摺動可能に係合させる凹部 6 7が形成され る。 サーポレギユレ一タピストン 3 4が油圧に応じて軸方向に変位すると、 駆動用係 合ピン 6 5、 スライドメタル 6 6を介して、 背面ジャーナル部 3 1を第 1の凹状べァリ ング 3 2に対して摺動させる力が第 1の斜板 3 0に加えられ、 第 1の斜板 3 0の傾斜角 度力変化する。
ポートブロック 5 0には同軸上に連続してシリンダ部 5 1 と 5 2が形成される。 サーポレギユレ一タピストン 3 4はシリンダ部 5 1に摺動可能に嵌合するピストン部 3 5と、 シリンダ部 5 2に摺動自由に嵌合するピストン部 3 6からなる。 シリンダ部 5 1の内側にはピストン部 3 5に臨む油圧室 2 8力 s形成される。 シリンダ部 5 2の内 側にはピストン部 3 6に臨む油圧室 2 9力 s形成される, シリンダ部 5 1の径はシリン ダ部 5 2の径ょり小さく、 ピストン部 3 5の受圧面積はピストン部 3 6の受圧面積よ り小さい。
第 1の油圧室 2 8には油圧源から油圧が導かれる。 第 2の油圧室 2 9には油圧源か ら比例電磁減圧弁を介した油圧が導かれる。 サ一ポレギユレ一タピストン 3 4のスト ローク位置は油圧室 2 9に導かれる作動油圧に応じて変化する。 第 1の油圧室 2 8と 第 2の油圧室 2 9に導かれる作動油圧が同等の場合は、 サーポレギユレ一タピストン 3 4はピストン部 3 5と 3 6の受圧面積差によって、 F I G. 2に示すように一方のス トロークエンドに位置している。 第 1の油圧室 2 8に導かれる作動油圧が所定値まで 減圧されると、 サ一ポレギユレ一タピストン 3 4はもう一方のストロークェンドに移 動する。
油圧源は、 H S T 3の油圧ピストンポンプ 9 1の吐出圧を取り出すシャトル弁と、 シャトル弁から導かれた油圧を所定値に減圧する減圧弁とを備える。
サーポレギユレ一タピストン 3 4の動きはスライ ドメタル 6 6及び駆動用係合ピン 6 5を介して第 1の,斜板 3 0に伝えられる。
F I G. 3を参照すると、 ピストンモータ 1は第 1の斜板 3 0と第 2の斜板 4 0を 連動させる傾斜連動機構 4 5を備える。 傾斜連動機構 4 5はケース 2 5に固定された支 持ピン 49に揺動可能に支持された揺動リンク 48と、 第 1の斜板 30を揺動リンク 48の一端に係合させる第 1の係合ピン 54と、 第 2の斜板 40を揺動リンク 48の もう一端に係合させる第 2の係合ピン 53とを備える。
第 1の係合ピン 54ほ揺動リンク 48の一端に形成されたノッチ 58にスライドメ タル 75を介して、 揺動リンク 48の軸方向に摺動可能に係合する。 第 1の係合ピン 5 4は F I G. 2に示すように第 1の斜板 30から側方へ突設される。
第 2の係合ピン 53は揺動リンク 48のもう一端に形成されたノツチ 55にスライ ドメタル 62を介して、 揺動リンク 48の軸方向に摺動可能に係合する。
第 2の係合ピン 53は第 1の斜板 30に向けて第 2の斜板 40に突設したアーム 4 6から側方へ突出する。 第 2の係合ピン 53と、 第 1の係合ピン 54と、 F I G. 2 に示す駆動用係合ピン 65の各中心軸は、 第 1の斜板 30の傾斜中心軸 030及び第 2の斜板 40の傾斜中心軸 040と平行をなす。
再び F I G. 2を参照すると、 サーボ機構 33と傾斜連動機構 45は第 1の斜板 3 0を挟むように配置され、 駆動用係合ピン 65と第 1の係合ピン 54は第 1の斜板 3 0の両側面からそれぞれ逆方向に突出する。
