WO2008099513A1 - 電解酸化処理方法及び電解酸化処理金属材 - Google Patents

電解酸化処理方法及び電解酸化処理金属材 Download PDF

Info

Publication number
WO2008099513A1
WO2008099513A1 PCT/JP2007/053346 JP2007053346W WO2008099513A1 WO 2008099513 A1 WO2008099513 A1 WO 2008099513A1 JP 2007053346 W JP2007053346 W JP 2007053346W WO 2008099513 A1 WO2008099513 A1 WO 2008099513A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic
electrolysis
negative
positive
metal material
Prior art date
Application number
PCT/JP2007/053346
Other languages
English (en)
French (fr)
Inventor
Motohiro Nakayama
Original Assignee
Sugimura Chemical Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sugimura Chemical Industrial Co., Ltd. filed Critical Sugimura Chemical Industrial Co., Ltd.
Priority to JP2008557969A priority Critical patent/JP5199892B2/ja
Priority to PCT/JP2007/053346 priority patent/WO2008099513A1/ja
Publication of WO2008099513A1 publication Critical patent/WO2008099513A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential

Definitions

  • the present invention relates to an electrolytic oxidation treatment method and an electrolytic oxidation treatment metal material. More specifically, the present invention relates to an electrolytic acid treatment method for forming a film having both conductivity and corrosion resistance on a specific metal material such as a magnesium alloy by a special electrolysis method, and a suitable method for the same. The present invention relates to a pretreatment method and a metallization-treated metal material on which an electrolytic oxide film is formed by these methods.
  • electrolytic oxidation treatment refers to repeated treatment of positive and negative alternating electrolysis for a metal material with a certain time duration.
  • the usual anodizing treatment is a method of forming an acid film on the surface of a metal material by an electric angle oxalic acid reaction using a gold-metal as an anode
  • the metal material is treated with an anodized acid. After dredging, bow I is followed by a special electrolysis method where it is electrolytically reduced together with the cathode.
  • an unprecedented property, function and film can be obtained, and the method of the present invention is referred to as an “electrolytic oxidation treatment method”.
  • a film formed on a metal material by a special electrolytic acid treatment method is called a “deoxidized oxide film”.
  • Mg alloy is lightweight and has excellent mechanical properties, thermal conductivity, electrical conductivity, heat dissipation, and electromagnetic shielding properties. In addition, it is abundant in terms of resources and has good recyclability. Therefore, Mg alloys are used in a wide range of electronic 'electric equipment products, automobile parts, aircraft' space equipment parts, transportation equipment, various machines, instruments, tool products, office equipment, optical equipment, communication equipment, sports equipment, etc. It is being used extensively in applications.
  • Mg alloys are electrochemically base metals and extremely active metals, they have a weak point of being inferior in antifungal properties, corrosion resistance, and discoloration resistance in various corrosive environments. For this reason, conventionally, the above-mentioned chemical conversion treatment, electrodeposition coating, anodizing treatment, and the like have been performed on Mg alloys to impart corrosion resistance. On the other hand, in order to meet the needs for electromagnetic shielding properties, the surface treatment film must have high conductivity.
  • Reference 1 Japanese Patent No. 3 3 0 8 8 2
  • Reference 1 above discloses an example of a chemical conversion treatment method.
  • the chemical conversion coating has a problem that it is easy to ensure conductivity but has insufficient corrosion resistance.
  • the chemical conversion coating reacts sensitively to the surface condition of the Mg alloy (oxide film, surface composition, etc.), so in large parts such as personal combo casings, the problem is that the electrical conductivity and corrosion resistance are different depending on the part. Has been pointed out.
  • anodic acid treatment or electrodeposition coating is performed.
  • the formed film is excellent in corrosion resistance but inferior in electromagnetic shielding properties. Therefore, a method of ensuring conductivity by coating a metal thin film on the surface of an anodized film or the like by ion plating, electroless plating or the like has been performed.
  • the simplest method for forming a conductive film on a metal material is, for example, a method of applying a conductive paint as disclosed in Document 2 above.
  • the method of Reference 2 forms a multilayer coating to ensure corrosion resistance, and the surface treatment process for forming these multilayer coatings is troublesome.
  • the conductive films that are currently mainstream for Mg alloys are classified as organic resins. It can be roughly divided into a film type and an anodized film type.
  • organic resin film type it is common to apply an electrodeposition coating after the formation process to ensure corrosion resistance, then apply Cu plating to provide conductivity at the next layer, and then apply Ni plating to the upper layer. Is.
  • physical surface treatment methods such as sputtering and ion plating are applied. At present, the electroless plating method is frequently used because the sputtering method and the ion plating method have high equipment costs and are inferior to mass production.
  • conductivity is imparted by anodizing the surface and applying CuZNi-based metal plating to the surface in the same manner as the organic resin film type.
  • electroless plating method sputtering method, ion plating method, etc.
  • Document 3 proposes a method of ensuring conductivity by ensuring corrosion resistance with an anodized film and applying a metallic coating to the upper layer by electroless plating.
  • the surface treatment film of the current product for imparting corrosion resistance and conductivity is a multilayer film of 3 to 5 layers that is processed in a multistage process. For this reason, there are problems such as productivity and production cost. Furthermore, since each production process requires advanced production technology and process management technology for surface treatment, there is a problem that the quality and performance of the product are likely to fluctuate.
  • each layer of the multilayer coating has a function of corrosion resistance and a function of conductivity. Therefore, a novel means for forming a single-layer surface treatment film that can achieve both conductivity and corrosion resistance by a single treatment step. Is required to develop.
  • An electrolytic oxidation treatment method has been developed. According to this electrolytic oxidation treatment method, a surface treatment film (electrolytic oxidation film) having conductivity and corrosion resistance can be formed on the surface of a metal material by a single simple treatment process.
  • AZ 31 B (A 1 ⁇ : 3% by weight, Zn: 1% by weight, Mg: 96% by weight) which is a rolled material Can form an electrolytic oxide film with good conductivity and corrosion resistance.
  • AZ 91 D is a die-cast material (A 1: 9 by weight 0/0, Zn: 1 by weight 0/0, Mg: 90 wt 0/0) as in the composition ratio of magnesium 90 weight %, Or less, the conductivity of the electrolytic acid film is difficult to develop.
  • a metal material made of a metal capable of forming an acid film by an anodic oxidation method is maintained for a certain period of time in an electrolyte containing an alkali metal hydroxide.
  • the term “constant time continuation” means time continuation in the order of several tens of seconds to several hundreds of seconds. Have completely different meanings. The inventor of the present application has confirmed that the effect of the present invention cannot be obtained even when an alternating current having a normal frequency is applied.
  • an electrolytic oxide film having particularly good conductivity and corrosion resistance can be formed on various metal materials.
  • an electrolytic oxide film having good conductivity and corrosion resistance can be applied to a diecast material such as magnesium alloy having a composition ratio of 90% by weight or less. Can be formed.
  • the Mg alloy substrate is dissolved with oxygen generation, and the eluted Mg ions and the OH- ions at the interface are mainly oxidized with hydroxide. A film is formed.
  • the negative electrolysis process has two purposes: the reduction reaction of the magnesium oxide film, that is, the conversion from Mg, (OH) 2 to Mg O, and the formation of conductive sites in the oxide film. At that time, in order to advantageously secure cation and anion such as pH and various metal ions at the reaction interface, conversion to MgO is preferably performed at a low current density. Conversely, a high current density is preferred for the formation of conductive sites.
  • the preferred negative current density for achieving the above two purposes in the negative electrolysis process is not necessarily the same] /. Therefore, if the negative electrolysis process is performed in two or more continuous steps with different negative current densities and the two objectives to be achieved are shared by these steps, even for Mg alloys such as AZ 9 1 D, It is possible to form an electrolytic oxide film with better conductivity and corrosion resistance.
  • Electrolytic oxides with conductivity and corrosion resistance on the surface of Mg alloy and other certain metal materials Since a film can be formed, these metal materials can be used as surface treatment members with excellent electromagnetic shielding properties, grounding properties, and corrosion resistance by applying them to housings such as personal computers and mobile phones. .
  • the single-layer coating formed in a single processing step is used to develop conductivity and corrosion resistance. High production efficiency and easy to ensure high quality.
  • the main component of the generated electrolytic acid film is an inorganic oxide composed of components contained in metal materials such as Mg alloys, and is inconvenient for organic resins and Mg scouring. Does not contain metals such as Ni. Therefore, it is kind to the global environment, and it is easy to collect and reuse Mg alloy etc., and it is excellent in recyclability.
  • the electrolytic acid solution treatment method of the first invention can be processed with relatively inexpensive equipment compared to the electroless plating method, ion plating method, sputtering method, etc. that are currently being carried out. And work conditions do not require advanced technology or operation. That is, the technical content of the first invention is similar to the conventional anodizing treatment method, which is advantageous for practical use and industrialization.
  • the positive electrolysis process in the positive / negative alternating electrolysis according to the first invention, has a positive current density in the range of 0.1 to 20 A / dm 2 and 2 Electrolysis with electrolysis time in the range of 5 to 500 seconds, negative electrolysis process in the range of negative current density in the range of 0.5 to 20 A / dm 2 and in the range of 10 to 500 seconds Perform in electrolysis time.
  • the positive electrolysis process is preferably carried out with a positive current density in the range of 0.1 S O.AZ dm 2 and an electrolysis time in the range of 25 to 500 seconds. If the positive current density is less than 0.1 AZ dm 2 , the formation of the electrolytic oxide film may be insufficient. When the positive current density exceeds 2 OA, dm 2 , there is a concern that the erosion of the metal material increases, the electrolytic oxide film becomes rough, and liquid deterioration due to contamination of the electrolytic solution is promoted. 'If the positive electrolysis time is less than 25 seconds, the formation of the electrolytic oxide film may be insufficient.
  • the film is necessary to ensure conductivity in the subsequent negative electrolysis process. This is not preferable because the time required for the reduction of the electrolyte increases, and there is a concern that the conductivity of the electrolytic oxide film may be lowered.
  • the negative electrolysis process is preferably performed at a negative current density in the range of 0.5 to 20 A / dm 2 and an electrolysis time in the range of 10 to 500 seconds. If the negative current density is less than 0.5 A / dm 2 , the conductivity of the electrolytic acid film may be insufficient. If the negative current density exceeds 2 OA / dm 2 , the performance of the electrolytic oxide film may be saturated and corrosion resistance may be insufficient. If the negative electrolysis time is less than 10 seconds, there is a concern that the reduction of the film formed in the positive electrolysis process tends to be insufficient and the conductivity is inferior. If the electrolysis time exceeds 500 seconds, the effect is saturated and the corrosion resistance may be insufficient.
  • the step in the previous stage is performed at a relatively high current density. And later steps at a relatively low current density.
  • the negative electrolysis process has the purpose of reducing the magnesium oxide film, that is, the conversion of Mg (OH) 2 to MgO, and the purpose of forming a conductive site in the oxide film.
  • the formation of the conductive site can be promoted by performing a reduction reaction of the magnesium oxide film in the high current density region in the previous step.
  • electrolysis in the low current density region increases the effect of increasing the conversion efficiency to MgO in the acid film. Therefore, it is possible to more reliably form a good electrolytic acid film.
  • the previous step is relatively high.
  • Current density and short! / In a continuous time! /, The later steps are performed at a relatively low current density and with a long duration.
  • the previous step is performed with a relatively high current density and a short duration, and the subsequent step is relatively low. It is preferable to carry out for a long time with a current density.
  • the negative electrolysis process according to any one of the first invention to the fourth invention is carried out in two continuous steps with different negative current densities.
  • the first step is carried out with a negative current density in the range of 1-2 OA / dm 2 and a duration in the range of 0.5-10 seconds.
  • the step is performed at a lower current density and longer duration than the first step.
  • the optimum current density and duration of negative electrolysis in the first step is different depending on the type of metal and the composition of the alloy, for example, when electrolytically oxidizing Mg alloy.
  • the conductive portion can be reliably formed on the oxide film.
  • the subsequent second step is performed at a lower current density than the first step within the range of 0.5 to 2 OA / dm2, for example, and within the range of 0.5 to 499.5 seconds. It is desirable to perform one step with a long duration.
  • the total duration of the first stage step and the second stage step should be within 500 seconds, as defined in the second invention.
  • a part of Mg (OH) 2 formed in the electrolytic film in the second step is converted to MgO while the conductive site formed in the first step is secured.
  • the reaction to be performed can be performed reliably.
  • the metal material according to any one of the first invention to the fifth invention is magnesium (Mg), aluminum (A1), titanium (T i), zirconium ( Z r), hafnium (H f), niobium (Nb), tantalum (Ta) and any metal selected from zinc (Zn) or an alloy thereof.
  • the metal material to which the electrolytic oxidation treatment method is applied is not limited as long as it is made of a metal that can form an oxide film by an anodic oxidation method, but the metal materials listed in the sixth invention can be preferably exemplified.
  • Mg or Mg alloy is preferable in terms of the usefulness of the metal material and suitability for use, and Mg alloy is particularly preferable.
  • Mg alloys with a magnesium composition ratio exceeding 90% by weight, such as AZ 31B (A 1: 3% by weight, Zn: 1% by weight, Mg: 96% by weight), which is a rolled material, are also covered.
  • AZ 91 D is a die-cast material (a 1: 9 by weight 0/0, Zn: 1 by weight 0/0, Mg:. 90 wt ./) as in the composition ratio of magnesium 90 weight % Or less magnesium alloy is preferred! /. (Seventh invention)
  • the electrolytic solution according to any one of the first invention to the sixth invention contains potassium (K), sodium (N a), and lithium (L i). ) Contains at least one alkali metal hydroxide selected from force within a total concentration of 0.5 to 6 mol L.
  • the electrolytic solution in the electrolytic acid treatment method contains the component of the seventh invention
  • a more desirable electrolytic acid film can be formed. If the total concentration of the alkali metal hydroxide is less than 0.5 mol / L, the formation of the electrolytic oxide film may be insufficient. The higher the total concentration of alkali metal hydroxide, the more stable the electrolytic oxide film can be formed.However, when the total concentration exceeds 6 mol ZL, the effect becomes saturated and the cost of processing solution increases economically. It will be disadvantageous.
  • the electrolytic solution according to any one of the first invention to the seventh invention is further provided with at least one kind of Al selected from K, Na, and Li. Contains a strong metal phosphate within a total concentration of 0.1 to 2 mol L.
  • the electrolytic solution composition in the electrolytic acid treatment method includes at least one alkali metal phosphorus selected from K, Na and Li in addition to the alkali metal hydroxide as in the seventh invention.
  • the acid salt is contained in a total concentration of 0.01 to 2 mol ZL, a more stable electrolytic oxide film can be formed.
  • the corrosion resistance may be inferior.
  • the positive and negative alternating electrolysis according to the first to eighth inventions is performed twice or more times, and the subsequent positive electrolytic process
  • the positive current density is as high as possible.
  • the positive and negative alternating electrolysis includes the minimum process of “positive electrolysis ⁇ negative electrolysis”.
  • the number of repetitions of positive and negative alternating electrolysis (max / J, limit process) is not limited,
  • a negative charge # may be further added to this minimum process or its repetition, and a positive charge may be added after the minimum process;
  • the positive electrolysis When two or more positive electrolysis processes are performed, it is preferable to perform the positive electrolysis with a positive current density that is high enough to reach the subsequent positive electrolysis process. As a result, the reaction between the generated electrolytic oxide film and the substrate interface can be promoted, so that the substance related to the conductivity can be more effectively secured in the electrolytic oxide film that is growing. Can be expected.
  • a pickling treatment and a metal material used for a positive / negative alternating electrolysis treatment are applied. Perform clean water washing, surface adjustment treatment with Al force solution and water washing.
  • the above-mentioned electrolytic acid treatment conditions may be insufficient.
  • the reason for this is that the electrolytic reaction varies depending on the properties and characteristics of metal materials such as Mg alloys. Therefore, in order to perform a more advantageous electrolytic acid reaction, it is desirable to perform a suitable pretreatment on the metal material to ensure a surface state advantageous for the electrolytic acid treatment.
  • the overall electrolytic acid treatment process including pretreatment, is performed in the same manner as is generally known.
  • the pretreatment pickling and removal of smut are important steps as pretreatment of electrolytic oxidation treatment.
  • the pickling solution for the base treatment for forming an electrolytic oxide film having excellent conductivity and corrosion resistance is preferably the pickling solution of the first aspect of the invention described later.
  • the removal of smut carried out in the subsequent step after pickling is carried out with an alkaline solution.
