WO2008095621A1 - Russ-gefüllte polyurethane mit hoher dielektrizitätskonstante und durchschlagfestigkeit - Google Patents

Russ-gefüllte polyurethane mit hoher dielektrizitätskonstante und durchschlagfestigkeit Download PDF

Info

Publication number
WO2008095621A1
WO2008095621A1 PCT/EP2008/000623 EP2008000623W WO2008095621A1 WO 2008095621 A1 WO2008095621 A1 WO 2008095621A1 EP 2008000623 W EP2008000623 W EP 2008000623W WO 2008095621 A1 WO2008095621 A1 WO 2008095621A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethanes
carbon black
prepared
dielectric
polyurethane
Prior art date
Application number
PCT/EP2008/000623
Other languages
English (en)
French (fr)
Inventor
Werner Jenninger
Burkhard KÖHLER
Joachim Wagner
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to DK08707329.2T priority Critical patent/DK2118190T3/da
Priority to BRPI0807162-4A priority patent/BRPI0807162A2/pt
Priority to CA002677393A priority patent/CA2677393A1/en
Priority to CN2008800042191A priority patent/CN101605845B/zh
Priority to JP2009548602A priority patent/JP2010518200A/ja
Priority to EP08707329A priority patent/EP2118190B1/de
Priority to AT08707329T priority patent/ATE537214T1/de
Priority to ES08707329T priority patent/ES2377237T3/es
Publication of WO2008095621A1 publication Critical patent/WO2008095621A1/de
Priority to IL199801A priority patent/IL199801A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4866Polyethers having a low unsaturation value
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon

Definitions

  • the invention relates to carbon black-filled, preferably soft polyurethanes, which are distinguished by a high dielectric constant and dielectric strength, and are composed of polyalkylene oxides.
  • Conductive carbon black filled high modulus polyurethanes are described by Novak in European Polymer Journal (2004) 40 (7), 1417-1422. However, electrically conductive compounds are ruled out for use as a dielectric.
  • the known polyurethane mixtures show percolation even at a low soot content of 0.7%, whereby the conductivity increases over a wide range to more than 10% carbon black content and is strongly influenced by the action of gases and solvent vapors. This behavior makes them suitable for use as gas sensors but less suitable as a dielectric.
  • US 2006096694-A describes non-conductive adhesives with high dielectric constant but high modulus caused by contained polyester polyols. However, for some specific applications, low-modulus compounds are desirable.
  • Dielectric constant and electrical breakdown strength distinguished. Comparable compounds whose polyurethanes are polyalkylene oxides produced by alkali metal hydroxide catalysis produced or contain poly-THF, do not reach the dielectric strength of the new compounds at a given dielectric constant.
  • the invention relates to soot-filled polyurethane compositions at least consisting of
  • polyol components a) used in the novel polyurethanes are the polyols described in WO 97/29146, EP-A 700 949 and EP-A 761 708. These are polyalkylene oxides which are accessible by ring-opening polymerization of epoxides, using 85-100%, preferably 100%, propylene oxide and the remainder being butylene oxide, hexene oxide, vinyl oxirane, allyl glycidyl ether, butyl glycidyl ether, ethylhexyl glycidyl ether, epichlorohydrin, ethylene oxide, phenyl glycidyl ether or cresyl glycidyl ether can exist.
  • DMC double metal cyanide complexes
  • Zinc hexacyanocobaltate used as the catalyst.
  • the advantageous use of such polyalkylene oxides in polyurethanes has been described in US 6825376 and US 2004067315, but the higher selectivity of such polyols in the reaction with isocyanate was crucial for the desired application.
  • the molar mass (number average Mn) of the polyol components a) incorporated in the PU mixtures used according to the invention is preferably 1000-14000 g / mol, in particular preferably 1500-8500 g / mol.
  • the functionality is preferably 2-6, in particular preferably 2.
  • polyol component b) are preferably ethylene glycol, diethylene glycol, triethylene glycol,
  • Tetraethylene glycol Tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol,
  • TMP neopentyl glycol, pentaerythritol, cyclohexanedimethanol, butylene glycol, castor oil, dehydrated castor oil, hydrogenated castor oil, dimerdiol, hexanediol, decanediol, dodecanediol, hydroxy-functional oligobutadiene, hydrogenated hydroxy-functional oligobutadiene, glycerol or TMP monoallyl ether used.
  • the preparation of the polyurethanes A) is preferably carried out by reaction of the polyol components a) and optionally b) with 1.0-1.1 equivalents of polyisocyanates at a temperature of 15-120 0 C, preferably 18 - 80 0 C in the presence or absence Catalyst of the NCO-OH reaction, such as tin compounds or amines.
  • the mixture of the components a), optionally b), polyisocyanate and B) takes place in particular in suitable mixing devices, which can enter a high shear energy such as in the speed mixer, and possibly by additional action of ultrasound.
  • Preferred polyisocyanates are those from the following series: HDI, trimethyl-HDI, IPDI, dodecahydro-MDI, norbornane diisocyanate, bisisocyanatomethylcyclohexane, bisisocyanatomethylbenzene, TMXDI, 2,4-TDI or 2,6-TDI or mixtures thereof, 2,2- MDI, 2,4-MDI or 4,4-MDI or mixtures thereof, 3-nuclear or oligo-MDI-containing MDI types, aliphatic isocyanates being preferred, di-containing carbodiimides or 4- or 6-membered heterocycles - or trimers of said diisocyanates whose adducts to low molecular weight polyols, such as TMP, diethylglycol or dipropylene glycol, their urethane or allophanate prepolymers to polyols corresponding to the above-described component a).
  • allophanate prepolymers as described in US 2005222365, wherein in a preferred embodiment as polyols polyalkylene oxides are used which correspond to the above-described component a).
  • n is a number from 30 to 38.
  • Carbon blacks of component B) are, in particular, finely dispersed types of carbon black, as can be obtained commercially, for example, from Degussa AG. Soot types having an average particle size of at most 1 ⁇ m, preferably at most 100 nm and particularly preferably at most 50 nm are used to advantage.
  • the carbon blacks should preferably have a large BET surface area at the same time, the BET surface area being greater than 250 mVg, preferably greater than 500 m 2 / g, and more preferably greater than 900 rriVg.
  • the carbon black-filled polyurethanes according to the invention can be used as a dielectric in energy converters from mechanical to electrical and from electrical to mechanical energy. Such energy converters are described, for example, in US Pat. No. 6,343,129.
  • Example 1 comparative example
  • reaction paste is poured onto a glass plate and drawn with a squeegee of wet thickness 500 microns to a homogeneous film of solids content 2%.
  • the film is then annealed at 8O 0 C for 16 h.
  • the advantage of the polyurethane compositions according to the invention is manifested in the significantly higher dielectric constant and a significantly lower volume conductivity with significantly higher breakdown field strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

