WO2008101384A1 - Heat transfer device and manufacturing method thereof - Google Patents

Heat transfer device and manufacturing method thereof Download PDF

Info

Publication number
WO2008101384A1
WO2008101384A1 PCT/CN2008/000205 CN2008000205W WO2008101384A1 WO 2008101384 A1 WO2008101384 A1 WO 2008101384A1 CN 2008000205 W CN2008000205 W CN 2008000205W WO 2008101384 A1 WO2008101384 A1 WO 2008101384A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer device
metal
sealed container
metal mesh
Prior art date
Application number
PCT/CN2008/000205
Other languages
English (en)
French (fr)
Inventor
Chi-Te Chin
Shushen Lu
Original Assignee
Zhejiang Acmecools Electronic Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Acmecools Electronic Technology Co., Ltd. filed Critical Zhejiang Acmecools Electronic Technology Co., Ltd.
Publication of WO2008101384A1 publication Critical patent/WO2008101384A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • This invention relates to the field of heat transfer and electronic device cooling, and more particularly to a temperature equalizing heat transfer device and method of fabricating the same.
  • the thermal performance of electronic devices directly affects the reliability and performance of electronic products. The results show that the temperature of the electronic component is reduced by 1 °C, and the failure rate can be reduced by 4%. If the temperature is increased by 10 to 20 °C, the failure rate will increase by 100%.
  • the heat dissipation system of the electronic chip is crucial to maintain the normal operating temperature of the chip; when the chip is designed and packaged, its thermal reliability mainly depends on the heat dissipation performance of the heat dissipation system.
  • Head Conventional devices in this area include radiators, fans, blowers, fan and radiator integration, cold plates, fan boxes, differential cooling, heat exchangers, heat pipes, scrolls, and air conditioners.
  • An object of the present invention is to provide a uniform temperature heat transfer device which is simple in structure, low in cost, easy to mass-produce, and capable of rapidly dispersing and dispersing high heat flux density generated by an electronic device.
  • Another object of the present invention is to provide a method of manufacturing the above heat transfer device.
  • a heat transfer device is an inner vacuum sealed container, the inner surface of the sealed container is covered with a metal mesh, the metal mesh is covered with a metal piece with a vent hole, and the lower surface of the metal piece is provided with a support column; Also filled with liquid working fluid.
  • heat radiating fins may be provided on the condensation end of the sealed container.
  • the condensing end of the sealed container may also be formed integrally with the heat dissipating fins.
  • the metal mesh is in close contact with the inner surface of the closed container, and the metal mesh is
  • the vented metal sheet can be designed as a mesh metal sheet.
  • the surface of the sealed container, metal mesh or metal sheet is a surface having excellent hydrophilicity, such as a hydrophilic rough surface.
  • the liquid working medium is preferably water, methanol, ammonia or freon.
  • the material for manufacturing the sealed container, the metal mesh or the metal sheet Preference is given to copper, nickel, aluminium or mixtures thereof.
  • the method for manufacturing the heat transfer device comprises the steps of: fabricating a casing and a matching cover; punching the metal piece into a structure having upper and lower support columns and forming a vent hole; and coating the outer surface of the metal piece Metal mesh; metal mesh coated with metal sheet is placed in the casing, covered, welded to form a closed container, liquid working medium is injected from the reserved liquid injection hole and vacuumed, sealed, so that a sealed container is formed A confined space with a relatively negative pressure is a heat transfer device.
  • the surface of the sealed container, the metal mesh or the metal piece is subjected to hydrophilic treatment to form a rough surface which is extremely hydrophilic.
  • the hydrophilic treatment can be carried out by chemical etching treatment or surface anodizing.
  • the welding is a local high temperature welding.
  • the present invention has the following beneficial effects: the temperature-averaging heat transfer device of the present invention utilizes the phase change principle of the liquid, and can quickly and evenly distribute the high heat flux density concentration point of the 3 ⁇ 4 chip to reduce the surface temperature of the chip. To extend the use of chips to higher levels of integration and operation at higher speeds.