  • the purpose of this alkali treatment is to etch the surface of the metal material with an alkaline solution, in addition to removing the stubby oxide film formed on the surface of the metal material, and to apply electrolytic acid to the surface of the metal material. It is to form a passivating film advantageous for the reaction.
  • the alkali treatment is performed here because it can be modified to a surface property advantageous for electrolytic acid treatment, and is greatly different from the conventional simple smut removal. This is referred to as surface adjustment processing.
  • the local solubility of the surface layer due to the difference in the crystal grain size and crystal orientation of the metal material such as Mg and Mg alloy and the surface layer structure caused by the alloy component such as Mg alloy.
  • the purpose is to use the difference to bring about local concentration changes in the alloy components.
  • metal components such as A1, Zn, and Mn that are involved in conductivity are greatly different in solubility in alkaline solutions from Mg, which is a base substrate. Local density changes occur on the substrate surface. In this way, the local concentration of the alloy components fluctuates in the surface layer and the sensitivity of the grain boundary to the electrolytic reaction changes locally. The effect is greatly improved.
  • the pickling treatment according to the 10th invention comprises at least one component selected from sulfuric acid, sulfamic acid, nitric acid, phosphoric acid, hydrofluoric acid and ammonium hydrofluoride.
  • pickling for surface treatment to form an electrolytic oxide film with excellent conductivity and corrosion resistance As the treatment liquid, pickling with a pickling solution composed of at least one component selected from sulfuric acid, sulfamic acid, nitric acid, phosphoric acid, hydrofluoric acid, and ammonium hydrofluoride is preferable.
  • the amount of metal material dissolved by pickling is in the range of 3 to 100 g Z dm 2. .
  • the amount of metal material dissolved by pickling (base material dissolution amount) be in the range of 3 to 100 g / dm 2 . If the amount of substrate dissolution is too little or too much, the conductivity and corrosion resistance of the electrolytic acid film may deteriorate.
  • the substrate dissolution amount is too small, it is not possible to remove dirt such as the Mg alloy oxide film and the release agent, and it may be impossible to ensure good conductivity.
  • the amount of substrate dissolution is too large, it will be disadvantageous in ensuring the dimensional accuracy of the parts, and it will be difficult to remove the smut with an alkaline solution, resulting in deterioration of electrical conductivity and appearance quality. There is a concern that the surface state is difficult to ensure conductivity.
  • a thirteenth invention of the present application is an electrolytic oxidation-treated metal material having an electrolytic oxidation film formed by the electrolytic oxidation treatment method according to any of the first to first inventions.
  • the electrolytic oxidation-treated metal material of the thirteenth invention is obtained for the first time by the electrolytic oxidation treatment method of the present invention, and is provided with conductivity and corrosion resistance by a single layer film formed in a single treatment step. Therefore, productivity is good, and therefore it can be provided at a low cost, and a high and stable quality is ensured.
  • Examples of the metal material that is a raw material for such an electrolytic acid-treated metal material include metal molded products of various uses obtained by various methods such as a press method, a thixo mold method, a die cast method, and a cutting method. Illustrated. In particular, when considering electromagnetic shielding properties, for example, a notebook computer casing or a mobile phone casing is formed. Shapes are preferably exemplified. Since these molded products are required to have good grounding properties, electromagnetic wave shielding properties, and high corrosion resistance at the same time as thinning and size reduction, it is practical to apply the present invention to molded parts for these applications. The benefits are great.
  • the thickness of the electrolytic oxide film of the electrolytically oxidized metal material according to the 13th invention is in the range of 1 to 12 ⁇ m .
  • the electrolytically oxidized metal material according to the first or third aspect of the present invention is a magnesium alloy.
  • alloy components added with Mg as a base material include A 1, Zn, Mn, Ca, Si, Zr, Ag, Cu, and Sc, Y, C. and rare earth elements such as e.
  • the magnesium alloy according to the 15th invention is an alloy having a magnesium composition ratio of 97% by weight or less.
  • An alloy having a magnesium composition ratio of 92% by weight or less can be exemplified more preferably.
  • a unique effect of the present invention is, for example, a magnesium composition ratio of 97 weight. /. It is effective in Mg alloys that are or less. More particularly, it is particularly remarkable in an alloy of 92% by weight or less.
  • the composition ratio of magnesium is 90% by weight or less. It can be pointed out that an electrolytic oxide film having good conductivity and corrosion resistance can be formed even for die-cast materials such as magnesium alloys.
  • the alloy component added using Mg as a base material is 15% by weight or less of aluminum, sub- 10% by weight or less, manganese 5% by weight or less.
  • alloy components that can be added as required are: zirconium 5 wt% or less, yttrium 10 wt% or less, rare earth element 10 wt% or less, calcium 10 wt% or less, ⁇ 5 wt% or less, silver 5 wt % Or less.
  • zirconium 5 wt% or less zirconium 5 wt% or less
  • yttrium 10 wt% or less rare earth element 10 wt% or less
  • calcium 10 wt% or less calcium 10 wt% or less
  • ⁇ 5 wt% or less silver 5 wt % Or less.
  • silver 5 wt % Or less One or more of these alloy components can be added within the above range.
  • M g alloy as the target of the electrolytic oxidation process of the present invention, such as ⁇ material AZ 9 1 D systems (aluminum 9 wt 0/0, Zinc 1 weight 0/0, manganese 0.1% by weight and
  • An example is an alloy having a composition in which the balance is mainly magnesium.
  • AZ 3 1 B system is wrought material (aluminum 3 wt 0/0, zinc 1 by weight%, manganese 0.1 5 wt 0/0 thread Oyopi balance being mainly Maguneshiumu ⁇ ratio of the alloy )
  • the magnesium alloy according to any of the fifteenth invention to the seventeenth invention is a forged material, it is a die-cast material, a titanium mold material, or a cutting material.
  • the magnesium alloy is a wrought material, it is a processed material formed by a rolling method, a pressing method or a cutting method.
  • processed material formed by the cutting method means a processed material that is formed by pressing a wrought material and then cutting a part of the part. Including materials.
  • an Mg alloy that is a suitable target for the electrolytic oxidation treatment of the present invention for example, in the case of a forging material, an Mg alloy that is a die-cast material can be exemplified.
  • thixomold material may be Mg alloy as a processed material formed by cutting or the like.
  • a part formed by rolling, pressing, cutting or the like can be exemplified.
  • the metal material to which the electrolytic oxidation treatment method of the present invention is applied is a metal material made of a metal that can form an oxide film by an anodic oxidation method. More preferably, it is any metal selected from Mg, Al, Ti, Zr, Hf, Nb, Ta, and Zn as defined in the sixth invention, or an alloy thereof. Particularly preferred is metal Mg or Mg alloy.
  • Mg alloys examples include those described in the fifteenth invention to the eighteenth invention.
  • Mg—A 1—Zn alloys (AZ 3.1 A, AZ 31 B, AZ 31 C, AZ 61A, AZ 80 A, etc.), Mg—A 1—Zr alloys (ZK51 A, ZK61 A, ZK60, etc.) ), Mg—A 1—Mn alloys (AMI 00 A, etc.), Mg—Mn alloys, Mg_Al—Si alloys, Mg—rare earth elements alloys (EZ 3 3A, ZE41A, QE22A, etc.)
  • Mg—A 1 —Zn alloys and Mg—A 1 —Zr alloys are preferable.
  • the present invention is effective even when various alloy elements added to the metal Mg or Mg alloy as necessary and various impurity elements that are inevitable mixed in industrial production are included. Applicable.
  • the overall process when the electrolytic oxidation treatment of the present invention is applied to a metal material is basically from the steps of degreasing—water washing ⁇ acid washing ⁇ water washing ⁇ surface conditioning treatment ⁇ water washing ⁇ electrolytic oxidation treatment ⁇ water washing ⁇ drying. Become.
  • the main purpose of the water washing treatment is to remove the chemicals adhering to the surface of the treatment material in the previous process and to prevent these chemicals from being brought into the next process. Accordingly, there are no particular restrictions on the washing temperature, washing time, and number of washings, and conditions that can achieve the purpose can be selected.
  • the temperature of the washing water, pH, washing time, and number of washings are appropriately performed so that the surface of the treatment material does not form an oxide film or generate corrosion and soot during washing.
  • it is more effective to wash with water at a lower temperature after the acid treatment and to wash at a higher temperature after the treatment with alcohol.
  • tap water, industrial water, ion exchange water, pure water, distilled water, electrolyzed water, etc. can be applied as necessary.
  • various washing methods employed industrially to achieve the purpose of washing such as immersion, flow, stirring, spraying, jetting, and high-pressure jetting can be applied.
  • electrolytic oxidation method continuous pretreatment and electrolytic acid treatment are important in order to ensure the conductivity and good corrosion resistance of the film.
  • commercially available chemicals can be applied to the degreasing treatment, but each of the subsequent pickling, surface conditioning, and electrolytic oxidation treatments can be applied.
  • the process is particularly important for the performance of the electrolytic oxide film.
  • the pickling treatment is preferably carried out with a pickling solution comprising at least one component selected from sulfuric acid, sulfamic acid, nitric acid, hydrofluoric acid and ammonium hydrofluoride.
  • a pickling solution comprising at least one component selected from sulfuric acid, sulfamic acid, nitric acid, hydrofluoric acid and ammonium hydrofluoride.
  • One kind of these components may be used, but in the case of a material that is difficult to secure conductivity, it is preferable to treat with a mixed acid composed of two or more kinds of components! /.
  • the mixed acid include “sulfuric acid + nitric acid”, “sulfuric acid + hydrofluoric acid”, “sulfuric acid + hydrofluoric acid + ammonium hydrogen fluoride”, and the like.
  • ammonium salt for example, ammonium sulfate, ammonium nitrate, ammonium phosphate, etc. may be appropriately added as necessary to form an electrolytic oxide film having good conductivity. Useful.
  • Drug concentration of pickling solution, the treatment temperature, treatment time, be selected such dissolve the amount of metal material by pickling is in the range of 3 ⁇ 1 0 0 g Zm 2 According,. Hesitating, generally As the acid concentration, the total of the drug concentration is in the range of 3 g ZL to 200 g ZL, the processing temperature is in the range of 20 to 95 ° C, and the processing time is in the range of 1 to 90 seconds Is appropriate.
  • pickling treatment methods such as dipping, flow, stirring, spraying, and high-pressure spraying can be applied.
  • the pickling speed may vary greatly, or smut may easily occur. Therefore, in order to ensure the above range of pickling dissolution amount, it may be necessary to set the acid concentration, processing temperature, and processing time appropriately within the above ranges. In particular, when various Mg alloys are processed in the same processing step, the acid concentration and the processing temperature are set to conditions that can be unified, and the amount of dissolution can be adjusted only by the processing time. It is a good idea to devise.
  • the adhering pickling solution is washed with water, and then the surface of the metal material is adjusted in an alkaline solution.
  • the purpose of the surface conditioning treatment is not only to remove the smut generated by the pickling treatment with an alkaline solution, but also to make the surface of the metal material suitable for electrolytic oxidation treatment.
  • the alkali treatment not only Mg but also alloy components (for example, AZ alloy system in the surface layer) A part of Al, Zn, Mn, etc.) also dissolves. Since the solubility in alkaline solutions varies from component to component, concentration segregation of these alloy components occurs on the surface. Furthermore, it is considered that the passivation film formed in the alkaline solution has a non-uniform effect depending on the local surface structure, grain size, and crystal orientation on the surface of the Mg alloy. As described above, since the action of the alkali treatment has the effect of changing the surface state in which electroconductivity is easy to develop in the electrolytic oxidation treatment, the alkali treatment is named as the surface conditioning treatment.
  • the surface conditioning treatment it is necessary to treat with a solution containing at least one kind of Na OH, KOH and the like.
  • the total content of these components is preferably in the range of 10 g ZL to 700 g / L.
  • the treatment temperature and treatment time do not need to be limited, but in general, the treatment temperature is in the range of 40 to 95 ° C, and the treatment time is in the range of 30 seconds to 10 minutes.
  • the objective can be achieved.
  • Trick and make it conductive In the case of a metal material that is difficult to secure, it can be improved by processing at a higher concentration, higher temperature, and longer time.
  • a surface conditioning treatment with an NaOH concentration of 400 g ZL, a treatment temperature of 85 ° C, and a treatment time of 3 minutes is effective.
  • the optimal range of alkali solution concentration, solution temperature, and processing time varies from material to material. Therefore, when processing a large amount of various metal materials in the same process, the conditions are such that the liquid concentration and liquid temperature can be unified, and the processing time can be changed to the optimum range for each material. It is advantageous in terms of efficient production.
  • the adhering alkaline solution is washed with water and then subjected to an electrolytic oxidation treatment.
  • the washing process requires efficient washing and removal of the alkaline solution so that the surface of the metal material such as Mg alloy whose surface has been strongly adjusted should not be altered as much as possible. For this reason, it is preferable to quickly wash with warm water near the same temperature as the alkali treatment, and then perform finish water washing at a temperature near room temperature to shift to the electrolytic treatment process.
  • the electrolytic solution composition used in the electrolytic acid treatment process includes at least one alkali metal hydroxide selected from potassium (K), sodium (N a) and lithium (L i).
  • the total concentration is preferably in the range of 0.5 to 6 mol ZL. More preferably, the total concentration is in a concentration range of 2 to 5 mol / L.
  • the electrolytic solution for electrolytic acid treatment contains at least one phosphate selected from the group consisting of K, Na and Li, in a total concentration of 0.01 to 2 mol ZL. It is preferable to contain it in order to produce a more stable electrolytic oxide film. In particular, a total concentration in the range of 0.03 to 1 mol / L is preferred.
  • alkaline metal phosphates include polyphosphates, heterophosphates, ultraphosphates, and other alkali metals. Things. this These compounds can be added alone or in admixture of two or more.
  • the electrolytic oxidation treatment process positive and negative electrolysis is performed on the metal material (for example, Mg alloy material) with a current terminal for a certain period of time.
  • the metal material for example, Mg alloy material
  • the range of positive current density 0.1 to 20 AZ dm 2 , positive electrolysis time 25 to In the negative electrolysis using a metal material as a cathode in the range of 500 seconds the negative current density should be continued within the range of 0.5 to 20 AZ dm 2 and the negative electrolysis time of 10 to 500 seconds. I want it.
  • the number of repetitions of the vaginal alternating electrolysis is not particularly limited, but a range of 1 to 30 is sufficient.
  • the number of repetitions of the positive / negative alternating electrolysis is preferably about 2 to: I 0 times.
  • the “number of repetitions of positive / negative alternating electrolysis” here refers to the number of times that the order of positive electrolysis ⁇ negative electrolysis is included. It may be effective as an embodiment of the present invention to add negative electrolysis or positive electrolysis alone immediately before or after this order, but it is not counted as the number of times of positive / negative alternating electrolysis.
  • the positive or negative electrolysis can be performed with a constant current density regardless of the number of repetitions, or the current density may be changed for each repetition. It can also be applied with increasing absolute value of current density as the number of iterations increases. In order to ensure the performance of the electrolytic oxide film, in general, the processing is performed while setting a predetermined constant current density regardless of the number of repetitions, or setting the current density slightly higher as the number of repetitions increases. It is preferable to do.
  • An example of the current density of positive electrolysis is the second invention described above.
  • each negative electrolysis process in positive / negative alternating electrolysis has at least two types of negative currents. Performing at a density is an essential condition of the present invention.
  • the former stage is continuously processed at a high current density and the subsequent stage is continuously processed at a low current density. More preferably, the former stage of negative electrolysis is treated with a high current density and a short time, and the latter stage is treated with a lower current density and a longer time than the former stage.
  • the negative current density before the negative electrolysis is in the range of 0.5 to 2 OA / dm 2 and the negative electrolysis time is in the range of 0.5 to 10 seconds. It is desirable that the negative current density in the latter stage of the subsequent negative electrolysis be performed at a lower current density than the previous stage and with a longer negative electrolysis time than the previous stage. It is also possible to divide the negative electrolysis process into three or more steps with different current densities. In that case, there is a possibility that the improvement effect will be saturated.
  • the current density in negative electrolysis may be expressed by a negative sign.
  • the magnitude of the negative current density is compared in absolute value. For example, “1 8A / dm 2 ” shows a higher current density than “1 3A / dm 2 ”. .
  • an example of a preferable positive / negative electrolysis process for the AZ 91 D material manufactured by the titaso mold method is shown.
  • This is an example in which positive and negative alternating electrolysis of 3 minutes for positive electrolysis and 60 seconds for negative electrolysis is repeated 3 times.
  • the first time is 0.3 A / dm 2 X 3 minutes
  • the second time is 0.4 ⁇ (1 ⁇ 2 ⁇ 3 minutes
  • the third time is 0.5 A / dm 2 X 3 minutes, every time
  • the negative electric angle ⁇ is divided into two current density steps for each process, and the first stage is 1 OA / dm 2 X 3 seconds at the high current density.
  • the stage is run at a low current density of 2.6 A / dm 2 X 57 seconds, in which case the total electrolytic oxidation time is 12 minutes, the first time being 1 minute until the steady current density Raise the power.