Die Erfindung betrifft Ruß-gefüllte Polyurethane, die sich durch eine hohe Dielektrizitätskonstante und Durchschlagsfestigkeit auszeichnen, und aus Polyalkylenoxiden, die durch DMC-Katalyse hergestellt wurden, aufgebaut sind.

Description

Ruß-gefüllte Polyurethane mit hoher Dielektrizitätskonstante und Durchschlagsfestigkeit
Die Erfindung betrifft Ruß-gefüllte, vorzugsweise weiche Polyurethane, die sich durch eine hohe Dielektrizitätskonstante und Durchschlagsfestigkeit auszeichnen, und aus Polyalkylenoxiden, aufgebaut sind.
Es bestand die Aufgabe, Polyurethan-Compounds mit hoher Dielektrizitätskonstante und hoher elektrischer Durchschlagsfestigkeit bereitzustellen, die z.B. als Dielektrikum in Kondensatoren von Interesse sind.
Leitfähige Ruß-gefüllte Polyurethane mit hohem Modul werden von Novak in European Polymer Journal (2004) 40 (7), 1417-1422 beschrieben. Elektrisch leitfahige Compounds scheiden aber zur Verwendung als Dielektrikum aus.
In verschiedenen Literaturstellen werden Compounds, hergestellt aus Ruß und wässrigen Polyurethandispersionen, beschrieben: Material Letters (2004) 58 (27-28), 3606-3609; Chinese Chemical Letters (2004) 15 (8), 1001-1004; Sensors and Actuators, B:Chemical (2005) B105 (2), 187-193.
Die bekannten Polyurethanmischungen zeigen schon bei geringem Ruß-Gehalt von 0,7% eine Perkolation, wobei die Leitfähigkeit über einen breiten Bereich bis über 10% Ruß-Gehalt ansteigt und stark von der Einwirkung von Gasen und Lösungsmitteldämpfen beeinflusst wird. Dieses Verhalten macht sie geeignet für die Anwendung als Gas-Sensoren aber weniger geeignet als Dielektrikum.
Altafim beschreibt in Materials Research (2003) 6 (2), 187-191 Ruß-gefύllte Polyurethane, die als Polyolkomponente Ricinusöl enthalten. Solche Compounds haben jedoch einen zu hohen Modul, da das OH-Equivalentgewicht des Ricinusöls 350 g/eq beträgt.
Die US 2006096694-A beschreibt nicht leitende Klebstoffe mit hoher Dielektrizitätskonstante, aber hohem Modul, der durch enthaltene Polyester-Polyole verursacht wird. Wünschenswert für einige spezielle Anwendungen sind jedoch Compounds mit niedrigem Modul.
Es wurde gefunden, dass Ruß-gefüllte Polyurethane, die durch DMC (Double Metal Cyanide)-
Katalyse hergestellte Polyether als Baustein enthalten, sich durch eine hohe
Dielektrizitätskonstante und elektrische Durchschlagsfestigkeit auszeichnen. Vergleichbare Compounds, deren Polyurethane Polyalkylenoxide, die durch Alkalimetallhydroxid-Katalyse hergestellt wurden oder PoIy-THF enthalten, erreichen bei gegebener Dielektrizitätskonstante nicht die Durchschlagsfestigkeit der neuen Compounds.
Gegenstand der Erfindung sind Ruß-gefüllte Polyurethanmassen wenigstens bestehend aus
A) 99,9 - 70 Gew.-% Polyetherurethanen, in die Polyolkomponenten eingebaut sind, die zu
a) 50 - 100 Gew.-% aus durch DMC-Katalyse hergestellten Polyalkylenoxiden, insbesondere Propylenoxiden und
b) 0-50 Gew.-% aus von Katalysatorresten freien Polyolen, insbesondere solchen, die destillativ oder durch Umkristallisation gereinigt sind, oder nicht durch ringöffhende Polymerisation von Sauerstoffheterocyclen hergestellt wurden,
aufgebaut sind
und
B) 0,1-30 Gew.-% Ruß.