F I G. 4 Aは第 2の斜板 40の一方の側面図、 F I G. 4 Bは第 2の斜板 40の 背面図、 F I G. 4 Cは第 2の斜板 40のもう一方の側面図を示す。 F I G s. 4 Aと 4 Bに示すように、 第 2の斜板 40の一方の側面からはアーム 46が第 1の斜板 30 の方向へ突出し、 アーム 46の先端部から側方へ第 2の係合ピン 53が突出する。 第 2の係合ピン 53は F I G. 3に示すように第 2の斜板 40の傾斜中心軸 040より シリンダブ口ック 4 !lに配置される。
F I G. 4 Bと 4Cに示すように、 第 2の斜板 40のもう一方の側面には、 第 2の 斜板 40の傾斜中心軸 040と同軸上に、 ブラケット 56を介してセンサ軸 57が設 けられる。 センサ軸 57には F I G. 1に示すポテンショメータ 59が取り付けられ る。 ポテンショメータ 59は第 2の斜板 40の傾斜角度を検出する。
F I G. 5を参照すると、 揺動リンク 48をケース 25に支持する支持ピン 49 は、 揺動リンク 48に形成された穴 63に摺動可能に揷入される一方、 ナット 64を 介してケース 25に固定される。 このようにして、 揺動リンク 48はケース 25に支持 ピン 49を介して揺動可能に支持される。 F I G. 6 Aはビストンモ一タ 1を最小容量状態とした場合の傾斜連動機構 45の 状況を示す。 ここでほ、 第 1の斜板 30の傾斜角度 TH 4は 0度であり、 第 2の斜板 40の傾斜角度 TH 5は 6. 67度である。
F I G. 6 Bはピストンモータ 1が最大容量状態とした場合の傾斜連動機構 45の 状況を示す。 ここでは、 第 1の斜板 30の傾斜角度 TH 1は 1 6. 3度であり、 第 2 の斜板 40の傾斜角度 TH3も 16. 3度である。
サーボ機構 33のサーポレギユレ一タピストン 34がストローク位置を変えること により、 駆動用係合ピン 65を介して第 1の斜板 30力傾斜すると、 第 2の斜板 40 力 s傾斜連動機構 45を介して第 1の斜板 30に連動して傾斜する。 ビストンモータ 1の 容量は、 F I G. 6 Aに示す最小容量状態から F I G. 6 Bに示す最大容量状態に至 る間で、 サ一ポレギユレ一タピストン 34のストローク位置に応じて無段階かつ連続 的に変えられる。
F I G. 6 Aにおいては、 第 2の係合ピン 53、 第 1の係合ピン 54、 及び支持ピ ン 49の各中心がシリンダブロック 4の回転中心軸 04上に位置しているが、 F I G. 6 Bに示す各部の寸法が次式 (1) - (6) を満たすことを条件に、 第 2の係合ピ ン 53、 第 1の係合ピン 54、 及び支持ピン 49は、 回転中心軸◦ 4上以外の任意の 位置に配置可能である。
TH0 = TH 1 -TH4 ( 1 )
TH2=TH3-TH5 (2)
C = L r · s i n (THO) (3)
D = L s · s i n (TH2) (4)
C/D = A/B (5)
A/B= (L r - s i n (TH0) ) / (L s - s i n (TH2) ) (6) ただし、
A=第 1の係合ピン 54と支持ピン 49の中心間距離;
B=支持ピン 49と第 2の係合ピン 53の中心間距離;
L r =第 1の係合ピン 54の中心と第 1の斜板 30の傾斜中心軸 030との距離; L s =第 2の係合ピン 53の中心と第 2の斜板 40の傾斜中心軸 040との距離; D -第 2の係合ピン 5 3の中心の支持ピン 4 9の中心に対する、 シリンダブロック 4の回転中心軸 0 4と直交する方向への変位距離;及び