  • the positive electrolysis process can also be applied by dividing it into multiple current densities, but it is generally not a good idea because the improvement effect of the electrolytic oxide film is small.
  • the first time can be performed at a low current density
  • the second and subsequent times can be performed by setting a constant current density higher than the first time.
  • 'It is more preferable to process while increasing the positive current density as the number of iterations increases.
  • the total processing time for each of the divided processes is 25 to 5 0 for positive electrolysis. It is preferably within 0 and within 10 to 500 seconds for negative electrolysis.
  • the electrolytic waveform to be applied is not particularly limited.
  • a rectangular wave, trapezoidal wave, sine wave, triangular wave, or an irregular waveform combining them can be applied.
  • the polarity can be reversed and alternating electrolysis can be applied repeatedly depending on the current density and electrolysis time.
  • a rectangular wave is most preferable in that the maximum current value and the average current value can be made the same.
  • the rectangular wave is advantageous in that the current density of the sample can be made constant without change over time, and the processing time and energization amount can be easily controlled.
  • an excessive voltage or an excessive current may flow due to the passivation phenomenon in the electrolyte solution.
  • the temperature of the electrolytic solution in the electrolytic acid treatment method is preferably treated in a temperature range of 20 to 80 ° C. If the electrolyte is lower than 20 ° C, it is not necessarily advantageous for the formation of the electrolytic oxide film and its corrosion resistance. More preferably, it is at least 35 ° C. If the temperature of the electrolyte exceeds 80 ° C, the effect of improving the film performance is saturated and heat loss occurs, which is disadvantageous.
  • the temperature range of 40 to 70 ° C. is particularly preferable because it is economically advantageous in terms of quality control and liquid control.
  • the electrolytic acid treatment method of the present invention has been described from the viewpoint of the current control method, but electrolytic acid treatment by a known voltage control method (potential control method) can also be effectively applied.
  • the current control method is industrially easy in terms of direct control of the current density.
  • the present invention provides a metal material capable of forming an acid film by an anodic acid method.
  • an electrolytic acid solution having conductivity and corrosion resistance can be obtained by repeatedly treating positive and negative alternating electrolysis on an Mg alloy or the like. A film is formed.
  • the mechanism of how the electrolytic oxide film exhibits its function is still unclear at this time.
  • the mechanism described in relation to the first invention will be estimated in more detail by taking an example of an Mg alloy.
  • the Mg alloy substrate is dissolved, and an oxide film mainly composed of Mg (OH) 2 (magnesium hydroxide) is formed.
  • Mg (OH) 2 magnesium hydroxide
  • ions of alloy components such as A1, Zn and Mn are concentrated in the film.
  • a part of Mg (OH) 2 is reduced to MgO by an electrochemical reduction reaction, and the alloy component ions concentrated in the film are in a metallic state. To be trapped in the film.
  • part of the electrolytic oxide film is transferred to MgO, and the alloy is formed in the film.
  • the conductive part is formed in a state where the minute is trapped.
  • the surface layer of Mg alloy is composed of various crystal grains with different crystal orientations and crystal grain sizes, and the presence of intermetallic compounds promotes the formation of conductive sites. It is estimated that.
  • the appropriate range of current density and electrolysis time may be related to optimal control of the pH at the reaction interface. That is, paying attention to the interface pH, the pH decreases in the positive electrolysis process with an oxygen generation reaction. On the other hand, in negative electrolysis, the interface pH rises with a hydrogen generation reaction or an oxygen reduction reaction.
  • the pH is low to some extent, which makes the metal ion a state advantageous for conductivity in the subsequent negative electrolysis process. Can be reduced.
  • the pH is too low, the efficiency of oxide film formation decreases in the positive electrolysis process, and the reduction reaction of hydrogen ions takes precedence in the negative electrolysis process. As a result, Mg (OH) 2 and metal ions are less likely to be reduced, resulting in reduced film performance.
  • the electrolytic oxide film and the formation of the conductive material it is necessary to advance the electrolytic reaction in the positive and negative electrolysis while ensuring the interface pH and the alloy component concentration within the desired ranges.
  • the electrolytic acid treatment conditions shown in the present invention are required.
  • conductive sites are generated in a dispersed structure, and the local concentration and pH distribution state at the reaction interface, that is, the concentration fluctuation state of the electrolytic reaction field is conductive. It is recognized that it is important for site generation.
  • the conductive sites formed according to the present invention are dispersed in the electrolytic oxide film. For this reason, even if it has a good surface resistance of about 0.1 ⁇ in the two-terminal method, the surface resistance depends on the measurement location when measured with a needle-shaped contact probe (0.37 R) with a small tip diameter. The value may not be measurable or may show a large resistance value of 1 or more. This assumes that the conductive sites are not generated as a continuous film on the surface of the electrolytic oxide film, but are generated discretely. Incidentally, when silver plating was performed in a silver nitrate aqueous solution plating solution, it was confirmed that the Ag particles were dispersed and electrodeposited at intervals of several im to several 10 ⁇ .
  • the conductive sites are not generated as a continuous film on the surface of the film, but are randomly distributed and distributed at intervals of several meters to several tens of micrometers. It was. In this way, fine conductive sites are dispersed in the electrolytic oxide film, but the conductive sites are characterized in that they are generated in a conductive state from the surface layer to the substrate surface. This is presumed to show good conductivity with small surface resistance while the conductive part is fine and has a dispersed structure.
  • a conductive film having a structure in which conductive sites are discretely dispersed such as the electrolytic oxide film according to the present invention, is inferior to the surface of the metal material itself. It was confirmed that it has an electromagnetic wave shielding property equivalent to.
  • the 0.37 R hemispherical terminal may not be able to measure a stable surface resistance value due to point contact. .
  • the measurement method is devised, such as using a copper thin film to create a 2 mm square contact terminal and using a terminal with the back of the terminal reinforced with silicon rubber (3 mm thickness, 50 degrees hardness).
  • the surface resistance value can be measured stably by the two-terminal method or the four-terminal method. Measurement using such contact terminals has the advantage that the surface resistance can be measured with good reproducibility because it can maintain good contact even with parts with few flat parts, such as machined parts.
  • the electrolytic solution can contain components other than the above-described components as necessary.
  • metal ions such as Zn, Mn, Al, Si, Sn, Ca, and V, as well as oxides or hydroxides of these metal components such as oxygen acids, can be added in appropriate amounts.
  • it is not a strongly acidic substance in order to secure hydroxide ions.
  • it is preferable to add it as a compound with an alkali metal or a salt thereof, a salt of a weak acid, a neutral substance, or an alkaline substance.
  • metal ion components and organic substances applied to Mg alloy anodizing solution can be added as necessary.
  • the organic substance for example, various organic substances having an alcohol group, a carboxyl group, or an amino group can be added.
  • the electrolyte solution can contain alloy components mixed in from various Mg alloy material components themselves.
  • the electrolyte contains reference electrodes (carbon electrodes, platinum electrodes, stainless steel electrodes, iron electrodes, etc.) and various inevitable impurities mixed from the electrolytic cell and its piping system, in ionic, colloidal, It can be contained in the form of insoluble suspended solids.
  • the thickness of the electrolytic oxide film is preferably in the range of 0.1 to: 1 2; um for the reason described above with respect to the 15th invention, and more preferably in the range of 1 to 8 ⁇ . .
  • the film thickness of the electrolytic oxide film depends on the surface properties of the Mg alloy and the pretreatment conditions in addition to the conditions such as the electrolyte composition, temperature, and electrolytic oxidation treatment conditions. If the material type, pretreatment, electrolyte composition, electrolytic oxidation treatment temperature, electrolyte agitation status, etc. are constant, the electrolytic oxide film can be selected by selecting the current density and electrolysis time of positive and negative electrolysis. Thickness can be controlled. Among these, the effect of positive current angle density and positive electrolysis time has the greatest effect.
  • the corrosion resistance of the anodized film tends to be better when the film thickness is larger, but this is not necessarily the case with the electrolytic acid film of the present invention.
  • the corrosion resistance of an electrolytic oxide film is complicated because it depends greatly on its crystal structure, chemical structure of components present in the electrolytic oxide film, distribution state, existence of cracks and pores, and the like.
  • the electrolytic oxide film is better.
  • the electrolytic oxide film is smooth and dense, the crystal structure is mainly MgO, the crystal particles of the electrolytic oxide film are fine, cracks existing in the electrolytic oxide film, The pores are extremely fine This is presumed to be due to the above.
  • a series of treatment conditions shown in the present invention that is, degreasing, pickling, surface conditioning treatment, electric angle soot oxidation treatment, water washing treatment between each process, etc. according to the surface condition of Mg alloy according to the present invention. By controlling within the appropriate range, the film thickness, conductivity, and corrosion resistance required for the electrolytic oxide film can be ensured satisfactorily.
  • sealing treatment or coloring treatment can be applied as necessary.
  • the corrosion resistance can be improved without impairing the conductivity.
  • various color tones can be imparted to the electrolytic oxide film without deteriorating conductivity and corrosion resistance.
  • the sealing treatment and coloring treatment methods have the advantage that the conventional methods used for the treatment with anionic acid on metallic materials such as Mg alloys and A1 alloys can be effectively applied.
  • a rolled sheet (size: width 5 OmmX length 12 OmmX thickness) of a magnesium alloy AZ 31 B (A1: 3 wt%, Zn: 1 wt%, Mg: 96 wt%) as a sample metal material 0.7mm) was used.
  • the pretreated sample was subjected to electrolytic acid treatment.
  • the electrolysis conditions A "perform positive electrolyte at a current density of 2AZdm 2 180 seconds, then the Hikage alternating electrolysis cycle of negative electrolytic performed 60 seconds at a current density of 2AZdm 2 , Repeated 3 times ".
  • the electrolysis condition B was set to “perform electrolysis at a current density of 2AZdm 2 for 600 seconds”.
  • the electrolyte solution for electrolytic acid soot treatment should have an appropriate concentration. Adjusted Na OH or KOH, or a mixture of both, and in certain instances, primary, secondary or tertiary sodium phosphate were added at specific concentrations, respectively.
  • the temperature during electrolysis was appropriately set in the range of 25 ° C. to 85 ° C.
  • the conductivity and corrosion resistance were evaluated by a predetermined method for the acid film of the sample subjected to the electrolytic acid treatment according to any of the above electrolysis conditions, the composition of the electrolytic solution, and the electrolysis temperature.
  • all the samples subjected to the electrolytic oxidation treatment under the electrolytic condition A have a surface resistance value of 1 ⁇ ⁇ or less
  • the samples subjected to the electrolytic acid treatment under the electrolytic condition ⁇ have a surface resistance value.
  • Corrosion resistance was determined by evaluating the occurrence of aging over a period of 3 days in a wet box (50 ° C). Basically, sodium phosphate was added to the Na OH / KOH mixture.
  • An example of electrolytic oxidation treatment using an electrolytic solution showed high corrosion resistance.
  • Example A of the present invention in comparison with the example described as “Example 1” in Japanese Patent Application No. 2 0 4-1 9 3 7 4 2, only the electrolytic conditions of the electrolytic oxidation treatment are different. An example was given. The details are as follows.
  • a magnesium alloy A Z 3 1 B rolled plate (size: width 5 O mm ⁇ length 12 O mm ⁇ thickness 0.7 mm) was used as a sample metal material. This metal material was degreased as a pretreatment.
  • the solvent degreasing process includes immersing in normal hexane, ultrasonic cleaning for 30 minutes, alkali degreasing, water washing, acid washing, water washing, and active water treatment. Water washing and pure water washing were performed.
  • the sample after the above pretreatment was held vertically and subjected to electrolytic oxidation with the lower end of 80 mm immersed in the electrolyte.
  • the electrolysis temperature is 60 ° C
  • the electrolyte is an electrolyte containing 2.2 mol ZL of Na OH, 2.2 mol ZL of KO H and 0.1 mol / L of tertiary phosphate Na. .
  • the electrolytic conditions of the electrolytic oxidation treatment are the following electrolytic conditions C, which are different from the electrolytic conditions A described above.
  • Electrolysis condition C Positive electrolysis 3 minutes, negative electrolysis 60-second positive / negative alternating electrolysis is repeated 4 times.
  • the first time is 0 ⁇ SAZdin 2 X 3 minutes
  • the second time is 2A, dm 2 X 3 minutes
  • the third time is 2AZdm 2 X 3 minutes
  • the fourth time is 2 A / dm 2 X 3 minutes
  • each process is divided into two current densities. The first stage is a high current density of 4 A / dm 2 X 3 seconds and the second stage is a low current density of 1 A / dm 2 X 57. In seconds.
  • the electrolytic oxidation treatment was based on the current scanning electrolysis method (Hokuto Denko HA3210A type, function generator HB105 type used). Specifically, electrolytic oxidation treatment was performed with a rectangular wave at a predetermined current density and electrolysis time, and then water was washed, and then moisture adhering to the surface was removed with a dryer. Furthermore, after heating and drying for 10 minutes in a heating furnace (95 ° C), it was allowed to cool indoors. At the start of the first energization, the current density was increased to the prescribed current density in 40 seconds.
  • the surface resistance value was measured with Loresta (MCP-T360, four-terminal four-probe method, stylus diameter 2 ⁇ ) manufactured by Mitsubishi Chemical.
  • contact terminals devised so that they can be measured with relatively high reproducibility even when the flatness is inferior due to processed parts are used as a test method for measuring surface resistance in electronic equipment. It was measured by the two-terminal method.
  • a copper foil adhesive tape (7 Cim thickness) was used, and the back surface of the copper foil was reinforced with silicon rubber (2 mm thickness, hardness 50 degrees).
  • the contact area of the terminal set to a square of 2 mm X 2 mm the surface resistance was measured by the two-terminal method by contacting the sample surface. The distance between the two terminals (measured at the center) is 7 mm.
  • the resistance value of 0.2 ⁇ or less is 5 points, exceeding 0.2 ⁇ , but the resistance value of 0.4 ⁇ or less is 4 points, exceeding 0.4 ⁇ , but 0.7 ⁇
  • the following resistance values are evaluated as 3 points, exceeding 0.7 ⁇ , but 1 resistance value of 2 ⁇ or less is 2 points, and 1.
  • Surface resistance values greater than 2 ⁇ are all 1 point.
  • relative evaluation was made in five stages (1-5) over a period of 3 days in a wet box (50 ° C). The larger the number, the better the corrosion resistance.
  • Example A As a result, the evaluation result of Example A was “5” for both conductivity and corrosion resistance, and was the same evaluation result as the example described as “Example 1” in Japanese Patent Application No. 2004-193742. . (Example B-1)
  • the magnesium alloy AZ 91 D (A 1: 9 by weight 0/0, Z n: 1 wt%, Mg: 90 wt 0/0) die cast plate (size: width 50 mm X length
  • a 1: 9 by weight 0/0, Z n: 1 wt%, Mg: 90 wt 0/0) die cast plate (size: width 50 mm X length
  • electrolysis treatment conditions As the electrolysis treatment conditions, the example of the electrolysis condition B, the example of the electrolysis condition A, and the example of the electrolysis condition D described below were performed.
  • the electrolysis condition D is as follows. That is, the positive / negative alternating electrolysis of 3 minutes for positive electrolysis and 60 seconds for negative electrolysis is repeated 3 times.
  • the positive electrolytic process the first time 0. 3AZdm 2 X 3 minutes, the second time 0. 4A / dm 2 X 3 minutes, the third time to 0. 5A / dm 2 X 3 min.
  • each process is divided into two current densities, the decoction stage is 1 OAZdm 2 X 3 seconds with high current density, and the second stage is 2.6 A / dm 2 X with low current density. Perform in 57 seconds.
  • the evaluation score for corrosion resistance was “5”.
  • the evaluation score of the example of electrolysis condition B is ⁇ 1 ''
  • the evaluation score of the example of electrolysis condition A is ⁇ 3 ''
  • the evaluation score of the example of electrolysis condition D is ⁇ 5 ''. The difference was recognized.
  • Example B-2 of the present invention a die-cast plate of the same magnesium alloy AZ 91D as in Example B-1 above is used as a sample, but the contents of the pretreatment compared to Example B-1 are as follows. The examples in which the contents of the electrolytic solution and the contents of the electro-oxidation treatment were different were performed. These examples were similarly evaluated under the same conditions as Example A except for the above points.
  • the concentration of each drug shown in the examples in the composition of the pickling solution is 80 g / l for sulfuric acid, 4 g / l for HF, and 5 g / l for nitric acid, respectively.
  • Ammonium hydrogen fluoride is mixed to 3 g / 1.
  • the composition of the surface conditioning solution used for the surface conditioning treatment was caustic 1 "raw soda 200 1.
  • the number of electrolysis repetitions "means positive and negative electrolysis in electrolytic oxidation treatment. Indicates the number of electrolysis iterations.
  • the start of electrolysis it was increased at a constant rate to a predetermined current density in 35 seconds.
  • the electrolytic treatment time was 3 minutes for positive electrolysis at each time, 3 seconds for negative electrolysis, and 57 seconds for the latter.
  • the present invention provides a means for easily forming a single-layer surface treatment film having effective conductivity and corrosion resistance in a single treatment process for metal materials such as Mg alloys having various uses. Is done. Metal materials, such as Mg alloys, that have an electrolytic oxide film manufactured by applying this treatment method are conductive in applications such as electronic equipment products, in electromagnetic shielding cases or in various parts that require grounding. It can be used as a surface treatment product that effectively demonstrates corrosion resistance.