Beispiele für die in den neuen Polyurethanen verwendeten Polyolkomponenten a) sind die in WO 97/29146, EP-A 700 949 und EP-A 761 708 beschriebenen Polyole. Es handelt sich um Polyalkylenoxide die durch ringöffnende Polymersation von Epoxiden zugänglich sind, wobei 85- 100%, vorzugsweise 100% Propylenoxid, eingesetzt wird und der Rest aus Butylenoxid, Hexenoxid, Vinyloxiran, Allylglycidylether, Butylglycidylether, Ethylhexylglycidylether, Epichlorhydrin, Ethylenoxid, Phenylglycidylether oder Kresylglycidylether bestehen kann. Als Katalysator werden Doppelmetallcyanid-Komplexe (DMC), z.B. Zinkhexacyanokobaltat, eingesetzt. Die vorteilhafte Verwendung solcher Polyalkylenoxide in Polyurethanen wurde schon in der US 6825376 und US 2004067315 beschrieben, wobei aber die höhere Selektivität solcher Polyole bei der Reaktion mit Isocyanat für die angestrebte Anwendung ausschlaggebend war.
Die Molmasse (Zahlenmittel Mn) der in den erfindungsgemäß verwendeten PU-Mischungen eingebauten Polyolkomponenten a) beträgt bevorzugt 1000 - 14000 g/mol, insbesondere vorzugsweise 1500 - 8500 g/mol. Die Funktionalität beträgt bevorzugt 2 - 6, insbesondere vorzugsweise 2.
Als Polyolkomponente b) werden bevorzugt Ethylenglykol, Diethylenglykol, Triethylenglykol,
Tetraethylenglykol, Propylenglykol, Dipropylenglykol, Tripropylenglykol, Tetrapropylenglykol,
TMP, Neopentylglykol, Pentaerythrit, Cyclohexandimethanol, Butylenglykol, Ricinusöl, dehydratisiertes Ricinusöl, hydriertes Ricinusöl, Dimerdiol, Hexandiol, Decandiol, Dodecandiol, hydroxyfunktionelles Oligobutadien, hydriertes hydroxyfunktionelles Oligobutadien, Glycerin oder TMP-monoallylether eingesetzt.
Die Herstellung der Polyurethane A) erfolgt bevorzugt durch Reaktion der Polyolkomponenten a) und ggf. b) mit 1,0-1,1 Equivalenten von Polyisocyanaten bei einer Temperatur von 15 - 1200C, vorzugsweise 18 - 800C in Gegenwart oder Abwesenheit von Katalysator der NCO-OH-Reaktion, wie Zinnverbindungen oder Aminen. Die Mischung der Komponenten a), gegebenenfalls b), Polyisocyanat und B) erfolgt insbesondere in geeigneten Mischgeräten, die eine hohe Scherenergie eintragen können wie z.B. im Speed-Mixer, und ggf. durch zusätzliche Einwirkung von Ultraschall.
Als Polyisocyanate werden bevorzugt solche aus der folgenden Reihe eingesetzt: HDI, Trimethyl- HDI, IPDI, Dodecahydro-MDI, Norbornandiisocyanat, Bisisocyanatomethylcyclohexan, Bisisocyanatomethylbenzol, TMXDI, 2,4-TDI oder 2,6-TDI oder deren Gemische, 2,2-MDI, 2,4- MDI oder 4,4-MDI oder deren Gemische, 3-Kern- oder Oligo-MDI-haltige MDI-Typen, wobei aliphatische Isocyanate bevorzugt sind, die Carbodiimide oder 4- oder 6-Ring-Heterocyclen enthaltenden Di- oder Trimere der genannte Diisocyanate, deren Addukte an niedermolekulare Polyole, wie TMP, Diethylengylkol oder Dipropylenglykol, deren Urethan- oder Allophanat- Präpolymere an Polyole, die der oben beschriebenen Komponente a) entsprechen. Besonders bevorzugt sind Allophanat-Präpolymere, wie sie in US 2005222365 beschrieben sind, wobei in einer bevorzugten Ausführungsform als Polyole Polyalkylenoxide eingesetzt werden, die der oben beschriebenen Komponente a) entsprechen. Insbesondere kann ein Allophanat-Präpolymer aus einem nach DMC-Katalyse hergestelltem Polypropylenoxid der Molmasse im Bereich von Mn = 2000 und HDI, wobei die Allophanatisierung vorzugsweise mit Zinkoctoat katalysiert wird, vorteilhaft eingesetzt werden, das der idealisierten Formel I entspricht:
- A -
Figure imgf000005_0001
Formel (I),
wobei n eine Zahl von 30 bis 38 bedeutet.
Ruße der Komponente B) sind insbesondere feindisperse Russtypen, wie sie beispielsweise bei der Degussa AG kommerziell bezogen werden können. Sinnvoll eingesetzt werden Rußtypen mit einer mittleren Teilchengröße von höchstens 1 μm, bevorzugt höchstens 100 nm und besonders bevorzugt höchstens 50 nm. Die Ruße sollen bevorzugt gleichzeitig eine große BET-Oberfläche aufweisen, wobei die BET-Oberfläche größer insbesondere als 250 mVg, bevorzugt größer 500 m2/g und besonders bevorzugt größer 900 rriVg ist.
Die erfindungsgemäßen Ruß-gefüllten Polyurethane können als Dielektrikum in Energiewandlern von mechanischer in elektrische und von elektrischer in mechanische Energie eingesetzt werden. Solche Energiewandler sind z.B. in der US -A- 6343129 beschrieben. Beispiel 1 (Vergleichsbeispiel)
Alle flüssigen Rohstoffe wurden in einem dreistufigen Verfahren sorgfältig unter Argon entgast, der Ruß wurde über ein 125μm Sieb gesiebt. 10g Terathane 650 (INVTSTA GmbH, D-65795 Hatterheim, PoIy-THF der Molmasse Mn = 650) wird mit 0,596 g Ruß (Ketjenblack EC 300 J, Produkt der Akzo Nobel AG) in einem 60 ml Einweg-Mischbehälter (APM-Technika AG, Best. Nr. 1033152) eingewogen und im Speedmixer (Produkt der Fa. APM-Technika AG, CH-9435 Heerbrugg; Vertrieb D: Hauschild; Typ DAC 150 FVZ ) 3 min bei 3000 Upm zu einer homogenen Paste vermischt. Anschließend wird 0,005 g Dibutylzinndilaurat (Metacure® T- 12, Air Products and Chemicals, Inc.) und 6,06 g des Isocyanates N3300 (Produkt der BayermaterialScience AG) dazu gewogen und 1 min bei 3000 Upm im Speedmixer vermischt. Die Reaktionspaste wird auf eine Glasplatte gegossen und mit einem Rakel der Nassschichtdicke 500 μm zu einem homogenen Film des Feststoffgehaltes 2% ausgezogen. Der Film wird anschließend 16 h bei 8O0C getempert.
Die Eigenschaften des getemperten Filmes sind in der nachstehenden Tabelle 1 wiedergegeben.
Beispiel 2 (erfindungsgemäß)
Alle flüssigen Rohstoffe wurden in einem dreistufigen Verfahren sorgfältig unter Argon entgast, der Ruß wurde über ein 125μm Sieb gesiebt. 10g Arcol PPG 2000 (Produkt der BMS AG, DMC- katalysiertes Polypropylenoxid der mittleren Molmasse Mn=2000) wird mit 0,636 g Ruß (Typ Ketjenblack EC 300) in einem 60 ml Einweg-Mischbehälter eingewogen und im Speedmixer 3 min bei 3000 Upm zu einer homogenen Paste vermischt. Anschließend wird 0,005 g Dibutylzinndilaurat und 7,13 g des Isocyanates Desmodur XP 2599 (Produkt der Bayer MaterialScience AG, Allophanat-Präpolymer der Formel I, wobei Arcol PPG 2000 als Polyalkylenoxid eingesetzt wurde) dazu gewogen und 1 min bei 3000 Upm im Speedmixer vermischt. Die Reaktionspaste wird auf eine Glasplatte gegossen und mit einem Rakel der Nassschichtdicke 500 μm zu einem homogenen Film des Feststoffgehaltes 2% ausgezogen. Der Film wird anschließend 16 h bei 8O0C getempert.
Die Eigenschaften des getemperten Filmes sind in der nachstehenden Tabelle 1 wiedergegeben. Tabelle 1: Messdaten
Figure imgf000007_0001
Der Vorteil der erfindungsgemäßen Polyurethanmassen zeigt sich in der wesentlich höheren Dielektrizitätskonstante und einer wesentlich niedrigeren Volumenleitfähigkeit bei deutlich höherer Durchschlagsfeldstärke.

