WO2008114766A1 - Novel polyvalent hydroxy compound, method for producing the compound, epoxy resin and epoxy resin composition each using the compound, and cured product of the composition - Google Patents

Novel polyvalent hydroxy compound, method for producing the compound, epoxy resin and epoxy resin composition each using the compound, and cured product of the composition Download PDF

Info

Publication number
WO2008114766A1
WO2008114766A1 PCT/JP2008/054846 JP2008054846W WO2008114766A1 WO 2008114766 A1 WO2008114766 A1 WO 2008114766A1 JP 2008054846 W JP2008054846 W JP 2008054846W WO 2008114766 A1 WO2008114766 A1 WO 2008114766A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
epoxy resin
carbon atoms
hydrogen atom
compound
Prior art date
Application number
PCT/JP2008/054846
Other languages
French (fr)
Japanese (ja)
Inventor
Hisashi Yamada
Hideyasu Asakage
Original Assignee
Tohto Kasei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007062106A external-priority patent/JP2008222838A/en
Priority claimed from JP2007062102A external-priority patent/JP2008222837A/en
Application filed by Tohto Kasei Co., Ltd. filed Critical Tohto Kasei Co., Ltd.
Publication of WO2008114766A1 publication Critical patent/WO2008114766A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Definitions

  • the present invention relates to a novel polyhydric hydroxy compound, a method for producing the compound, an epoxy resin using the compound, an epoxy resin composition, and a cured product thereof.
  • the present invention relates to a novel sulfide structure-containing polyhydric hydroxy compound, a sulfide structure-containing epoxy resin obtained by epoxidizing the compound, the epoxy resin-containing epoxy resin composition, and a cured product thereof, a printed wiring board, It is suitably used for insulating materials in the electrical and electronic fields such as semiconductor encapsulation.
  • Epoxy resins have been used in a wide range of industrial applications, but their required performance has become increasingly sophisticated in recent years.
  • semiconductor encapsulating materials are a typical field of resin compositions based on epoxy resins, but as the degree of integration of semiconductor elements increases, the package size is becoming larger and thinner, and the mounting method However, the transition to surface mounting is progressing, and the development of materials with excellent solder heat resistance is desired. Therefore, as a sealing material, in addition to low moisture absorption, improvement in adhesion and adhesion at the interface between different materials such as lead frames and chips is strongly demanded.
  • Patent Document 1 shows that a naphthol aralkyl resin is applied to a semiconductor sealing material.
  • naphthol aralkyl resins are excellent in low hygroscopicity, low thermal expansion, etc., but are curable.
  • Patent Document 2 proposes a curing agent having a bifunil structure and describes that it is effective for improving flame retardancy, but has a disadvantage of poor curability.
  • both naphthalene-based resins and biphenyl-based resins have a main skeleton composed of only hydrocarbons, so that they were not sufficient for the development of flame retardancy and adhesion.
  • Patent Document 3 discloses an epoxy resin composition containing a bifunctional hydroxy compound having a sulfide structure.
  • the bifunctional hydroxy compound has a high melting point
  • an epoxy resin curing agent is disclosed.
  • it is a bifunctional compound, it has a disadvantage that it is inferior in heat resistance as compared with a polyfunctional compound.
  • Patent Documents 2 and 4 disclose an example in which a aralkyl epoxy resin having a biphenyl structure is applied to a semiconductor encapsulant as one that improves flame retardancy without containing phosphorus atoms or halogen atoms.
  • Patent Document 5 discloses an example in which an aralkyl type epoxy resin having a naphthalene structure is used. However, these epoxy resins have insufficient performance in any of flame retardancy, adhesion and heat resistance.
  • Patent Documents 6, 7 and 8 disclose naphthol-based aralkyl-type epoxy resins and semiconducting materials containing them, but nothing focuses on flame retardancy.
  • Patent Document 9 includes Although aralkyl type resins using phenols are disclosed, they do not focus on adhesion and flame retardancy. Furthermore, Patent Document 10 discloses a semiconductor sealing material using a bifunctional epoxy resin having a sulfide structure. However, these epoxy resins have insufficient heat resistance and are difficult to perform. It does not focus on flammability.
  • Patent document 1 Japanese Patent Laid-Open No. 5-10093 4
  • Patent Document 2 Japanese Patent Laid-Open No. 11 1 1 4 0 1 6 6
  • Patent Document 3 Japanese Patent Application Laid-Open No. 6-1 4 5 3 0 6
  • Patent Document 4 Japanese Patent Laid-Open No. 2 00 0 1 2 9 0 9 2
  • Patent Document 5 Japanese Patent Laid-Open No. 2 0 4 5 9 7 9 2
  • Patent Document 6 Japanese Patent Laid-Open No. 3-90 075
  • Patent Document 7 Japanese Patent Laid-Open No. 3-2 8 1 6 2 3
  • Patent Document 8 Japanese Patent Laid-Open No. 4 1 1 7 3 8 3 1
  • Patent Document 9 Japanese Patent Application Laid-Open No. 6-222071
  • Patent Document 10 Japanese Patent Application Laid-Open No. 6-1 4 5 300 Disclosure of Invention
  • the object of the present invention is to have excellent performance in heat resistance and the like in addition to excellent adhesion to a metal substrate and flame retardancy in applications such as lamination, molding, casting and adhesion, and a thermosetting resin composition Provided with a sulfide structure-containing polyhydric hydroxy compound that is useful as a material hardener, modifier, etc., as well as excellent adhesion to metal substrates and flame retardancy, as well as excellent heat resistance Providing a sulfide structure-containing epoxy resin that has performance and is useful for applications such as lamination, molding, casting, and adhesion, as well as excellent moldability, adhesion, flame resistance, and heat resistance An object of the present invention is to provide an epoxy resin composition useful for sealing electric and electronic parts that give excellent cured products, circuit board materials, and the like, and to provide cured products thereof.
  • the sulfide structure-containing polyhydric hydroxy compound and the sulfide structure-containing epoxy resin of the present invention are represented by the following general formula (1). H- L!-(X- (1)
  • R 2 , R 3 , R 4 and R 5 independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms
  • B represents a benzene ring, biphenyl ring or naphthalene.
  • G represents either a hydrogen atom or a glycidyl group, and n represents a number from 0 to 20.
  • the epoxy resin containing a sulfide structure is represented by the general formula (3) H- L 2- (X-L 2 ) n -H (3)
  • L 2 is the following formula (4)
  • N represents a number from 0 to 20;
  • This sulfido structure-containing polyhydric hydroxy compound is represented by the following formula (6), (7), (8) or (9) with respect to 1 mol of the hydroxy compound represented by the following formula (5). It can be obtained by reacting 0.1 to 0.9 mol of a crosslinking agent.
  • R 2 , R 3 , R 4 and R 5 independently represent a hydrogen atom or A hydrocarbon group having 1 to 6 carbon atoms
  • B represents a group consisting of a benzene ring, a biphenyl ring or a naphthalene ring
  • Y and Z independently represent OH, alkoxy or halogen.
  • SAR sulfido structure-containing polyhydric compound represented by the general formula (1) according to the present invention is epoxidized to sulfide structure-containing epoxy resin (hereinafter also referred to as SAE). SAR is also an intermediate of epoxy resin (S AE).
  • FIG. 1 is a 1 H-NMR spectrum of SAR-A obtained in Example 1.
  • Figure 2 shows the infrared absorption spectrum of SAR-A obtained in Example 1.
  • FIG. 3 is a G P C chart of SAR-A obtained in Example 1.
  • Figure 4 is a 1 H- NMR spectrum of SAE- A obtained in Example 1 1
  • Figure 5 is an infrared absorption space of S AE one A obtained in Example 1 1 It is.
  • FIG. 6 is a GP C chart of SAE A obtained in Example 11. BEST MODE FOR CARRYING OUT THE INVENTION
  • G represents either a hydrogen atom or a glycidyl group, and represents a hydrogen atom, a hydroxyl group, a glycidyloxy group, an alkoxy group having 1 to 8 carbon atoms, a halogen atom, or a carbon atom having 1 to 8 carbon atoms.
  • One of hydrogen groups is shown.
  • X is a bridging group represented by the formula (a) or (b), but R 2 , R 3 , R 4 and R 5 independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • B represents a group consisting of a benzene ring, a biphenyl ring or a naphthalene ring. In addition, these rings constituting B may be substituted with a hydrocarbon group having 1 to 6 carbon atoms.
  • X crosslinks 1 ⁇ , but the substitution position of X with respect to the group represented by the formula (2) constituting Li is not particularly limited.
  • the softening point of SAR is preferably 40 to 20 and is preferably in the range of 50 to: I 60 ° C., more preferably 60 to 120.
  • the softening point refers to a softening point measured based on the ring and ball method of JIS—K—2 2 0 7. If it is lower than this, the heat resistance of the cured product is lowered when it is added to the epoxy resin, and if it is higher than this, the fluidity during molding is lowered.
  • the SAR according to the present invention can itself be a component of a thermosetting resin composition.
  • a sulfido structure-containing polyhydric hydroxy compound is added to a halogenated alkyl compound or a halogenated alkenyl compound.
  • an epihalohydrin compound or the like part or all of the hydrogen atoms of the OH group in the sulfido structure-containing polyhydric hydroxy compound can be substituted with an alkyl group, an alkenyl group, a glycidyl group, or the like.
  • the SAR according to the present invention is synthesized by reacting a hydroxy compound represented by the formula (5) with a crosslinking agent represented by the formula (6), the formula (7), (8) or (9). can do.
  • the amount of the crosslinking agent used is in the range of 0.1 to 0.9 mol, preferably in the range of 0.2 to 0.8 mol, with respect to 1 mol of the hydroxy compound. If it is smaller than this, the amount of unreacted hydroxy compounds increases during the synthesis, the softening point of the synthesized SAR is lowered, and the heat resistance of the cured product when used as an epoxy resin curing agent decreases. On the other hand, if it is larger than this, the softening point of SAR becomes high, and in some cases, SAR may gel during synthesis.
  • the acid catalyst can be appropriately selected from known inorganic acids and organic acids.
  • mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, organic acids such as formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, dimethylsulfuric acid, and jetylsulfuric acid, zinc chloride, aluminum chloride, iron chloride, trifluoride
  • Lewis acids such as fluorine fluoride or ion exchange resins, activated clays, silica-alumina, and solid acids such as zeolite.
  • this reaction is usually performed at 10 to 25 ° C. for 1 to 20 hours.
  • alcohols such as methanol, ethanol, prono "? Norole, butanol, ethylene glycolate, methyl cetylsolve, ethylcetol sorb, ketones such as acetone, methylethyl ketone, methylisobutylketone,
  • solvents are ethers such as dimethyl ether, jetyl ether, diisopropyl ether, tetrahydrofuran, dioxane and the like, and aromatic compounds such as benzene, toluene, black benzene and dichlorobenzene.
  • Examples of the hydroxy compound used as a raw material include dihydroxy diphenyl sulfide substituted with a hydroxyl group, an alkoxy group, a halogen atom, or a hydrocarbon group as a substituent, in addition to dihydroxy diphenyl sulfide.
  • a halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, etc.
  • an alkoxy group includes a methoxy group, a ethoxy group, a butyl ether group, an isopropoxy group, a allyloxy group, a propargyl ether group, a ptoxy group, a phenoxy group. Is mentioned.
  • Hydrocarbon groups include methyl, ethyl, bur, ethyne, isopropyl, aryl, propargyl, buty
  • Various substituted dihydroxydiphenyl sulfides having an alkyl group, an amyl group, a phenyl group, a benzyl group and the like can be used, and dihydroxydiphenyl sulfide is preferred.
  • crosslinking agent examples include aldehydes such as formaldehyde, acetoaldehyde, propyl aldehyde, butyl aldehyde, amyl aldehyde and benzaldehyde represented by the formula (6), with formaldehyde being preferred.
  • Preferred formaldehyde raw material forms for use in the reaction include formalin aqueous solution, paraformaldehyde, trioxane and the like.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and acetophenone represented by the formula (7) can be used as a crosslinking agent.
  • the crosslinking agent represented by the formula (8) includes P-xylylene glycol, p-xylylene glycol dimethyl ether, p-xylylene dichloride, 4, 4'-dimethylmethylbiphenyl, 4 , 4'-dichloromethylbiphenyl, dimethoxymethylnaphthalene, dichloromethylnaphthalene.
  • divinylbenzenes, divinylbiphenyls, dibulaphthalenes and the like represented by the formula (9) can also be used as a crosslinking agent.
  • the sulfide structure-containing epoxy resin (S A E) of the present invention is represented by the general formula (1).
  • the sulfido structure-containing polyhydric hydroxy compound (S A R) is represented by the general formula (3).
  • S A E can be obtained by epoxidizing S A R.
  • G represents a hydrogen atom or a glycidyl group, and represents a hydrogen atom, a hydroxyl group, a glycidyloxy group, an alkoxy group having 1 to 8 carbon atoms, a halogen atom, or a carbon atom having 1 to 8 carbon atoms.
  • the alkoxy group include a methoxy group, an ethoxy group, a butyl ether group, an isopropoxy group, a allyloxy group, a propargyl ether group, a ptoxy group, a phenoxy group, and a benzyloxy group, and a halogen atom.
  • Hydrocarbon groups include methyl, ethyl, bur, ethyne, n-propyl, isopropyl, and aryl.