  • the heat transfer device of the invention has the advantages of simple structure, low production cost and easy mass production, and can replace the existing method of designing an integrated chip heat sink integrated chip.
  • Figure 1 is a schematic view of a heat transfer device of the present invention
  • FIG. 2 is a structural view of a metal sheet of the heat transfer device of the present invention.
  • a heat transfer device including an internal vacuum sealed container 1, sealed
  • the inner surface of the container 1 is covered with a metal mesh 2; the metal mesh 2 is in close contact with the inner surface of the closed container 1, and the metal mesh 2 is covered with a metal sheet 3 with a vent hole 31; the upper and lower surfaces of the metal sheet 3 are provided with support columns 32.
  • the sealed container 1 is also filled with a liquid working medium. Heat dissipating fins 4 are also provided on the condensation end 11 of the sealed container 1.
  • the hermetic container 1 is made of a metal plate material having good thermal conductivity, such as copper, nickel, aluminum or a mixture thereof; first, a casing and a matching cover are made.
  • the metal mesh 2 is also made of a thermally conductive metal plate material such as copper, nickel, aluminum or a mixture thereof. Cut to the appropriate size to fully cover the metal sheet 3.
  • the metal mesh 2 can be used above 100 mesh, depending on the application requirements; the larger the mesh number, the more the number of holes per unit area, that is, the smaller the aperture, the faster the liquid suction force leads to the faster reflow rate.
  • the material of the metal piece 3 is also made of a metal plate material having good thermal conductivity such as copper, nickel, aluminum or a mixture thereof.
  • the metal sheet 3 can be manufactured by a continuous stamping method, stamped into a special 3D reinforced structure, and reversely punched out a plurality of supports on the upper and lower surfaces.
  • the column 32 structure supports the metal mesh 2 and increases the strength of the heat transfer device.
  • the support column 32 is not limited by the curvature of curvature; the formed vent hole 31 serves as a guide for evaporation of the internal liquid working medium, see Fig. 2a .
  • the support columns 32 can be formed in various shapes as shown in Figures 2b, 2c, 2d, and 2e.
  • the sealed container 1, the metal mesh 2 or the metal piece 3 is chemically etched or surface anodized to form a highly hydrophilic surface.
  • the welding is performed by local high temperature welding to ensure the structural strength, flatness, stability and reliability of the heat transfer device.
  • the electronic component heat source 5
  • the evaporation end 12 of the heat transfer device When the electronic component (heat source 5) generates a high temperature, the evaporation end 12 of the heat transfer device is heated, and the liquid working medium inside thereof is vaporized by the heat absorption, and the saturated vapor rises from the vent hole 31 of the metal piece 3, and the heat is heated. It is transferred to the condensation end 11 and is cooled by the heat dissipating fins 4 and then recondensed into small water droplets attached to the metal mesh 2, and the water is drained back to the evaporation end 12 of the bottom through the capillary phenomenon, and the metal mesh 2 is passed through the bottom. It is connected to the metal piece 3, and the evaporation condensation operation is repeatedly performed.
  • the internal space pressure and temperature of the heat transfer device are not uniform, and the vaporized fluid is rapidly distributed to the lower temperature due to the pressure difference.
  • the region allows the heat transfer device to absorb heat more evenly, ensuring that the heat transfer medium is recirculated from the condensation end 11 to the evaporation end 12 smoothly and quickly.
  • the heat transfer device of the invention utilizes the phase change principle of the liquid, and can quickly and evenly distribute the high heat flux density (hot spot) of the electronic chip to reduce the surface temperature of the chip, thereby expanding the application of the chip to a higher degree of integration and Suitable for operation under higher speed conditions. It is especially suitable for the fast and balanced dispersion of high heat flux density of electronic chips, such as the heat dissipation of computer CPUs and the application of LED lamps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