Claims

Patentansprüche
1. Ruß-gefüllte Polyurethanmassen wenigstens bestehend aus
A) 99,1 - 70 Gew.-% Polyetherurethane, in die Polyolkomponenten eingebaut sind, die zu
a) 50-100 Gew.-% aus durch DMC-Katalyse hergestellten Polyalkylenoxiden, insbesondere Poylpropylenoxiden, und
b) 0-50 Gew.-% aus von Katalysatorresten freien Polyolen, insbesonere solchen, die destillativ oder durch Umkristallisation gereinigt sind, oder solchen, die nicht durch ringöffhende Polymerisation von Sauerstoffheterocyclen hergestellt wurden,
aufgebaut sind
und
B) 0,1-30 Gew.-% Ruß.
2. Polyurethane nach Anspruch 1, dadurch gekennzeichnet, dass die Polyolkomponente a) 100 Gew.-% beträgt.
3. Polyurethane nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Isocyanate Allophanat-Präpolymere eingesetzt werden.
4. Polyurethane nach wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Isocyanate Allophanat-Präpolymere eingesetzt werden, die als Polyolkomponente unter DMC-Katalyse hergestellte Polyalkylenoxide enthalten.
5. Polyurethane nach wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Isocyanat ein Allophanat-Präpolymer nach Formel (I)
Figure imgf000009_0001
Formel (I) n=30-38
eingesetzt wird und/oder dass das Polyurethan auf einem Präpolymer basiert, wobei das dem Präpolymer zu Grunde liegende Polypropylenoxid durch DMC-Katalyse hergestellt ist.
6. Verwendung der Polyurethane nach wenigstens einem der Ansprüche 1 bis 5 als Dielektrikum in Energiewandlern zur Umwandlung von mechanischer in elektrische und von elektrischer in mechanische Energie.
7. Folien oder Beschichtungen, aufweisend Polyurethanmassen nach einem der Ansprüche 1 bis 6.
8. Energiewandler, aufweisend Polyurethanmassen nach einem der Ansprüche 1 bis 5 als Dielektrikum.
9. Elektrischer Kondensator aufweisend eine Polyurethanmasse nach einem der Ansprüche 1 bis 5 als Dielektrikum.
PCT/EP2008/000623 2007-02-07 2008-01-26 Russ-gefüllte polyurethane mit hoher dielektrizitätskonstante und durchschlagfestigkeit WO2008095621A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DK08707329.2T DK2118190T3 (da) 2007-02-07 2008-01-26 Sodfyldte polyurethaner med høj dielektricitetskonstant og gennemslagsstyrke
BRPI0807162-4A BRPI0807162A2 (pt) 2007-02-07 2008-01-26 Poliuretanos enchidos com negro de carbono e com uma elevada constante dielétrica e resistência à decomposição
CA002677393A CA2677393A1 (en) 2007-02-07 2008-01-26 Carbon black-filled polyurethanes with high dielectric constant and dielectric strength
CN2008800042191A CN101605845B (zh) 2007-02-07 2008-01-26 填充有炭黑并且具有高介电常数和击穿强度的聚氨酯
JP2009548602A JP2010518200A (ja) 2007-02-07 2008-01-26 高誘電率および高破壊強度を有するカーボンブラック充填ポリウレタン
EP08707329A EP2118190B1 (de) 2007-02-07 2008-01-26 Russ-gefüllte polyurethane mit hoher dielektrizitätskonstante und durchschlagfestigkeit
AT08707329T ATE537214T1 (de) 2007-02-07 2008-01-26 Russ-gefüllte polyurethane mit hoher dielektrizitätskonstante und durchschlagfestigkeit
ES08707329T ES2377237T3 (es) 2007-02-07 2008-01-26 Poliuretanos rellenos de negro de carbono con elevada constante dieléctrica y resistencia a la perforación
IL199801A IL199801A0 (en) 2007-02-07 2009-07-09 Carbon black-filed polyurethanes with high dielectric constant and dielectric strength

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007005960.6 2007-02-07
DE102007005960A DE102007005960A1 (de) 2007-02-07 2007-02-07 Ruß-gefüllte Polyurethane mit hoher Dielektrizitätskonstante und Durchschlagsfestigkeit

Publications (1)

Publication Number Publication Date
WO2008095621A1 true WO2008095621A1 (de) 2008-08-14

Family

ID=39322373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/000623 WO2008095621A1 (de) 2007-02-07 2008-01-26 Russ-gefüllte polyurethane mit hoher dielektrizitätskonstante und durchschlagfestigkeit

Country Status (14)