  • X is a bridging group represented by the formula (a) or (b), but R 2 , R 3 , R 4 and Shaku 5 are independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • B represents a group consisting of a benzene ring, a biphenyl ring or a naphthalene ring. Note that these rings constituting B may be substituted with a hydrocarbon group having 1 to 6 carbon atoms.
  • X bridges L i, but the substitution position of X with respect to the group represented by the formula (2) constituting L i is not particularly limited.
  • the SAE of the present invention is advantageously produced by reacting the SAR represented by the general formula (3) with epichlorohydrin, but is not limited to this reaction.
  • SAR and a halogenated halide can be reacted to form a allylic ether compound and then reacted with a peroxide.
  • the reaction of reacting the above SAR with epichlorohydrin can be carried out in the same manner as a normal epoxidation reaction.
  • an alkali metal hydroxide such as sodium hydroxide or hydroxy hydroxide
  • 20 to 150 ° C 20 to 150 ° C
  • a method of reacting in the range of 30 to 80 for 1 to 10 hours the amount of the alkali metal hydroxide used is in the range of 0.8 to 1.5 mol, preferably 0.9 to 1.2 mol, per 1 mol of the SAR hydroxyl group.
  • epichlorohydrin is used in excess relative to 1 mol of hydroxyl group in SAR, but usually 1.5 to 30 mol, preferably 2 to 1 mol, relative to 1 mol of hydroxyl group in SAR. The range is 5 moles.
  • the epoxy resin composition of the present invention contains at least an epoxy resin and a curing agent, and there are the following two types. 1) The composition which mix
  • the amount of SAR is usually in the range of 2 to 200 parts by weight, preferably 5 to 80 parts by weight with respect to 100 parts by weight of the epoxy resin. If it is less than this, the effect of improving the adhesion and flame retardancy is small, and if it is more than this, there is a problem that the moldability and the strength of the cured product are lowered.
  • the amount of SAR is usually determined in consideration of the equivalent balance of SAR OH groups and epoxy groups in the epoxy resin.
  • the equivalent ratio of the epoxy resin and the curing agent is usually in the range of 0.2 to 5.0, and preferably in the range of 0.5 to 2.0. If it is larger or smaller than this, the curability of the epoxy resin composition is lowered, and the heat resistance and mechanical strength of the cured product are lowered.
  • Curing agents other than SAR can be used in combination.
  • the amount of the other curing agent is such that the amount of the SAR is usually in the range of 2 to 200 parts by weight, preferably 5 to 80 parts by weight with respect to 100 parts by weight of the epoxy resin. Determined within. If the amount of SAR is less than this, the effect of improving low moisture absorption, adhesion and flame retardancy is small, and if it is more than this, there is a problem that the moldability and the strength of the cured product are lowered.
  • epoxy resin curing agents other than SAR
  • epoxy resin curing agents can be used, such as dicyandiamide, acid anhydrides, polyhydric phenols, aromatic and aliphatic amines.
  • polyhydric phenols are preferably used as curing agents in fields where high electrical insulation properties such as semiconductor encapsulants are required. Specific examples of curing agents are shown below.
  • Examples of acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrohydrous phthalic acid, methylhydric anhydride, Examples include dodecyl succinic anhydride, nadic anhydride, and trimellitic anhydride.
  • Examples of the polyhydric phenols include bisphenol A, bisphenol F, bisphenolore S, funoleolene bisphenolate, 4, 4 '— biphenolate, 2, 2' — biphenolate, hydrodroquinone, resornoresin, naphthalene.
  • Divalent phenol / Les such as dioreno, or tris- (4-hydroxyphenyl) methane, 1, 1, 2, 2-tetraxyl (4-hydroxyphenyl) ethane, phenol monovolak, There are trihydric or higher phenols such as 0-cresol novolac, naphthol novolak, and polybuhlphenol.
  • phenols, naphthols, bisphenol A, bisphenol enole F, bisphenol nore S, funole ren bisphenolenore, 4, 4'-biphenolate, 2, 2'-biphenol, hydroquinone Multivalent phenolic compounds synthesized by divalent phenols such as resorcinol and naphthalene diol, and condensing agents such as formaldehyde, acetoaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylylene render alcohol, etc.
  • the above-mentioned phenol resin composition can also be blended.
  • -Amines include 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylsulfone, m-phenylenediamine, p-xylylenediamine Aromatic amines such as ethylenediamine, hexamethylenediamine, diethylenetriamine, and triethylenetetramine.
  • the epoxy resin used in the composition is selected from those having two or more epoxy groups in one molecule.
  • the epoxy resin used in the composition is selected from those having two or more epoxy groups in one molecule.
  • darcidyl etherified products of trihydric or higher phenolic compounds such as resins.
  • any of the curing agents generally known as epoxy resin curing agents can be used.
  • epoxy resin curing agents there are dicyandiamide, polyhydric phenols, acid anhydrides, aromatic and aliphatic amines, and the like.
  • S A R represented by the general formula (3) is also preferably exemplified.
  • One or more of these hardeners can be mixed and used in this resin composition.
  • epoxy resin in this epoxy resin composition, you may mix
  • the epoxy resin in this case all ordinary epoxy resins having two or more epoxy groups in the molecule can be used.
  • Trivalent or higher phenols, phenolic aralkyl resins, naphth Examples include toll-based aralkyl resins, and darcidyl ethers derived from halogenated bisphenols such as tetrabromobisphenol A.
  • These epoxy resins can be used alone or in combination of two or more.
  • the amount of SAE represented by the general formula (1) is 5 to 100%, preferably 60 to 1% in the whole epoxy resin. It should be in the range of 0 0%.
  • the epoxy resin composition of the present invention other oligomers or polymer compounds such as polyester, polyamide, polyimide, polyester, polyurethane, petroleum resin, indene resin, indene coumarone resin, and phenoxy resin are used. You may mix
  • the epoxy resin composition of the present invention may contain additives such as inorganic fillers, pigments, flame retardants, thixotropic agents, coupling agents, and fluidity improvers.
  • the inorganic filler examples include spherical or fractured fused silica, silica powder such as crystalline silica, alumina powder, glass powder, or my strength, talc, calcium carbonate, alumina, hydrated alumina, and the like.
  • a preferable blending amount when used for a sealing material is 70% by weight or more, and more preferably 80% by weight or more.
  • pigment examples include organic or inorganic extender pigments, scaly pigments, and the like.
  • thixotropic agent examples include silicon, castor oil, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite.
  • a curing accelerator can be used in the epoxy resin composition of the present invention as needed.
  • examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, Tertiary amines such as triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl 1-methylimidazole, 2-imidazole such as 2-heptadecylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylenophosphine, diphenylenophosphine, and phenylenophosphine, Norrephosphonium Te Te Tetra-substit
  • the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as ⁇ -glycidoxyprovir trimethoxysilane, Colorants such as Nblack, flame retardants such as antimony trioxide, low stress reducing agents such as silicon oil, lubricants such as calcium stearate, and the like can be used.
  • a release agent such as carnauba wax and OP wax
  • a coupling agent such as ⁇ -glycidoxyprovir trimethoxysilane
  • Colorants such as Nblack
  • flame retardants such as antimony trioxide
  • low stress reducing agents such as silicon oil
  • lubricants such as calcium stearate, and the like
  • the epoxy resin composition of the present invention is made into a varnish in which an organic solvent is dissolved, and then impregnated into a fibrous material such as glass cloth, a polyamide nonwoven fabric, a polyester nonwoven fabric such as a liquid crystal polymer, and the like, and then the solvent is removed. It can be a pre-preda.
  • a laminate can be formed by coating on a sheet-like material such as a copper foil, a stainless steel foil, a polyimide film, or a polyester film.
  • an epoxy resin cured product can be obtained.
  • This cured product is excellent in terms of low hygroscopicity, high heat resistance, adhesion, flame retardancy, and the like. Become.
  • This cured product can be obtained by molding the epoxy resin composition by a method such as casting, compression molding, transfer molding or the like. The temperature at this time is usually in the range of 120-20.
  • the viscosity was measured using a B-type viscometer, and the softening point was measured by the ring-and-ball method according to JIS-K-2207.
  • the GPC measurement conditions were as follows: equipment: HLC-8 2 A (manufactured by Tosohichi Co., Ltd.), column: TSK-GE L 2 000 X 3 and TSK-GE L 400 0 X 1 (both Tosoh Co., Ltd.), solvent: tetrahydrofuran, flow rate: 1 m 1 Zmin, temperature: 38, detector: RI, polystyrene standard solution was used for the calibration curve.
  • Fig. 1 shows the 1 H-NMR spectrum of SAR-A
  • Fig. 2 shows the infrared absorption spectrum
  • Fig. 3 shows the GPC chart.
  • Example 4 The reaction was conducted in the same manner as in Example 2 using 200,0 g of 4,4′-dihydroxydiphenylsulfide, 61.9 g of bischloromethylnaphthalene, and 17.5 g of monochlorobenzene. Droxy compound 240. lg was obtained. This compound is called SAR-C. The softening point of the obtained resin was 93, and the melt viscosity at 150 3 was 0.75 Pa ′s.
  • Example 4 The softening point of the obtained resin was 93, and the melt viscosity at 150 3 was 0.75 Pa ′s.
  • thermosetting resin composition (resin composition A) obtained in Example 5, phenol novolak (curing agent A: manufactured by Gunei Chemical Co., Ltd., P SM— 4 2 6 1; 0 H equivalent 10 3, softening point 8 2), phenol aralkyl resin (curing agent B; made by Meiwa Kasei, ME H—780 0 SS, OH equivalent 1 75, softening point 6 7 ° ) Was used, and kiri force (average particle size 18 ⁇ m) as a filler and triphenylphosphine as a curing accelerator were mixed and kneaded to obtain a thermosetting resin composition.
  • Table 1 shows the composition of the thermosetting resin. Using this thermosetting resin composition, it was molded at 17
  • the glass transition point (T g) and the coefficient of linear expansion (CTE) using this thermosetting resin composition were measured at a heating rate of 10 / min using a thermomechanical measuring device.
  • the water absorption rate is 85 mm and 85 mm RH using a circular test piece with a diameter of 50 mm and a thickness of 3 mm.
  • a disk having a diameter of 50 mm and a thickness of 3 mm was formed using the object, and the weight change rate after post-curing and absorbing moisture for 1 3 3 ⁇ , 3 atm, 96 hours.
  • the adhesive strength was 25 mm 'x 1 2.5 mm x 0.5 mm between two copper plates, molded in 1 75 5 3 ⁇ 4 with a compression molding machine, and post-pressed for 1 2 hours at 1800.
  • the glass transition point (T g) and the coefficient of linear expansion (CTE) using this epoxy resin composition were measured at a heating rate of 10 / min using a thermomechanical measuring device.
  • the water absorption rate is Using a circular test piece with a diameter of 5 Omm and a thickness of 3 mm, the water absorption rate obtained by absorbing moisture for 10 hours under the conditions of 85% and 85% RH was 50 mm in diameter and thick with this epoxy resin composition. A 3 mm-thick disk was formed, and the rate of weight change after post-curing was 1 3 3 and absorbed moisture at 3 atm for 96 hours.
  • Adhesive strength is 25 mm X 1 2.5 mm X 0.5 mm between two copper plates, molded at 1 75 with a compression molding machine, and postcured at 180 for 12 hours Evaluation was made by determining the tensile shear strength. Flame retardancy was measured by UL 94 V-0 standard after molding a test specimen with a thickness of 1 Z 16 inches and expressed as the total burning time of five specimens.
  • Fig. 4 shows the 1 H-NMR spectrum of SAE-A
  • Fig. 5 shows the infrared absorption spectrum
  • Fig. 6 shows the GPC chart.
  • SAE-A 0-cresol novolac type epoxy resin synthesized in Example 12 (OCNE; epoxy equivalent of 200, with softening point 65), diphenyl sulfide type epoxy resin (Toto) Kasei, YS LV—50 TE; epoxy equivalent 1700, melting point 45 V), and as a curing agent component, SAR—A synthesized in Example 1, phenol novolak (curing agent A: manufactured by Gunei Chemical Co., Ltd.) , P SM— 4 26 1; OH equivalent of 10 3 with softening point of 8 2), 1—naphthol aralkyl type resin (curing agent B: manufactured by Tohto Kasei, SN—4 7 5; 0 20
  • the SAR of the present invention is useful as a curing agent and modifier for epoxy resins, and is excellent in adhesiveness to dissimilar materials when applied to thermosetting resin compositions, particularly epoxy resin compositions. At the same time, it gives a cured product with excellent flame resistance and heat resistance, and can be suitably used for applications such as sealing of electric / electronic parts and circuit board materials.
  • the sulfide structure-containing epoxy resin (SAE) of the present invention when applied to an epoxy resin composition, is excellent in high adhesion with different materials and gives a cured product excellent in flame retardancy and heat resistance. It can be used suitably for applications such as sealing of electric / electronic parts, circuit board materials, and the like.
  • the epoxy resin composition containing the SAE or sulfide structure-containing polyhydric hydroxy compound (hereinafter also referred to as SAR) of the present invention is cured by heating, it can be made into an epoxy resin cured product, and this cured product is adhered closely Excellent in terms of heat resistance, flame retardancy, high heat resistance, etc., and can be suitably used for applications such as sealing of electric and electronic parts and circuit board materials.