Abstract

陽極酸化法により酸化膜を形成できる金属材に対して、アルカリ金属の水酸化物を含有する電解液中で一定の時間的継続を以て陽陰交番電解を反復処理する電解酸化処理方法において、陽陰交番電解における陰電解過程のそれぞれを陰電流密度が異なる2段階以上の継続的ステップで行う。以上の発明により、マグネシウムの組成比が90重量%以下のMg合金等に対しても、単一の処理工程で、良好な導電性と耐食性を有する単層の表面処理皮膜を形成させることが可能となる。

Description

明 細 書 電解酸化処理方法及ぴ電解酸化処理金属材 〔技術分野〕
本発明は、 電解酸化処理方法及ぴ電解酸化処理金属材に関する。 更に詳しく は本発明は、マグネシウム合金等の一定の金属材に対する特別な電解方法により、 その金属材に導電性と耐食性を併せ備えた皮膜を形成させる電解酸ィヒ処理方法と、 そのための好適な前処理方法と、 これらの方法により電解酸ィ匕皮膜を形成させた '¾角 化処理金属材とに関する。
発明において. 「電解酸化処理」 とは、 金属材に対 όてそれぞれ一定の時間 的継続を以て陽陰'交番電解を反復処理することを言う。 通常の陽極酸化処理が金 -属材を陽極とする電角军酸ィ匕反応により金属材の表面に酸ィヒ皮膜を形成する方法で あるのに対し、 本発明では金属材を陽極酸ィ匕した後に、 弓 Iき続いてこれを陰極と 一して電解還元すると言う特別な電解方法を行う。 その結果、'.従来にない性状、 機 能^皮膜が得られるため、 本発明の方法を 「電解酸化処瑪方法」 と呼ぶ。 このよ
Όな電解酸ィ匕処理方法により金属材に形成された皮膜を「霄解酸化皮膜」と呼ぶ。 〔背景技術〕
従来、 各種の金属材に対する表面処理方法あるいは皮膜形成方法として、 例 えば、 化成処理、 電着塗装、 陽極酸化処理等が行われている。 金属材に対する上 記各種の処理の目的は多様であるが、 例えば、 電気化学的に卑な金属に対する耐 食性の付与ゃ防鲭性の付与等であったり、 電子機器製品や自動車用内装部品等へ の利用に関連して導電性や電磁波シールド性等の付与であったりする。
特に近年、 電子機器製品や自動車用内装部品は小型化、 軽量化、 高機能化の 方 i あり 製品の単位容積当たりにおける電子部品の 熱量が増大している。 又、 電磁波による障害問題も注目されている。
これらの点から、特に注目されるのがマグネシウム合金(M g合金)である。 M g合金は軽量であり、 各種の機械的物性の他、 熱伝導性、 導電性、 熱放散性、 電磁波シールド性等も優れている。 更に資源的にも豊富であり、 リサイクル性も 良好である。 そのため、 M g合金は電子'電気機器製品、 自動車部品、 航空'宇 宙機器部品、 輸送用機器、 各種の機械 ·器具 ·工具製品、 事務機器、 光学機器、 通信機器、 スポーツ用品等、 広範囲の用途で多用されつつある。
し力 し、 M g合金は電気化学的に卑な金属であり、 極めて活性な金属でもあ るため、 種々の腐食環境において防鲭性、 耐食性、 耐変色性に劣ると言う弱点が ある。 このため従来から、 M g合金に対して、 前記の化成処理、 電着塗装、 陽極 酸化処理等が行われ、 耐食性の付与が図られている。 一方、 電磁波シールド性の ニーズに応えるためには、 表面処理皮膜の導電性が高いことが必要となる。
即ち、 M g合金及びその他の有用性の高い金属について、 耐食性と導電性を 良好に付与できる簡便な表面処理方法又は皮膜形成方法が求められている。
文献 1 :特許第 3 3 0 7 8 8 2号公報
上記の文献 1には化成処理方法の一例が開示されている。 しかし、 化成処理 皮膜では導電性を確保し易いが、耐食性が不十分であると言う問題がある。なお、 化成処理皮膜は M g合金の表面状態 (酸化膜や表面組成など) に敏感に反応する ため、 パーソナルコンビユー の筐体等の大きな部品では、 部位によって導電性 や耐食性がバラックと言う問題が指摘されている。
耐食性を重視する観点では、陽極酸ィ匕処理ゃ電着塗装等が行われる。しかし、 これらの場合、 形成される皮膜は耐食性に優れるが、 電磁波シールド性に劣る。 従って、 陽極酸ィ匕皮膜等の表面にイオンプレーティング、 無電解メツキ等により 金属薄膜をコーティングして導電性を確保する方法等が行われている。
文献 2 :特許公開 2 0 0 3— 2 7 2 6 5 9号公報
金属材に対して導電性皮膜を形成する最も簡便な方法は、 例えば上記の文献 2に開示されている、 導電性塗料を塗布する方法である。 し力、し、 文献 2の方法 は耐食性確保のために多層皮膜を形成しており、 これらの多層皮膜を形成するた めの表面処理工程が複雑となる煩わしさがある。
M g合金に関して現在主流となっている導電性皮膜を分類すると、 有機樹脂 皮膜型と陽極酸化皮膜型に大別できる。 有機樹脂皮膜型では、 ィ匕成処理した後に 電着塗装を施して耐食性を確保し、次レヽで導電性付与のために C uめっきを施し、 更にその上層に N iめっきを施すことが一般的である。 この Cu/N iめっきの 実施にあたっては、 無電解めつき法の他に、 スパッタリング法、 イオンプレーテ イング法等の物理的な表面処理方法が適用されている。 現状では、 スパッタリン グ法ゃィオンプレーティング法は設備コストが高レ、上に量産"生に劣ることから、 無電解めつき法が多用されている。
—方、 陽極酸化処理法では、 陽極酸化処理してからその表面に有機樹脂皮膜 型と同様に C uZN i系の金属めつきを施すことにより、導電性を付与している。 Cuノ N i系の 2層めつきの方法としては、 上記したように、 無電解めつき法、 スパッタリング法、 イオンプレーティング法などがある。
文献 3 :特許公開 2002— 235182号公報
上記の文献 3にはこのタイプの無電解めつき法の例が開示されている。 文献 3では、 陽極酸化膜により耐食性を確保し、 その上層に無電解めつきにより金属 系皮膜を付与して導電性を確保する方法を提案している。
以上のように、耐食性と導電性とを付与するための現状品の表面処理皮膜は、 いずれも多段工程において処理される 3〜 5層の多層膜である。 このため、 生産 性、 生産コストなどの問題がある。 更に、 各処理工程において高度の生産技術や 表面処理のための工程管理技術が必要とされるため、 商品の品質 ·性能が変動し 易いなどの問題もある。
文献 4 :特許公開 2006— 016647号公報
本願発明者である中山は、 上記した従来技術の問題点を解消できる発明を、 特願 2004— 193742号 (上記の文献 4が、 その公開公報である) として 既に特許出願している。 その特許出願に係る発明は、 中山と他の発明者との共同 発明に係るものである。 文献 4の開示内容の概要は以下の通りである。
即ち、 上記の各種従来技術では、 多層皮膜の各層に耐食性の機能と導電性の 機能とを分担させている点に本質的な問題がある。 従って、 導電性と耐食性とを 両立させ得る単層の表面処理皮膜を単一の処理工程により形成させる新規な手段 を開発することが求められている。 研究の結果、 Mg合金等の一定の金属材に対 して、 アル力リ金属の水酸ィ匕物を含有する電解液中でそれぞれ一定の時間的継続 を以て陽陰交番電解を反復処理する、 と言う電解酸化処理方法を開発した。 この 電解酸化処理方法によれば、 単一の簡易な処理工程により、 金属材の表面に導電 性と耐食性を有する表面処理皮膜 (電解酸化皮膜) を形成することができる。 〔発明の開示〕
し力 しながら、 特願 2004— 193742号の出願後に本願発明者が研究 を進めたところ、 更に以下 (1) 〜 (3) の新規な知見を得た。 本発明はこれら の知見に基づいて完成されたものである。
( 1 ) 特願 2004-193742号に係る電解酸化処理方法では、 圧延材であ る AZ 31 B (A 1 ·: 3重量%、 Z n : 1重量%、 Mg : 96重量%) に対して は導電性、 耐食性共に良好な電解酸化皮膜を形成できる。 しカゝし、 ダイキャスト 材である AZ 91 D (A 1 : 9重量0 /0、 Zn : 1重量0 /0、 Mg : 90重量0 /0) の ように、 マグネシウムの組成比が 90重量%又はそれ以下であるマグネシウム合 金に対する処理では、 電解酸ィ匕皮膜の導電性が発現し難い。
( 2 ) 陽陰交番電解のプロセス要素である陽電解過程と陰電角军過程とについて、 金属材表面で起こる電気化学的変化と電流密度との関連を詳細に分析したところ、 所定のパターンに従う電流密度の制御により、 上記の (1) の問題を解消でき、 良好な電解酸化皮膜を形成できることが分かつた。
(3) 上記の (2) の効果は、 電解酸化処理の前処理としての酸洗処理の条件を 好適に制御することにより、 一層確実かつ顕著なものとなる。
(第 1発明)
本願の第 1発明は、 陽極酸化法により酸ィ匕皮膜を形成できる金属からなる金 属材に対して、 アルカリ金属の水酸ィヒ物を含有する電解液中で、 それぞれ一定の 時間的継続を以て、 前記金属材を陽極とする陽電解過程と、 前記金属材を陰極と する陰電解過程とを行う陽陰交番電解を反復処理することにより、 前記金属材の 表面に導電性と耐食性とを有する電解酸ィ匕皮膜を形成させる電解酸ィ匕処理方法に おいて、
前記陽陰交番電解における 1回又は 2回以上の陰電解過程のそれぞれを、 陰 電流密度が異なる 2段階以上の継続的ステップで行う電解酸化処理方法である。
上記の第 1発明におレ、て、 「一定の時間的継続」 とは数十秒ないし数百秒の オーダーでの時間的継続を言うのであって、 通常の周波数の交流電流による交番 電解とは全く意味合いが異なる。 本願発明者は、 通常の周波数の交流電流を印加 しても本発明のような効果は得られないことを確認している。
第 1発明の電解酸化処理方法によれば、 多様な金属材に対して導電性、 耐食 性共に特に良好な電解酸化皮膜を形成できる。その 1例として、前記したように、 マグネシウムの,組成比が 9 0重量%又はそれ以下であるマグネシウム合金等のダ ィキャスト材に対しても、 導電性と耐食性が良好な電解酸ィ匕皮膜を形成できる。
このような効果が得られる理由については、 金属材が M g合金である場合を 例にとって説明すると、 以下のように考えられる。
即ち、 陽陰交番電解において、 陽電 Λ率過程では、 酸素発生を伴いながら M g 合金の素地を溶解し、溶出した M gイオンと界面の O H—イオンとで、水酸化物を 主体とする酸化膜を形成する。 一方、 陰電解過程では、 マグネシウム酸化膜の還 元反応即ち M g, (OH) 2から M g Oへの転換と、 酸化皮膜内に導電部位を形成す るという 2つの目的がある。 その際、 反応界面の p Hや各種金属イオン等の陽ィ オン、 陰イオンを有利に確保するためには、 M g Oへの転換は低い電流密度で行 うことが好ましい。逆に、導電部位の形成のためには、高い電流密度が好ましい。 即ち、 M g合金の種類や表面状態によっては、 陰電解過程での上記 2つの目的を 達成するための好適な陰電流密度は必ずしも同一ではな]/、。 従って陰電解過程を 陰電流密度が異なる 2段階以上の継続的ステップで行い、 達成すべき 2つの目的 をこれらのステップによって分担させると、 A Z 9 1 Dのような M g合金に対し ても、 導電性、 耐食性共に一層良好な電解酸化皮膜を形成できるのである。
第 1発明の電角酸化処理方法では、 その他にも、 以下の様々な効果を期待で さる。
M g合金その他の一定の金属材の表面に導電性と耐食性とを有する電解酸ィ匕 皮膜を形成することができるので、 これらの金属材をパーソナルコンピュータや 携帯電話等の筐体に適用することで、 電磁波シールド性、 アース性、 耐食性に優 れた表面処理部材として使用することができる。
又、 従来法の表面処理皮膜に基づく電磁波シールド用金属材とは異なり、 単 一の処理工程 (単一電解浴での処理) で形成された単層皮膜により導電性と耐食 性を発現するため、 生産効率が高く、 高位に安定した品質も確保し易い。
更に、 生成した電解酸ィヒ皮膜の主要成分は、 M g合金等の金属材に含まれる 成分からなる無機系酸ィ匕物であり、' 有機樹脂や、 M gの精練に不都合な C u、 N i等の金属を含まない。 そのため、 地球環境に優しく、 M g合金等の回収.再利 用が容易であり、 リサイクル性にも優れる。
次に、第 1発明の電解酸ィ匕処理方法は、現在実施されている無電解めつき法、 イオンプレーティング法、 スパッタリング法等に比べても比較的に安価な設備で 処理でき、 処理条件や作業条件も高度の技術や操作を要しない。 即ち、 第 1発明 の技術内容は従来から行われている陽極酸化処理法に近レ、ものであるため、 実用 化 ·工業化のために有利である。
(第 2発明).
本願の第 2発明に係る電解酸ィヒ処理方法においては、 前記第 1発明に係る陽 陰交番電解において陽電解過程は 0 . l〜2 0 A/ d m2 の範囲内の陽電流密度 及び 2 5〜 5 0 0秒の範囲内の電解時間で行レ、、 陰電解過程は 0 . 5〜 2 0 A/ d m2 の範囲内の陰電流密度及び 1 0〜 5 0 0秒の範囲内の電解時間で行う。
陽陰交番電解において、 陽電解過程は 0 . l S O.AZ d m2 の範囲内の陽 電流密度、 2 5〜 5 0 0秒の範囲内の電解時間で行うことが好まし 、。 陽電流密 度が 0 . l AZ d m2 未満では電解酸化皮膜の生成が不十分となる恐れがある。 陽電流密度が 2 O A, d m2 を超えると金属材の溶損が増大し、 電解酸化皮膜が 粗くなると共に電解液の汚染等による液劣化が促進される懸念がある。'陽電解時 間が 2 5秒未満では電解酸化皮膜の生成が不十分となる恐れがある。 陽電解時間 が 5 0 0秒を超えると、 引き続く陰電解過程において導電性の確保に必要な皮膜 の還元に要する時間が増加するので好ましくない上、 電解酸化皮膜の導電性の低 下が懸念される。
陰電解過程は 0 . 5〜 2 0 A/ d m2 の範囲内の陰電流密度、 1 0〜 5 0 0 秒の範囲内の電解時間で行うことが好ましい。 陰電流密度が 0 . 5 A/ d m2 未 満では、 電解酸ィ匕皮膜の導電性が不十分となる恐れがある。 陰電流密度が 2 O A / d m2 を超えると、 電解酸化皮膜の性能が飽和すると共に耐食性が不十分とな る恐れがある。 陰電解時間が 1 0秒未満では、 陽電解過程で生成した皮膜の還元 が不十分となり易く、 導電性が劣ることが懸念される。 陰電解時間が 5 0 0秒を 超えると、 効果が飽和する上に、 耐食性が不十分となる恐れがある。
(第 3発明)
本願の第 3発明に係る電解酸ィヒ処理方法においては、 前記第 1発明又は第 2 発明に係る陰電解過程における 2段階以上のステップにおいて、 前段階のステツ プを相対的に高電流密度で行い、後段階のステップを相対的に低電流密度で行う。
前記したように、 陰電解過程では、 マグネシウム酸化膜の還元反応即ち M g (OH) 2から M g Oへの転換という目的と、酸化皮膜内に導電部位を形成すると いう目的とがある。 第 3発明によれば、 陽電解の直後において、 前段階のステツ プでは高電流密度領域でマグネシゥム酸化膜の還元反応を行うことによって導電 部位の形成を促進できる。 又、 後段階のステップでは低電流密度領域で電解する ことにより酸ィ匕皮膜中の M g Oへの転換効率を高める効果が大きくなる。従って、 良好な電解酸ィ匕皮膜の形成をより確実に行うことができる。
即ち、 陽電解が終了した時点では、 酸化膜内および界面に M gや合金成分が 最も濃化した状態にあり、力つ界面 p Hも陽電解により低下している。そのため、 各種の金属イオンが界面に比較的安定して存在できる条件にある。 この状態で、 導電物質 (例えば A Z合金系では A 1、 Z n、 M nおよび金属化合物等) を酸ィ匕 膜內に取り込むことが望ましい。 従って、 高い陰電流密度で電解を行うことによ つて、 より確実に酸化膜内に導電部位を形成できる。 一方、 水酸化マグネシウム M g (O H) 2を酸化マグネシウム M g Oに還元するには、 界面の p Hを高める条 件を避ける必要がある。 このため、 水素発生を抑制した条件で還元効率の高い陰 電解を行うことが必要であり、 低レ、電流密度で行うことが望ましい。
(第 4発明)
本願の第 4発明に係る電解酸ィ匕処理方法においては、 前記第 1発明〜第 3発 明のいずれかに係る陰電解過程における 2段階以上のステップにおいて、 前段階 のステップを相対的に高電流密度でかつ短!/、^続時間で行!/、、 後段階のステツプ を相対的に低電流密度でかつ長レ、継続時間で行う。
酸ィ匕膜内での導電性部位の形成は比較的短時間で完了するので、 その形成の ための高電流密度で行ぅステツプの継続時間を長くすることは、 界面の p Hを最 適範囲に維持する上で不利になる。 これに対して、 M g (OH) 2から M g Oへの 転換反応は遅い反応であるため比較的長い時間を要する。 そして界面の p Hをな るべく変動させない条件で還元するには、 低い電流密度で比較的長い時間の電解 を行うことが好ましい。 この過程で界面の p Hを下げ過ぎると、 引き続く陽電解 過程での金属ィオンの溶解と安定性に支障を生じて、 M gの酸化膜や金属ィオン の界面濃化が安定せず、 電解酸ィ匕皮膜の導電性や耐食性が劣ィヒするという懸念が ある。 .
従って、 第 4発明のように、 陰電解過程における 2段階以上のステップにお いて、 前段階のステップを相対的に高電流密度でかつ短い継続時間で行い、 後段 階のステップを相対的に低電流密度で力っ長 、継続時間で行うことが好ましい。
(第 5発明) .
