WO2008090065A1 - Dispositif d'interruption / enclenchement d'un circuit electrique - Google Patents

Dispositif d'interruption / enclenchement d'un circuit electrique Download PDF

Info

Publication number
WO2008090065A1
WO2008090065A1 PCT/EP2008/050434 EP2008050434W WO2008090065A1 WO 2008090065 A1 WO2008090065 A1 WO 2008090065A1 EP 2008050434 W EP2008050434 W EP 2008050434W WO 2008090065 A1 WO2008090065 A1 WO 2008090065A1
Authority
WO
WIPO (PCT)
Prior art keywords
microswitch
pyrotechnic charge
membrane
electric circuit
conductors
Prior art date
Application number
PCT/EP2008/050434
Other languages
English (en)
Inventor
Hugues Filiputti
Mathias Lamien
Original Assignee
Schneider Electric Industries Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries Sas filed Critical Schneider Electric Industries Sas
Priority to US12/523,668 priority Critical patent/US8446241B2/en
Priority to DE602008002897T priority patent/DE602008002897D1/de
Priority to CN2008800060664A priority patent/CN101622684B/zh
Priority to EP08707924A priority patent/EP2109871B1/fr
Priority to AT08707924T priority patent/ATE484068T1/de
Priority to JP2009545914A priority patent/JP5133354B2/ja
Publication of WO2008090065A1 publication Critical patent/WO2008090065A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H39/00Switching devices actuated by an explosion produced within the device and initiated by an electric current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H39/00Switching devices actuated by an explosion produced within the device and initiated by an electric current
    • H01H39/004Closing switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H39/00Switching devices actuated by an explosion produced within the device and initiated by an electric current
    • H01H39/006Opening by severing a conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/005Details of electromagnetic relays using micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • H01H2036/0093Micromechanical switches actuated by a change of the magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H39/00Switching devices actuated by an explosion produced within the device and initiated by an electric current
    • H01H2039/008Switching devices actuated by an explosion produced within the device and initiated by an electric current using the switch for a battery cutoff
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/005Details of electromagnetic relays using micromechanics
    • H01H2050/007Relays of the polarised type, e.g. the MEMS relay beam having a preferential magnetisation direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/14Switches operated by change of acceleration, e.g. by shock or vibration, inertia switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/14Switches operated by change of acceleration, e.g. by shock or vibration, inertia switch
    • H01H35/144Switches operated by change of acceleration, e.g. by shock or vibration, inertia switch operated by vibration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/24Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics

Definitions

  • the present invention relates to a device for interrupting / switching on an electric circuit.
  • This device operates from a pyrotechnic charge.
  • DE 44 06 730 a device for interrupting an electrical circuit.
  • This device comprises in particular a pyrotechnic actuator comprising a pyrotechnic charge and a piston controlled in translation under the effect of the gases generated by the combustion of the pyrotechnic charge.
  • the piston carries a finger capable of coming to press a connection bridge initially making the electrical connection between two conductors.
  • This bridge is mounted on a spring.
  • the gases generated by the combustion of the pyrotechnic charge cause the piston in motion to push on the bridge to disconnect the two conductors and thus interrupt the electrical circuit.
  • this device of the prior art requires the use of an external sensor.
  • it uses mainly mechanical means that are likely to wear over time, may cause malfunctions.
  • the object of the invention is to propose a device for interrupting / switching on an electrical circuit which is not sensitive to wear over time and which operates using a pyrotechnic charge whose ignition is controlled. directly in the device.
  • a device for interrupting / switching on an electric circuit comprising: a pyrotechnic charge intended to be initiated in combustion to cause the interruption or engagement of the electrical circuit, the ignition means of the pyrotechnic charge, characterized in that: the ignition means are connected to the electrical circuit, the ignition means comprise a microswitch with magnetic actuation adapted to control the ignition of the pyrotechnic charge.
  • the microswitch is placed on a circuit branch connected on the one hand to the electric circuit and on the other hand to the ground.
  • the ignition means comprise a heating resistive element mounted in series with the microswitch and able to initiate combustion of the pyrotechnic charge.
  • the microswitch is controlled by a mobile permanent magnet, for example actuatable in translation.
  • the microswitch is controlled by an excitation coil.
  • the excitation coil is connected in parallel with the electric circuit.
  • the device of the invention is then a device for interrupting the electrical circuit in which the electric circuit comprises two conductors and a connecting piece displaceable under the effect of the gases generated by the combustion of the pyrotechnic charge, the connection piece connecting initially both drivers.
  • the excitation coil is connected in parallel with the microswitch. In this case it is controlled by a sensor.
  • the device of the invention is then an engagement device in which the electrical circuit comprises two conductors and a movable connection piece under the effect of the gases generated by the combustion of the pyrotechnic charge.
  • the connection piece is initially disconnected from the two conductors and is for example integral with a piston separating a first chamber comprising the pyrotechnic charge of a second chamber through which the two conductors pass.
  • the micro-switch employed comprises for example a membrane of ferromagnetic material capable of being controlled between two positions by aligning with the field lines of a magnetic field.
  • FIG. 1 schematically represents a device for interrupting a electrical circuit according to the invention, responding to an external mechanical action
  • FIG. 2 diagrammatically represents a device for interrupting an electric circuit according to the invention, responding to an overcurrent in the electrical circuit
  • FIG. 3 schematically represents a device for switching on an electric circuit according to the invention
  • FIGS. 4 to 8 show a first variant of a microswitch used in the invention
  • Figures 9 to 11 show a second variant of a microswitch used in the invention.
  • the invention relates to a device for interrupting or interlocking a main electrical circuit.
  • This main electrical circuit can for example be reserved for the supply of a battery, transformers, elevator brakes or all types of circuits requiring a break or a quick and reliable engagement.
  • the interruption devices represented in FIGS. 1 and 2 and the interlocking device represented in FIG. 3 each comprise a body 1 traversed by two spaced apart electrical conductors 6a, 6b connected to a main electrical supply circuit (FIG. 1), for example of an apparatus A powered by a generator G.
  • a main electrical supply circuit for example of an apparatus A powered by a generator G.
  • these two conductors 6a, 6b are initially joined by a movable connecting piece 7 initially making the electrical connection while in the interlocking device, these two Conductors 6a, 6b are initially spaced apart and are intended to be connected by a movable connecting piece 700.
  • the body 1 of these devices is hermetically closed and has a bottom wall on which a breaking primer groove 8 is formed.
  • the connecting piece 7 is for example wedged between the two conductors 6a, 6b and the bottom wall of the body.
  • the combustion initiation of this charge 5 makes it possible to generate gases inside the body 1 and to cause the interruption of the circuit electrical main or the engagement of the main electrical circuit by moving the connecting piece 7, 700.
  • the gases are released by bursting of the body 1 along the groove 8 of incipient fracture.
  • the interruption / engagement devices also comprise a microswitch M, M 'with magnetic actuation as described herein below.
  • M Microswitch
  • M 'with magnetic actuation as described herein below.
  • This type of microswitch is particularly advantageous because it is housed in a perfectly hermetic housing and because it is insensitive to static electricity problems that can cause untimely firing of the pyrotechnic charge. It may in particular be manufactured by a MEMS (Micro-Electro-Mechanical System) type of technology.
  • MEMS Micro-Electro-Mechanical System
  • microswitch M M 'are shown in FIGS. 4 and 9.
  • Other types of microswitches that perfectly meet the needs of the invention could be envisaged, in particular microswitches of the "type”. reed ".
  • the microswitch M, M ' comprises a movable element mounted on a substrate S made of materials such as silicon, glass, ceramics or in the form of printed circuits.
  • the substrate S carries for example on its surface 30 at least two contacts or conductive tracks 31, 32 plane, identical and spaced apart, intended to be electrically connected by a movable electrical contact 21, 21 'in order to obtain the closure of a circuit electric.