C =第 1の係合ピン 5 4の中心の支持ピン 4 9の中心に対する、 第 2の係合ピン 5 3の中心の変位と逆向きの変位距離。
以上のように構成された傾斜連動機構 4 5を用いることで、 ピストンモータ Iはふ たつのサーボ機構と比例電磁減圧弁を設けずに、 単一のサーボ機構 3 3のもとでふた つの斜板 3 0と 4 0の傾斜角度を同期的に変化させることができる。
車両の無段変速機として用いられる H S Tの場合、 従来ほ加速と減速のチューニン グを、 ピストンポンプ 9 1の斜板を駆動するサーボ機構と、 ピストンモータ 1の第 1 の斜板 3 0と第 2の斜板 4 0の傾斜角を調整するそれぞれのサーボ機構と、 からなる 3個のサーボ機構の調整により行なっていた。 この H S T 3によれば、 ピストンボン プ 9 1用の斜板を駆動するサーボ機構と、 ピストンモータ 1用のサーボ機構と、 力 ら なる 2個のサーボ機構の調整で、 同じ結果を得ることができる。
さらに、 このピストンモータ 1では、 サーボ機構 3 3と傾斜連動機構 4 5とを第 1 斜板 3 0を挟むように配置したため、 ケース 2 5内の限られたスペースにサーボ機構 3 3と傾斜連動機構 4 5とをコンパクトに収容することができる。
以上説明した実施例では、 単一のサーボ機構 3 3が第 1の斜板 3 0の傾斜角度を調 整しているが、 単一のサーボ機構が第 2の斜板 4 0の傾斜角度を調整するようにしても 良い。 また、 単一のサーボ機構 3 3力 s傾斜連動機構 4 5を直接駆動するように構成す ることも可能である。
第 2の係合ピン 5 3を第 2の斜板 4 0の傾斜中心軸 0 4 0に関してシリンダブ口ッ ク 4と反対側、 に配置し、 第 1の係合ピン 5 4を第 1の斜板 3 0の傾斜中心軸 0 3 0 より第 2の斜板 4 0側、 すなわちシリンダブロック 4側、 に配置することも可能であ る。
次に F I G s . 7と 8を参照してこの発明の別の実施例を説明する。
この実施例では, 第 1の斜板 3 0と第 2の斜板 4 0とを傾斜連動機構 7 0を介して 連動させる。 傾斜連動機構 7 0はスライドパ一 7 1と、 第 1を斜板 3 0をスライドパー 7 1の一端に係合させる第 1の係合ピン 7 3と、 第 2の斜板 4 0をスライドパー 7 1 のもう一端に係合させる第 2の係合ピン 7 4と、 を備える。 スライドパー 7 1はケース 2 5に対し、 シリンダブロック 4の回転中心軸 0 4と、 第 1の斜板 3 0の傾斜中心軸 0 3 0と、 第 2の斜板 4 0の傾斜中心軸 0 4 0とがなす 平面と直交する方向にのみ変位可能なように、 一対のガイド 7 2を介して支持され る。
第 1の係合ピン 7 3はスライドパ一 7 1の一端に形成したノッチ 7 7に、 スライド パー 7 1の軸方向に摺動可能に係合する。 第 1の係合ピン 7 3は第 1の斜板 3 0から 側方へ突設される。 第 1の係合ピン 7 3は第 1の斜板 3 0の傾斜中心軸 0 3 0に関し てシリンダブ口ック 4と反対側に位置する。
第 2の係合ピン 7 4はスライドバー 7 1のもう一端に形成したノツチ 7 8に、 スラ ィドパ一 7 1の軸方向に摺動可能に係合する。 第 2の係合ピン 7 4は第 2の斜板 4 0 から第 1の斜板 3 0と反対方向に向けて突設したアーム 7 6から側方へ突出する。 第 2の係合ピン 7 4は第 2の斜板 4 0の傾斜中心軸 0 4 0に関して、 シリンダブ口ック 4 と反対側に位置する。 .
第 1の係合ピン 7 3と、 第 2の係合ピン 7 4と、 F I G. 2に示す駆動用係合ピン 6 5の各中心軸は、 第 1の斜板 3 0の傾斜中心軸 0 3 0及び第 2の斜板 4 0の傾斜中 心軸 0 4 0と平行をなす。