Abstract

Disclosed are a novel polyvalent hydroxy compound and an epoxy resin, each represented by the general formula (1) below. The resin is excellent in close adhesion to a different material, and enables to obtain a cured product having excellent flame retardancy and heat resistance. H-L1-(X-L1)n-H (1) In the general formula (1), L1 represents a group represented by the following formula (2): (wherein R1 represents a hydrogen atom, a hydroxy group, a glycidyloxy group, an alkoxy group having 1-8 carbon atoms, a halogen atom or a hydrocarbon group having 1-8 carbon atoms; and G represents a hydrogen atom or a glycidyl group); and X represents a crosslinking group represented by the following formula (a) or the following formula (b). In the formulae (a) and (b), R2, R3, R4 and R5 independently represent a hydrogen atom or a hydrocarbon group having 1-6 carbon atoms; B represents a group composed of a benzene ring, a biphenyl ring or a naphthalene ring; and n represents a number of 0-20.

Description

明 細 書  Specification
新規多価ヒ ドロキシ化合物、 該化合物の製造方法、 該化合物を用いたエポキシ樹脂 並びにエポキシ樹脂組成物及びその硬化物 技術分野  TECHNICAL FIELD The present invention relates to a novel polyhydric hydroxy compound, a method for producing the compound, an epoxy resin using the compound, an epoxy resin composition, and a cured product thereof.
本発明は、 新規なスルフィ ド構造含有多価ヒ ドロキシ化合物、 これをエポキシ化し たスルフィ ド構造含有エポキシ樹脂、 および該エポキシ樹脂含有エポキシ樹脂組成物 並びにその硬化物に関するものであり、 プリント配線板、 半導体封止等の電気電子分 野の絶縁材料等に好適に使用される。 背景技術  The present invention relates to a novel sulfide structure-containing polyhydric hydroxy compound, a sulfide structure-containing epoxy resin obtained by epoxidizing the compound, the epoxy resin-containing epoxy resin composition, and a cured product thereof, a printed wiring board, It is suitably used for insulating materials in the electrical and electronic fields such as semiconductor encapsulation. Background art
エポキシ樹脂は工業的に幅広い用途で使用されてきているが、 その要求性能は近年 ますます高度化している。 例えば、 エポキシ樹脂を主剤とする樹脂組成物の代表的分 野に半導体封止材料があるが、 半導体素子の集積度の向上に伴い、 パッケージサイズ は大面積化、 薄型化に向かうとともに、 実装方式も表面実装化への移行が進展してお り、 半田耐熱性に優れた材料の開発が望まれている。 従って、 封止材料としては、 低 吸湿化に加え、 リードフレーム、 チップ等の異種材料界面での接着性 ·密着性の向上 が強く求められている。 回路基板材料においても同様に、 半田耐熱性向上の観点から 低吸湿性、 高耐熱性、 高密着性の向上に加え、 誘電損失低減の観点から低誘電性に優 れた材料の開発が望まれている。 これらの要求に対応するため、 様々な新規構造のェ ポキシ樹脂及び硬化剤が検討されている。 更に最近では、 環境負荷低減の観点から、 ハロゲン系難燃剤排除の動きがあり、 より難燃性に優れたエポキシ樹脂及び硬化剤が 求められている。  Epoxy resins have been used in a wide range of industrial applications, but their required performance has become increasingly sophisticated in recent years. For example, semiconductor encapsulating materials are a typical field of resin compositions based on epoxy resins, but as the degree of integration of semiconductor elements increases, the package size is becoming larger and thinner, and the mounting method However, the transition to surface mounting is progressing, and the development of materials with excellent solder heat resistance is desired. Therefore, as a sealing material, in addition to low moisture absorption, improvement in adhesion and adhesion at the interface between different materials such as lead frames and chips is strongly demanded. Similarly, for circuit board materials, in addition to improving low heat absorption, high heat resistance, and high adhesion from the viewpoint of improving solder heat resistance, it is desirable to develop materials with excellent low dielectric properties from the viewpoint of reducing dielectric loss. ing. To meet these demands, various new structures of epoxy resins and curing agents are being investigated. More recently, from the viewpoint of reducing environmental impact, there has been a movement to eliminate halogen-based flame retardants, and epoxy resins and curing agents with better flame retardancy have been demanded.
従って、 上記背景から種々のエポキシ樹脂及びエポキシ樹脂硬化剤が検討されてい る。 エポキシ樹脂硬化剤の一例として、 ナフタレン系樹脂が知られており、 特許文献 1にはナフ トールァラルキル樹脂を半導体封止材へ応用することが示されている。 但 し、 ナフ トールァラルキル樹脂は、 低吸湿性、 低熱膨張性等に優れるものの、 硬化性 に劣る欠点があった。 また、 特許文献 2にはビフユニル構造を有する硬化剤が提案さ れ、 難燃性向上に有効であることが記載されているが、 硬化性に劣る欠点があった。 更に、 ナフタレン系樹脂、 ビフエニル系樹脂ともに、 炭化水素のみで構成される主骨 格を有することから、 難燃性や密着性の発現に十分ではなかった。 Therefore, various epoxy resins and epoxy resin curing agents have been studied from the above background. As an example of the epoxy resin curing agent, a naphthalene-based resin is known, and Patent Document 1 shows that a naphthol aralkyl resin is applied to a semiconductor sealing material. However, naphthol aralkyl resins are excellent in low hygroscopicity, low thermal expansion, etc., but are curable. There was a disadvantage inferior to. Further, Patent Document 2 proposes a curing agent having a bifunil structure and describes that it is effective for improving flame retardancy, but has a disadvantage of poor curability. Furthermore, both naphthalene-based resins and biphenyl-based resins have a main skeleton composed of only hydrocarbons, so that they were not sufficient for the development of flame retardancy and adhesion.
また、 特許文献 3にはスルフィ ド構造を有する 2官能性ヒ ドロキシ化合物を含むェ ポキシ樹脂組成物が開示されているが、 2官能性ヒ ドロキシ化合物は高融点であるこ とから、 エポキシ樹脂硬化剤としての取り扱い性に問題があった。 更には、 2官能性 化合物であるため、 多官能性化合物と比較して耐熱性に劣る欠点もあった。  Patent Document 3 discloses an epoxy resin composition containing a bifunctional hydroxy compound having a sulfide structure. However, since the bifunctional hydroxy compound has a high melting point, an epoxy resin curing agent is disclosed. As a result, there was a problem in handling. Furthermore, since it is a bifunctional compound, it has a disadvantage that it is inferior in heat resistance as compared with a polyfunctional compound.
一方、 エポキシ樹脂についても、 これらの要求を満足するものは未だ知られていな い。 例えば、 周知のビスブェノール型エポキシ樹脂は、 常温で液状であり、 作業性に 優れていることや、 硬化剤、 添加剤等との混合が容易であることから広く使用されて いるが、 耐熱性、 耐湿性の点で問題がある。 また、 耐熱性を改良したものとして、 ノ ボラック型エポキシ樹脂が知られているが、接着性、 耐湿性等に問題がある。 更には、 主骨格が炭化水素のみで構成される従来のエポキシ樹脂では、 難燃性を全くもたない。 ハロゲン系難燃剤を用いることなく難燃性を向上させるための方策として、 リン酸 エステル系の難燃剤を添加する方法が開示されている。 しかし、 リン酸エステル系の 難燃剤を用いる方法では、 耐湿性が十分ではない。 また、 高温、 多湿な環境下ではリ ン酸エステルが加水分解を起こし、 絶縁材料としての信頼性を低下させる問題があつ た。  On the other hand, no epoxy resin that satisfies these requirements has been known yet. For example, the well-known bisbuenol-type epoxy resin is widely used because it is liquid at room temperature and has excellent workability and is easy to mix with curing agents, additives, etc. There is a problem in terms of moisture resistance. In addition, novolac type epoxy resins are known as improved heat resistance, but there are problems in adhesion, moisture resistance, and the like. Furthermore, conventional epoxy resins whose main skeleton is composed only of hydrocarbons have no flame retardancy. As a measure for improving flame retardancy without using a halogen flame retardant, a method of adding a phosphate ester flame retardant is disclosed. However, the method using phosphate ester flame retardants does not have sufficient moisture resistance. In addition, the phosphoric acid ester is hydrolyzed under high temperature and high humidity, which reduces the reliability as an insulating material.
リン原子やハロゲン原子を含むことなく、 難燃性を向上させるものとして、 特許文 献 2及び 4ではビフエニル構造を有するァラルキル型エポキシ樹脂を半導体封止材へ 応用した例が開示されている。 特許文献 5には、 ナフタレン構造を有するァラルキル 型エポキシ樹脂を使用する例が開示されている。 しかしながら、 これらのエポキシ樹 脂は難燃性や、 密着性、 耐熱性のいずれかにおいて性能が十分でない。 特許文献 6、 7及び 8にはナフ トール系ァラルキル型エポキシ樹脂及びこれを含有する半導体^止 材料が開示されているが、 難燃性に着目したものはない。 また、 特許文献 9には、 ビ スフヱノール類を用いたァラルキル型樹脂が開示されているが、 密着性や難燃性に着 目したものではない。 さらには、 特許文献 1 0には、 スルフイ ド構造を有する 2官能 性エポキシ樹脂を用いた半導体封止材料が開示されているが、 これらのエポキシ樹脂 は耐熱性において性能が十分でなく、 また難燃性に着目したものではない。 Patent Documents 2 and 4 disclose an example in which a aralkyl epoxy resin having a biphenyl structure is applied to a semiconductor encapsulant as one that improves flame retardancy without containing phosphorus atoms or halogen atoms. Patent Document 5 discloses an example in which an aralkyl type epoxy resin having a naphthalene structure is used. However, these epoxy resins have insufficient performance in any of flame retardancy, adhesion and heat resistance. Patent Documents 6, 7 and 8 disclose naphthol-based aralkyl-type epoxy resins and semiconducting materials containing them, but nothing focuses on flame retardancy. Patent Document 9 includes Although aralkyl type resins using phenols are disclosed, they do not focus on adhesion and flame retardancy. Furthermore, Patent Document 10 discloses a semiconductor sealing material using a bifunctional epoxy resin having a sulfide structure. However, these epoxy resins have insufficient heat resistance and are difficult to perform. It does not focus on flammability.
特許文献 1 : 特開平 5— 1 0 9 9 3 4号公報  Patent document 1: Japanese Patent Laid-Open No. 5-10093 4
特許文献 2 : 特開平 1 1 一 1 4 0 1 6 6号公報  Patent Document 2: Japanese Patent Laid-Open No. 11 1 1 4 0 1 6 6
特許文献 3 : 特開平 6— 1 4 5 3 0 6号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 6-1 4 5 3 0 6
特許文献 4 : 特開 2 0 0 0 1 2 9 0 9 2号公報  Patent Document 4: Japanese Patent Laid-Open No. 2 00 0 1 2 9 0 9 2
特許文献 5 : 特開 2 0 0 4 5 9 7 9 2号公報  Patent Document 5: Japanese Patent Laid-Open No. 2 0 4 5 9 7 9 2
特許文献 6 : 特開平 3— 9 0 0 7 5号公報  Patent Document 6: Japanese Patent Laid-Open No. 3-90 075
特許文献 7 : 特開平 3— 2 8 1 6 2 3号公報  Patent Document 7: Japanese Patent Laid-Open No. 3-2 8 1 6 2 3
特許文献 8 : 特開平 4一 1 7 3 8 3 1号公報  Patent Document 8: Japanese Patent Laid-Open No. 4 1 1 7 3 8 3 1
特許文献 9 : 特開平 6— 2 2 0 1 7 0号公報  Patent Document 9: Japanese Patent Application Laid-Open No. 6-222071
特許文献 1 0 : 特開平 6— 1 4 5 3 0 0号公報 発明の開示  Patent Document 10: Japanese Patent Application Laid-Open No. 6-1 4 5 300 Disclosure of Invention
本発明の目的は、 積層、 成形、 注型、 接着等の用途において金属基材との密着性や 難燃性に優れるとともに、 耐熱性等にも優れた性能を有し、 熱硬化性樹脂組成物の硬 化剤、 改質剤等として有用なスルフィ ド構造含有多価ヒ ドロキシ化合物を提供するこ と、金属基材との密着性や難燃性に優れるとともに、耐熱性等にも優れた性能を有し、 積層、 成形、 注型、 接着等の用途に有用なスルフィ ド構造含有エポキシ樹脂を提供す ること、 優れた成形性を有するとともに、 密着性、 難燃性及び耐熱性等に優れた硬化 物を与える電気 ·電子部品類の封止、 回路基板材料等に有用なエポキシ樹脂組成物を 提供すること、 及びその硬化物を提供することにある。  The object of the present invention is to have excellent performance in heat resistance and the like in addition to excellent adhesion to a metal substrate and flame retardancy in applications such as lamination, molding, casting and adhesion, and a thermosetting resin composition Provided with a sulfide structure-containing polyhydric hydroxy compound that is useful as a material hardener, modifier, etc., as well as excellent adhesion to metal substrates and flame retardancy, as well as excellent heat resistance Providing a sulfide structure-containing epoxy resin that has performance and is useful for applications such as lamination, molding, casting, and adhesion, as well as excellent moldability, adhesion, flame resistance, and heat resistance An object of the present invention is to provide an epoxy resin composition useful for sealing electric and electronic parts that give excellent cured products, circuit board materials, and the like, and to provide cured products thereof.
本発明のスルフィ ド構造含有多価ヒ ドロキシ化合物およびスルフィ ド構造含有ェポ キシ樹脂は、 下記一般式 (1 ) で表される。 H- L ! - (X- ( 1 ) The sulfide structure-containing polyhydric hydroxy compound and the sulfide structure-containing epoxy resin of the present invention are represented by the following general formula (1). H- L!-(X- (1)
こで、  Where
は下記式 (2)  Is the following formula (2)
Figure imgf000006_0001
Figure imgf000006_0001
で表される基であり、 は水素原子、 水酸基、 グリシジルォキシ基、 炭素数 1 ~ 8の アルコキシ基、 ハロゲン原子又は炭素数 1〜 8の炭化水素基のいずれかを示し、 Xは下記 (a ) 又は式 (b ) Is a hydrogen atom, a hydroxyl group, a glycidyloxy group, an alkoxy group having 1 to 8 carbon atoms, a halogen atom, or a hydrocarbon group having 1 to 8 carbon atoms, and X is the following ( a) or formula (b)