一种传热装置及其制造方法 技术领域
本发明涉及传热和电子器件冷却领域,具体地说,涉及一种均温 传热装置及其制造方法。
背景技术
随着微电子技术的飞速发展, IC芯片线宽尺寸急剧减小, 集成 电路正在向高密度、大功率方向发展。芯片主频的提高导致了致命的 高热流密度产生,已经成为当前制约高集成度芯片技术发展的首要问 题。芯片越先进意味着集成电路上的晶体管越多,产生的高热量和高 功耗将导致了高的工作温度,而使得各种轻微物理缺陷所造成的故障 显现出来, 如桥接故障; 高的工作温度将使连线电阻变大, 使线延时 增加, 时延故障变得严重起来; 同时温度的提高将使漏电流增加, 降 低工作电压, 使门延时增加, 同样使时延故障变得严重起来。
随着电子技术迅速发展, 电子器件的高频、高速以及大规模集成 电路的密集和小型化, 使得单位容积电子器件的发热量快速增大。电 子器件散热技术越来越成为电子产品开发、 研制中非常关键的技术; 电子器件散热性能的好坏会直接影响到电子产品的可靠性以及工作 性能。 研究结果表明, 电子组件的温度降低 1°C, 其故障率可减少 4 % ; 若增加 10〜20°C, 则故障率会提高 100%。
电子芯片的散热系统对保持芯片的正常工作温度至关重要;当芯 片设计、封装好后,其热可靠性主要取决于散热系统的散热性能。 目 前在这方面传统的装置有散热器、风扇、鼓风机、风扇和散热器一体 化、 冷板、 风扇箱、 温差制冷、 热交换器、 热管、 涡旋管和空调等。 虽然为了适应高热流密度散热的需要,这些传统的技术和手段进行了 不同程度的变革,也出现了一些新的散热技术如空芯冷板、液体冷却 板、射流冲击冷却系统等; 但随着芯片热流密度的提高, 散热空间的 减少,这些技术仍然不能满足需要,已经严重制约处理器主频的提高。 发明内容
本发明的目的在于提供一种结构简单、 成本低、 容易批量生产, 可以快速将电子器件产生的高热流密度均衡分散的均温传热装置。
本发明的另一个目的在于提供上述传热装置的制造方法。
一种传热装置, 为一内部真空的密封容器,密封容器内表面覆盖 有金属网,金属网内包覆着留有通气孔的金属片,金属片 下表面均 设有支撑柱; 密封容器内还填充有液态工质。
在上述传热装置中,为了增加传热效果,可以在密封容器的冷凝 端上设置散热翅片。 密封容器的冷凝端也可与散热翅片成一体形成。
在上述传热装置中,金属网是紧贴在密闭容器内表面, 金属网为
100网目以上的金属网。
在上述传热装置中, 带通气孔的金属片可设计为网状金属片。 在上述传热装置中,所述密封容器、金属网或金属片的表面为亲 水性极佳之表面, 如设计为亲水性粗糙表面。
在上述传热装置中,所述液态工质优选水、甲醇、氨水或氟里昂。 在上述传热装置中,所述密封容器、金属网或金属片的制造材料 优选铜、 镍、 铝或其混合物。
上述传热装置的制瑋方法,包括如下步骤: 制作壳体与相配套的 盖子;用冲压的方法将金属片冲制出具有上下支撑柱, 同时形成通气 孔的结构;金属片外表面包覆金属网;将包覆有金属片的金属网放入 壳体中,盖上盖子, 焊接形成密闭容器, 从预留的注液孔注入液态工 质并抽真空, 密封, 使密闭容器内形成一个相对负压的密闭空间, 即 得传热装置。
在上述制造方法中,对密封容器、金属网或金属片的表面采用亲 水处理, 以形成亲水性极隹的粗糙表面。亲水处理可采用化学蚀刻处 理或表面阳极处理。 所述焊接为局部高温焊接。