F I G. 7はピストンモータ 1を最小容量状態とした場合の傾斜連動機構 7 0の状 況を示す。 ここでは、 第 1の斜板 3 0の傾斜角度 T H 3は 0度であり、 第 2の斜板 4 0の傾斜角度 T H 4は 6 . 6 7度である。
F I G. 8はピストンモータ 1を最大容量状態とした場合の傾斜連動機構 7 0の状 況を示す。 ここでは、 第 1の斜板 3 0の傾斜角度 T H 1は 1 6 . 3度であり、 第 2の 斜板 4 0の傾斜角度 T H 2も 1 6 . 3度である。
ピストンモータ 1の他の構成は、 第 1の実施例と同一である。
サーボ機構 3 3のサ一ポレギユレ一タピストン 3 4がストローク位置を変えること により、 駆動用係合ピン 6 5を介して第 1の斜板 3 0力傾斜すると、 第 2の斜板 4 0 力傾斜連動機構 7 0を介して第 1の斜板 3 0に連動して傾斜する。 ビストンモータ 1の 容量は、 F I G. 7に示す最小容量状態から F I G . 8に示す最大容量状態に至る間 で、 サーポレギユレ一タピストン 3 4のストローク位置に応じて無段階かつ連続的に 変えられる。 第 1の斜板 30と第 2の斜板 40を傾斜させるため、 第 1の斜板 30と第 2の斜板 40の各傾斜角度範囲に比例する位置に第 1の係合ピン 73と第 2の係合ピン 74を 配置する。 このため、 F I G. 8に示す傾斜連動機構 70の各部の寸法を、 次式 (7) を満たす^;うに設定する。
D2/D 1 = (TH 1-TH3) / (TH2-TH4) (7)
ただし、
D 1 =第 1の斜板 30の傾斜中心軸 030を中心として、 第 1の係合ピン 73の中 心 073が変位する軌跡の直径;
D 2=第 2の斜板 40の傾斜中心軸 040を中心として、 第 2の係合ピン 74の中 心 074力 s変位する軌跡の直径;
TH 1 =F I G. 8に示す最大容量状態における第 1の斜板 30の傾斜角度; TH2 = F I G. 8に示す最大容量状態における第 2の斜板 40の傾斜角度; T H 3 = F I G . 7に示す最小容量位置における第 1の斜板 30の傾斜角度;及び TH4 = F I G. 7に示す最小容量位置における第 2の斜板 4ひの傾斜角度。
以上のように構成された傾斜連動機構 70を用いることで、 ピストンモータ 1はふ たつのサーボ機構と比例電磁減圧弁を設けずに、 単一のサーボ機構 33のもとでふた つの斜板 30と 40の傾斜角度を変化させることができる。
したがって、 この実施例によつても前記第 1の実施例と同様の好ましい効果が得ら れる。
以上の説明に関して 2007年 3月 1 6日を出願日とする日本国における特願 20 07-681 57号、 の内容をここに引用により合体する。
以上、 この発明をいくつかの特定の実施例を通じて説明して来たが、 この発明は上 記の各実施例に限定されるものではない。 当業者にとっては、 クレームの技術範囲で これらの実施例にさまざまな修正あるいは変更を加えることが可能である。
例えば, この発明は対向式斜板型油圧ポンプにも適用可能である。 産業上の利用可能性 以上説明したように、 この発明によれば対向式斜板型の油圧モータまたは油圧ポン プの 2つの斜板の傾斜角の制御を簡易な構成で行なうことができる。 したがって、 こ の発明を対向式斜板型の油圧モータまたは油圧ポンプを用いる H S Tに適用すれば、 簡易かつコンパクトな構成で広い変速比範囲を力パーすることができる。
この発明の実施例力 ^包含する排他的性質あるいは特長は以下のようにクレームされ る。