Country Link
US (2) US20080188615A1 (de)
EP (1) EP2118190B1 (de)
JP (1) JP2010518200A (de)
KR (1) KR20090116736A (de)
CN (1) CN101605845B (de)
AT (1) ATE537214T1 (de)
BR (1) BRPI0807162A2 (de)
CA (1) CA2677393A1 (de)
DE (1) DE102007005960A1 (de)
DK (1) DK2118190T3 (de)
ES (1) ES2377237T3 (de)
IL (1) IL199801A0 (de)
PT (1) PT2118190E (de)
WO (1) WO2008095621A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2330650A1 (de) 2009-12-04 2011-06-08 Bayer MaterialScience AG Elektromechanischer Wandler, umfassend ein Polyurethanpolymer mit Polytetramethylenglykolether-Einheiten
EP2418231A1 (de) 2010-08-09 2012-02-15 Bayer MaterialScience AG Elektromechanischer Wandler, umfassend ein Polyurethanpolymer mit Polycarbonat-Einheiten
EP2418230A1 (de) 2010-08-09 2012-02-15 Bayer MaterialScience AG Elektromechanischer Wandler, umfassend ein Polyurethanpolymer mit Polyester-Einheiten
WO2012019979A2 (de) 2010-08-09 2012-02-16 Bayer Materialscience Ag Elektromechanischer wandler, umfassend ein polyurethanpolymer mit polyester-und/oder polycarbonat einheiten
EP2511314A1 (de) 2011-04-12 2012-10-17 Bayer MaterialScience AG Polyurethanpolymer und dessen Verwendung in elektromechanischen Wandlern
WO2013113846A1 (de) 2012-02-01 2013-08-08 Bayer Intellectual Property Gmbh Elektromechanischer wandler, umfassend ein polyurethanpolymer mit polyester-und/oder polycarbonat einheiten
EP3098248A1 (de) * 2015-05-29 2016-11-30 Covestro Deutschland AG Polymeres, nicht angebundenes additiv zur erhöhung der dielektrizitätskonstante in elektroaktiven polyurethan polymeren

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2218742A1 (de) * 2009-02-12 2010-08-18 Bayer MaterialScience AG Photopolymerzusammensetzungen als verdruckbare Formulierungen
TWI394189B (zh) * 2009-06-04 2013-04-21 Ind Tech Res Inst 電容基板結構
EP2867281A1 (de) 2012-06-27 2015-05-06 Bayer Materialscience AG Dielektrischer polyurethan film
CN104379625A (zh) 2012-07-03 2015-02-25 拜耳材料科技股份有限公司 用于制备多层介电聚氨酯膜体系的方法
WO2014131895A1 (de) 2013-02-28 2014-09-04 Bayer Materialscience Ag Verfahren zur herstellung eines mehrschichtigen dielektrischen polyurethanfilmsystems
DE102014206574A1 (de) * 2014-04-04 2015-10-08 Henkel Ag & Co. Kgaa Zwei-Komponenten-Bindemittel mit Cyclocarbonat- und Epoxidgruppen
CN107488254B (zh) * 2017-08-29 2019-12-20 北京石油化工学院 介电弹性体材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998014492A1 (en) * 1996-10-01 1998-04-09 Recticel Light-stable elastomeric polyurethane mouldings and process for the production thereof
US6433996B1 (en) * 1999-03-23 2002-08-13 Nisshinbo Industries, Inc. Electrolyte composition for electric double layer capacitor, solid polymer electrolyte, composition for polarizable electrode, polarizable electrode, and electric double layer capacitor
WO2002088225A1 (en) * 2001-04-30 2002-11-07 Georgia Tech Research Corporation High dielectric polymer composites and methods of preparation thereof
WO2007075330A1 (en) * 2005-12-15 2007-07-05 Bayer Materialscience Llc Polyurethane elastomers comprising allophanate modified isocyanates