与现有技术相比,本发明具有如下有益效果:本发明的均温传热 装置系利用液体之相变化原理,可将 ¾子芯片的高热流密度集中点快 速均衡分散, 以降低芯片表面温度,使芯片之运用扩展至更高的积集 度及更高速下运作。本发明的传热装置结构简单、生产成本低、容易 批量生产, 可取代现有的芯片外覆盖整合型散热片设计的方式。 附图说明
图 1为本发明传热装置的示意图;
图 2为本发明传热装置的金属片结构图。
其中, 1为密闭容器; 2为金属网; 3为金属片; 4为散热翅片; 5为热源; 11为冷凝端; 12为蒸发端; 31为通气孔; 32为支撑柱。 具体实施方式
如图 1所示, 一种传热装置, 包括内部真空的密封容器 1, 密封 容器 1内表面覆盖有金属网 2; 金属网 2紧贴在密闭容器 1内表面, 金属网 2内包覆着留有通气孔 31的金属片 3; 金属片 3上下表面均 设有支撑柱 32; 密封容器 1内还填充有液态工质。 密封容器 1的冷 凝端 11上还设有散热翅片 4。
密闭容器 1采用导热性好的金属板材料制造,如铜、镍、铝或其 混合物; 先制作一个壳体与相配套的盖子。金属网 2也采用导热性好 的金属扳材料制造, 如铜、镍、铝或其混合物。裁切出适当尺寸以能 完整包覆金属片 3为准。金属网 2可采用 100网目以上, 视应用需求 而定; 网目数愈大表示单位面积内的孔数愈多, 亦即孔径愈小, 液体 的毛吸力上升导致回流速率愈快。金属片 3的材料也是采用导热性好 的金属板材料制造, 如铜、镍、铝或其混合物。裁切出适当尺寸以能 被金属网 2完整包覆并适合密闭容器 1为准;金属片 3可采用连续冲 压工法制造, 冲压成特殊 3D强化结构体, 反折冲制出上下表面之复 数个支撑柱 32结构, 以支撑金属网 2,并提高此传热装置的强度,支 撑柱 32不受限于弯曲'曲率的限制;形成的通气孔 31作为内部液态工 质蒸发的导引, 见图 2a。 支撑柱 32可做成各种形状, 如图 2b、 图 2c、 图 2d、 图 2e。
对密封容器 1、金属网 2或金属片 3采用化学蚀刻方式或表面阳 极处理以形成亲水性极佳的表面。将金属网 2连同包覆的金属片 3放 入壳体中, 盖上盖子, 焊接形成密闭容器 1, 从预留的注液孔注入液 态工质并抽真空,密封,使密闭容器 1内形成一个相对负压的密闭空 间,即得传热装置。为避免此传热装置因整体焊接高温产生变形问题, 焊接是采用局部高温焊接法, 以确保该传热装置的结构强度、 平坦 度、 稳定性及可靠性等。
当电子部件(热源 5)产生高温时, 该传热装置的蒸发端 12受 热,其内部的液态工质会因吸热而气化,饱和蒸气自金属片 3的通气 孔 31往上升, 将热传递至冷凝端 11, 并经由散热翅片 4散热后再度 凝结成小水珠附着在金属网 2上,经毛吸现象将水引流回到底部的蒸 发端 12, 并经由该底部的金属网 2与金属片 3相接, 反复执行蒸发 冷凝动作。另一方面, 若电子部件处于持续高温状态、或电子部件表 面温度不平均时, 导致该传热装置内部空间压力及温度不平均时,此 时气化流体会因压力差迅速分布至整个较低温的区域,进而使此该传 热装置能更平均的吸收热量, 能确保传热工质由冷凝端 11回流至蒸 发端 12顺畅快速。
本发明的传热装置系利用液体之相变化原理,可将电子芯片的高 热流密度 (热点 4iot spot)快速均衡分散,以降低芯片表面温度,使芯片 之运用扩展至更高的积集度及适合更高速的条件下运作。特别适用于 电子芯片的高热流密度的快速均衡分散, 如电脑 CPU的散热、 LED 灯具的应用等。