本願の第 5発明に係る電解酸ィ匕処理方法においては、 前記第 1発明〜第 4発 明のいずれかに係る陰電解過程をそれぞれ陰電流密度が異なる 2段階の継続的ス テツプで行う場合において、 第 1段階のステップを 1〜2 O A/ d m2 の範囲内 の陰電流密度及ぴ 0 . 5〜 1 0秒の範囲内の継続時間で行レ、、 弓 Iき続き第 2段階 のステップを第 1段階のステップよりも低電流密度でかつ長い継続時間で行う。
陰電解過程をそれぞれ陰電流密度が異なる 2段階の継続的ステップで行う場 合、 その第 1段階のステツプにおける陰電解の最適な電流密度と継続時間は金属 の種類や合金の組成によつてそれぞれ異なる力 例えば M g合金の電解酸化処理 を行う場合等には、 一般的に、 第 5発明の条件とすることで、 確実に酸化皮膜內 に導電部位を形成できる。
なお、 引き続く第 2段階のステップは、 例えば 0. 5〜2 OA/dm2 の範 囲内で第 1段階のステップよりも低電流密度で行い、 0. 5〜 499. 5秒の範 囲内で第 1段階のステップょりも長い継続時間で行うことが望ましい。 第 1段階 のステップと第 2段階のステップとの合計継続時間は、 第 2発明に規定するよう に、 500秒以内であることが望ましレ、。
第 5発明により、 第 1段階のステツプで形成された導電部位を確保したまま で、第 2段階のステップにおいて電解皮膜中に生成している Mg (OH) 2の一部 を M g Oへ転換する反応を確実に行うことができる。
(第 6発明)
本願の第 6発明に係る電解酸化処理方法においては、 前記第 1発明〜第 5発 明のいずれかに係る金属材が、 マグネシウム (Mg) 、 アルミニウム (A1) 、 チタン (T i ) 、 ジルコニウム (Z r ) 、 ハフニウム (H f ) 、 ニオブ (Nb) 、 タンタル (Ta) 及ぴ亜鉛 (Zn) から選ばれるいずれかの金属又はその合金か らなる。
電解酸化処理方法の適用対象となる金属材は、 陽極酸化法により酸化皮膜を 形成できる金属からなる限りにおいて限定されないが、 第 6発明に列挙する金属 材を好ましく例示できる。 中でも金属材の有用性や用途上の適合性において M g 又は Mg合金が好ましく、 とりわけ Mg合金が好ましい。 Mg合金としては、 圧 延材である AZ 31B (A 1 : 3重量%、 Zn : 1重量%、 Mg : 96重量%) のような、マグネシウムの組成比が 90重量%を超える Mg合金も対象となる力 とりわけ、 ダイキャスト材である AZ 91 D (A 1 : 9重量0 /0、 Zn: 1重量0 /0、 Mg : 90重量。/。) のように、 マグネシウムの組成比が 90重量%又はそれ以下 であるマグネシゥム合金が好まし!/、。 (第 7発明)
本願の第 7発明に係る電解酸ィ匕処理方法においては、 前記第 1発明〜第 6発 明のいずれかに係る電解液が、 カリウム (K) 、 ナトリウム (N a ) 及びリチウ ム (L i ) 力 ら選ばれる少なくとも 1種類のアルカリ金属の水酸ィ匕物を合計濃度 0. 5〜 6モル Lの範囲内で含有する。
電解酸ィ匕処理方法における電解液に第 7発明の成分を含有させると、 より望 ましい電解酸ィ匕皮膜を形成することができる。 アルカリ金属の水酸ィ匕物の合計濃 度が 0. 5モル/ L未満では、 電解酸ィ匕皮膜の生成が不十分となる場合があり得 る。 アルカリ金属の水酸化物の合計濃度が高いほど安定した電解酸化皮膜を形成 できるが、 合計濃度が 6モル ZLを超えると効果が飽和気味になり、 処理液コス トが増加する分だけ経済的に不利となる。
(第 8発明)
本願の第 8発明に係る電解酸ィ匕処理方法においては、 前記第 1発明〜第 7発 明のいずれかに係る電解液が、 更に K、 N a及び L iから選ばれる少なくとも 1 種類のアル力リ金属のリン酸塩を合計濃度 0 . 0 1〜 2モル Lの範囲内で含有 する。
電解酸ィ匕処理方法における電解液組成としては、 第 7発明のようなアル力リ 金属の水酸化物に加え、 更に K、 N a及ぴ L iから選ばれる少なくとも 1種類の アルカリ金属のリン酸塩を合計濃度 0 . 0 1〜 2モル ZLの範囲内で含有させる と、 より安定した電解酸化皮膜を生成することができる。
アル力リ金属リン酸塩の合計濃度が 0. 0 1モル/. L未満では効果が不十分 となり易く、 2モル/ Lを超えても効果が飽和するのでコスト的に不利となると 共に、 場合によっては耐食性が劣ィ匕する恐れがある。
(第 9発明)
本願の第 9発明に係る電解酸化処理方法においては、 前記第 1発明〜第 8発 明に係る陽陰交番電解において 2回以上の陽電解過程を行い、 かつ後の陽電解過 程に至るほど高い陽電流密度で行う。
陽陰交番電解においては 「陽電解→陰電解」 の最小限プロセスを含む。 陽陰 交番電解 (最 /J、限プロセス) の繰り返し回数は限定されないが、 繰り返し回数が
3 0回を超えると電解酸ィ匕皮膜の耐食性や導電性の上積みがなく、 生産性におい て徒らに不利となる他、 場合によって性能の劣化を来たす恐れがある。 この最小 限プロセス又はその繰り返しに対して更に陰電 #を前置しても良く、 最小限プロ セスの後に更に陽電 を付; ¾Pしても良い。
2回以上の陽電解過程を行う場合においては、 後の陽電解過程に至るほど高 い陽電流密度で陽電解を行うことが好ましい。 これにより、 生成している電解酸 化膜と素地界面との反応を促進できるため、析出成長しつつある電解酸ィ匕膜内に、 導電性に関与する物質をより有効に確保できると言う効果を期待できる。
(第 1 0発明)
本願の第 1 0発明においては、 前記第 1発明〜第 9発明のいずれかに係る電 解酸化処理方法の前処理として、 陽陰交番電解の処理に供する金属材に対して、 酸洗処理及ぴ水洗と、 アル力リ溶液による表面調整処理及び水洗とを行う。
導電性と耐食性を良好に確保した電解酸化皮膜を形成するためには、 上記の 電解酸ィヒ処理条件だけでは不十分な場合がある。 その理由は M g合金等の金属材 の性状や素性により電解反応が異なるためである。 従って、 より有利な電解酸ィ匕 反応を行うには、 金属材に適切な前処理を行い、 電解酸ィヒ処理に有利な表面状態 を確保することが望ましい。
前処理も含めた全体の電解酸ィ匕処理プロセスは、 一.般に知られているのと同 様に、 金属材の素材に対する 「脱脂→水洗—酸洗→水洗→スマット除去→水洗— 電解脱脂→水洗→乾燥」 の一連の工程で処理されるが、 この中で、 前処理である 酸洗とスマツト除去が、 電解酸化処理の前処理として重要な工程である。
導電性と耐食性に優れた電解酸化皮膜を形成するための下地処理用の酸洗処 理液としては後述する第 1 1発明の酸洗溶液が好ましい。
又、酸洗後の後工程で実施するスマツト除去はアルカリ溶液により処理する。 このアルカリ処理の目的は、 金属材の表面に生成しているスマツトゃ酸化膜を除 去すること以外に、 金属材の表面をアルカリ溶液によりエッチングすること、 ま た、 金属材の表面に電解酸ィ匕反応に有利な不動態化皮膜を形成することである。 このように、 アル力リ処理により、 電解酸ィ匕処理に有利な表面性状に改質できる 点や、 従来から行われている単なるスマット除去とは大きく異なる点から、 ここ では、 このアルカリ処理を表面調整処理と呼ぶこととする。
即ち、 表面調整処理においては、 M gや M g合金等の金属材の結晶粒度や結 晶方位、 及び M g合金等の合金成分に起因する表層組織の違いによる表層の局所 的な溶解性の差異を利用して、 合金成分の局所的な濃度変化をもたらすことが目 的である。 特に、 例えば A Z合金系では、 導電性に関与する A 1、 Z n、 Mn等 の金属成分はアルカリ溶液に対する溶解性が素地基板である M gと大きく異なる こと力、ら、 これらの合金成分は素地表面で局所的な濃度変化を生ずる。 このよう に、 表層において合金成分の局所的濃度のゆらぎがあること、 及び素地粒界の電 解反応に対する感受性が局所的に変化することに起因して、 その後に行う電解酸 化処理皮膜の導電性が大きく改善される効果がある。
特に、 導電性を確保し難い表面性状を有する M g合金素材おいて、 電解酸化 処理皮膜の導電性を高位に安定して確保するためには、 酸洗処理→アルカリ処理 の組合せによる表層組織を電解酸化処理に有利な表面状態に事前に処理しておく ことは極めて重要である。
このように、 前処理条件と電解酸ィ匕処理条件とを組み合わせることで、 表面 性状の異なる各種の M g合金に対して、 導電性と耐食性に優れた電解酸ィ匕膜を安 定して形成することができる。
(第 1 1発明)
本願の第 1 1発明においては、 前記第 1 0発明に係る酸洗処理を、 硫酸、 ス ルファミン酸、 硝酸、 リン酸、 弗化水素酸及び弗化水素アンモニゥムから選ばれ る 1種類以上の成分からなる酸洗溶液を用いて行う。
導電性と耐食性に優れた電解酸化皮膜を形成するための下地処理用の酸洗処 理液としては、 硫酸、 スルファミン酸、 硝酸、 リン酸、 沸化水素酸、 弗化水素ァ ンモニゥムから選ばれる少なくとも 1種類以上の成分からなる酸洗溶液で酸洗す ることが好ましい。
(第 1 2発明)
本願の第 1 2発明においては、 前記第 1 0発明又は第 1 1発明に係る酸洗処 理において、酸洗による金属材の溶解量を 3〜1 0 0 g Z d m2 の範囲内とする。
前記した前処理を行うにあたり、 酸洗による金属材の溶解量 (素地溶解量) を 3〜1 0 0 g / d m2 の範囲内とすることが望ましい。 素地溶解量がこれより 少な過ぎても、 多すぎても、 電解酸ィヒ皮膜の導電性と耐食性は劣化する可能性が ある。
即ち、 素地溶解量が少な過ぎると、 M g合金の酸ィ匕膜や離型剤などの汚れを 除去できない上に、 良好な導電性を確保できない恐れがある。 一方、 素地溶解量 が多すぎると、 部品の寸法精度を確保する上で不利となる上に、 アルカリ溶液に よるスマット除去が困難となり、 導電性が劣化する他、 外観品質も劣化する恐れ があり、 導電性を確保し難い表面状態となることが懸念される。
(第 1 3発明)
本願の第 1 3発明は、 第 1発明〜第 1 2発明のいずれかに係る電解酸化処理 方法により形成された電解酸化皮膜を有する電解酸化処理金属材である。
第 1 3発明の電解酸化処理金属材は、 本願発明の電解酸化処理方法により初 めて得られるものであり、 単一の処理工程で形成された単層皮膜により導電性と 耐食性を付与されているため、生産性が良く、従って安価に提供することができ、 かつ高位に安定した品質が確保される。
このような電解酸ィヒ処理金属材の原材料たる金属材としては、 プレス法、 チ クソモールド法、 ダイキャスト法、 切削加工法等の種々の方法で得られた各種用 途の金属成形体が例示される。 特に電磁波シールド性を考慮した場合には、 例え ばノートパソコン (ノートブックコンピュータ) の筐体や携帯電話の筐体等の成 形体が好ましく例示される。 これらの成形体は薄肉化やサイズの小型化と同時に 良好なアース性、 電磁波シールド性、 高い耐食性が要求されることから、 これら の用途の成形部品に本発明を適用することが、 実用的でメリットも大きい。
(第 1 4発明)
本願の第 1 4発明においては、 前記第 1 3発明に係る電解酸化処理金属材の 電解酸化皮膜の膜厚が 1〜 1 2 μ mの範囲内である。
電解酸化処理金属材の電解酸化皮膜の膜厚は、第 1 4発明に規定するように、 1〜12 μ πιの範囲内であることが好ましレ、。 この膜厚が 1 m未満であると、 導電 性や金属の質感等が向上する反面、 耐食性が不十分となる恐れがある。 この膜厚 が 12 t mを超えると、 高い耐食性が得られるが、 光沢等の概観が劣ィ匕する恐れが あり、 処理費用も徒に増大する。
(第 1 5発明)
本願の第 1 5発明においては、 前記第 1 3発明又は第 1 4発明に係る電解酸 化処理金属材がマグネシウム合金である。
上記の電解酸ィ匕処理金属材としては、 M g合金からなるものが、 とりわけ有 用性が高い。例えば、 M gを基材として添加する合金成分としては、 A 1、 Z n、 Mn、 C a、 S i、 Z rなどの他に、 A g、 C u、 更には S c , Y, C eなどの 希土類元素をあげることができる。
(第 1 6発明) '
本願の第 1 6発明においては、 前記第 1 5発明に係るマグネシウム合金が、 マグネシウムの組成比が、 9 7重量%又はそれ以下の合金である。 なお、 マグネ シゥムの組成比が 9 2重量%又はそれ以下の合金を、 より好ましく例示できる。
本発明の特有の効果は、 例えばマグネシウムの組成比が 9 7重量。/。又はそれ 以下である M g合金において有効に発揮される。 さらに好ましくは 9 2重量%又 はそれ以下の合金において、 特に顕著に発揮される。 なお、 第 1発明において前記したように、 特願 2 0 0 4— 1 9 3 7 4 2号に 係る電解酸化処理方法の発明との対比では、 マグネシゥムの組成比が 9 0重量% 又はそれ以下であるマグネシウム合金等のダイキャスト材に対しても、 導電性と 耐食性が良好な電解酸ィ匕皮膜を形成できる点を指摘することができる。
(第 1 7発明)
本願の第 1 7発明においては、 前記第 1 5発明又は第 1 '6発明に係るマグネ シゥム合金において、 M gを基材として添加される合金成分は、 アルミニウム 1 5重量%以下、 亜 #& 1 0重量%以下、 マンガン 5重量%以下である。
その他、 必要に応じて添加しうる合金成分は、 ジルコニウム 5重量%以下、 イットリウム 1 0重量%以下、希土類元素 1 0重量%以下、カルシウム 1 0重量% 以下、 鲖 5重量%以下、 銀 5重量%以下である。 これらの合金成分の 1種類また は 2種類以上を上記範囲で添加することができる。
本発明の電解酸化処理の対象としてとりわけ好適な M g合金として、 例えば 鎵造材である A Z 9 1 D系(アルミニウム 9重量0 /0、亜鉛 1重量0 /0、マンガン 0 . 1重量%及び残部が主としてマグネシウムからなる組成の合金) を例示すること ができる。 また、 展伸材である A Z 3 1 B系 (アルミニウム 3重量0 /0、 亜鉛 1重 量%、 マンガン 0 . 1 5重量0 /0およぴ残部が主としてマグネシゥムからなる糸且成 比の合金) をあげることができる。
(第 1 8発明)
本願の第 1 8発明においては、 前記第 1 5発明〜第.1 7発明のいずれかに係 るマグネシウム合金が、 鎵造材である場合においてはダイキャスト材、 チタソモ ールド材又は切削加工材であり、 前記マグネシゥム合金が展伸材である場合にお いては圧延法、 プレス法又は切削加工法により成形された加工材である。 ここに 「切削加工法により成形された加工材」 とは、 展伸材をプレス成形してから更に その部品の一部分を切削加工した加工材ゃ、 プレス加工の難しい部品を切削加工 により成形した加工材等を含む。 本発明の電解酸化処理の好適な対象である Mg合金として、 例えば铸造材の 場合には、 ダイキャスト材である Mg合金を例示することができる。 その他に、 例えば、 チクソモールド材ゃ切削加工などにより成形された加工材としての M g 合金をあげることができる。 また、 展伸材である場合には、 圧延、 プレス、 切削 加工等により成形された部品を例示することができる。
〔発明の実施形態〕
次に、 本発明を実施するための形態を、 その最良の形態を含めて説明する。 本発明の技術的範囲はこれらの実施形態によって限定されない。
(金属材)'
本発明の電解酸化処理方法の適用対象とする金属材は、 陽極酸化法により酸 化膜を形成できる金属からなる金属材である。 より好ましくは第 6発明に規定し た Mg、 A l、 T i、 Z r、 Hf、 Nb、 T a及ぴ Z nから選ばれるいずれかの 金属又はその合金である。 とりわけ好ましくは金属 Mg又は Mg合金である。
Mg合金の種類としては、 第 15発明〜第 18発明に記載したものを例示す ることができる。 例えば、 Mg—A 1— Zn系合金 (AZ 3.1 A、 AZ 31 B、 AZ 31 C、 AZ 61A、 AZ 80 A等) 、 Mg— A 1— Z r系合金 (ZK51 A、 ZK61 A、 ZK60等) 、 Mg—A 1— Mn系合金 (AMI 00 A等) 、 Mg— Mn系合金、 Mg_Al— S i系合金、 Mg—希土類元素系合金 (EZ 3 3A、 ZE41A、 QE22A等) 等が挙げられ、 特に Mg— A 1— Z n系合金 や Mg—A 1—Z r系合金が好ましい。
この他に、 金属 M g又は M g合金に必要に応じて添加される各種の合金元素 及び工業的生産において不可癖的に混入する各種の不純物元素が含まれる場合で も、 本発明を有効に適用できる。
(電解酸ィ匕処理の前処理)
本発明の電解酸化処理を金属材に適用する場合の全体的な工程は、基本的に、 脱脂—水洗→酸洗→水洗→表面調整処理→水洗→電解酸化処理→水洗→乾燥の各 工程からなる。 これらの工程において、 水洗処理は、 前工程で処理材料の表面に付着した薬 剤を洗浄除去し、 これらの次工程への持込みを抑制することが主な目的である。 従って、 水洗温度、 水洗時間および水洗回数は特に制約はなく、 目的を達成でき る条件を選定して行うことができる。 但し、 水洗中に処理材料の表面が酸化膜を 形成したり、 腐食ゃ鲭を発生したりしないように、 水洗水の温度、 p H、 水洗時 間、 水洗回数は適切に行うことが望ましい。 一般的には、 酸系処理の後には低い 温度で水洗し、 アル力リ系処理の後には高めの温度で水洗することがより効果的 である。 使用する水質としては、 水道水、 工業用水、 イオン交換水、 純水、 蒸留 水、 電解処理水など必要に応じて適用することができる。 また、 水洗方法として は、 浸漬、 流動、 攪拌、 スプレー、 噴射、 高圧噴射など、 水洗の目的を達成する ために、 工業的に採用されている種々の洗浄方式を適用できる。