Rつ R
(a)  (a)
R 3  R 3
Figure imgf000006_0002
で表される架橋基であり、 R 2、 R 3、 R4及び R 5は独立に、 水素原子又は炭素数 1〜 6の炭化水素基を示し、 Bはベンゼン環、 ビフエ二ル環又はナフタレン環からなる基 を示し、
Figure imgf000006_0002
R 2 , R 3 , R 4 and R 5 independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and B represents a benzene ring, biphenyl ring or naphthalene. A group consisting of a ring,
Gは、 水素原子、 グリシジル基のいずれかを示し、 nは 0〜 2 0の数を示す。  G represents either a hydrogen atom or a glycidyl group, and n represents a number from 0 to 20.
dがグリシジル基の場合のスルフィ ド構造含有エポキシ樹脂は、 一般式 (3) H- L 2- (X - L 2) n -H ( 3 ) こで、 When d is a glycidyl group, the epoxy resin containing a sulfide structure is represented by the general formula (3) H- L 2- (X-L 2 ) n -H (3) Where
L2は下記式 (4) L 2 is the following formula (4)
Figure imgf000007_0001
Figure imgf000007_0001
で表される基であり、 は水素原子、 水酸基、 炭素数 1〜 8のアルコキシ基、 ハロゲ ン原子又は炭素数 1〜 8の炭化水素基を示し、 Xは一般式 ( 1 ) と同じ意味を有し、 nは 0 ~ 20の数を示す; Represents a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 8 carbon atoms, a halogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and X has the same meaning as in the general formula (1). N represents a number from 0 to 20;
で表されるスルフィ ド構造含有多価ヒ ドロキシ化合物と、 ェピクロルヒ ドリ ンを反応 させることにより得ることができる.。 It can be obtained by reacting a sulfido structure-containing polyhydric hydroxy compound represented by the following formula with epichlorohydrin.
このスルフィ ド構造含有多価ヒ ドロキシ化合物は、 下記式 (5) で表されるヒ ドロ キシ化合物 1モルに対し、 下記式 (6)、 (7)、 (8) 又は (9) で表される架橋剤 0. 1〜0. 9モルを反応させることにより得ることができる。  This sulfido structure-containing polyhydric hydroxy compound is represented by the following formula (6), (7), (8) or (9) with respect to 1 mol of the hydroxy compound represented by the following formula (5). It can be obtained by reacting 0.1 to 0.9 mol of a crosslinking agent.
Figure imgf000007_0002
R2CHO (6) R2R3C=0 (7)
Figure imgf000007_0002
R 2 CHO (6) R 2 R 3 C = 0 (7)
Figure imgf000008_0001
Figure imgf000008_0001
Figure imgf000008_0002
Figure imgf000008_0002
但し、 は水素原子、 水酸基、 炭素数 1〜 8のアルコキシ基、 ハロゲン原子又は炭素 数 1〜8の炭化水素基を示し、 R2、 R3、 R4及び R5は独立に、 水素原子又は炭素数 1〜 6の炭化水素基を示し、 Bはベンゼン環、 ビフエニル環又はナフタレン環からな る基を示し、 Y及び Zは独立に OH、 アルコキシ又はハロゲンを示す。 However, represents a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 8 carbon atoms, a halogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R 2 , R 3 , R 4 and R 5 independently represent a hydrogen atom or A hydrocarbon group having 1 to 6 carbon atoms, B represents a group consisting of a benzene ring, a biphenyl ring or a naphthalene ring, and Y and Z independently represent OH, alkoxy or halogen.
本発明に係る上記一般式 ( 1 ) で表されるスルフィ ド構造含有多価ヒ ドロキシ化合 物 (以下、 SARともいう) はエポキシ化することによりスルフィ ド構造含有ェポキ シ樹脂 (以下、 SAEともいう) とすることができるので、 SARはエポキシ樹脂 (S AE) の中間体でもある。 図面の簡単な説明  The sulfido structure-containing polyhydric compound (hereinafter also referred to as SAR) represented by the general formula (1) according to the present invention is epoxidized to sulfide structure-containing epoxy resin (hereinafter also referred to as SAE). SAR is also an intermediate of epoxy resin (S AE). Brief Description of Drawings
第 1図は、 実施例 1で得られた S AR— Aの1 H— NMRスぺク トルである。 FIG. 1 is a 1 H-NMR spectrum of SAR-A obtained in Example 1.
第 2図は、 実埯例 1で得られた S AR— Aの赤外吸収スぺク トルである。 Figure 2 shows the infrared absorption spectrum of SAR-A obtained in Example 1.
第 3図は、 実施例 1で得られた S AR— Aの G P Cチャートである。 FIG. 3 is a G P C chart of SAR-A obtained in Example 1.
第 4図は、 実施例 1 1で得られた S A E— Aの1 H— NMRスぺク トルである 第 5図は、 実施例 1 1で得られた S AE一 Aの赤外吸収スぺク トである。 Figure 4 is a 1 H- NMR spectrum of SAE- A obtained in Example 1 1 Figure 5 is an infrared absorption space of S AE one A obtained in Example 1 1 It is.
第 6図は、 実施例 1 1で得られた S AE一 Aの GP Cチャートである。 発明を実施するための最良の形態 FIG. 6 is a GP C chart of SAE A obtained in Example 11. BEST MODE FOR CARRYING OUT THE INVENTION
本発明について詳細に述べる。 The present invention will be described in detail.
一般式 ( 1) において、 は式 (2) で表される基である。 また、 Xは式 (a) 又 は式 (b) で表される基であり、 nは 0〜20の数を示す。 n = 20を超えると軟化点 や溶融粘度が高くなりすぎハンドリング性に劣るものとなる。  In the general formula (1), is a group represented by the formula (2). X is a group represented by the formula (a) or (b), and n represents a number from 0 to 20. If n = 20 is exceeded, the softening point and melt viscosity will be too high and the handling will be poor.
式 (2) において、 Gは水素原子、 グリシジル基のいずれかを示し、 は水素原 子、 水酸基、 グリシジルォキシ基、 炭素数 1〜 8のアルコキシ基、 ハロゲン原子又は 炭素数 1〜 8の炭化水素基のいずれかを示す。  In the formula (2), G represents either a hydrogen atom or a glycidyl group, and represents a hydrogen atom, a hydroxyl group, a glycidyloxy group, an alkoxy group having 1 to 8 carbon atoms, a halogen atom, or a carbon atom having 1 to 8 carbon atoms. One of hydrogen groups is shown.
Xは式 (a ) 又は式 (b) で表される架橋基であるが、 R2 、 R3 、 R4 及び R5 は独立に、 水素原子又は炭素数 1〜6の炭化水素基を示し、 Bはベンゼン環、 ビフヱ ニル環又はナフタレン環からなる基を示す。 なお、 Bを構成するこれらの環は、 炭素 数 1〜6の炭化水素基で置換されていてもよい。 Xは 1^を架橋するが、 L iを構成す る式 (2) で表される基に対する Xの置換位置は、 特に限定するものではない。 X is a bridging group represented by the formula (a) or (b), but R 2 , R 3 , R 4 and R 5 independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. , B represents a group consisting of a benzene ring, a biphenyl ring or a naphthalene ring. In addition, these rings constituting B may be substituted with a hydrocarbon group having 1 to 6 carbon atoms. X crosslinks 1 ^, but the substitution position of X with respect to the group represented by the formula (2) constituting Li is not particularly limited.
S ARの軟化点は 4 0〜 2 0 であることがよく、 好ましくは 5 0〜: I 6 0°C、 より好ましくは 6 0〜 1 20での範囲である。 ここで、 軟化点は、 J I S— K— 2 2 0 7の環球法に基づき測定される軟化点を指す。 これより低いと、 これをエポキシ樹 脂に配合したとき、 硬化物の耐熱性が低下し、 これより高いと成形時の流動性が低下 する。  The softening point of SAR is preferably 40 to 20 and is preferably in the range of 50 to: I 60 ° C., more preferably 60 to 120. Here, the softening point refers to a softening point measured based on the ring and ball method of JIS—K—2 2 0 7. If it is lower than this, the heat resistance of the cured product is lowered when it is added to the epoxy resin, and if it is higher than this, the fluidity during molding is lowered.
本発明に係る S ARは、 それ自体を熱硬化性樹脂組成物の一成分とすることができ るが、 場合により、 スルブイ ド構造含有多価ヒ ドロキシ化合物にハロゲン化アルキル 化合物、 ハロゲン化アルケニル化合物、 ェピハロヒ ドリ ン化合物等を反応させること により、 スルフィ ド構造含有多価ヒ ドロキシ化合物中の OH基の水素原子の一部又は 全部をアルキル基、 アルケニル基、 グリシジル基等に置換することができる。  The SAR according to the present invention can itself be a component of a thermosetting resin composition. In some cases, a sulfido structure-containing polyhydric hydroxy compound is added to a halogenated alkyl compound or a halogenated alkenyl compound. By reacting an epihalohydrin compound or the like, part or all of the hydrogen atoms of the OH group in the sulfido structure-containing polyhydric hydroxy compound can be substituted with an alkyl group, an alkenyl group, a glycidyl group, or the like.
本発明に係る S ARは、式(5) で表されるヒ ドロキシ化合物と、式(6)、式(7)、 (8) 又は (9) で表される架橋剤を反応させることにより合成することができる。 この場合の架橋剤の使用量は、 ヒ ドロキシ化合物 1モルに対して、 0 . 1 〜 0 . 9モ ルの範囲であるが、 好ましくは 0 . 2 〜 0 . 8モルの範囲である。 これより小さいと 合成の際、 未反応のヒ ドロキシ化合物が多くなり、 合成された S A Rの軟化点が低く なり、 エポキシ樹脂硬化剤として使用した場合の硬化物の耐熱性が低下する。 また、 これより大きいと S A Rの軟化点が高くなり、 場合により合成の際に S A Rがゲル化 することがある。 The SAR according to the present invention is synthesized by reacting a hydroxy compound represented by the formula (5) with a crosslinking agent represented by the formula (6), the formula (7), (8) or (9). can do. In this case, the amount of the crosslinking agent used is in the range of 0.1 to 0.9 mol, preferably in the range of 0.2 to 0.8 mol, with respect to 1 mol of the hydroxy compound. If it is smaller than this, the amount of unreacted hydroxy compounds increases during the synthesis, the softening point of the synthesized SAR is lowered, and the heat resistance of the cured product when used as an epoxy resin curing agent decreases. On the other hand, if it is larger than this, the softening point of SAR becomes high, and in some cases, SAR may gel during synthesis.
この反応は無触媒又は酸触媒の存在下に行うことができる。 この酸触媒としては、 周知の無機酸、 有機酸より適宜選択することができる。 例えば、 塩酸、 硫酸、 燐酸等 の鉱酸や、 ギ酸、 シユウ酸、 トリフルォロ酢酸、 p -トルエンスルホン酸、 ジメチル硫 酸、 ジェチル硫酸等の有機酸や、 塩化亜鉛、 塩化アルミニウム、 塩化鉄、 三フッ化ホ ゥ素等のルイス酸あるいはイオン交換樹脂、 活性白土、 シリカ-アルミナ、 ゼォライ ト 等の固体酸等が挙げられる。  This reaction can be carried out without a catalyst or in the presence of an acid catalyst. The acid catalyst can be appropriately selected from known inorganic acids and organic acids. For example, mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, organic acids such as formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, dimethylsulfuric acid, and jetylsulfuric acid, zinc chloride, aluminum chloride, iron chloride, trifluoride Examples thereof include Lewis acids such as fluorine fluoride or ion exchange resins, activated clays, silica-alumina, and solid acids such as zeolite.
また、 この反応は通常、 1 0 〜 2 5 0 °Cで 1 〜 2 0時間行われる。 更に、 反応の際 には、 メタノーノレ、 エタノール、 プロ ノ"?ノーノレ、 ブタノール、 エチレングリ コーノレ、 メチルセ口ソルブ、 ェチルセ口ソルブ等のアルコール類や、 アセトン、 メチルェチル ケトン、 メチルイソブチルケトン等のケトン類、 ジメチルエーテル、 ジェチルエーテ ル、 ジイソプロピルエーテル、 テ トラヒ ドロフラン、 ジォキサン等のエーテル類、 ベ ンゼン、 トルエン、 クロ口ベンゼン、 ジクロロベンゼン等の芳香族化合物等を溶媒と して使用することができる。  In addition, this reaction is usually performed at 10 to 25 ° C. for 1 to 20 hours. Furthermore, during the reaction, alcohols such as methanol, ethanol, prono "? Norole, butanol, ethylene glycolate, methyl cetylsolve, ethylcetol sorb, ketones such as acetone, methylethyl ketone, methylisobutylketone, Usable as solvents are ethers such as dimethyl ether, jetyl ether, diisopropyl ether, tetrahydrofuran, dioxane and the like, and aromatic compounds such as benzene, toluene, black benzene and dichlorobenzene.
原料として使用するヒ ドロキシ化合物としては、 ジヒ ドロキシジフエニルスルフィ ド以外に、 置換基として水酸基、 アルコキシ基、 ハロゲン原子又は炭化水素基が置換 したジヒ ドロキシジフエニルスルフィ ドがある。 例えば、 ハロゲン原子としてはフッ 素原子、 塩素原子、 臭素原子等があり、 アルコキシ基としてはメ トキシ基、 ェトキシ 基、 ビュルエーテル基、 イソプロポキシ基、 ァリルォキシ基、 プロパルギルエーテル 基、 プトキシ基、 フエノキシ基が挙げられる。 また、 炭化水素基としてはメチル基、 ェチル基、 ビュル基、 ェチン基、 イソプロピル基、 ァリル基、 プロパルギル基、 ブチ ル基、 アミル基、 フヱニル基、 ベンジル基等を有する種々の置換ジヒ ドロキシジフエ ニルスルフィ ドを用いることができるが、 好ましくはジヒ ドロキシジフエニルスルフ ィ ドである。 Examples of the hydroxy compound used as a raw material include dihydroxy diphenyl sulfide substituted with a hydroxyl group, an alkoxy group, a halogen atom, or a hydrocarbon group as a substituent, in addition to dihydroxy diphenyl sulfide. For example, a halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, etc., and an alkoxy group includes a methoxy group, a ethoxy group, a butyl ether group, an isopropoxy group, a allyloxy group, a propargyl ether group, a ptoxy group, a phenoxy group. Is mentioned. Hydrocarbon groups include methyl, ethyl, bur, ethyne, isopropyl, aryl, propargyl, buty Various substituted dihydroxydiphenyl sulfides having an alkyl group, an amyl group, a phenyl group, a benzyl group and the like can be used, and dihydroxydiphenyl sulfide is preferred.
架橋剤としては、 式 (6 ) で表されるホルムアルデヒ ド、 ァセトアルデヒ ド、 プロ ピルアルデヒ ド、 ブチルアルデヒ ド、 ァミルアルデヒ ド、 ベンズアルデヒ ド等のアル デヒ ド類が挙げられるが、 ホルムアルデヒ ドが好ましい。 反応に用いる際の好ましい ホルムアルデヒ ドの原料形態としては、 ホルマリン水溶液、 パラホルムアルデヒ ド、 トリオキサン等が挙げられる。 また、 式 (7 ) で表されるアセトン、 メチルェチルケ トン、 メチルイソブチルケトン、 ァセトフエノン等のケトン類も架橋剤として使用で さる。  Examples of the crosslinking agent include aldehydes such as formaldehyde, acetoaldehyde, propyl aldehyde, butyl aldehyde, amyl aldehyde and benzaldehyde represented by the formula (6), with formaldehyde being preferred. Preferred formaldehyde raw material forms for use in the reaction include formalin aqueous solution, paraformaldehyde, trioxane and the like. Also, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and acetophenone represented by the formula (7) can be used as a crosslinking agent.