Claims

权 利 要 求 书
1.一种均温传热装置,其特征在于包括内部真空的密封容器(1), 密封容器(1) 内表面覆盖有金属网 (2), 金属网(2) 内包覆着留有 通气孔(31)的金属片(3),金属片(3)上下表面均设有支撑柱(32); 密封容器(1) 内还填充有液态工质。
2.如权利要求 1所述的传热装置, 其特征在于所述密封容器(1) 的冷凝端 (11)上还设有散热鳍片 (4)。
3.如权利要求 2所述的传热装置, 其特征在于所述密封容器(1) 的冷凝端(11)可与散热翅片 (4)一体形成。
4.如权利要求 1 所述的传热装置, 其特征在于所述金属网 (2) 是紧贴在密闭容器(1) 内表面, 金属网 (2)为 100网目以上的金属 网。
5.如权利要求 1所述的传热装置,其特征在于所述带通气孔(31) 的金属片 (3) 可设计为网状金属片。
6.如权利要求 1所述的传热装置,其特征在于所述液态工质为水、 甲醇、 氨水或氟里昂。
7.如权利要求 1所述的传热装置,其特征在于所述密封容器(1)、 金属网 (2)或金属片 (3) 的制造材料为铜、 镍、 铝或其混合物。
8.如权利要求 1所述的传热装置,其特征在于所述密封容器(1)、 金属网 (2)或金属片 (3) 的表面为亲水性表面。
9.一种权利要求 1所述传热装置的制造方法, 其特征在于包括如 下步骤: 将密闭容器 (1) 先制作成壳体与相配套的盖子; 用冲压的 方法将金属片(3)冲制出具有上下支撑柱(32),同时形成通气孔(31 ) 的结构; 金属片(3)外表面包覆金属网(2); 将金属网 (2)连同包 覆的金属片 (3 )放入壳体中, 盖上盖子, 焊接形成密闭容器 (1), 从预留的注液孔注入液态工质并抽真空, 密封, 使密闭容器(1 ) 内 形成一个相对负压的密闭空间, 即得传热装置。 ' 10.如权利要求 9所述的制造方法, 其特征是对密封容器 (1)、 金属网(2)或金属片(3 )的表面采用化学蚀刻或表面阳极处理的方 法进行亲水处理, 使其形成亲水性表面; 所述焊接为局部高温焊接。
PCT/CN2008/000205 2007-02-09 2008-01-29 Heat transfer device and manufacturing method thereof WO2008101384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200710026854 CN101014235A (zh) 2007-02-09 2007-02-09 一种均温传热装置及其制造方法
CN200710026854.7 2007-02-09

Publications (1)

Publication Number Publication Date
WO2008101384A1 true WO2008101384A1 (en) 2008-08-28

Family

ID=38701454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000205 WO2008101384A1 (en) 2007-02-09 2008-01-29 Heat transfer device and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN101014235A (zh)
WO (1) WO2008101384A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113566623A (zh) * 2020-09-22 2021-10-29 昆山同川铜业科技有限公司 双尺度毛细吸液芯及制备方法、及相变潜热式芯片散热器
CN113608108A (zh) * 2021-08-09 2021-11-05 湖南博匠信息科技有限公司 一种vpx板卡智能测试工装
CN116753754A (zh) * 2022-04-07 2023-09-15 青岛科技大学 一种场协同控制毛细力的板式换热器
CN116753754B (zh) * 2022-04-07 2024-06-11 深圳华业精工有限公司 一种场协同控制毛细力的板式换热器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505579B (zh) * 2008-02-05 2012-01-11 台达电子工业股份有限公司 散热模块及其支撑件
CN103096687A (zh) * 2011-11-07 2013-05-08 微邦科技股份有限公司 气液循环散热装置
TWI429848B (zh) * 2011-11-25 2014-03-11 Ind Tech Res Inst 均熱結構與其製法及具有該均熱結構之散熱模組
TWI462693B (zh) * 2013-11-27 2014-11-21 Subtron Technology Co Ltd 散熱基板
JP2018523088A (ja) * 2015-07-27 2018-08-16 金積徳 ベイパーチャンバー
DE102015214928A1 (de) * 2015-08-05 2017-02-09 Siemens Aktiengesellschaft Bauteilmodul und Leistungsmodul
CN107072121B (zh) * 2017-05-18 2023-07-04 平湖阿莱德实业有限公司 一种消除热波峰的快速均热储能散热结构
CN109323608A (zh) * 2017-07-31 2019-02-12 江苏鸿源动力科技有限公司 一种新型单向传热换热器
CN112397245B (zh) * 2020-09-29 2022-07-26 广东电网有限责任公司 一种能更快显色的电缆填料热致变色显色装置
CN114309544B (zh) * 2021-11-23 2023-09-19 湖州剑力金属制品有限公司 一种均温板及均温板的压铸包射生产工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299528A (ja) * 2001-04-02 2002-10-11 Ryosan Co Ltd コルゲートフィン型ヒートシンクの製造装置
CN2608928Y (zh) * 2002-11-01 2004-03-31 王勤文 板式热管结构
US6889756B1 (en) * 2004-04-06 2005-05-10 Epos Inc. High efficiency isothermal heat sink
CN2704925Y (zh) * 2004-06-07 2005-06-15 华音电器股份有限公司 改进的热管散热器结构
CN1629592A (zh) * 2003-12-19 2005-06-22 财团法人工业技术研究院 平板型热管的热传加强结构
CN2765440Y (zh) * 2005-01-14 2006-03-15 杨洪武 板式热管散热器
CN1784137A (zh) * 2004-11-29 2006-06-07 迈萪科技股份有限公司 具有金属网微结构的可绕曲式均热板及其制法
CN1895011A (zh) * 2003-12-16 2007-01-10 Ls电线有限公司 平板型传热装置及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299528A (ja) * 2001-04-02 2002-10-11 Ryosan Co Ltd コルゲートフィン型ヒートシンクの製造装置
CN2608928Y (zh) * 2002-11-01 2004-03-31 王勤文 板式热管结构
CN1895011A (zh) * 2003-12-16 2007-01-10 Ls电线有限公司 平板型传热装置及其制造方法
CN1629592A (zh) * 2003-12-19 2005-06-22 财团法人工业技术研究院 平板型热管的热传加强结构
US6889756B1 (en) * 2004-04-06 2005-05-10 Epos Inc. High efficiency isothermal heat sink
CN2704925Y (zh) * 2004-06-07 2005-06-15 华音电器股份有限公司 改进的热管散热器结构
CN1784137A (zh) * 2004-11-29 2006-06-07 迈萪科技股份有限公司 具有金属网微结构的可绕曲式均热板及其制法
CN2765440Y (zh) * 2005-01-14 2006-03-15 杨洪武 板式热管散热器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113566623A (zh) * 2020-09-22 2021-10-29 昆山同川铜业科技有限公司 双尺度毛细吸液芯及制备方法、及相变潜热式芯片散热器
CN113566623B (zh) * 2020-09-22 2023-10-13 昆山同川铜业科技有限公司 双尺度毛细吸液芯及制备方法、及相变潜热式芯片散热器
CN113608108A (zh) * 2021-08-09 2021-11-05 湖南博匠信息科技有限公司 一种vpx板卡智能测试工装
CN113608108B (zh) * 2021-08-09 2023-10-20 湖南博匠信息科技有限公司 一种vpx板卡智能测试工装
CN116753754A (zh) * 2022-04-07 2023-09-15 青岛科技大学 一种场协同控制毛细力的板式换热器
CN116753754B (zh) * 2022-04-07 2024-06-11 深圳华业精工有限公司 一种场协同控制毛细力的板式换热器