電解酸化処理方法において、 皮膜の導電性と良好な耐食性を確保するには、 —連の前処理と電解酸ィ匕処理が重要である。 中でも、 導電性を確保し難い材料系 に対して処理する場合には、 脱脂処理は一般に市販されている薬剤を適用できる が、 その後工程である酸洗処理、 表面調整処理および電解酸化処理の各工程は、 本発明の処理条件で行うこと力 電解酸化皮膜の性能に特に熏要である。
酸洗処理は、 硫酸、 スルファミン酸、 硝酸、 弗化水素酸および弗化水素アン モニゥムから選ばれる少なくとも 1種類以上の成分からなる酸洗溶液で行うこと が望ましい。 これらの成分は、 1種類でも良いが、 導電性を'確保し難い材料の場 合には 2種類以上の成分からなる混酸で処理することが好まし!/、。混酸としては、 例えば 「硫酸 +硝酸」 、 「硫酸 +弗化水素酸」 、 「硫酸 +弗化水素酸 +弗化水素 アンモニゥム」 等を挙げることができる。 '
なお、 酸洗溶液中に、 上述した薬剤以外にアンモユウム塩などを添加するこ とも有効である。 アンモニゥム塩としては、 例えば、 硫酸アンモニゥム、 硝酸ァ ンモ-ゥム、 リン酸アンモ-ゥム等を必要に応じて適宜添加することも、 導電性 の良好な電解酸ィ匕膜を形成する上で有用である。
これら酸洗溶液の薬剤濃度、 処理温度、 処理時間は、 酸洗による金属材の溶 解量が 3〜1 0 0 g Zm2 の範囲になるように選択すれば良レ、。 伹し、 一般的に は、 酸濃度としては、 薬剤濃度の合計で、 3 g ZL〜2 0 0 g ZLの範囲、 処理 温度は 2 0〜9 5 ° Cの範囲、処理時間は 1秒〜 9 0秒の範囲が適当である。又、 酸洗処理においては、 浸漬、 流動、 攪拌、 スプレー、 高圧噴射などの方法を適用 することができる。
M g合金等の金属材の表面状態や組織状態によっては、 酸洗速度が大きく異 なったり、 スマットを発生し易かったりする。 従って、 上記の酸洗溶解量の範囲 を確保するために、 酸濃度、 処理温度、 処理時間を上記範囲内で適切に設定する 必要がある場合がある。 特に、 同 処理工程で各種の M g合金を処理する場合に は、 酸濃度や処理温度を統一して行える条件に設定しておいて、 処理時間のみで 溶解量を調節できるようにする等の工夫をすることが得策である。
上記の酸洗処理後に、 付着する酸洗溶液を水洗し、 次いでアルカリ溶液中で 金属材の表面調整処理を行う。 表面調整処理の目的は、 アルカリ溶液により酸洗 処理で生成したスマツトを除去するだけでなく、 金属材の表面を電解酸化処理に 適した表面性状とすることにある。
アル力リ処理によるこのような効果の発現機構は不明であるが、 M g合金を 例にとって説明すると、 そのアルカリ処理により、 表層においては M gだけでな く合金成分 (例えば A Z合金系では、 A l、 Z n、 Mn等) の一部も溶解する。 そしてアルカリ溶液に対する溶解性は成分毎に差異があることから、 表面におい てこれらの合金成分の濃度偏析が生ずる作用がある。 更にば、 M g合金の表面に おいて局所的な表面組織や結晶粒度、 結晶方位の違いに応じて、 アルカリ溶液中 で生成する不動態化皮膜を不均一化する作用があると考えられる。 このように、 アルカリ処理による作用が、 電解酸化処理において、 導電性を発現し易い表面状 態に変質させる効果があることから、 アルカリ処理を表面調整処理と名付けた。
表面調整処理としては、 N a OH、 KOH等を少なくとも 1種類以上含有す る溶液で処理する必要がある。 これらのアル力リ成分の含有量は合計濃度で 1 0 g Z L〜7 0 0 g / Lの範囲とすることが好ましい。 処理温度や処理時間は特に 限定する必要がないが、 一般的には、 処理温度は 4 0〜9 5 ° Cの範囲、 処理時 間は 3 0秒〜 1 0分の範囲で処理することで目的を達成できる。 伹し、 導電性を 確保し難い金属材の場合には、 より高濃度、 高温度、 長時間で処理することで改 善される。 例えば、 A Z 9 1 D系のチクソモールド材の場合には、 N a OH濃度 が 4 0 0 g ZL、 処理温度が 8 5 ° C、 処理時間が 3分の表面調整処理が効果的 である。
一般的に言えばアルカリ溶液の液濃度、 液温度、 処理時間の最適範囲は材料 毎に異なる。 従って、 同一工程で各種の金属材を大量に処理する場合には、 液濃 度と液温度を統一化できる条件とし、 材料毎に処理時間を最適範囲に変更して処 理すること力 S、 効率的生産の点で有利である。
アルカリ溶液による表面調整処理に引き続いて、 付着するアルカリ溶液を水 洗した後に、 ·電解酸化処理を行う。 この場合の水洗処理ではアル力リ溶液を効率 的に洗浄除去し、 力つ表面調整された M g合金等の金属材の表面を極力変質させ ないことが要求される。 そのため、 アルカリ処理と同一温度付近の温水で速やか に洗浄してから、 常温付近の温度で仕上げ水洗を行い、 電解処理工程に移行する ことが好ましい。
(電解酸ィ匕処理に用 ヽる電解液)
次に、電解酸ィ匕処理工程に用いるおける電解液組成としては、カリウム(K)、 ナトリウム (N a ) 及ぴリチウム (L i ) から選ばれる少なくとも 1種類のアル カリ金属の水酸化物を、 合計濃度 0 . 5〜6モル Z Lの範囲で含有させることが 望ましい。 より好ましくは、合計濃度が 2〜5モル/ Lの濃度範囲である。更に、 導電性や耐食性を確保し難レ、金属材に適用する場合には、 アル力リ金属の水酸化 物を 2種類以上組み合わせて添加することが、 より好ましい。 又、 一般的には、 N a OHと KOHを当モル混合とすることが、 より好ましい。
更に、 電解酸ィヒ処理の電解液は、 K、 N a及ぴ L iから選ばれる少なくとも 1種類のアル力リ金属のリン酸塩を、 合計濃度で 0 . 0 1〜 2モル ZLの範囲で 含有することが、 より安定した電解酸化皮膜を生成させるために好ましい。 とり わけ 0 . 0 3〜 1モル/ Lの範囲内の合計濃度が好ましい。 アル力リ金属のリン 酸塩としては、第一リン酸塩、第二リン酸塩、第三リン酸塩の他に、ポリリン酸、 ヘテロリン酸、 ウルトラリン酸等のアルカリ金属とのィ匕合物が挙げられる。 これ らの化合物を単独で、 又は 2種以上を混合して添加することもできる。
ί電解酸化処理)
電解酸化処理工程では、 それぞれ一定の時間的継続を以て、 金属材 (例えば M g合金材料) に通電端子により陽陰交番の電解を施す。 電解酸化処理条件に関 しては、第 2発明に関して説明したように、金属材を陽極とする陽電解において、 陽電流密度 0 . l〜2 0 AZ d m2 の範囲、 陽電解時間 2 5〜 5 0 0秒の範囲、 金属材を陰極とする陰電解において、陰電流密度 0 . 5〜2 0 AZ d m2 の範囲、 陰電解時間 1 0〜 5 0 0秒の範囲内で継続されることが望ましレ、。 更に、 前記の 第 9発明に関して説明したように饞陰交番電解の反復回数は特には限定しないが 1回〜 3 0回の範囲で充分である。
多くの M g合金材料は陽陰交番電解の反復回数とともに性能が飽和する傾向 にある。 又、 A 1濃度が高い M g合金材料では、 陽陰交番電解の反復回数を多く すると耐食性は改善されるが、 導電性が劣化する恐れがある。 このため M g合金 材料に関しては、陽陰交番電解の反復回数は、好ましくは 2〜: I 0回程度である。 ここで言う 「陽陰交番電解の反復回数」 とは、 陽電解→陰電解の順位が含まれる 回数を言う。 この順位の直前又は直後に陰電解又は陽電解を単独に付加すること も本発明の実施形態として有効であり得るが、 陽陰交番電解の反復回数としては カウントしない。
なお、 陽電解または陰電解は、 反復回数に関係なく電流密度を一定にして行 うこともでき、 又、 反復回数毎に電流密度を変化させても良い。 反復回数の増加 につれて、 電流密度の絶対値を増加させながら適用することもできる。 電解酸化 皮膜の性能を確保するためには、 一般的には、 反復回数に関係なく所定の一定電 流密度を負荷する力、 もしくは、 反復回数の増加につれて電流密度をやや高めに 設定しながら処理することが好ましい。 陽電解の電流密度に関しては、 前記した 第 2発明がその例である。
又、 陽電解および陰電解の各過程をそれぞれを電流密度が異なる 2段階以上 の継続的ステップに区分し、 2種類以上の電流密度で電解することも望ましい。 特に、 陽陰交番電解におけるそれぞれの陰電解過程を少なくとも 2種類の陰電流 密度で行うことは、 本発明の必須条件である。
なお、 陰電解過程を電流密度が異なる 2段階以上の継続的ステップに区分す るに当たり、 前段を高電流密度で、 引き続く後段を低電流密度で継続的に処理す ることが、 より好ましい。 陰電解の前段を高い電流密度と短い時間で処理し、 後 段を前段よりも低い電流密度と長い時間で処理することが、 更に好ましい。 この 方法により、 処理性が劣る材料においても、 良好な電解酸化皮膜を形成すること ができる。
陰電解過程を 2段階のステツプに区分する場合、 陰電解の前段の陰電流密度 を 0. 5〜2 OA/ dm2 の範囲内で、 かつその陰電解時間を 0. 5〜10秒の 範囲内とし、 引き続く陰電解の後段の陰電流密度を前段よりも低い電流密度かつ 前段より長い陰電解時間で行うことが望ましい。 陰電解過程を電流密度が異なる 3段階以上のステップに区分することも可能である。 その場合、 改善効果が飽和 する可能十生もある。
以後、 陰電解での電流密度を負符号で表す場合がある。 その場合、 陰電流密 度の高低は絶対値で比較され、 例えば 「一 8A/dm2 」 は 「一 3A/dm2 」 よりも高い電流密度を示す。 .
ここで、 チタソモールド法で製造された A Z 91 D材に対する好ましい陽陰 電解過程の一例を示す。 これは陽電解 3分、 陰電解 60秒の陽陰交番電解を 3回 反復して処理する場合の例である。 陽電解過程では、 第 1回目は 0. 3 A/dm2 X 3分、 第 2回目は 0. 4ΑΖ(1ιη2 Χ3分、 第 3回目は 0. 5A/dm2 X 3 分と、 回数ごとに陽電流密度を高くする。 一方の陰電角军は、 その各 1回ごとの過 程を電流密度 2区分で行い、 前段を高電流密度の一 1 OA/ dm2 X 3秒で、 後 段を低電流密度の一 2. 6 A/dm2 X 57秒で行う。 この場合には、 電解酸化 処理の合計の処理時間は 12分となる。 なお、 初回は、 定常電流密度まで 1分間 で昇電する。
陽電解過程も複数の電流密度に区分して適用することができるが、 一般的に は電解酸化皮膜の改善効果が小さいので得策ではない。 しかしながら、 材料の製 造履歴や表面性状によっては良好な電解酸化膜を得難い材料がある。 このような 場合には、陽電解の終末段階において、より高い電流密度で短時間処理してから、 引き続いて陰電解に移行することで、 電解酸化皮膜の性能を安定して良好に確保 できることがある。
酸ィ匕処理の陽電解に関しては、 むしろ反復回数の各回における電流密度を変 更することが、 より効果的であることが多い。 この場合には、 例えば、 初回を低 電流密度で行い、 第 2回目以降は初回より高い一定の電流密度に設定して行うこ ともできる。 前述の反復 3回処理の例示で説明したように、 '反復回数の増加につ れてより高レ、陽電流密度に増加させながら処理することが、 より好ましレ、。
このように、 陽電解過程または陰電解過程を 2段階以上のステップに区分し て複数の電流密度で処理する場合には、 区分した各過程の合計処理時間を、 陽電 解では 2 5〜 5 0 0少以内とし、 陰電解では 1 0〜 5 0 0秒以内とするのが好ま しい。
電解酸化処理において、 付与する電解波形に関しては、 特に限定されない。 例えば、 矩形波、 台形波、 正弦波、 三角波、 又はそれらを組み合わせた変則波形 を適用できる。 いずれの波形の組合せにおいても、 前述の電流密度と電解時間に より、 極性を反転し交番電解を反復して与えることができる。 1波形において、 最高電流値と平均電流値を同一にすることができる点では矩形波が最も好ましい。 矩形波は、 試料の電流密度を時間変化なく一定にできる点、 処理時間や通電量を 制御し易い点で有利である。
ところで、 初回の電流密度を設定する場合には、 電解液中での不動態化現象 により過剰の電圧や過大な電流が流れることがあるため、 電源装置の負荷を軽減 する目的から、 例えば上記の例示で示したように、 3〜6 0秒程度の時間をかけ て、 ゆつくりと所定の電流密度に上昇させることが有利である。
初回以降での陽 ·陰電解においては、 陽陰の各過程内で区分された電流密度 の変更や、 陽→陰または陰→陽の極性変換における電流密度の変化速度は特段に こだわる必要はない。 従って、 電源装置の能力範囲において設定電流値まで急速 上昇、 急速下降をさせることができるし、 電解酸化処理の所要時間にこだわらな いなら、 これらを所定の電流値まであえて緩除に昇降させることもできる。 初回の陽電解を除けば、 電流値の上昇や下降は急速である方が望ましい傾向 にあるが、 1秒以内又はミリ秒オーダーでも適用可能である。 電流値の上昇や下 降を緩除に行う場合には、 過剰に緩除であると電解酸化皮膜の性能を劣化させる 恐れがあるため、 一般的には 1 0秒以内に、 より好ましくは 5秒以内に所定の電 流値まで移行させることが好ましい。
次に、 電解酸ィ匕処理方法における電解液の温度は 2 0〜 8 0 ° Cの温度範囲 で処理することが好ましい。 電解液が 2 0 ° Cより低いと、 電解酸化皮膜の生成 やその耐食性に必ずしも有利ではない。 より好ましくは、 3 5 ° C以上である。 電解液の温度が 8 0° Cを超えると、 皮膜性能の改善効果が飽和し、 熱損失とな るので不利である。 4 0〜7 0° Cの温度範囲が、 経済的、 品質管理面、 液管理 面で特に有利となるため、 とりわけ好ましい。
以上において、 本発明の電解酸ィ匕処理方法を電流制御方法の観点から述べた が、 周知の電圧制御法 (電位制御法) による電解酸ィヒ処理も有効に適用できる。 しかしながら、 電流密度を直接的に制御できる面からは、 工業的には電流制御法 がやり易いといえる。
本発明は、 陽極酸ィ匕法により酸ィ匕膜を形成できる金属材.、 例えば M g合金等 に対して陽陰交番電解を反復処理することで、 導電性と耐食性を有する電解酸ィ匕 皮膜を形成するものである。 電解酸ィ匕皮膜がどのようにしてその機能を発現する かのメカニズムに関しては現時点で未だ不明である。 ここでは、 皮膜の生成する 特徴を踏まえて、 M g合金を例にとり、 第 1発明に関しても述べた機構を更に詳 しく推定する。
陽電解過程では、 M g合金の素地が溶解しながら、 M g (OH) 2 (水酸化マ グネシゥム) を主体とする酸化膜を形成する。 その際、 酸化皮膜中には、 例えば A Z合金系では A 1、 Z n、 Mnなどの合金成分のイオンが皮膜内に濃化する。 この状況で陰電解が施されると、 電気化学的な還元反応により、 M g (OH) 2の 一部が M g Oに還元され、 また皮膜内に濃化している合金成分イオンが金属状態 に還元されて皮膜内にトラップされることになる。 この結果、 陽電解と陰電解が 反復されることで、 電解酸化皮膜の一部が M g Oに転移し、 かつ皮膜内に合金成 分をトラップした状態で導電部位を形成するものと考えられる。 また、 M g合金 の表層は、 結晶方位や結晶粒径の異なる種々の結晶粒で構成されており、 かつ金 属間化合物も存在すること力 ら、 これらの存在により導電部位の形成が促進され るものと推定される。
なお、 陽陰交番電解において、 電流密度や電解時間に適性範囲があるのは、 反応界面の p Hを最適に制御することに関係すると考えられる。 即ち、 界面 p H に注目すると、陽電解過程では酸素発生反応を伴いながら p Hが低下する。一方、 陰電解においては、 水素発生反応あるいは酸素還元反応を伴いながら界面 p Hが 上昇することになる。
陽電角率過程において溶出した金属イオンを安定に界面に確保するには、 p H がある程度低いことが必要であり、 このことによって、 その後の陰電解過程で、 金属ィオンを導電性に有利な状態で還元できることになる。 但し、 p Hが下がり 過ぎると、 陽電解過程においては酸化膜の生成効率が低下するし、 陰電解過程で は水素イオンの還元反応が優先することになり、 それらの結果、 M g (O H) 2や 金属イオンの還元が起こり難くなるため、 皮膜の性能が低下する。
一方、 界面 p Hが高すぎると、 陽電解過程では、 水酸化物の形成が促進され るため、 溶出した金属イオンなどが水酸化物として固定され易くなる。 従って、 引き続く陰電解過程において導電性物質の生成が不十分となるため、 導電性が低 下して不禾 Uとなる。
このように、 電解酸化膜の生成と導電物質の形成において、 陽電解および陰 電解において、 それぞれ界面 p Hと合金成分濃度を望ましい範囲に確保した状態 で電解反応を進行させる必要があることから、 本発明に示した電解酸ィ匕処理条件 が必要となる。