更に、 式 (8 ) で表される架橋剤としては、 P -キシリ レンダリ コール、 p -キシリ レングリコールジメチルェ一テル、 p -キシリ レンジクロライ ド、 4, 4 ' -ジメ トキ シメチルビフエニル、 4, 4 ' -ジクロロメチルビフエニル、 ジメ トキシメチルナフタ レン類、 ジクロロメチルナフタレン類が挙げられる。 また、 式 (9 ) で表されるジビ ニルベンゼン類、 ジビニルビフエニル類、 ジビュルナフタレン類等も架橋剤として使 用できる。  Further, the crosslinking agent represented by the formula (8) includes P-xylylene glycol, p-xylylene glycol dimethyl ether, p-xylylene dichloride, 4, 4'-dimethylmethylbiphenyl, 4 , 4'-dichloromethylbiphenyl, dimethoxymethylnaphthalene, dichloromethylnaphthalene. In addition, divinylbenzenes, divinylbiphenyls, dibulaphthalenes and the like represented by the formula (9) can also be used as a crosslinking agent.
本発明のスルフィ ド構造含有エポキシ樹脂(S A E ) は一般式 ( 1 ) で表される。 ま た、 スルフィ ド構造含有多価ヒ ドロキシ化合物 (S A R ) は一般式 (3 ) で表される。 S A Eは、 S A Rをエポキシ化することにより得ることができる。  The sulfide structure-containing epoxy resin (S A E) of the present invention is represented by the general formula (1). The sulfido structure-containing polyhydric hydroxy compound (S A R) is represented by the general formula (3). S A E can be obtained by epoxidizing S A R.
式 (2 ) において、 Gは水素原子、 グリシジル基のいずれかを示し、 は水素原 子、 水酸基、 グリシジルォキシ基、 炭素数 1〜 8のアルコキシ基、 ハロゲン原子又は 炭素数 1〜 8の炭化水素基を示す。 ここで、 アルコキシ基と してはメ トキシ基、 エト キシ基、 ビュルエーテル基、 イソプロポキシ基、 ァリルォキシ基、 プロパルギルエー テル基、 プトキシ基、 フエノキシ基、 ベンジルォキシ基が挙げられ、 ハロゲン原子と してはフッ素原子、 塩素原子、 臭素原子等が例示される。 また、 炭化水素基としては メチル基、 ェチル基、 ビュル基、 ェチン基、 n —プロピル基、 イソプロピル基、 ァリ ル基、 プロパルギル基、 n—ブチル基、 s e c—ブチル基、 t e r t 一ブチル基、 n 一アミル基、 s e c —アミル基、 t e r t —アミル基、 シク口へキシル基、 フエニル 基、 ベンジル基等が挙げられる。 In the formula (2), G represents a hydrogen atom or a glycidyl group, and represents a hydrogen atom, a hydroxyl group, a glycidyloxy group, an alkoxy group having 1 to 8 carbon atoms, a halogen atom, or a carbon atom having 1 to 8 carbon atoms. Indicates a hydrogen group. Examples of the alkoxy group include a methoxy group, an ethoxy group, a butyl ether group, an isopropoxy group, a allyloxy group, a propargyl ether group, a ptoxy group, a phenoxy group, and a benzyloxy group, and a halogen atom. Is exemplified by fluorine atom, chlorine atom, bromine atom and the like. Hydrocarbon groups include methyl, ethyl, bur, ethyne, n-propyl, isopropyl, and aryl. Group, propargyl group, n-butyl group, sec-butyl group, tert-butyl group, n-amyl group, sec-amyl group, tert-amyl group, hexyl group, phenyl group, benzyl group, etc. It is done.
Xは式 (a ) 又は式 (b ) で表される架橋基であるが、 R 2 、 R 3 、 R4 及ぴ尺5 は独立に、 水素原子又は炭素数 1〜 6の炭化水素基を示し、 Bはベンゼン環、 ビフヱ ニル環又はナフタレン環からなる基を示す。 なお、 Bを構成するこれらの環は、 炭素 数 1〜 6の炭化水素基で置換されていてもよい。 Xは L i を架橋するが、 L i を構成 する式 (2) で表される基 対する Xの置換位置は、 特に限定するものではない。 本発明の S AEは、 上記一般式 ( 3 ) で表される S ARと、 ェピクロルヒ ドリンを 反応させることより製造することが有利であるが、 この反応に限らない。 X is a bridging group represented by the formula (a) or (b), but R 2 , R 3 , R 4 and Shaku 5 are independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. B represents a group consisting of a benzene ring, a biphenyl ring or a naphthalene ring. Note that these rings constituting B may be substituted with a hydrocarbon group having 1 to 6 carbon atoms. X bridges L i, but the substitution position of X with respect to the group represented by the formula (2) constituting L i is not particularly limited. The SAE of the present invention is advantageously produced by reacting the SAR represented by the general formula (3) with epichlorohydrin, but is not limited to this reaction.
S ARをェピクロルヒ ドリンと反応させる反応の他、 S ARとハロゲン化ァリルを 反応させ、 ァリルエーテル化合物とした後、 過酸化物と反応させる方法をとることも できる。 上記 S ARをェピクロルヒ ドリンと反応させる反応は、 通常のエポキシ化反 応と同様に行うことができる。 ,  In addition to the reaction of SAR with epichlorohydrin, SAR and a halogenated halide can be reacted to form a allylic ether compound and then reacted with a peroxide. The reaction of reacting the above SAR with epichlorohydrin can be carried out in the same manner as a normal epoxidation reaction. ,
例えば、上記 S ARを過剰のェピクロルヒ ドリンに溶解した後、水酸化ナトリ ゥム、 水酸化力リゥム等のアル力リ金属水酸化物の存在下に、 2 0〜 1 5 0°C、好ましくは、 3 0〜 8 0での範囲で 1〜 1 0時間反応させる方法が挙げられる。 この際のアルカリ 金属水酸化物の使用量は、 S ARの水酸基 1モルに対して、 0. 8〜 1. 5モル、 好 ましくは、 0. 9〜 1. 2モルの範囲である。 また、 ェピクロルヒ ドリ ンは S AR中 の水酸基 1モルに对して過剰に用いられるが、 通常、 S AR中の水酸基 1モルに対し て、 1. 5〜 3 0モル、 好ましくは、 2〜 1 5モルの範囲である。 反応終了後、 過剰 のェピクロルヒ ドリンを留去し、 残留物をトルエン、 メチルイソブチルケトン等の溶 剤に溶解し、 濾過し、 水洗して無機塩を除去し、 次いで溶剤を留去することにより 目 的のエポキシ樹脂を得ることができる。  For example, after dissolving the above SAR in an excess of epichlorohydrin, in the presence of an alkali metal hydroxide such as sodium hydroxide or hydroxy hydroxide, 20 to 150 ° C, preferably And a method of reacting in the range of 30 to 80 for 1 to 10 hours. In this case, the amount of the alkali metal hydroxide used is in the range of 0.8 to 1.5 mol, preferably 0.9 to 1.2 mol, per 1 mol of the SAR hydroxyl group. In addition, epichlorohydrin is used in excess relative to 1 mol of hydroxyl group in SAR, but usually 1.5 to 30 mol, preferably 2 to 1 mol, relative to 1 mol of hydroxyl group in SAR. The range is 5 moles. After completion of the reaction, excess epichlorohydrin is distilled off, and the residue is dissolved in a solvent such as toluene or methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off. The target epoxy resin can be obtained.
本発明のエポキシ樹脂組成物は、 少なく ともエポキシ樹脂及び硬化剤を含むもので あるが、 次の 2種類がある。 1 ) エポキシ樹脂の一部又は全部として前記 S AEを配合した組成物。 The epoxy resin composition of the present invention contains at least an epoxy resin and a curing agent, and there are the following two types. 1) The composition which mix | blended said SAE as a part or all of an epoxy resin.
2) エポキシ樹脂及び硬化剤の一部又は全部として前記 S AEと S ARを配合した組 成物。  2) A composition in which the SAE and SAR are blended as part or all of the epoxy resin and the curing agent.
上記 2) の組成物の場合、 SARの配合量は、 通常、 エポキシ榭脂 1 0 0重量部に 対して 2〜200重量部、 好ましくは 5〜 80重量部の範囲である。 これより少ない と密着性及び難燃性向上の効果が小さく、 これより多いと成形性及び硬化物の強度が 低下する問題がある。  In the case of the above composition 2), the amount of SAR is usually in the range of 2 to 200 parts by weight, preferably 5 to 80 parts by weight with respect to 100 parts by weight of the epoxy resin. If it is less than this, the effect of improving the adhesion and flame retardancy is small, and if it is more than this, there is a problem that the moldability and the strength of the cured product are lowered.
硬化剤の全量として S ARを用いる場合、 通常、 SARの配合量は、 SARの OH 基とエポキシ樹脂中のエポキシ基の当量バランスを考慮して配合する。 エポキシ樹脂 及び硬化剤の当量比は、 通常、 0. 2~5. 0の範囲であり、 好ましくは 0. 5〜2. 0の範囲である。 これより大きくても小さくても、 エポキシ樹脂組成物の硬化性が低 下するとともに、 硬化物の耐熱性、 力学強度等が低下する。  When SAR is used as the total amount of curing agent, the amount of SAR is usually determined in consideration of the equivalent balance of SAR OH groups and epoxy groups in the epoxy resin. The equivalent ratio of the epoxy resin and the curing agent is usually in the range of 0.2 to 5.0, and preferably in the range of 0.5 to 2.0. If it is larger or smaller than this, the curability of the epoxy resin composition is lowered, and the heat resistance and mechanical strength of the cured product are lowered.
硬化剤として SAR以外の硬化剤を併用することができる。 その他の硬化剤の配合 量は、 SARの配合量が、 通常、 エポキシ樹脂 1 00重量部に对して 2〜 2 0 0重量 部、 好ましくは 5〜 8 0重量部の範囲が保たれる範囲内で決定される。 SARの配合 量がこれより少ないと低吸湿性、 密着性及び難燃性向上の効果が小さく、 これより多 いと成形性及び硬化物の強度が低下する問題がある。  Curing agents other than SAR can be used in combination. The amount of the other curing agent is such that the amount of the SAR is usually in the range of 2 to 200 parts by weight, preferably 5 to 80 parts by weight with respect to 100 parts by weight of the epoxy resin. Determined within. If the amount of SAR is less than this, the effect of improving low moisture absorption, adhesion and flame retardancy is small, and if it is more than this, there is a problem that the moldability and the strength of the cured product are lowered.
S A R以外の硬化剤としては、 一般にエポキシ樹脂の硬化剤として知られているも のはすべて使用でき、 ジシアンジアミ ド、 酸無水物類、 多価フヱノール類、 芳香族及 び脂肪族ァミン類等がある。 これらの中でも、 半導体封止材等の高い電気絶縁性が要 求される分野においては、 多価フエノール類を硬化剤として用いることが好ましい。 以下に、 硬化剤の具体例を示す。  As curing agents other than SAR, all of those generally known as epoxy resin curing agents can be used, such as dicyandiamide, acid anhydrides, polyhydric phenols, aromatic and aliphatic amines. . Among these, polyhydric phenols are preferably used as curing agents in fields where high electrical insulation properties such as semiconductor encapsulants are required. Specific examples of curing agents are shown below.
酸無水物硬化剤としては、 例えば、 無水フタル酸、 テトラヒ ドロ無水フタル酸、 メ チルテトラヒ ドロ無水フタル酸、 へキサヒ ドロ無水フタル酸、 メチルへキサヒ ドロ無 水フタル酸、 メチル無水ハイミ ック酸、 無水ドデシ二ルコハク酸、 無水ナジック酸、 無水トリメ リ ッ ト酸等がある。 多価フエノール類としては、 例えば、 ビスフエノール A、 ビスフエノール F、 ビス フエノーノレ S、 フノレオレンビスフエノーノレ、 4 , 4 ' —ビフエノーノレ、 2 , 2 ' —ビフ エノーノレ、 ハイ ドロキノン、 レゾノレシン、 ナフタレンジォーノレ等の 2価のフエノー/レ 類、 あるいは、 ト リス- (4 -ヒ ドロキシフエニル) メタン、 1 , 1 , 2 , 2 -テ トラキ ス (4 -ヒ ドロキシフエニル) ェタン、 フエノ一ルノボラック、 0 -ク レゾールノボラ ック、 ナフ トールノボラック、 ポリ ビュルフエノール等に代表される 3価以上のフエ ノール類がある。 更には、 フエノール類、 ナフ トール類、 ビスフエノール A、 ビスフ エノ一ノレ F、 ビスフエノーノレ S、 フノレ才レンビスフエノーノレ、 4 , 4 ' -ビフエノ一ノレ、 2 , 2 ' -ビフエノール、 ハイ ドロキノン、 レゾルシン、 ナフタレンジオール等の 2価 のフエノール類と、 ホルムアルデヒ ド、 ァセ トアルデヒ ド、 ベンズアルデヒ ド、 p -ヒ ドロキシベンズアルデヒ ド、 p -キシリ レンダリ コール等の縮合剤により合成される多 価フエノール性化合物等がある。 また、 前記のフエノール樹脂組成物を配合すること もできる。 - アミン類と しては、 4 , 4 ' —ジアミノジフエニルメタン、 4 , 4 ' —ジアミノジ フエニルプロパン、 4 , 4 ' —ジアミノジフエニルスルホン、 m—フエ二レンジアミ ン、 p —キシリ レンジアミン等の芳香族ァミン類、 エチレンジァミン、 へキサメチレ ンジァミン、 ジエチレントリアミン、 トリエチレンテ トラミン等の脂肪族ァミン類が ある。 Examples of acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrohydrous phthalic acid, methylhydric anhydride, Examples include dodecyl succinic anhydride, nadic anhydride, and trimellitic anhydride. Examples of the polyhydric phenols include bisphenol A, bisphenol F, bisphenolore S, funoleolene bisphenolate, 4, 4 '— biphenolate, 2, 2' — biphenolate, hydrodroquinone, resornoresin, naphthalene. Divalent phenol / Les such as dioreno, or tris- (4-hydroxyphenyl) methane, 1, 1, 2, 2-tetraxyl (4-hydroxyphenyl) ethane, phenol monovolak, There are trihydric or higher phenols such as 0-cresol novolac, naphthol novolak, and polybuhlphenol. Furthermore, phenols, naphthols, bisphenol A, bisphenol enole F, bisphenol nore S, funole ren bisphenolenore, 4, 4'-biphenolate, 2, 2'-biphenol, hydroquinone, Multivalent phenolic compounds synthesized by divalent phenols such as resorcinol and naphthalene diol, and condensing agents such as formaldehyde, acetoaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylylene render alcohol, etc. There are compounds. Moreover, the above-mentioned phenol resin composition can also be blended. -Amines include 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylsulfone, m-phenylenediamine, p-xylylenediamine Aromatic amines such as ethylenediamine, hexamethylenediamine, diethylenetriamine, and triethylenetetramine.
上記組成物には、 これら硬化剤の 1種又は 2種以上を混合して用いることができる。 上記組成物に使用されるエポキシ樹脂としては、 1分子中にエポキシ基を 2個以上 有するもの中から選択される。 例えば、 ビスフエノール A、 ビスフエノール F、 ビス フエノーノレ S、 フノレオレンビスフエノーノレ、 4 , 4 ' —ビフエノーノレ、 2 , 2 ' —ビフ エノ一ル、 テ トラブロモビスフエノール A、 ハイ ドロキノン、 レゾルシン等の 2価の フエノール類、 あるいは、 トリス一 (4—ヒ ドロキシフエニル) メタン、 1 , 1 , 2 , 2 —テ トラキス ( 4 —ヒ ドロキシフエニル) エタンゃ、 フエノール、 ク レゾール、 ナ フ トール等のノボラック樹脂、 フエノール、 ク レゾール、 ナフ トール等のァラルキル 樹脂等の 3価以上のフエノール性化合物のダルシジルエーテル化物等がある。 これら のエポキシ樹脂は 1種又は 2種以上を混合して用いることができる。 One or more of these curing agents can be mixed and used in the composition. The epoxy resin used in the composition is selected from those having two or more epoxy groups in one molecule. For example, bisphenol A, bisphenol F, bisphenol nore S, funoleolene bisphenol nore, 4, 4'—biphenolate, 2,2'—biphenol, tetrabromobisphenol A, hydroquinone, resorcin Divalent phenols such as Tris mono (4-Hydroxyphenyl) methane, 1, 1, 2, 2—Tetrakis (4-Hydroxyphenyl) Ethaneya, phenol, Cresol, naphthol and other novolaks Aralkyls such as resin, phenol, cresol, naphthol, etc. There are darcidyl etherified products of trihydric or higher phenolic compounds such as resins. These epoxy resins can be used alone or in combination of two or more.