Claims

請求の範囲
1. シリンダブロック (4) の両側に第 1の斜板 (30) と第 2の斜板 (40) を配 置し、 シリンダブロック (4) に複数のシリンダ (6) をシリンダブロック (4) の中 心軸 (040) を中心とする円周上にシリンダブロック (4) の中心軸 (040) と 平行に配置し、 同一のシリンダ (6) に第 1のピストン (8) と第 2のピストン
(9) とを相対して揷入し、 第 1のピストン (8) を第 1の斜板 (30) に摺接させ、 第 2のピストン (9) を第 2の斜板 (40) に摺接させることで、 第 1のピストン (8) と第 2のピストン (9) がシリンダ (6) を拡縮する、 対向式斜板型ピストン ポンプ/モータにおいて、
第 1の斜板 (30) を傾斜させるサーボ機構 (33) と ;
第 1の斜板 (30) の傾斜に連動して第 2の斜板 (40) を傾斜させる傾斜連動機 構 (40、 70) と ;
を備える。
2. 請求の範囲第 1項に記載の対向式斜板型ピストンポンプ Zモータにおいて、 シリ ンダブロック (4) と第 1の斜板 (30) と第 2の斜板 (40) とを収装するケース
(25) をさらに備え, 傾斜連動機構 (40, 70) はケース (25) に固定した支 持ピン (49) と、 第 1の斜板 (30) の傾斜を第 2の斜板 (40) に伝達する、 支 持ピン (49) に揺動自由に支持された揺動リンク (48) とを備える。
3. 請求の範囲第 2項に記載の対向式斜板型ピストンポンプ Zモータにおいて、 第 1 の斜板 (30) は第 1の斜板 (30) の傾斜中心軸 (030) と平行な第 1の係合ピ ン (54) を備え, 第 2の斜板 (40) は第 2の斜板 (40) の傾斜中心軸 (04 0) と平行な第 2の係合ピン (53) を備え、 揺動リンク (48) は、 第 1の係合ピ ン (54) を揺動リンク (48) の軸方向に変位可能に保持するノッチ (58) を介 して第 1の斜板 (30) に係合するとともに、 第 2の係合ピン (53) を揺動リンク (48) の軸方向に変位可能に保持するノッチ (55) を介して第 2の斜板 (40) に係合する。
4. 請求の範囲第 3項に記載の対向式斜板型ピストンポンプ モータにおいて、 第 1 の係合ピン (54) と第 2の係合ピン (53) と支持ピン (49) は次の位置関係を 有する:
C = L r · s i n (THO)
D = L s · s i n (TH2)
C/D=A/B
A/B= (L r . s i n (THO) ) / (L s · s i n (TH2) )
ただし、
0 A=第 1の係合ピン (54) と支持ピン (49) の中心間距離;
B=支持ピン (49) と第 2の係合ピン (53) の中心間距離;
L r =第 1の係合ピン (54) の中心と第 1の斜板 (30) の傾斜中心軸 ( 03 0) との距離;
L s =第 2の係合ピン (53) の中心と第 2の斜板 (40) の傾斜中心軸 (045 0) との距離;
D=第 2の係合ピン (53) の中心の支持ピン (49) の中心に対する、 シリンダ ブロック (4) の回転中心軸 (04) と直交する方向、 への変位距離;及び
〇=第1の係合ピン (54) の中心の支持ピン (49) の中心に対する、 第 2の係 合ピン (53) の中心の変位と逆方向の変位距離。
0
5. 請求の範囲第 4項に記載の対向式斜板型ピストンポンプ Zモータにおいて、 第 2 の係合ピン (53) は第 2の斜板 (40) の傾斜中心軸 ( 040 ) よりシリンダブ ロック (4) 側に配置される。 5 6. 請求の範囲第 1項に記載の対向式斜板型ピストンポンプ/モータにおいて、 傾斜 連動機構 (40, 70) はシリンダブロック (4) の回転中心軸 (04) と、 第 1の 斜板 (30) の傾斜中心軸 (O 30) と、 第 2の斜板 (40) の傾斜中心軸 (04 0) とがなす平面と直交する方向へのみ変位可能に支持されたスライ ドパー (7 1) と、 第 1の斜板 (30) をスライ ドバ一 (71) に揺動可能に係合する第 1の係合ピ ン (73) と、 第 ·2の斜板 (40) をスライ ドパー (7 1) に揺動可能に係合する第 2の係合ピン (74) と、 を備える。