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469747A (en) * 1982-02-10 1984-09-04 Kureha Kagaku Kogyo Kabushiki Kaisha Dielectric films and process for preparing same
JPS6051750A (ja) * 1983-08-30 1985-03-23 Murata Mfg Co Ltd 防振複合体
US4609845A (en) * 1984-07-06 1986-09-02 Raychem Corporation Stretched piezoelectric polymer coaxial cable
JPS63150808A (ja) * 1986-12-15 1988-06-23 株式会社明電舎 複合材料
JP2855335B2 (ja) * 1989-03-02 1999-02-10 株式会社ブリヂストン 導電性ポリウレタンフォームの製造方法
JPH02276164A (ja) * 1989-04-18 1990-11-13 Matsushita Electric Ind Co Ltd 固体電解質薄膜
JP2619109B2 (ja) * 1989-05-09 1997-06-11 旭硝子株式会社 柔軟性にすぐれたポリウレタン系硬化性組成物
US5136010A (en) * 1990-09-28 1992-08-04 Olin Corporation Polyurethane elastomers and polyurea elastomers made using high functionality, low unsaturation level polyols prepared with double metal cyanide catalysts
JPH0826231B2 (ja) * 1991-08-16 1996-03-13 インターナショナル・ビジネス・マシーンズ・コーポレイション 導電性ポリマー材料及びその使用
US5482908A (en) 1994-09-08 1996-01-09 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5545601A (en) 1995-08-22 1996-08-13 Arco Chemical Technology, L.P. Polyether-containing double metal cyanide catalysts
US5777177A (en) 1996-02-07 1998-07-07 Arco Chemical Technology, L.P. Preparation of double metal cyanide-catalyzed polyols by continuous addition of starter
US6812624B1 (en) * 1999-07-20 2004-11-02 Sri International Electroactive polymers
WO1998035529A2 (en) 1997-02-07 1998-08-13 Sri International Elastomeric dielectric polymer film sonic actuator
DK1161473T3 (da) * 1999-02-26 2003-05-05 Bayer Antwerpen Nv Fremgangsmåde til fremstilling af mikrocellulære polyurethanelastomerer med forbedrede forarbejdsningsegenskaber
JP3656732B2 (ja) * 2000-04-21 2005-06-08 日産自動車株式会社 エネルギー変換繊維体および吸音材
JP2002069424A (ja) * 2000-08-31 2002-03-08 Masao Sumita 有機ハイブリッド系制振材料、その製造方法およびそれに用いる制振改良剤
DE10161386A1 (de) 2001-12-14 2003-06-18 Bayer Ag Monomerenarme NCO-haltige Prepolymere auf der Basis von Isophorondiisocyanat
US7511111B2 (en) * 2002-03-08 2009-03-31 Bayer Materialscience Llc Polyurethane elastomers having improved physical properties and a process for the production thereof
US6824703B2 (en) * 2002-03-08 2004-11-30 Bayer Materialscience Llc Polyurethane elastomers having improved physical properties and a process for the production thereof
US7029598B2 (en) * 2002-06-19 2006-04-18 Fuji Photo Film Co., Ltd. Composite material for piezoelectric transduction
DE10246708A1 (de) 2002-10-07 2004-04-15 Bayer Ag Zweikomponenten-Systeme für die Herstellung elastischer Beschichtungen
JP2004143257A (ja) * 2002-10-23 2004-05-20 Mitsubishi Gas Chem Co Inc 高損失樹脂組成物
WO2004081111A1 (en) * 2003-03-11 2004-09-23 Dow Global Technologies Inc. High dielectric constant composites
US7045573B2 (en) * 2003-04-21 2006-05-16 Bayer Materialscience Llc Polyurethane dispersion (PUD) with improved isopropanol resistance, flexibility and softness
WO2004106420A2 (en) * 2003-05-22 2004-12-09 Zyvex Corporation Nanocomposites and method for production
US6806542B1 (en) * 2003-06-30 2004-10-19 Motorola, Inc. Electronic device having a filled dielectric medium
US6855658B1 (en) * 2003-08-26 2005-02-15 Bayer Antwerp, N.V. Hydroxide containing double metal cyanide (DMC) catalysts
US7271206B2 (en) * 2003-12-23 2007-09-18 Industrial Technology Research Institute Organic-inorganic hybrid compositions with sufficient flexibility, high dielectric constant and high thermal stability, and cured compositions thereof
US7255924B2 (en) * 2004-01-13 2007-08-14 The United States Of America As Represented By The Secretary Of The Navy Carbon nanoarchitectures with ultrathin, conformal polymer coatings for electrochemical capacitors
DE102004015983A1 (de) 2004-04-01 2005-10-20 Bayer Materialscience Ag Verfahren zur Herstellung von Polyetherallophanaten unter Verwendung von Zink-Verbindungen als Katalysatoren
DE102004015982A1 (de) * 2004-04-01 2005-10-20 Bayer Materialscience Ag Verfahren zur Herstellung von Polyisocyanat-Prepolymeren mit Allophanat-Struktureinheiten
US7361292B2 (en) 2004-11-08 2008-04-22 Dow Global Technologies Inc. High modulus, nonconductive adhesive useful for installing vehicle windows
US7323605B2 (en) * 2005-11-09 2008-01-29 Bayer Materialscience Llc Double metal cyanide-catalyzed, low unsaturation polyethers from boron-containing starters
US8248750B2 (en) * 2007-12-13 2012-08-21 Bayer Materialscience Ag Electroactive polymer transducers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998014492A1 (en) * 1996-10-01 1998-04-09 Recticel Light-stable elastomeric polyurethane mouldings and process for the production thereof
US6433996B1 (en) * 1999-03-23 2002-08-13 Nisshinbo Industries, Inc. Electrolyte composition for electric double layer capacitor, solid polymer electrolyte, composition for polarizable electrode, polarizable electrode, and electric double layer capacitor
WO2002088225A1 (en) * 2001-04-30 2002-11-07 Georgia Tech Research Corporation High dielectric polymer composites and methods of preparation thereof
WO2007075330A1 (en) * 2005-12-15 2007-07-05 Bayer Materialscience Llc Polyurethane elastomers comprising allophanate modified isocyanates