上記 1 ) 及び 2 ) の組成物の場合、 硬化剤としては、 一般にエポキシ樹脂の硬化剤 として知られているものはすべて使用できる。 例えば、 前記したジシアンジアミ ド、 多価フ ノール類、 酸無水物類、 芳香族及び脂肪族ァミン類等がある。 また、 上記一 般式 (3 ) で表される S A Rも好ましく例示される。 この樹脂組成物には、 これら硬 化剤の 1種又は 2種以上を混合して用いることができる。  In the case of the above compositions 1) and 2), any of the curing agents generally known as epoxy resin curing agents can be used. For example, there are dicyandiamide, polyhydric phenols, acid anhydrides, aromatic and aliphatic amines, and the like. Further, S A R represented by the general formula (3) is also preferably exemplified. One or more of these hardeners can be mixed and used in this resin composition.
また、 このエポキシ樹脂組成物中には、 エポキシ樹脂成分として、 一般式 ( 1 ) で 表される S A E以外に別種のエポキシ樹脂を配合してもよい。 この場合のエポキシ辯 脂としては、 分子中にエポキシ基を 2個以上有する通常のエポキシ樹脂はすべて使用 できる。 例を挙げれば、 ビスフエノール A、 ビスフエノール S、 フルオレンビスフエ ノーノレ、 4 , 4 ' —ビフエノーノレ、 2 , 2 ' —ビフエノーノレ、 ハイ ドロキノン、 レゾ ルシン等の 2価のフエノール類、 あるいは、 トリスー (4ーヒ ドロキシフエニル) メ タン、 1 , 1 , 2 , 2—テ トラキス (4ーヒ ドロキシフエニル) ェタン、 フエノール ノボラック、 o—ク レゾ一ルノボラック等の 3価以上のフエノール類、 フエノール系 ァラルキル樹脂類、 ナフ トール系ァラルキル樹脂類、 又はテトラブロモビスフエノー ル A等のハロゲン化ビスフエノール類から誘導されるダルシジルエーテル化物等があ る。 これらのエポキシ樹脂は、 1種又は 2種以上を混合して用いることができる。 そ して、 本発明の S A Eを必須成分とする組成物の場合、 一般式 ( 1 ) で表される S A Eの配合量はエポキシ樹脂全体中、 5〜 1 0 0 %、 好ましくは 6 0〜 1 0 0 %の範囲 であることがよい。  Moreover, in this epoxy resin composition, you may mix | blend another kind of epoxy resin other than SAE represented by General formula (1) as an epoxy resin component. As the epoxy resin in this case, all ordinary epoxy resins having two or more epoxy groups in the molecule can be used. For example, bisphenol A, bisphenol S, fluorene bisphenol nore, 4, 4 '— biphenolate, 2, 2' — bivalent phenols such as biphenolate, hydroquinone, resorcin, or trisou (4 -Hydroxyphenyl) methane, 1, 1, 2, 2—Tetrakis (4-Hydroxyphenyl) ethane, phenol novolak, o-chloro novolak, etc. Trivalent or higher phenols, phenolic aralkyl resins, naphth Examples include toll-based aralkyl resins, and darcidyl ethers derived from halogenated bisphenols such as tetrabromobisphenol A. These epoxy resins can be used alone or in combination of two or more. In the case of a composition containing the SAE of the present invention as an essential component, the amount of SAE represented by the general formula (1) is 5 to 100%, preferably 60 to 1% in the whole epoxy resin. It should be in the range of 0 0%.
本発明のエポキシ樹脂組成物中には、 ポリエステル、 ポリアミ ド、 ポリイミ ド、 ポ リエ一テル、 ポリ ウレタン、 石油樹脂、 インデン樹脂、 インデン ' クマロン樹脂、 フ ニノキシ樹脂等のオリゴマー又は高分子化合物を他の改質剤等として適宜配合しても よい。 添加量は、 通常、 エポキシ樹脂 1 0 0重量部に対して、 2〜3 0重量部の範囲 である。 また、 本発明のエポキシ樹脂組成物には、 無機充填剤、 顔料、 難然剤、 揺変性付与 剤、 カップリング剤、 流動性向上剤等の添加剤を配合できる。 無機充填剤としては、 例えば、 球状あるいは、 破碎状の溶融シリカ、 結晶シリカ等のシリカ粉末、 アルミナ 粉末、 ガラス粉末、 又はマイ力、 タルク、 炭酸カルシウム、 アルミナ、 水和アルミナ 等が挙げられ、 半導体封止材に用いる場合の好ましい配合量は 7 0重量%以上であり、 更に好ましくは 8 0重量%以上である。 In the epoxy resin composition of the present invention, other oligomers or polymer compounds such as polyester, polyamide, polyimide, polyester, polyurethane, petroleum resin, indene resin, indene coumarone resin, and phenoxy resin are used. You may mix | blend suitably as a modifier of this. The addition amount is usually in the range of 2 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin. In addition, the epoxy resin composition of the present invention may contain additives such as inorganic fillers, pigments, flame retardants, thixotropic agents, coupling agents, and fluidity improvers. Examples of the inorganic filler include spherical or fractured fused silica, silica powder such as crystalline silica, alumina powder, glass powder, or my strength, talc, calcium carbonate, alumina, hydrated alumina, and the like. A preferable blending amount when used for a sealing material is 70% by weight or more, and more preferably 80% by weight or more.
顔料としては、 有機系又は、 無機系の体質顔料、 鱗片状顔料等がある。 揺変性付与 剤としては、 シリ コン系、 ヒマシ油系、 脂肪族ァマイ ドワックス、 酸化ポリエチレン ワックス、 有機ベントナイ ト系等を挙げることができる。  Examples of the pigment include organic or inorganic extender pigments, scaly pigments, and the like. Examples of the thixotropic agent include silicon, castor oil, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite.
更に、 本発明のエポキシ樹脂組成物には必要に応じて硬化促進剤を用いることがで きる。 例を挙げれば、 アミン類、 イミダゾール類、 有機ホスフィン類、 ルイス酸等が あり、 具体的には、 1 , 8—ジァザビシクロ (5 , 4 , 0 ) ゥンデセン一 7、 トリエ チレンジァミン、 ベンジルジメチルァミン、 ト リエタノールァミン、 ジメチルァミ ノ エタノール、 ト リス (ジメチルアミノメチル) フエノールなどの三級ァミン、 2—メ チルイ ミダゾール、 2 —フエ二ルイ ミダゾール、 2 —ェチル— 4 —メチルイ ミダゾー ル、 2 —フエニル一 4ーメチルイ ミダゾール、 2 —へプタデシルイ ミダゾールなどの イ ミダゾール類、 ト リブチルホスフィン、 メチルジフエニルホスフィン、 ト リ フヱニ ノレホスフィン、 ジフエ二ノレホスフィン、 フエ二ノレホスフィンなどの有機ホスフィン類、 テ トラフエ二ノレホスホニゥム · テ トラフエ二ノレボレート、 テ トラフエ二ノレホスホニゥ ム . ェチルトリ フエニルボレート、 テ トラブチルホスホニゥム . テ トラブチルボレ一 トなどのテトラ置換ホスホニゥム ·テトラ置換ボレート、 2 —ェチル一 4 —メチルイ ミダゾール · テ トラフエニルボレート、 N—メチルモルホリ ン . テ トラフエニルボレ ートなどのテトラフェニルボロン塩などがある。 添加量としては、 通常、 エポキシ樹 脂 1 0 0重量部に対して、 0 . 2から 5重量部の範囲である。  Furthermore, a curing accelerator can be used in the epoxy resin composition of the present invention as needed. Examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, Tertiary amines such as triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl 1-methylimidazole, 2-imidazole such as 2-heptadecylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylenophosphine, diphenylenophosphine, and phenylenophosphine, Norrephosphonium Te Tetra-substituted phosphonium tetrasubstituted borates such as rough enoreborate, tetrafuenore phosphonium ethyltriphenyl borate, tetrabutyl phosphonium tetrabutyl borate, etc. Tetraphenylboron salts such as methylmorpholine.tetrafenyl borate. The addition amount is usually in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin.
更に必要に応じて、 本発明の樹脂組成物には、 カルナバワックス、 O Pワックス等 の離型剤、 γ -グリシドキシプロビルトリメ トキシシラン等のカップリング剤、 カーボ ンブラック等の着色剤、 三酸化アンチモン等の難燃剤、 シリ コンオイル等の低応力化 剤、 ステアリン酸カルシウム等の滑剤等を使用できる。 Further, if necessary, the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as γ-glycidoxyprovir trimethoxysilane, Colorants such as Nblack, flame retardants such as antimony trioxide, low stress reducing agents such as silicon oil, lubricants such as calcium stearate, and the like can be used.
本発明のエポキシ樹脂組成物は、 有機溶剤を溶解させたワニス状態とした後に、 ガラ スクロス、 ァラミ ド不織布、 液晶ポリマー等のポリエステル不織布、 等の繊維状物に 含浸させた後に溶剤除去を行い、 プリプレダとすることができる。 また、 場合により 銅箔、 ステンレス箔、 ポリイミ ドフィルム、 ポリエステルフィルム等のシート状物上 に塗布することにより積層物とすることができる。 The epoxy resin composition of the present invention is made into a varnish in which an organic solvent is dissolved, and then impregnated into a fibrous material such as glass cloth, a polyamide nonwoven fabric, a polyester nonwoven fabric such as a liquid crystal polymer, and the like, and then the solvent is removed. It can be a pre-preda. In some cases, a laminate can be formed by coating on a sheet-like material such as a copper foil, a stainless steel foil, a polyimide film, or a polyester film.
本発明のエポキシ樹脂組成物を加熱硬化させれば、 エポキシ樹脂硬化物とすること ができ、 この硬化物は低吸湿性、 高耐熱性、 密着性、 難燃性等の点で優れたものとな る。 この硬化物は、 エポキシ樹脂組成物を注型、 圧縮成形、 トランスファー成形等の 方法により、成形加工して得ることができる。 この際の温度は通常、 1 20〜2 20で の範囲である。 実施例  If the epoxy resin composition of the present invention is cured by heating, an epoxy resin cured product can be obtained. This cured product is excellent in terms of low hygroscopicity, high heat resistance, adhesion, flame retardancy, and the like. Become. This cured product can be obtained by molding the epoxy resin composition by a method such as casting, compression molding, transfer molding or the like. The temperature at this time is usually in the range of 120-20. Example
以下、 実施例により本発明を更に具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
ここで、 粘度は B型粘度計を用い、 軟化点は J I S— K— 2 20 7に従い環球法で 測定した。 また、 G P C測定条件は、 装置; HLC— 8 2 A (東ソ一 (株) 製)、 カラ ム ; T S K— GE L 2 000 X 3本及び T S K— GE L 4 00 0 X 1本 (いずれも東 ソー (株) 製)、 溶媒;テトラヒ ドロフラン、 流量; 1 m 1 Zm i n、 温度; 3 8で、 検出器; R Iであり、 検量線にはポリスチレン標準液を使用した。  Here, the viscosity was measured using a B-type viscometer, and the softening point was measured by the ring-and-ball method according to JIS-K-2207. The GPC measurement conditions were as follows: equipment: HLC-8 2 A (manufactured by Tosohichi Co., Ltd.), column: TSK-GE L 2 000 X 3 and TSK-GE L 400 0 X 1 (both Tosoh Co., Ltd.), solvent: tetrahydrofuran, flow rate: 1 m 1 Zmin, temperature: 38, detector: RI, polystyrene standard solution was used for the calibration curve.
実施例 1 Example 1
撹拌機、 冷却管、 窒素導入管のついた 1 L、 3ロセパラブルフラスコに、 4, 4 ' - ジヒ ドロキシジフエニルスルフイ ド 200. 0 g、 p-キシリ レンジクロライ ド 4 8. 2 g、 モノクロ口ベンゼン 1 6 5 gを仕込み、 窒素を導入しながら 8 0でに加熱し溶 解させた。 その後、 減圧下にて撹拌しながら 1 5 0°Cに昇温し 3時間反応させた。 こ の間、 反応により生成する塩酸およびモノクロ口ベンゼンは系外に除いた。 その後、 減圧下塩酸を除去し、 ヒ ドロキシ化合物 2 2 8. l gを得た。 この化合物を SAR— Aという。 得られた樹脂の軟化点は 6 6で、 1 50でにおける溶融粘度は 0. I I P a - sであった。 In a 1 L, 3 separable flask equipped with a stirrer, condenser, and nitrogen inlet tube, 40.0 'g dihydroxydiphenylsulfide 20.0 g, p-xylylene dichloride 48.2 g Monoclonal benzene 1 65 g was charged and heated to 80 0 to dissolve while introducing nitrogen. Thereafter, the mixture was heated to 150 ° C. with stirring under reduced pressure and reacted for 3 hours. During this time, hydrochloric acid and monochlorobenzene produced by the reaction were removed from the system. afterwards, Hydrochloric acid was removed under reduced pressure to obtain a hydroxy compound 2 2 8.lg. This compound is called SAR-A. The softening point of the obtained resin was 66, and the melt viscosity at 150 was 0. IIP a -s.
SAR— Aの1 H— NMRスぺク トルを図 1、 赤外吸収スぺク トルを図 2、 G P Cチ ャ一トを図 3に示す。 Fig. 1 shows the 1 H-NMR spectrum of SAR-A, Fig. 2 shows the infrared absorption spectrum, and Fig. 3 shows the GPC chart.
実施例 2 Example 2
4 , 4 ' -ジヒ ドロキシジフエニルスルフィ ド 200. 0 g、 4, 4 ' -ビスクロ口 メチルビフエニル 6 9. 1 g、 モノクロ口ベンゼン 1 7 9 gを仕込み、 窒素を導入し ながら 8 0でに加熱し溶解させた。 その後、 減圧下にて撹拌しながら 1 5 0でまで昇 温し 3時間反応させた。 この間、 反応により生成する塩酸およびモノクロ口ベンゼン は系外に除いた。 その後、 減圧下にて塩酸を除去し、 ヒ ドロキシ化合物 24 9. 0 g を得た。 この化合物を SAR— Bという。 得られた樹脂の軟化点は 8 2で、 1 50で における溶融粘度は 0. 60 P a · sであった。  4, 4'-dihydroxydiphenyl sulfide 200.0 g, 4,4'-bisclomethyl methylbiphenyl 69.1 g, monochrome benzene 1 7 9 g, and nitrogen introduced into 80 Heat to dissolve. Thereafter, while stirring under reduced pressure, the temperature was raised to 150 and reacted for 3 hours. During this time, hydrochloric acid and monochlorobenzene produced by the reaction were removed from the system. Thereafter, hydrochloric acid was removed under reduced pressure to obtain 249.0 g of a hydroxy compound. This compound is called SAR-B. The softening point of the obtained resin was 82, and the melt viscosity at 150 was 0.60 Pa · s.
実施例 3 Example 3
4 , 4 ' -ジヒ ドロキシジフエニルスルフイ ド 200. 0 g、 ビスクロロメチルナフ タレン 6 1. 9 g、 モノクロ口ベンゼン 1 7 5 gを用いて実施例 2と同様に反応を行 い、 ヒ ドロキシ化合物 240. l gを得た。 この化合物を SAR— Cという。 得られ た樹脂の軟化点は 9 3で、 1 50¾における溶融粘度は 0. 7 5 P a ' sであった。 実施例 4  The reaction was conducted in the same manner as in Example 2 using 200,0 g of 4,4′-dihydroxydiphenylsulfide, 61.9 g of bischloromethylnaphthalene, and 17.5 g of monochlorobenzene. Droxy compound 240. lg was obtained. This compound is called SAR-C. The softening point of the obtained resin was 93, and the melt viscosity at 150 3 was 0.75 Pa ′s. Example 4