7. 請求の範囲第 6項に記載の対向式斜板型ピストンポンプ/モータにおいて、 スラ ィドパー (71) は第 1の係合ピン (73) をスライドパ一 (71) の軸方向に変位可 能に保持するノッチ (77) を介して第 1の斜板 (30) に係合するとともに、 第 2 の係合ピン (74) をスライ ドパー (7 1 ) の軸方向に変位可能に保持するノ ッチ
(78) を介して第 2の斜板 (40) に係合する。
8. 請求の範囲第 7項に記載の対向式斜板型ピストンポンプ Ζモータにおいて、 第 2 の係合ピン (74) は第 2の斜板 (40) の傾斜中心軸 (040) に関して、 シリンダ ブロック (4) と反対側に配置される。
9. 請求の範囲第 8項に記載の対向式斜板型ピストンポンプ Ζモータにおいて、 第 1 の係合ピン (73) が第 1の斜板 (30) の傾斜中心軸 (Ο 30) を中心に変位する 軌跡の径 (D 1) と第 2の係合ピン (74) が第 2の斜板 (40) の傾斜中心 (04 0) を中心に変位する軌跡の径 (D2) との比は、 第 1の斜板 (30) の傾斜可能な 角度範囲と第 2の斜板 (40) の傾斜可能な角度範囲との比の逆数に等しく設定され る。
PCT/JP2008/055176 2007-03-16 2008-03-14 対向式斜板型ピストンポンプ/モータ WO2008114843A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112008000714.4T DE112008000714B4 (de) 2007-03-16 2008-03-14 Kolbenpumpe/Kolbenmotor mit gegenüberliegenden Taumelscheiben und einem Kippverbindungsmechanismus zur Verbindung der schwenkbaren Taumelscheiben
CN2008800085021A CN101680435B (zh) 2007-03-16 2008-03-14 对置式斜板型活塞泵和活塞式液压马达的组装体
KR1020117026660A KR101172237B1 (ko) 2007-03-16 2008-03-14 대향식 경사판형 피스톤 펌프/모터
KR1020097021489A KR101204599B1 (ko) 2007-03-16 2008-03-14 대향식 경사판형 피스톤 펌프/모터
US12/531,464 US8235681B2 (en) 2007-03-16 2008-03-14 Opposing swash plate piston pump/motor
US13/537,222 US8727743B2 (en) 2007-03-16 2012-06-29 Opposing swash plate piston pump/motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-068157 2007-03-16
JP2007068157A JP5225597B2 (ja) 2007-03-16 2007-03-16 対向式斜板型ピストンポンプ・モータ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/531,464 A-371-Of-International US8235681B2 (en) 2007-03-16 2008-03-14 Opposing swash plate piston pump/motor
US13/537,222 Division US8727743B2 (en) 2007-03-16 2012-06-29 Opposing swash plate piston pump/motor