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2330650A1 (de) 2009-12-04 2011-06-08 Bayer MaterialScience AG Elektromechanischer Wandler, umfassend ein Polyurethanpolymer mit Polytetramethylenglykolether-Einheiten
EP2418231A1 (de) 2010-08-09 2012-02-15 Bayer MaterialScience AG Elektromechanischer Wandler, umfassend ein Polyurethanpolymer mit Polycarbonat-Einheiten
EP2418230A1 (de) 2010-08-09 2012-02-15 Bayer MaterialScience AG Elektromechanischer Wandler, umfassend ein Polyurethanpolymer mit Polyester-Einheiten
WO2012019979A2 (de) 2010-08-09 2012-02-16 Bayer Materialscience Ag Elektromechanischer wandler, umfassend ein polyurethanpolymer mit polyester-und/oder polycarbonat einheiten
EP2511314A1 (de) 2011-04-12 2012-10-17 Bayer MaterialScience AG Polyurethanpolymer und dessen Verwendung in elektromechanischen Wandlern
WO2013113846A1 (de) 2012-02-01 2013-08-08 Bayer Intellectual Property Gmbh Elektromechanischer wandler, umfassend ein polyurethanpolymer mit polyester-und/oder polycarbonat einheiten
EP3098248A1 (de) * 2015-05-29 2016-11-30 Covestro Deutschland AG Polymeres, nicht angebundenes additiv zur erhöhung der dielektrizitätskonstante in elektroaktiven polyurethan polymeren
WO2016193062A1 (de) * 2015-05-29 2016-12-08 Covestro Deutschland Ag Polymeres, nicht angebundenes additiv zur erhöhung der dielektrizitätskonstante in elektroaktiven polyurethan polymeren

Also Published As

Publication number Publication date
DK2118190T3 (da) 2012-03-26
ATE537214T1 (de) 2011-12-15
EP2118190A1 (de) 2009-11-18
ES2377237T3 (es) 2012-03-23
EP2118190B1 (de) 2011-12-14
IL199801A0 (en) 2010-04-15
BRPI0807162A2 (pt) 2014-04-29
CN101605845B (zh) 2012-09-05
JP2010518200A (ja) 2010-05-27
DE102007005960A1 (de) 2008-08-14
CN101605845A (zh) 2009-12-16
PT2118190E (pt) 2012-02-15
US20080188615A1 (en) 2008-08-07
CA2677393A1 (en) 2008-08-14
US20100022706A1 (en) 2010-01-28
KR20090116736A (ko) 2009-11-11

Similar Documents

Publication Publication Date Title
EP2118190B1 (de) Russ-gefüllte polyurethane mit hoher dielektrizitätskonstante und durchschlagfestigkeit
EP2470580B1 (de) Hydrophile, aliphatische polyurethan-schäume
EP1671991B1 (de) Reaktive Polyurethan-Prepolymere mit einem geringen Gehalt an monomeren Diisocyanaten
EP2523988B1 (de) Hydrophile, aliphatische polyurethan-schäume
EP2155797B1 (de) Nco-prepolymere mit niedrigem gehalt an freiem monomerem diisocyanat und ihre herstellung
DE2836986A1 (de) Verwendung von monohydroxyliertem polybutadien als reaktiver weichmacher in polyurethanen
EP3265495B1 (de) Polybutadienole zur herstellung von glasartigen polyurethanen
DE2350684B2 (de) Verfahren zur Herstellung von nichtzelligen Polyurethanen und Polyurethanprepolymeren mit freien Isocyanatgruppen
EP2585121B1 (de) Verfahren zur herstellung von hydrophilen, aliphatischen polyurethan-schäumen mit niedriger rohdichte
EP2336211A1 (de) Hydrophile, aliphatische Polyurethan-Schäume
EP2585505B1 (de) Verfahren zur herstellung von hydrophilen, aliphatischen polyurethan-schäumen mit niedriger rohdichte
EP2891671A1 (de) Polyurethan-Elastomere auf der Basis von Polyetheralkoholgemischen und trimerisierten Diisocyanaten
EP0388781B1 (de) Verfahren zur Herstellung von vernetzten Polyurethan-Polyharnstoff-Pulvern und ihre Verwendung als organische Füllstoffe in Zweikomponenten-Polyurethanlacken
DE3238173A1 (de) Elastischer polyurethanschaum auf der basis von methylendiphenylisocyanat
EP2311891B1 (de) Viskositätsstabilisator für Hot-Melts
Kohler et al. 19, United States i, Patent Application Publication to, Pub. No.: US 2008/0188615A1
EP2411438B1 (de) Herstellung von polyisocyanat-prepolymeren mit allophanat-struktureinheiten und deren verwendung in formulierungen für beschichtungen, klebstoffe und dichtstoffe
DE102019004188A1 (de) Polyol für eine vernetzbare polyurethanharzzusammensetzung und vernetzbares polyurethanharz

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880004219.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08707329

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 199801

Country of ref document: IL

Ref document number: 2008707329

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4556/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2677393

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020097016447

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009548602

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0807162

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090805