4, 4 ' -ジヒ ドロキシジフエニルスルフイ ド 300. 0 g、 9 2%パラホルムアル デヒ ド 1 3. 5 g、 モノクロ口ベンゼン 200 gを仕込み、 窒素を導入しながら 90で に加熱し溶解させた。 その後、 撹拌しながらシユウ酸 0. 5 2 gを加え 3時間反応さ せた。 この間、 反応により生成する水は系外に除いた。 さらに 1 2 0でに昇温し 1時 間反応させた。 その後、 減圧下、 1 50^に昇温し、 縮合水及びモノクロ口ベンゼン を除去した。 その後、 メチルイソプチルケトン 4 50 gを加え、 8 0"Cにて水洗を行 つた。 さらにメチルイソプチルケトンを 1 5 にて減圧留去した後、 ヒ ドロキシ化 合物 3 0 3. l gを得た。 この化合物を S AR— Dという。 得られた樹脂の軟化点は 7 3で、 1 5 0でにおける溶融粘度は 0. 2 0 P a ' sであった。 Charge 4,4'-dihydroxydiphenylsulfide 300.0 g, 9 2% paraformaldehyde 13.5 g, 200 g of monochlorobenzene benzene, heat to 90 while introducing nitrogen and dissolve I let you. Thereafter, 0.52 g of oxalic acid was added with stirring and reacted for 3 hours. During this time, water produced by the reaction was removed from the system. Furthermore, the temperature was raised to 120 and the reaction was carried out for 1 hour. After that, the temperature was raised to 150 ^ under reduced pressure to remove the condensed water and the monochrome benzene. Thereafter, 450 g of methylisobutyl ketone was added, and the mixture was washed with water at 80 "C. Further, methylisobutyl ketone was distilled off under reduced pressure at 15 and then hydroxylated. Compound 3 0 3. lg was obtained. This compound is called SAR—D. The softening point of the obtained resin was 73, and the melt viscosity at 150 was 0.20 Pa's.
実施例 5 Example 5
1 5 0でに溶融させた 1 0 0 gのフエノールノボラック (軟化点 8 2で、 O H当量 1 0 3 ) 中に、 実施例 1で得た S AR— A l O O gを加え、 均一に溶融させてフエノ ール樹脂組成物 2 0 0 gを得た (樹脂組成物 A)。 得られたフニノール樹脂組成物の軟 化点は 7 6で、 1 5 0ででの溶融粘度は 0. 1 8 P a * sであった。  Into 100 g of phenol novolak (softening point 82, OH equivalent 10 3) melted at 150, add SAR—AlOO g obtained in Example 1 and melt evenly As a result, 200 g of a phenol resin composition was obtained (resin composition A). The softening point of the obtained funinol resin composition was 76, and the melt viscosity at 1550 was 0.18 Pa * s.
実施例 6〜 1 1及び比較例 1〜 2 Examples 6 to 1 1 and Comparative Examples 1 to 2
エポキシ樹脂成分として 0 -クレゾールノボラック型エポキシ樹脂 (O C N E ;ェポ キシ当量 2 0 0、 軟化点 6 5 °C)、 硬化剤として実施例 1、 2、 3、 4で得た S AR— A、 S AR— B、 S AR _ C、 S AR— D、 実施例 5で得たフエノール樹脂組成物 (榭 脂組成物 A)、 フエノールノボラック (硬化剤 A :群栄化学製、 P SM— 4 2 6 1 ; 0 H当量 1 0 3、 軟化点 8 2 )、 フエノールァラルキル樹脂 (硬化剤 B ;明和化成製、 ME H— 7 8 0 0 S S、 OH当量 1 7 5、 軟化点 6 7 ° ) を用い、 充填剤としてシリ 力 (平均粒径 1 8 μ m)、 硬化促進剤としてトリフヱニルホスフィンを配合で混練し熱 硬化性樹脂組成物を得た。 熱硬化性樹脂の配合を表 1に示した。 この熱硬化性樹脂組 成物を用いて 1 7 5でにて成形し、 1 7 5 にて 1 2時間ボス トキユアを行い、 硬化 物試験片を得た後、 各種物性測定に供した。  0-cresol novolac type epoxy resin (OCNE; epoxy equivalent 2 200, softening point 65 ° C) as epoxy resin component, SAR-A obtained in Examples 1, 2, 3, and 4 as curing agent, S AR—B, S AR — C, S AR—D, phenol resin composition (resin composition A) obtained in Example 5, phenol novolak (curing agent A: manufactured by Gunei Chemical Co., Ltd., P SM— 4 2 6 1; 0 H equivalent 10 3, softening point 8 2), phenol aralkyl resin (curing agent B; made by Meiwa Kasei, ME H—780 0 SS, OH equivalent 1 75, softening point 6 7 ° ) Was used, and kiri force (average particle size 18 μm) as a filler and triphenylphosphine as a curing accelerator were mixed and kneaded to obtain a thermosetting resin composition. Table 1 shows the composition of the thermosetting resin. Using this thermosetting resin composition, it was molded at 1755, and was bombarded at 1755 for 12 hours to obtain a cured specimen, which was then subjected to various physical property measurements.
本熱硬化性樹脂組成物を用いた、 ガラス転移点 (T g ) 及び線膨張係数 (C T E) の測定は、 熱機械測定装置を用いて 1 0 /分の昇温速度で求めた。 また吸水率は、 直径 5 0mm、 厚さ 3 mm の円形の試験片を用いて、 8 5で、 8 5 %R Hの条件で 1 0 0 時間吸湿させた吸水率は、 本熱硬化性樹脂組成物を用いて、 直径 5 0mm、 厚さ 3 mmの 円盤を成形し、 ポス トキュア後 1 3 3 ^、 3 atm、 9 6時間吸湿させた後の重量変化率 とした。 接着強度は、 銅板 2枚の間に 2 5 mm'X 1 2. 5 mm X 0. 5 mmの成形物 を圧縮成形機により 1 7 5 ¾で成形し、 1 8 0 にて 1 2時間ポス トキュアを行った 後、 引張剪断強度を求めることにより評価した。 '難燃性は、 厚さ 1 Z 1 6インチの試 験片を成形し、 UL 94 V- 0規格によって評価し、 5本の試験片での合計の燃焼時間 で表した。 結果をまとめて表 2に示す。 The glass transition point (T g) and the coefficient of linear expansion (CTE) using this thermosetting resin composition were measured at a heating rate of 10 / min using a thermomechanical measuring device. The water absorption rate is 85 mm and 85 mm RH using a circular test piece with a diameter of 50 mm and a thickness of 3 mm. A disk having a diameter of 50 mm and a thickness of 3 mm was formed using the object, and the weight change rate after post-curing and absorbing moisture for 1 3 3 ^, 3 atm, 96 hours. The adhesive strength was 25 mm 'x 1 2.5 mm x 0.5 mm between two copper plates, molded in 1 75 5 ¾ with a compression molding machine, and post-pressed for 1 2 hours at 1800. After performing tocure, the tensile shear strength was evaluated. 'Flame Retardation Thickness 1 Z 16 inch test Specimens were molded and evaluated according to the UL 94 V-0 standard and expressed as the total burn time for five specimens. The results are summarized in Table 2.
表 1  table 1
Figure imgf000020_0001
Figure imgf000020_0001
表 2 Table 2
Figure imgf000020_0002
本エポキシ樹脂組成物を用いた、 ガラス転移点 (T g) 及び線膨張係数 (CTE) の測定は、 熱機械測定装置を用いて 1 0で/分の昇温速度で求めた。 また吸水率は、 直径 5 Omm、 厚さ 3mmの円形の試験片を用いて、 8 5 、 8 5%RHの条件で 1 0 0 時間吸湿させた吸水率は、 本エポキシ樹脂組成物を用いて、 直径 50mm、 厚さ 3mmの 円盤を成形し、 ポス トキュア後 1 3 3で、 3atm、 9 6時間吸湿させた後の重量変化率 とした。 接着強度は、 銅板 2枚の間に 2 5mmX 1 2. 5 mmX 0. 5mmの成形物 を圧縮成形機により 1 7 5でで成形し、 1 8 0 にて 1 2時間ポス トキュアを行った 後、 引張剪断強度を求めることにより評価した。 難燃性は、 厚さ 1 Z 1 6インチの試 験片を成形し、 UL 94 V- 0規格によって評価し、 5本の試験片での合計の燃焼時間 で表した。
Figure imgf000020_0002
The glass transition point (T g) and the coefficient of linear expansion (CTE) using this epoxy resin composition were measured at a heating rate of 10 / min using a thermomechanical measuring device. The water absorption rate is Using a circular test piece with a diameter of 5 Omm and a thickness of 3 mm, the water absorption rate obtained by absorbing moisture for 10 hours under the conditions of 85% and 85% RH was 50 mm in diameter and thick with this epoxy resin composition. A 3 mm-thick disk was formed, and the rate of weight change after post-curing was 1 3 3 and absorbed moisture at 3 atm for 96 hours. Adhesive strength is 25 mm X 1 2.5 mm X 0.5 mm between two copper plates, molded at 1 75 with a compression molding machine, and postcured at 180 for 12 hours Evaluation was made by determining the tensile shear strength. Flame retardancy was measured by UL 94 V-0 standard after molding a test specimen with a thickness of 1 Z 16 inches and expressed as the total burning time of five specimens.
実施例 1.2 Example 1.2
四つロセパラブルフラスコに実施例 1で得た S AR— A 1 30 g、 ェピクロルヒ ド リン 48 5 g、 ジエチレングリコールジメチルエーテル 7 3 gを入れ撹拌溶解させた。 均一に溶解後、 1 3 OmmH gの減圧下 6 5でに保ち、 4 8 %水酸化ナトリ ウム水溶 液 8 7. 4 gを 4時間かけて滴下し、 この滴下中に還流留出した水とェピクロルヒ ド リンを分離槽で分離しェピクロルヒ ドリンは反応容器に戻し、 水は系外に除いて反応 した。 反応終了後、 濾過により生成した塩を除き、 更に水洗したのちェピクロルヒ ド リンを留去し、 エポキシ樹脂 1 7 7. 9 gを得た (S AE— A)。 得られた樹脂の 1 5 における溶融粘度は 0. 1 4 P a · s、 エポキシ当量は 2 0 5 g / e q . であつ た。 SAE— Aの1 H— NMRスぺク トルを第 4図、 赤外吸収スぺク トルを第 5図、 G P Cチャートを第 6図に示す。 In a four-separable flask, 30 g of SAR-A 1 obtained in Example 1, 48 5 g of epichlorohydrin, and 7 3 g of diethylene glycol dimethyl ether were stirred and dissolved. After uniform dissolution, keep it at 65 5 under reduced pressure of 13 OmmH g, and add 47.4% aqueous solution of sodium hydroxide 87.4 g over 4 hours. The epichlorohydrin was separated in a separation tank, the epichlorohydrin was returned to the reaction vessel, and water was removed from the system to react. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 17.9.9 g of epoxy resin (S AE-A). The melt viscosity of the obtained resin at 15 was 0.14 Pa · s, and the epoxy equivalent was 205 g / eq. Fig. 4 shows the 1 H-NMR spectrum of SAE-A, Fig. 5 shows the infrared absorption spectrum, and Fig. 6 shows the GPC chart.
実施例 1 3〜 1 6及び比較例 3〜 5 Examples 1 3 to 16 and Comparative Examples 3 to 5
エポキシ樹脂成分として、 実施例 1 2で合成した S AE— A、 0 -クレゾールノボラ ック型エポキシ樹脂 (OCNE ;エポキシ当量 20 0、 軟化点 6 5で)、 ジフエニルス ルフィ ド型エポキシ樹脂 (東都化成製、 Y S LV— 5 0 TE ; エポキシ当量 1 7 0、 融点 4 5V) を用い、 硬化剤成分として、 実施例 1で合成した S AR— A、 フエノー ルノボラック (硬化剤 A:群栄化学製、 P SM— 4 26 1 ; OH当量 1 0 3、軟化点 8 2で)、 1—ナフトールァラルキル型樹脂 (硬化剤 B :東都化成製、 SN— 4 7 5 ; 0 20 As an epoxy resin component, SAE-A, 0-cresol novolac type epoxy resin synthesized in Example 12 (OCNE; epoxy equivalent of 200, with softening point 65), diphenyl sulfide type epoxy resin (Toto) Kasei, YS LV—50 TE; epoxy equivalent 1700, melting point 45 V), and as a curing agent component, SAR—A synthesized in Example 1, phenol novolak (curing agent A: manufactured by Gunei Chemical Co., Ltd.) , P SM— 4 26 1; OH equivalent of 10 3 with softening point of 8 2), 1—naphthol aralkyl type resin (curing agent B: manufactured by Tohto Kasei, SN—4 7 5; 0 20
H当量 2 1 0、 軟化点 7 7 ) を用いた。 更に、 充填剤として球状シリカ (平均粒径 1 8 /z m)、 硬化促進剤としてトリフエニルホスフィンを用い、 表 3に示す配合でェポ キシ樹脂組成物を得た。 表中の数値は配合における重量部を示す。 H equivalent 2 1 0, softening point 7 7) was used. Furthermore, an epoxy resin composition was obtained with the composition shown in Table 3, using spherical silica (average particle size 18 / zm) as a filler and triphenylphosphine as a curing accelerator. The numerical value in a table | surface shows the weight part in a mixing | blending.
このエポキシ樹脂組成物 用いて 1 7 5 ¾で成形し、 更に 1 7 5でにて 1 2時間ポ ス トキュアを行い、 硬化物試験片を得た後、 各種物性測定に供した。 結果を表 4に示 す。  Using this epoxy resin composition, it was molded in 1 75 ¾, and further post cured at 1 75 for 12 hours to obtain a cured product test piece, which was then subjected to various physical property measurements. The results are shown in Table 4.
表 3  Table 3
Figure imgf000022_0001
Figure imgf000022_0001
表 4 Table 4
Figure imgf000022_0002
産業上の利用の可能性 本発明の本発明の S A Rは、エポキシ樹脂の硬化剤、及び改質剤として有用であり、 熱硬化性樹脂組成物、 特にエポキシ樹脂組成物に応用した場合、 異種材料との髙密着 性に優れるとともに、 難燃性及び耐熱性に優れた硬化物を与え、 電気 ·電子部品類の 封止、 回路基板材料等の用途に好適に使用することが可能である。 また本発明のスル フイ ド構造含有エポキシ樹脂 (S A E ) は、 エポキシ樹脂組成物に応用した場合、 異 種材料との高密着性に優れるとともに、 難燃性及び耐熱性に優れた硬化物を与え、 電 気 ·電子部品類の封止、 回路基板材料等の用途に好適に使用することが可能である。 本発明の S A E又はスルフイ ド構造含有多価ヒ ドロキシ化合物 (以下、 S A Rともい う) を配合したエポキシ樹脂組成物を加熱硬化させれば、 エポキシ樹脂硬化物とする ことができ、 この硬化物は密着性、 難燃性、 高耐熱性等の点で優れたものを与え、 電 気 ·電子部品類の封止、 回路基板材料等の用途に好適に使用することが可能である。
Figure imgf000022_0002
Industrial applicability The SAR of the present invention is useful as a curing agent and modifier for epoxy resins, and is excellent in adhesiveness to dissimilar materials when applied to thermosetting resin compositions, particularly epoxy resin compositions. At the same time, it gives a cured product with excellent flame resistance and heat resistance, and can be suitably used for applications such as sealing of electric / electronic parts and circuit board materials. In addition, the sulfide structure-containing epoxy resin (SAE) of the present invention, when applied to an epoxy resin composition, is excellent in high adhesion with different materials and gives a cured product excellent in flame retardancy and heat resistance. It can be used suitably for applications such as sealing of electric / electronic parts, circuit board materials, and the like. If the epoxy resin composition containing the SAE or sulfide structure-containing polyhydric hydroxy compound (hereinafter also referred to as SAR) of the present invention is cured by heating, it can be made into an epoxy resin cured product, and this cured product is adhered closely Excellent in terms of heat resistance, flame retardancy, high heat resistance, etc., and can be suitably used for applications such as sealing of electric and electronic parts and circuit board materials.