Publications (1)

Publication Number Publication Date
WO2008114843A1 true WO2008114843A1 (ja) 2008-09-25

Family

ID=39765945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055176 WO2008114843A1 (ja) 2007-03-16 2008-03-14 対向式斜板型ピストンポンプ/モータ

Country Status (6)

Country Link
US (2) US8235681B2 (ja)
JP (1) JP5225597B2 (ja)
KR (2) KR101172237B1 (ja)
CN (1) CN101680435B (ja)
DE (1) DE112008000714B4 (ja)
WO (1) WO2008114843A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010021708A1 (de) * 2010-05-27 2011-12-01 Claas Selbstfahrende Erntemaschinen Gmbh Hydrostatische Maschine
JP2013530346A (ja) * 2010-07-08 2013-07-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ハイドロリック式のアキシャルピストン機械
DE102011088364A1 (de) * 2011-12-13 2013-06-13 Zf Friedrichshafen Ag Stellvorrichtung eines Hydrostatmoduls
EP2832999B1 (en) * 2012-03-26 2016-06-01 KYB Corporation Hydraulic pump motor
JP6114089B2 (ja) * 2013-03-29 2017-04-12 Kyb株式会社 対向式斜板型ピストンポンプ・モータ
US20140308139A1 (en) * 2013-04-10 2014-10-16 Medhat Kamel Bahr Khalil Double swash plate pump with adjustable valve ring concept
EP3020969B1 (en) * 2014-11-11 2017-09-27 Danfoss A/S Pump arrangement
US20170184089A1 (en) * 2015-12-29 2017-06-29 Ge Oil & Gas Esp, Inc. Rotary Hydraulic Pump with ESP Motor
US20170184097A1 (en) 2015-12-29 2017-06-29 Ge Oil & Gas Esp, Inc. Linear Hydraulic Pump for Submersible Applications
RU208471U1 (ru) * 2021-10-11 2021-12-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Аксиально-поршневая гидромашина

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB709183A (en) * 1950-04-25 1954-05-19 Fielding & Platt Ltd Improvements in or relating to hydraulic swash plate pumps
JPS49147604U (ja) * 1973-04-14 1974-12-20
JPS55153872A (en) * 1979-05-16 1980-12-01 Honda Motor Co Ltd Swash plate type hydraulic cylinder device
JP2005105898A (ja) * 2003-09-29 2005-04-21 Kayaba Ind Co Ltd 斜板型液圧ポンプ・モータ

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126707A (en) 1964-03-31 Hydrostatic transmission
US2371974A (en) * 1941-03-11 1945-03-20 Alfons H Neuland Fluid engine
DE876349C (de) 1948-12-31 1953-06-05 Georg Gert Frederichs Hydraulisches Getriebe als Drehzahl- und Drehmomentwandler
US3052098A (en) * 1955-03-21 1962-09-04 Ebert Heinrich Hydrostatic axial piston fluid transmission
DE1162194B (de) * 1956-05-29 1964-01-30 Georg Wiggermann Druckfluessigkeits-Axialkolbenmaschine
AT226547B (de) 1957-08-29 1963-03-25 Heinrich Dr Ing Ebert Stufenlos verstellbares hydrostatisches Getriebe, insbesondere für schwere Kraftfahrzeuge
US2957462A (en) * 1957-12-17 1960-10-25 Clark Charles William Internal combustion engines of the swash or wobble plate type
DE1114094B (de) * 1958-07-16 1961-09-21 Max Adolf Mueller Dipl Ing Hydrostatischer Fahrzeugantrieb
US3213619A (en) * 1964-04-22 1965-10-26 Ford Motor Co Hydrostatic transmission
US3306129A (en) * 1965-04-12 1967-02-28 Lalio George M De Extended range hydraulic transmission
US3412963A (en) * 1965-05-24 1968-11-26 Arthur D. Struble Jr. Method and apparatus for supporting an object
DE1625099A1 (de) * 1967-03-06 1970-05-21 Linde Ag Hydrostatisches Getriebe mit zwei Motoren
AT288879B (de) 1968-12-18 1971-03-25 Steyr Daimler Puch Ag Hydrostatisches Wechselgetriebe für den Antrieb eines Fahrzeuges, insbesondere eines Ackerschleppers
US3757525A (en) 1971-11-01 1973-09-11 Massey Ferguson Inc Hydrostatic transmission
JPS5920576A (ja) * 1982-07-26 1984-02-02 Ebara Corp 可変容量形アキシヤルピストン機械の容量制御機構
US4487108A (en) * 1982-09-23 1984-12-11 Mcluen Carl T Variable displacement pump/motor
US4624175A (en) * 1985-08-28 1986-11-25 Wahlmark Gunnar A Quiet hydraulic apparatus
JPH086797B2 (ja) * 1986-07-15 1996-01-29 本田技研工業株式会社 車両用無段変速機の変速制御方法
US5406878A (en) * 1994-05-03 1995-04-18 Caterpillar Inc. Swashplate actuating device for axial piston pumps and motors
US5531072A (en) * 1995-03-31 1996-07-02 Martin Marietta Corporation Continuously variable hydrostatic transmission having swashplate-mounted cylinder blocks
US5894899A (en) 1995-10-25 1999-04-20 New Holland North America, Inc. Speed range control system for a skid steer loader
JPH11247990A (ja) 1998-02-26 1999-09-14 Yanmar Diesel Engine Co Ltd 可変容量型油圧ポンプの可動斜板制御装置
JP2003049763A (ja) * 2001-08-03 2003-02-21 Yuken Kogyo Co Ltd 二連可変容量形アキシャルピストンポンプ
EP1519042B1 (en) * 2003-09-29 2006-08-16 Kayaba Industry Co., Ltd. Swash plate type hydraulic pump or motor
GB2449239B (en) 2007-05-14 2009-11-04 Spectrum Inspection Systems Ltd X-ray imaging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB709183A (en) * 1950-04-25 1954-05-19 Fielding & Platt Ltd Improvements in or relating to hydraulic swash plate pumps
JPS49147604U (ja) * 1973-04-14 1974-12-20
JPS55153872A (en) * 1979-05-16 1980-12-01 Honda Motor Co Ltd Swash plate type hydraulic cylinder device
JP2005105898A (ja) * 2003-09-29 2005-04-21 Kayaba Ind Co Ltd 斜板型液圧ポンプ・モータ