Also Published As

Publication number Publication date
CN101014235A (zh) 2007-08-08

Similar Documents

Publication Publication Date Title
WO2008101384A1 (en) Heat transfer device and manufacturing method thereof
US8813834B2 (en) Quick temperature-equlizing heat-dissipating device
JP2004523911A (ja) 熱放散デバイス
TWI801696B (zh) 相變散熱裝置
JP2003188321A (ja) ヒートシンク
WO2020211489A1 (zh) 一种空调室外机和空调器
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
WO2021253813A1 (zh) 热超导散热板、散热器及5g基站设备
WO2005071747A1 (en) Heat pipe radiator of heat-generating electronic component
WO2024066703A9 (zh) 散热系统及功率设备
CN113985989A (zh) 一种散热设备
TW201510460A (zh) 散熱器之立體式導熱裝置
CN216818326U (zh) 大功率芯片高效散热冷却装置
CN112399778A (zh) 一种用于多个高功率芯片的组合散热装置
CN114003111A (zh) 一种用于计算机芯片的散热设备
WO2007124652A1 (en) Micro-slot group integrated heat-pipe radiator
CN210014475U (zh) 一种散热器、空调室外机和空调器
CN210014476U (zh) 一种散热器、空调室外机和空调器
CN210014478U (zh) 一种散热器、空调室外机和空调器
US20140338194A1 (en) Heat dissipation device and manufacturing method thereof
CN112492853B (zh) 一种基于池沸腾散热的液体腔散热装置
TWM628154U (zh) 用於記憶體模組的氣液雙冷型散熱器
CN211527184U (zh) 导热与散热一体化平板热管
JPH10227585A (ja) ヒートスプレッダとそれを用いた冷却器
JP5485450B1 (ja) ヒートスプレッダ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08706408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 08706408

Country of ref document: EP

Kind code of ref document: A1