Claims

請求の範囲 The scope of the claims
. 下記一般式 ( 1 ) The following general formula (1)
Figure imgf000024_0001
Figure imgf000024_0001
こで、  Where
L! は下記式 ( 2 )  L! Is the following formula (2)
Figure imgf000024_0002
Figure imgf000024_0002
で表される基であり、 R i は水素原子、 水酸基、 グリシジルォキシ基、 炭素数 1〜8 のアルコキシ基、 ハロゲン原子又は炭素数 1〜 8の炭化水素基、 Gは、 水素原子、 グ リシジル基を示し、 R i is a hydrogen atom, a hydroxyl group, a glycidyloxy group, an alkoxy group having 1 to 8 carbon atoms, a halogen atom or a hydrocarbon group having 1 to 8 carbon atoms, G is a hydrogen atom, g Lysidyl group,
Xは下記式 (a) 又は式 (b)  X is the following formula (a) or formula (b)
Figure imgf000024_0003
Figure imgf000024_0003
(b)(b)
Figure imgf000024_0004
で表される架橋基であり、 R2 、 R3 、 R 4 及び R5 は独立に、 水素原子又は炭素数 :!〜 6の炭化水素基を示し、 Bはベンゼン環、 ビフエニル環又はナフタレン環からな る基を示し、 nは 0〜20の数を示す;
Figure imgf000024_0004
R 2 , R 3 , R 4 and R 5 independently represent a hydrogen atom or a hydrocarbon group having carbon number:! To 6 and B represents a benzene ring, biphenyl ring or naphthalene ring N represents a number from 0 to 20;
で表される新規エポキシ樹脂または多価ヒ ドロキシ化合物。 A novel epoxy resin or polyhydric hydroxy compound represented by
2. 下記一般式 (3) 2. General formula (3)
H- L 2 一 (X— (3) H- L 2 1 (X— (3)
ここで、 here,
L , は下記式 (4)  L, is the following formula (4)
Figure imgf000025_0001
Figure imgf000025_0001
で表される基であり、 R i は水素原子、 水酸基、 炭素数 8のァノレコキシ基 ゲン原子又は炭素数 1〜 8の炭化水素基を示し、 R i represents a hydrogen atom, a hydroxyl group, an aralkoxy group having 8 carbon atoms, or a hydrocarbon group having 1 to 8 carbon atoms,
Xは下記 (a ) 又は式 (b)  X is the following (a) or formula (b)
Figure imgf000025_0002
Figure imgf000025_0002
Figure imgf000025_0003
で表される架橋基であり、 R2 、 R3 、 R4 及び R5 は独立に、 水素原子又は炭素数 1〜 6の炭化水素基を示し、 Bはベンゼン環、 ビフエニル環又はナフタレン環からな る基を示し、 nは 0〜2 0の数を示す;
Figure imgf000025_0003
R 2 , R 3 , R 4 and R 5 independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and B represents a benzene ring, a biphenyl ring or a naphthalene ring. N represents a number from 0 to 20;
で表される多価ヒ ドロキシ化合物とェピクロルヒ ドリンを反応させることを特徴とす る請求項 1に記載のエポキシ樹脂の製造方法。 2. The method for producing an epoxy resin according to claim 1, wherein the polyhydric hydroxy compound represented by the formula is reacted with epichlorohydrin.
3. エポキシ樹脂及び硬化剤よりなるエポキシ樹脂組成物において、 請求項 1に記載 24 のエポキシ樹脂および または多価ヒ ドロキシ化合物を必須成分として配合してなる エポキシ樹脂組成物。 3. An epoxy resin composition comprising an epoxy resin and a curing agent, according to claim 1. An epoxy resin composition comprising 24 epoxy resins and / or polyhydric hydroxy compounds as essential components.
4. 請求項 3に記載のエポキシ樹脂組成物を硬化してなる硬化物。  4. A cured product obtained by curing the epoxy resin composition according to claim 3.
5. 下記式( 5 ) で表されるヒ ドロキシ化合物 1モルに対し、 下記式( 6 )、 (7)、 (8) 又は (9) で表される架橋剤 0. 1 ~0. 9モルを反応させることを特徴とする請求 項 2に記載の多価ヒ ドロキシ化合物の製造方法。  5. 0.1 to 0.9 mol of a cross-linking agent represented by the following formula (6), (7), (8) or (9) with respect to 1 mol of the hydroxy compound represented by the following formula (5) The method for producing a polyhydric hydroxy compound according to claim 2, wherein
Figure imgf000026_0001
2CHO (6)
Figure imgf000026_0001
2CHO (6)
R2R3C=0 (7) R 2 R 3 C = 0 (7)
Figure imgf000026_0002
式中、 は水素原子、 水酸基、 炭素数 1〜 8のアルコキシ基、 ハロゲン原子又は炭 素数 1〜 8の炭化水素基を示し、 R2 、 R3 、 R4 及び R5 は独立に、 水素原子又 は炭素数 1〜 6の炭化水素基を示し、 Bはベンゼン環、 ビフエ二ル環又はナフタレン 環からなる基を示し、 Y及び Zは独立に OH、 アルコキシ又はハロゲンを示す。
Figure imgf000026_0002
In the formula, represents a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 8 carbon atoms, a halogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R 2 , R 3 , R 4 and R 5 are independently a hydrogen atom. Alternatively, it represents a hydrocarbon group having 1 to 6 carbon atoms, B represents a group consisting of a benzene ring, biphenyl ring or naphthalene ring, and Y and Z independently represent OH, alkoxy or halogen.
6. 軟化点が 40〜200でである請求項 1に記載の多価ヒ ドロキシ化合物。 6. The polyhydric hydroxy compound according to claim 1, which has a softening point of 40 to 200.
PCT/JP2008/054846 2007-03-12 2008-03-11 Novel polyvalent hydroxy compound, method for producing the compound, epoxy resin and epoxy resin composition each using the compound, and cured product of the composition WO2008114766A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-062102 2007-03-12
JP2007062106A JP2008222838A (en) 2007-03-12 2007-03-12 Epoxy resin and epoxy resin composition and its cured product
JP2007062102A JP2008222837A (en) 2007-03-12 2007-03-12 New polyhydric hydroxy compound, method for producing the hydroxy compound, and thermosetting resin composition containing the hydroxy compound and its cured product
JP2007-062106 2007-03-12

Publications (1)

Publication Number Publication Date
WO2008114766A1 true WO2008114766A1 (en) 2008-09-25

Family

ID=39765873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054846 WO2008114766A1 (en) 2007-03-12 2008-03-11 Novel polyvalent hydroxy compound, method for producing the compound, epoxy resin and epoxy resin composition each using the compound, and cured product of the composition

Country Status (1)

Country Link
WO (1) WO2008114766A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505084B1 (en) * 1970-09-16 1975-02-28
JPS514293A (en) * 1974-05-17 1976-01-14 Ruhrchemie Ag 4 4** chioobisu * jiarukirufuenooru ** horumuarudehido shukugobutsunoseihooyobi gaishukugobutsunyorupurasuchitsukuno anteikaho
JPS62288626A (en) * 1986-06-06 1987-12-15 Mitsui Toatsu Chem Inc Production of bis-(4-hydroxy-3-methylphenyl)sulfide-type novolak
JPS6399215A (en) * 1986-06-06 1988-04-30 Mitsui Toatsu Chem Inc Production of 4,4'-thiodiphenol type novolak
JPH03275707A (en) * 1990-03-26 1991-12-06 Teijin Ltd New hydroxycarboxylic acid derivative and production thereof
JPH04202219A (en) * 1990-11-29 1992-07-23 Mitsui Toatsu Chem Inc Production of phenol polymer
JPH0625393A (en) * 1992-07-10 1994-02-01 Mitsui Toatsu Chem Inc Phenol polymer, its production and use thereof
JPH072979A (en) * 1993-06-21 1995-01-06 Mitsui Toatsu Chem Inc Aminated phenolic resin and production thereof
JP2002020463A (en) * 2000-07-10 2002-01-23 Nippon Kayaku Co Ltd Production method of phenolaralkyl resin
JP2002212270A (en) * 2001-01-19 2002-07-31 Japan Epoxy Resin Kk Curing agent for epoxy resin, and epoxy resin composition
JP2003192771A (en) * 2001-12-28 2003-07-09 Japan Epoxy Resin Kk Phenolic resin, its preparation method, curing agent for epoxy resin, epoxy resin composition and semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505084B1 (en) * 1970-09-16 1975-02-28
JPS514293A (en) * 1974-05-17 1976-01-14 Ruhrchemie Ag 4 4** chioobisu * jiarukirufuenooru ** horumuarudehido shukugobutsunoseihooyobi gaishukugobutsunyorupurasuchitsukuno anteikaho
JPS62288626A (en) * 1986-06-06 1987-12-15 Mitsui Toatsu Chem Inc Production of bis-(4-hydroxy-3-methylphenyl)sulfide-type novolak
JPS6399215A (en) * 1986-06-06 1988-04-30 Mitsui Toatsu Chem Inc Production of 4,4'-thiodiphenol type novolak
JPH03275707A (en) * 1990-03-26 1991-12-06 Teijin Ltd New hydroxycarboxylic acid derivative and production thereof
JPH04202219A (en) * 1990-11-29 1992-07-23 Mitsui Toatsu Chem Inc Production of phenol polymer
JPH0625393A (en) * 1992-07-10 1994-02-01 Mitsui Toatsu Chem Inc Phenol polymer, its production and use thereof
JPH072979A (en) * 1993-06-21 1995-01-06 Mitsui Toatsu Chem Inc Aminated phenolic resin and production thereof
JP2002020463A (en) * 2000-07-10 2002-01-23 Nippon Kayaku Co Ltd Production method of phenolaralkyl resin
JP2002212270A (en) * 2001-01-19 2002-07-31 Japan Epoxy Resin Kk Curing agent for epoxy resin, and epoxy resin composition
JP2003192771A (en) * 2001-12-28 2003-07-09 Japan Epoxy Resin Kk Phenolic resin, its preparation method, curing agent for epoxy resin, epoxy resin composition and semiconductor device

Similar Documents

Publication Publication Date Title
JP5320130B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5931234B2 (en) Method for producing epoxy resin composition
JP5000191B2 (en) Carbazole skeleton-containing resin, carbazole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof
JP6462295B2 (en) Modified polyvalent hydroxy resin, epoxy resin, epoxy resin composition and cured product thereof
JP5548562B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP6124865B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5166096B2 (en) Polyvalent hydroxy compound, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP2017066268A (en) Polyhydric hydroxy resin, epoxy resin, methods of producing them, epoxy resin composition and cured article thereof
JP4088525B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
WO2003068837A1 (en) Indole resins, epoxy resins and resin compositions containing the same
JP2007297538A (en) Resin containing indole skeleton, epoxy resin containing indole skeleton, epoxy resin composition and cured product thereof
JP2012082250A (en) Epoxy resin composition and cured product
WO2013157061A1 (en) Epoxy resin composition and cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP2010235826A (en) Polyhydroxy resin, production method of the same, and epoxy resin composition and cured product of the same
JP2022007036A (en) Epoxy resin composition and cured product thereof
JP2010235823A (en) Epoxy resin, epoxy resin composition and cured product of the same
JP2008231071A (en) New polyvalent hydroxy compound, and epoxy resin composition and its cured product
JP4667753B2 (en) Epoxy resin production method, epoxy resin composition and cured product
JP2004346115A (en) Epoxy resin, epoxy resin composition and cured product
JP5548792B2 (en) Polyvalent hydroxy resin, production method thereof, epoxy resin composition and cured product thereof
WO2008114766A1 (en) Novel polyvalent hydroxy compound, method for producing the compound, epoxy resin and epoxy resin composition each using the compound, and cured product of the composition
JP4813201B2 (en) Indole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof
WO2006043524A1 (en) Resin containing indole skeleton, epoxy resin containing indole skeleton, epoxy resin composition and cured product therefrom
JP2006117790A (en) Indole skeleton-containing resin, epoxy resin composition and its cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08751811

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08751811

Country of ref document: EP

Kind code of ref document: A1