Also Published As

Publication number Publication date
JP5225597B2 (ja) 2013-07-03
US8235681B2 (en) 2012-08-07
KR20110126192A (ko) 2011-11-22
DE112008000714T5 (de) 2010-05-20
KR101204599B1 (ko) 2012-11-23
CN101680435A (zh) 2010-03-24
US20120269656A1 (en) 2012-10-25
JP2008231924A (ja) 2008-10-02
KR20090121391A (ko) 2009-11-25
US20100083822A1 (en) 2010-04-08
KR101172237B1 (ko) 2012-08-07
DE112008000714B4 (de) 2018-05-09
CN101680435B (zh) 2012-04-04
US8727743B2 (en) 2014-05-20

Similar Documents

Publication Publication Date Title
WO2008114843A1 (ja) 対向式斜板型ピストンポンプ/モータ
JP3385882B2 (ja) トロイダル型無段変速機の油圧制御装置
US20090290996A1 (en) Bent Axis Type Variable Displacement Pump/Motor
US9726158B2 (en) Swash plate pump having control pins in series
US20090084258A1 (en) Hydrostatic piston machine comprising a rotatable cam disk
US20060051223A1 (en) Hydrotransformer
KR101743848B1 (ko) 대향식 경사판형 액압 회전기
EP0259760B1 (en) Variable displacement swash-plate type compressor
JP5139122B2 (ja) 対向式斜板型ピストンポンプ・モータ
US5406878A (en) Swashplate actuating device for axial piston pumps and motors
WO2022004204A1 (ja) アキシャルピストン装置
JP3681258B2 (ja) 可変容量型斜板ピストンポンプ
WO2023188816A1 (ja) 回転斜板式液圧ポンプ
JP5295577B2 (ja) 斜板型ピストンポンプ・モータ
JP2009243409A (ja) サーボレギュレータ
WO2023189944A1 (ja) 回転斜板式液圧ポンプ
JPS63203959A (ja) 斜板式油圧装置の作動油分配装置
KR20210010385A (ko) 유체 기계 및 건설 기계
JP2974163B2 (ja) 斜板プランジャ式油圧装置
WO2023187476A1 (en) Hydraulic axial piston unit and method for controlling of a hydraulic axial piston unit
JPH048875A (ja) 斜板型可変容量圧縮機
JPH0454833B2 (ja)
KR20090053119A (ko) 가변용량 사판식 압축기의 경사각 규제 구조
JPS63210460A (ja) 静油圧式無段変速機
JPH0660629B2 (ja) 斜板ピストンポンプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880008502.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12531464

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120080007144

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20097021489

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08722546

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112008000714

Country of ref document: DE

Date of ref document: 20100520

Kind code of ref document: P