前処理の効果、 特に酸洗処理や表面調整処理に関しては、 反応界面において 溶出する M gィオンや合金成分の不均一化な酸ィヒ一還元反応を生起させることや、 反応界面において局所的な濃度や界面 p Hのゆらぎを発生させることが重要であ ると考えられる。 これらのことにより、 導電部位の生成基点である核形成が行わ れ、 導電部位の成長が促進されると推定される。 このことは、 後述するように、 電解酸化皮膜の導電部位が、 素地まで達して レヽる状況で皮膜中に離散した状態で生成していることからも理解される。 即ち、 導電部位が分散構造的に生成していることが本発明の特徴であり、 反応界面にお ける局所的な濃度や p Hの分布状態、 すなわち電解反応場の濃度的なゆらぎ状態 が導電部位の生成に重要であることが認められる。
この点を確認するため、 A Z 9 1 Dの電解酸化処理において、 表面抵抗の低 Vヽ皮膜と高 V、皮膜とを比較して走査型電子顕微鏡により皮膜表面観察を行った。 その結果、 表面抵抗値の低レ、皮膜は A 1濃度の高い部位と低 、部位とが数 μ mの 領域で明瞭に分散して生成しているのに対して、 表面抵抗値の高い皮膜は A 1濃 度の分散が不明瞭か、 または分散領域が 1 m以下と細かいと言う特徴を確認し ている。 このように皮膜内における A 1濃度の分散と偏析は、 反応界面における 成分濃度のゆらぎの重要 1·生を示唆していると考える。
上述したように、 本発明により形成された導電部位は、 電解酸化皮膜中に分 散して存在する。 このため、 2端子法において 0 . 1 Ω程度と良好な表面抵抗値 を有する場合でも、先端径の小さい針状の接触探針 ( 0 . 3 7 R)で測定すると、 測定場所によっては表面抵抗値が測定できないか、 又は 1 以上の大きな抵抗 値を示すことがある。 このことは、 導電部位が電解酸化皮膜の表面において連続 的な皮膜として生成しているのではなく、 離散的に生成していることを想定させ る。 因みに、 硝酸銀系の水溶液めつき液において銀めつきを施したところ、 A g 粒子が数 i m〜数 1 0 μ πιの間隔で離散的に分散して電析することを確認した。 このことからも、 導電部位は皮膜表面において連続皮膜として生成しているので はなく、 数 m〜数 1 0 μ m程度の間隔でランダムに離散的に分散分布して生成 していることが裏付けられた。 このように微細な導電部位が電解酸化皮膜内に分 散して存在するが、 導電部位は表層から素地表面まで導通性を有する状態で生成 していることが特徴である。 このことが、 導電部位が微細でかつ分散構造であり ながら、 表面抵抗の小さい良好な導電性を示すものと推定される。
このような皮膜構造の導電性皮膜にぉレ、ても、 表面抵抗値 0 . 1 Ωを示す導 電性ィ匕成処理皮膜と同等の電磁波シールド性を示すことを確認したので、 以下に その結果を示す。
ネットワークアナライザー (HP8510B) を使用し、 マイクロストリツ プライン法により 1〜10 GHzの周波数領域で評価した。 S21パラメータ (透過 強度比 ZdB) で電磁波シールド性を比較評価した結果、 電解酸ィ匕皮膜と導電性ィ匕 成処理皮膜は同等の電磁波シールド性を示し、 周波数 4〜 6 GH z範囲の平均値 で比較するといずれも S 21 =— 15. 0 d Bと良好な値を示した。 なお、 比較の ために、 電磁波シールド用材料として代表的な金属材料の表面を測定した結果、 電解酸ィヒ皮膜の無い Mg合金では、· 一 16. O dB、 電解酸化皮膜の無い純銅板 (0. 8 mm厚) では一 16. 5 dBを示した。 なお、 本電解酸化皮膜の表層に 絶縁性の S 1 ]^を0. 2 の厚さでスパッタリング法によりコーティングして 測定したところ、 一 Ί . 0 d Bまで電磁波シールド性が低下した。
以上に述べた結果を踏まえて、 本発明に係る電解酸化皮膜のような導電部位 が離散的に分散した構造を有する導電性皮膜は、 金属材料自体の表面よりは劣る が、 導電性化成処理皮膜と同等の電磁波シールド性を有することを確認した。
このような構造の導電性皮膜の表面抵抗値を測定する方法としては、 一般的 に使用されている 0. 37 Rの半球端子では、 点接触のため安定した表面抵抗値 を測定できない恐れがある。 そのため、 面接触状態で測定できる 2 φ平面型の円 筒型接触端子を使用して測定することが望ましい。 また、 より好ましくは、 銅製 薄膜フィルムなど利用して 2mm角の接触端子を作成し、 端子の裏面をシリコン ゴム (3mm厚、 硬度 50度) などで補強した端子を使用するなど、 測定方法を 工夫することにより、 2端子法又は 4端子法でも安定して表面抵抗値を測定する ことができる。 このような接触端子を使用して測定すると、 加工した部品のよう に平坦部が少ない部品でも接触状態を良好に保持できること力 ら、 表面抵抗値を 再現性よく測定できる利点がある。
ところで、 電解液は必要に応じて、 上記した組成分以外の成分を含有するこ とができる。 例えば、 Zn、 Mn、 A l、 S i、 Sn、 Ca、 V等の金属イオン はもちろん、 これらの金属成分の酸素酸等の酸化物や水酸化物を適当量に添加す ることもできる。 但し、 水酸ィ匕物イオンを確保する意味から、 強酸性物質ではな く、 アルカリ金属との化合物やその塩類、 あるいは弱酸の塩、 中性物質、 アル力 リ性物質として添加することが好ましい。 その他に、 M g合金の陽極酸ィヒ処理液 に適用されている金属イオン成分や有機物質等も必要に応じて添加できる。 有機 物質としては、 例えばアルコール基、 カルボキシル基、 アミノ基を有する種々の 有機物を添加することができる。
また、 電解液は各種の M g合金の材料成分自体から混入する合金成分を含有 できる。 更に、 電解液は、 対照電極(カーボン電極、 白金電極、 ステンレス電極、 鉄系電極等の各種電極) 及ぴ電解槽やその配管系統から混入する不可避な各種の 不純物を、 イオン状態、 コロイド状態、 不溶性浮遊物質などの状態で含有するこ とができる。
特に、 M g合金を処理する際に、 電解液中に合金成分が溶解し混入すること は避けられないが、 むしろこれらの成分が混入した方が、 電解皮膜の性能が向上 または安定する効果もあることから好ましいといえる。
電解酸ィ匕皮膜の膜厚は、 第 1 5発明に関して前記した理由から 0 . 1〜: 1 2 ; u mの範囲が好ましく、 とりわけ 1〜8 μ ηιの範囲内であることが好ましレ、。 電解 酸化皮膜の膜厚は、 電解液組成、 温度、 電解酸化処理条件等の条件の他に、 M g 合金の表面性状や前処理条件によっても左右される。 材料種、 前処理、 電解液組 成、 電解酸化処理温度、 電解液の攪拌状況等が一定あれば、 陽電解と陰電解の電 流密度と電解時間を選択することで、 電解酸化皮膜の膜厚を制御できる。 これら の中で、 陽電角军の電流密度と陽電解時間の効果が最も大きく影響する。
通常の陽極酸ィ匕処理では、 陽極酸化皮膜の耐食性は膜厚が大きレヽ方が良好に なる傾向にあるが、 本発明の電解酸ィ匕皮膜では必ずしもその傾向にはない。 電解 酸ィ匕皮膜の耐食性は、 その結晶構造や、 電解酸化皮膜中に存在する成分の化学的 構造、 分布状態、 クラックやポアの存在状態等に大きく左右されるため、 複雑で ある。 しかしながら、 陽極酸ィ匕処皮膜と電解酸ィ匕皮膜との耐食性を同一膜厚で比 較すると電解酸化皮膜の方が良好である。 その理由は、 電解酸ィ匕皮膜が平滑 *緻 密であること、 その結晶構造が M g O主体であること、 電解酸化皮膜の結晶粒子 が微細であること、 電解酸化皮膜に存在するクラックやポアも極めて微細である こと、等によるものと推定される。本発明で示した一連の処理条件、即ち、脱脂、 酸洗、 表面調整処理、 電角军酸化処理、 各工程間の水洗処理等の処理条件を Mg合 金の表面状態に応じて本発明の適正範囲内に制御することにより、 電解酸化皮膜 に必要とされる膜厚、 導電性、 耐食性を良好に確保することができる。
本発明で得られた電解酸ィヒ皮膜に対しては、 必要に応じて封孔処理や着色処 理等も適用できる。 封孔処理では、 導電性を損なうことなく耐食性を向上させる ことができる。 着色処理では、 導電性や耐食性を劣化させることなく各種の色調 を電解酸化皮膜に付与することができる。
封孔処理や着色処理の方法は、 M g合金や A 1合金等の金属材料に対する陽 極酸ィヒ処理に行われている従来の方法を有効に適用できる利点がある。
〔実施例〕
次に、本発明の実施例を比較例及び参考例と共に説明する。これらの実施例、 比較例、 参考例は、 本発明の技術的範囲を限定するものではない。
(参考例)
最初に、 参考例として、 前記した特願 2004-193742号に開示され た発明に係る実施例、 比較例の記載と、 その評価結果の記載の要点を述べる。
この参考例においては、 試料たる金属材としてマグネシウム合金 AZ 31 B (A 1 : 3重量%、 Zn : 1重量%、 Mg : 96重量%) の圧延板 (サイズ:幅 5 OmmX長さ 12 OmmX厚さ 0. 7mm) を使用した。
そして、 前処理として適宜な脱脂処理、 水洗、 酸洗、 水洗等を行った後、 前処理 後の試料を電解酸ィ匕処理に供した。
電解酸化処理の電解条件として、 電解条件 Aを、 「2AZdm2 の電流密度 での陽電解を 180秒間行い、 次に 2AZdm2 の電流密度での陰電解を 60秒 間行う陽陰交番電解サイクルを、 3回繰り返して行う」 と言う内容に設定した。 又、 電解条件 Bを、 「2AZdm2 の電流密度での陽電解を 600秒間行う」 と 言う内容に設定した。 電解酸ィ匕処理用の電解液としては、 それぞれ適宜な濃度に 調整した N a OH又は KOHを用い、 あるいは両者の混合液を用い、 かつ一定の 例においては第一、 第二又は第三リン酸ナトリゥムをそれぞれ特定の濃度で添加 した。 更に、 電解時の温度は、 2 5° C〜8 5 ° Cの範囲で適宜に設定した。
以上のいずれかの電解条件、 電解液の組成及び電解温度の組み合わせに係る 電解酸ィ匕処理に供した試料の酸ィ匕皮膜について、 所定の方法で導電性と耐食性を 評価した。 その結果、 導電性に関しては電解条件 Aで電解酸化処理を行った試料 はいずれも表面抵抗値が 1 πι Ω以下であり、 電解条件 Βで電解酸ィ匕処理を行った 試料は表面抵抗値が Ι ηι Ωを超えていた。 耐食性に関しては湿潤箱 (5 0° C) にて 3日間経時して発鲭状況を評価する方法によったが、 基本的に、 N a OH/ KOH混合液にリン酸ナトリゥムを添カ卩した電解液を使用した電解酸化処理例が 高い耐食性を示した。
(実施例 A)
本発明の実施例 Aとして、 特願 2 0 0 4— 1 9 3 7 4 2号に 「実施例 1」 と して記載された例と対比して、 電解酸化処理の電解条件のみが異なる実施例を行 つた。 その詳細は以下の通りである。
試料たる金属材としてマグネシウム合金 A Z 3 1 Bの圧延板 (サイズ:幅 5 O mm X長さ 1 2 O mm X厚さ 0 . 7 mm) を使用した。 この金属材に対して、 前処理として溶剤脱脂を行った。 溶剤脱脂の処理内容としては、 ノルマルへキサ ンに浸潰し、 超音波洗浄を 3 0分間実施した後、 アルカリ脱脂を行い、 水洗した 後に酸洗し、 更に水洗した後に活性ィ匕処理を行い、 水洗と純水洗浄を行った。
以上の前処理後の試料を縦向きに保持し下端部 8 0 mmを電解液に浸漬した 状態で電解酸化処理に供した。 電解温度は 6 0 ° Cであり、 電解液は N a O Hを 2. 2モル ZL、 KO Hを 2 . 2モル ZL及び第三リン酸 N aを 0 . 1モル/ L 含む電解液である。
電解酸化処理の電解条件は、 前記の電解条件 Aとは異なり、 次の電解条件 C である。
電解条件 C :陽電解 3分、 陰電解 6 0秒の陽陰交番電解を、 4回反復する。 陽電解過程では第 1回目は 0 · SAZdin2 X 3分、 第 2回目は 2A,dm2 X 3分、 第 3回目は 2AZdm2 X3分、 第 4回目は 2 A/ d m2X 3分とする。 陰 電解は、 その各 1回ごとの過程を電流密度 2区分で行い、 前段を高電流密度の— 4 A/dm2 X 3秒で、 後段を低電流密度の一 2 A/ dm2 X 57秒で行う。
電解酸化処理は、 電流走査電解法 (北斗電工製 HA3210A型、 関数発生器 HB105 型使用) によった。 具体的には、 矩形波により所定の電流密度と電解時間で電解 酸化処理を行なった後、 水洗してからドライヤーにて表面に付着する水分を除去 した。 更に、 加熱炉 (95° C) にて 10分間加熱乾燥してから、 室内にて放冷 した。 なお、 初回の通電開始時は、 40秒間で所定の電流密度まで上昇させた。
評価項目として、 導電性と耐食性を評価した。 導電性に関しては、 三菱化学 製ロレスタ (MCP-T360、 四端子四探針法、 触針径 2 φ) にて、 表面抵抗値を測定 した。 なお、 ここでは、 加工部品のために平坦性が劣る場合にも比較的に再現性 良く測定できるように工夫した接触端子を使用して、 電子機器用途で表面抵抗値 の測定試験方法として利用されている 2端子法により測定した。 接触端子として は、 銅箔粘着テープ (7 C im厚) を使用し、 シリコンゴム (2 mm厚、 硬度 5 0度) で銅箔の裏面を補強したものを利用した。 端子の接触部の面積は 2 mm X 2mmの正方形.とした状態で、 試料表面に接触させて 2端子法での表面抵抗値を 計測した。 なお、 2端子間の距離 (中央部で計測) は 7mmである。
表面抵抗値の評価としては、 0. 2 Ω以下の抵抗値を 5点、 0. 2Ωを超え るが 0. 4 Ω以下の抵抗値を 4点、 0. 4 Ωを超えるが 0. 7 Ω以下の抵抗値を 3点、 0. 7 Ωを超えるが 1. 2 Ω以下の抵抗値を 2点、 1. 2 Ωより大きい表 面抵抗値を全て 1点として評価する。 - 又、 耐食性に関しては、 湿潤箱 (50° C) にて 3日間経時して発鲭状況を 1〜 5の 5段階で相対評価した。 数字が大きいほど耐食性が良好である。
その結果、 実施例 Aの評価結果は、 導電性、 耐食性ともに評価点が 「5」 で あり、 特願 2004- 193742号に 「実施例 1」 として記載された例と同等 の評価結果であった。 (実施例 B— 1)
本発明の実施例 B— 1として、マグネシウム合金 AZ 91 D (A 1: 9重量0 /0、 Z n : 1重量%、 Mg : 90重量0 /0) のダイカスト板 (サイズ:幅 50mm X長 さ 120 mm X厚さ 3 mm) を試料とした実施例を行った。
電解処理条件としては、 前記した電解条件 Bの例と、 電解条件 Aの例と、 下 記の電解条件 Dの例とをそれぞれ行つた。
電解条件 Dは、 次の通りである。 即ち、 陽電解 3分、 陰電解 60秒の陽陰交 番電解を 3回反復する。 陽電解過程では、 第 1回目は 0. 3AZdm2 X 3分、 第 2回目は 0. 4A/dm2 X 3分、第 3回目は 0. 5A/dm2 X 3分とする。 陰電解は、 その各 1回ごとの過程を電流密度 2区分で行い、 煎段を高電流密度の 一 l OAZdm2 X 3秒で、 後段を低電流密度の一 2. 6 A/dm2 X 57秒で 行う。
いずれの例も、 試料と電解条件とを除いては、 実施例 Aと同じ条件で同様に 行い、 かつ同様に評価した。
その結果、 いずれの例も耐食性の評価点が 「5」 であった。 し力 し、 導電性 に関しては、電解条件 Bの例の評価点が「1」、電解条件 Aの例の評価点が「3」、 電解条件 Dの例 評価点が 「5」 となり、 互いに有意な差異が認められた。
(実施例 B— 2)
本発明の実施例 B— 2として、 上記の実施例 B— 1の場合と同じマグネシゥ ム合金 AZ 91Dのダイカスト板を試料とするが、 実施例 B— 1の場合と比較し て前処理の内容、 電解液の内容、 電解酸化処理の電角军条件の内容が異なる実施例 を行った。 これらの例は、 以上の点を除いては、 実施例 Aと同じ条件で同様に行 レ、、 力つ同様に評価した。
これらの内容及び評価結果を下記の表 1に示す。 表 1において、 「陽電流密 度 (パターン) 」 の欄で例えば 「3— 5— 6」 とある記載は、 反復する各陽電解 の電流密度を示す。 各数字は、 初回一 2回目一 3回目の陽電流密度の値 (m A/ c m2) を意味する。 又、 表 1において、 「陰電流密度 (前段一後段) 」 の欄で例え ば「1 10— 23」とある記載は、陰電解の前段階を一 11 OmAZcm2 で行い、 陰電解の後段階を一 23 mAZ cm2 で行ったことを示す。 なお、 言うまでもな く、 ImA/cm2 は 0. lA/dm 2に等しい。
[表 1]
Figure imgf000033_0001
上記の表 1の各実施例において、 酸洗液の組成において実施例に示した各薬 剤の濃度は、 それぞれ、 硫酸が 80 g/ l、 HFが 4 g/ l、 硝酸が 5 g / 1、 弗化水素アンモユウムが 3 g/1となるように混合している。 次に、 表面調整処 理に用いた表面調整液の組成は、 苛 1"生ソーダ 200 1とした。 又、 表 1にお いて 「電解反復回数」 とは、 電解酸化処理における陽電解一陰電解の反復回数を 示す。 更に、 電解開始時は、 35秒間で所定の電流密度まで一定速度で上昇させ た。 電解処理時間は、 各回とも陽電解 3分、 陰電解は前段が' 3秒、 後段が 57秒 とした。 ·
〔産業上の利用分野〕
本発明により、 各種の用途を有する Mg合金等の金属材に対して、 単一の処 理工程で、 有効な導電性と耐食性を有する単層の表面処理皮膜を簡便に形成させ る手段が提供される。 本処理法を適用して製造された電解酸化皮膜を有する Mg 合金等の金属材は、 電子機器製品などの用途で、 電磁波シールド用筐体あるいは アース性を必要とされる各種部品において、 導電性と耐食性を有効に発揮する表 面処理製品として利用できる。

Claims

請 求 の 範 囲
1 . 陽極酸ィヒ法により酸化膜を形成できる金属からなる金属材に対して、 ァ ルカリ金属の水酸ィヒ物を含有する電解液中で、それぞれ一定の時間的継続を以て、 前記金属材を陽極とする陽電解過程と、 前記金属材を陰極とする陰電解過程とを 行う陽陰交番電解を反復処理することにより、 前記金属材の表面に導電性と耐食 性を有する電解酸化皮膜を形成させる電解酸ィ匕処理方法において、
前記陽陰交番電解における 1回又は 2回以上の陰電解過程のそれぞれを陰電 流密度が異なる 2段階以上の継続的ステップで行う電解酸化処理方法。
2 . 前記陽陰交番電解において、 陽電解過程は 0 . l〜2 0 A/ d m2 の範 囲内の陽電流密度及び 2 5〜5 0 0秒の範囲内の電解時間で行い、 陰電解過程は 0 . 5〜2 O A/ d m2 の範囲内の陰電流密度及ぴ 1 0〜5 0 0秒の範囲内の電 解時間で行う請求の範囲 1項に記載の電解酸化処理方法。
3 . 前記陰電解過程における 2段階以上のステップにおいて、 前段階のステ ップを相対的に高電流密度で行い、 後段階のステップを相対的に低電流密度で行 う請求の範囲 1項又は 2項に記載の電解酸化処理方法。
4 . 前記陰電解過程における 2段階以上のステップにおいて、 前段階のステ ップを相対的に高電流密度でかつ短い継続時間で行い、 後段階のステップを相対 的に低電流密度でかつ長い,継続時間で行う請求の範囲 1項〜 3項のいずれかに記 載の電解酸化処理方法。
5 . 前記陰電解過程をそれぞれ陰電流密度が異なる 2段階の継続的ステップ で行う場合において、 第 1段階のステップを 1〜2 O A/ d m2 の範囲内の陰電 流密度及ぴ 0 . 5〜1 0秒の範囲内の継続時間で行い、 引き続き第 2段階のステ ップを第 1段階のステップよりも低電流密度でかつ長い継続時間で行う請求の範 囲 1項〜 4項のいずれかに記載の電解酸化処理方法。
6. 前記金属材が、 マグネシウム (Mg) 、 アルミニウム (A 1) 、 チタン (T i) 、 ジノレコニゥム (Z r) 、 ハフニウム (Hf ) 、 ニオブ (Nb) 、 タン タル (Ta) 及び亜鉛 (Zn) 力 ^選ばれるいずれかの金属又はその合金からな る請求の範囲 1項〜 5項のいずれかに記載の電解酸ィヒ処理方法。
7. 前記電解液がカリウム (K) 、 ナトリウム (N a) 及ぴリチウム (L i) から選ばれる少なくとも 1種類のアル力リ金属の水酸化物を合計濃度 0. 5〜 6 モル/ Lの範囲内で含有する請求の範囲 1項〜 6項のいずれに記載の電解酸化処 理方法。
8. 前記電解液が、 更に K、 N a及び L iから選ばれる少なくとも 1種類の アル力リ金属のリン酸塩を合計濃度 0. 01〜 2モル ZLの範囲内で含有する請 求の範囲 1項〜 7項のいずれかに記載の電解酸化処理方法。
9. 前記陽陰交番電解において 2回以上の陽電解過程を行い、 かつ後の陽電 解過程に至るほど高レ、陽電流密度で行う請求の範囲 1項〜 8項のいずれかに記载 の電解酸化処理方法。
10. 前記電解酸化用前処理方法の前処理として、 陽陰交番電解の処理に供 する金属材に対して、 酸洗処理及び水洗と、 アルカリ溶液による表面調整処理及 び水洗とを行う請求の範囲 1項〜 9項のいずれかに記載の電解酸ィヒ処理方法。
11. 前記酸洗処理を、 硫酸、 スルファミン酸、 硝酸、 リン酸、 弗化水素酸 及び弗化水素ァンモニゥムから選ばれる 1種類以上の成分からなる酸洗溶液を用 Vヽて行う請求の範囲 10項に記載の電解酸化処理方法。
1 2 .前記酸洗処理において酸洗による金属材の溶解量を 3〜1 0 0 g Zm 2 の範囲内とする請求の範囲 1 0項又は 1 1項に記載の電解酸化処理方法。
1 3 . 請求の範囲 1項〜 1 2項のいずれかに記載の電解酸化処理方法により 形成された電解酸化皮膜を有する電解酸化処理金属材。
1 4 . 前記電解酸ィ匕処理金属材の電解酸化皮膜の膜厚が 1〜: 1 2 mの範囲 内である請求の範囲 1 3項に記載の電解酸化処理金属材。
1 5 . 前記電解酸化処理金属材がマグネシウム合金である請求の範囲 1 3項 又は 1 4項に記載の電解酸ィヒ処理金属材。
1 6 . 前記マグネシウム合金が、 マグネシウムの,袓成比が 9 7重量%又はそ れ以下の合金である請求の範囲 1 5項に記載の電解酸化処理金属材。
1 7 . 前記マグネシウム合金において、 M gを基材として添カ卩される合金成 分が、 M gを基材として添カ卩される合金成分は、 アルミニウム 1 5重量%以下、 亜鈴 1 0重量%以下、 マンガン 5重量%以下である請求の範囲 1 5項又は 1 6項 に記載の電解酸化処理金属材。
1 8 . 前記マグネシウム合金が、 鍚造材である場合においてはダイキャスト 材、 チクソモールド材又は切削加工材であり、 前記マグネシウム合金が展伸材で ある場合においては圧延法、 プレス法又は切削加工法により成形された加工材で ある請求の範囲 1 5項〜 1 7項のいずれかに記載の電解酸ィ匕処理金属材。
PCT/JP2007/053346 2007-02-16 2007-02-16 電解酸化処理方法及び電解酸化処理金属材 WO2008099513A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008557969A JP5199892B2 (ja) 2007-02-16 2007-02-16 電解酸化処理方法及び電解酸化処理金属材
PCT/JP2007/053346 WO2008099513A1 (ja) 2007-02-16 2007-02-16 電解酸化処理方法及び電解酸化処理金属材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/053346 WO2008099513A1 (ja) 2007-02-16 2007-02-16 電解酸化処理方法及び電解酸化処理金属材

Publications (1)

Publication Number Publication Date
WO2008099513A1 true WO2008099513A1 (ja) 2008-08-21

Family

ID=39689772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053346 WO2008099513A1 (ja) 2007-02-16 2007-02-16 電解酸化処理方法及び電解酸化処理金属材

Country Status (2)

Country Link
JP (1) JP5199892B2 (ja)
WO (1) WO2008099513A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104762619A (zh) * 2015-04-02 2015-07-08 长沙南方钽铌有限责任公司 一种亚光钽卷带材的制备方法
JP2015147954A (ja) * 2014-02-05 2015-08-20 国立大学法人 新潟大学 メソポーラス酸化ニオブの製造方法、及び製造装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109894B (zh) * 2014-07-18 2016-06-01 郑州轻工业学院 镁合金复合表面防护处理设备及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372744A (en) * 1976-12-11 1978-06-28 Nippon Aluminium Mfg Electrolytic coloring method of aluminium or its alloy
JP2006016647A (ja) * 2004-06-30 2006-01-19 Sugimura Kagaku Kogyo Kk 電解酸化処理方法及び電解酸化処理金属材

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033398A (ja) * 1983-08-04 1985-02-20 Fuji Photo Film Co Ltd 電解処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372744A (en) * 1976-12-11 1978-06-28 Nippon Aluminium Mfg Electrolytic coloring method of aluminium or its alloy
JP2006016647A (ja) * 2004-06-30 2006-01-19 Sugimura Kagaku Kogyo Kk 電解酸化処理方法及び電解酸化処理金属材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147954A (ja) * 2014-02-05 2015-08-20 国立大学法人 新潟大学 メソポーラス酸化ニオブの製造方法、及び製造装置
CN104762619A (zh) * 2015-04-02 2015-07-08 长沙南方钽铌有限责任公司 一种亚光钽卷带材的制备方法

Also Published As

Publication number Publication date
JP5199892B2 (ja) 2013-05-15
JPWO2008099513A1 (ja) 2010-05-27

Similar Documents

Publication Publication Date Title
CN1044307A (zh) 导电材料制品的电化学处理方法
CN106884191B (zh) 一种用于微弧氧化的电解液、微弧氧化方法及应用
CN107313080B (zh) 钕铁硼产品直接电镀铜的电镀液、制备方法及电镀方法
WO2001021855A1 (en) Removal of metal oxide scale from metal products
KR20000011380A (ko) 강선에인산염피막을형성하기위한방법및그것에사용된장치
CN105349971A (zh) 一种铝合金表面改性工艺
JP4736084B2 (ja) マグネシウム又はマグネシウム合金からなる製品の製造方法
CN1230575C (zh) 不锈钢丝连续镀镍方法
JP5199892B2 (ja) 電解酸化処理方法及び電解酸化処理金属材
CN113201738B (zh) 一种选择性激光熔化AlSi10Mg成形工件的电化学表面处理方法
JP4264036B2 (ja) 電解酸化処理方法及び電解酸化処理金属材
JPWO2019098378A1 (ja) 黒色酸化被膜を備えるマグネシウム又はアルミニウム金属部材及びその製造方法
CN111619171B (zh) 金属制品及其制备方法和金属复合体及其制备方法
WO2002028838A2 (en) Magnesium anodisation system and methods
CN105239122B (zh) 一种碳钢螺栓电镀预处理方法
US5645706A (en) Phosphate chemical treatment method
US2578898A (en) Electrolytic removal of metallic coatings from various base metals
KR100489640B1 (ko) 양극산화처리용 전해질 용액 및 이를 이용하는 마그네슘합금의 내부식 코팅 방법
JP5292195B2 (ja) マグネシウム合金へのすずめっき方法及びマグネシウム合金のエッチング液
CN101565850A (zh) 一种氮化铬膜层的退除液及该膜层的退除方法
TWI802731B (zh) 適於從電解池的電解質溶液電鍍或電澱積金屬用之電極及其製法,以及從電解質溶液電鍍或電澱積金屬用之未分隔電解池,和從電解質溶液電鍍或電澱積金屬之製法
JP6081224B2 (ja) 表面処理鋼板の製造方法
CA2112592C (en) Phosphate chemical treatment method
CA2458305A1 (en) Electrolytic method of and compositions for stripping electroless nickel
KR100232293B1 (ko) 알루미늄 전해 콘덴서용 전극박의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737335

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008557969

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737335

Country of ref document: EP

Kind code of ref document: A1