  • the movable element is composed of a deformable membrane 20, 20 'having at least one layer of ferromagnetic material.
  • the ferromagnetic material is for example of the soft magnetic type and can be for example an alloy of iron and nickel ("permalloy" Ni 8 oFe 2 O) -
  • the membrane 20 , 20 ' can take a low position, said closure, in which its movable contact 21, 21' electrically connects the two tracks 31, 32 fixed conductors so as to close the electrical circuit or a raised position, said opening , in which its movable contact 21, 21 'is away from the two conductive tracks so as to open the electric circuit.
  • the free space In the open position, the free space must be sufficient to maintain the "no fire" standard in case of parasitic current.
  • the membrane 20 of the microswitch M has a longitudinal axis (A) and is integral with the substrate S via two connecting arms 22a, 22b connecting said membrane 20 to two anchoring studs 23a, 23b arranged symmetrically on either side of its longitudinal axis (A) and extending perpendicularly to this axis (A).
  • the membrane 20 is able to pivot between its open position and its closed position along an axis of rotation (R) parallel to the axis described by the contact points of the membrane 20 with the electrical tracks 31, 32 and perpendicular to its longitudinal axis (A).
  • Its movable electrical contact 21 is disposed under the membrane 20, at one end thereof.
  • the magnetic actuation of the microswitch M consists of subjecting the membrane 20 to a permanent magnetic field B 0 , preferably uniform and for example of direction perpendicular to the surface 30 of the substrate S to maintain the membrane 20 in each of its positions, and to apply a temporary magnetic field Bc control to control the passage of the membrane 20 from one position to another, by inverting the magnetic torque exerted on the membrane 20.
  • Force the membrane 20 to 20 opening by employing a temporary magnetic field B 0 may be necessary to resist electrostatic discharges and to give the microswitch M a strong galvanic isolation.
  • it is possible to dispense with the application of the permanent magnetic field B 0 if the membrane at rest ensures sufficient opening space.
  • the membrane 20 may be mechanically prestressed, for example by adding a layer made of a prestressed material.
  • a permanent magnet (not shown) is used, for example fixed under the substrate S.
  • the temporary magnetic field Bc is for example generated using an excitation coil 4 associated with the microphone -M switch M.
  • This excitation coil 4 may be planar ( Figure 5), integrated in the substrate, or external, for example solenoid type.
  • the passage of a current in the excitation coil 4 generates a temporary magnetic field direction parallel to the substrate S and parallel to the longitudinal axis (A) of the membrane 20 to control, according to the direction of the current in the coil, the tilting of the membrane 20 from one of its positions to the other of its positions.
  • FIGS. 6 to 8 the coil 40, 400 is represented in the form of a winding, but it should be understood that it can take any other form, in particular a planar shape integrated in the substrate of the microswitch M (FIG. 5).
  • the substrate S supporting the membrane 20 is placed under the effect of the permanent magnetic field B 0 already defined above.
  • the first magnetic field B 0 initially generates a magnetic component BP 2 in the membrane 20 along its longitudinal axis (A).
  • the magnetic torque resulting from the first magnetic field B 0 and the BP component 2 generated in the membrane 20 holds the membrane 20 in one of its positions, for example the open position in FIG. 6.
  • the passage of a control current in a defined direction through the excitation coil 4 makes it possible to generate the temporary control magnetic field Bc whose direction is parallel to the substrate S, its direction depending on the direction of the current fed into the coil 4.
  • the temporary magnetic field Bc generates the magnetic component BP 3 in the magnetic layer of the membrane 20.
  • this new magnetic component BP 3 opposes the BP 2 component generated in the magnetic layer of the membrane 20 by the first magnetic field B 0 . If the BP component 3 is of greater intensity than that generated by the first magnetic field B 0 , the magnetic torque resulting from the first magnetic field B 0 and this BP 3 component is reversed and causes the membrane 20 to tilt. opening position to its closed position ( Figure 7).
  • the magnetic field Bc is generated only transiently to tilt the membrane 20 from one position to another.
  • the membrane 20 is then kept in its closed position under the effect of the only first magnetic field B 0 creating a new magnetic component BP 4 in the membrane 20 and therefore a new magnetic torque imposing on the membrane 20 to stay in its closed position ( Figure 8).
  • the membrane 20 'of the microswitch M' has a longitudinal axis (A ') and is connected at one of its ends via connecting arms 22a', 22b ' , at one or more anchoring studs 23 'integral with the substrate S.
  • the membrane 20' is able to pivot relative to the substrate along an axis (R ') of rotation perpendicular to its longitudinal axis (A').
  • the link arms 22a ', 22b' form an elastic connection between the membrane 20 'and the anchor stud 23' and are flexibly biased during the pivoting of the membrane 20 '.
  • the magnetic actuation of the microswitch M ' is illustrated in Figures 10 and 1 1. It consists in applying a magnetic field created by a permanent magnet 4'. According to this mode of actuation, the ferromagnetic membrane 20 'moves between its two states by aligning with the field lines L of the magnetic field generated by the permanent magnet 4'.
  • the magnetic field created by the permanent magnet 4 ' has indeed L-shaped field lines whose orientation generates a magnetic component (BP' O , BP'-i) in a ferromagnetic layer of the membrane 20 'along its longitudinal axis (AT').
  • This component magnetic (BP ' O , BP ⁇ ) generated in the membrane 20' generates a magnetic torque imposing the membrane 20 'to take one of its open positions ( Figure 10) or closure ( Figure 11).
  • the permanent magnet 4 ' By moving the permanent magnet 4 ', it is therefore possible to subject the membrane 20' to two different orientations of the field lines L of the magnetic field of the permanent magnet 4 'and to tilt the membrane 20' between its two positions .
  • the displacement of the permanent magnet 4' can be made in a direction parallel to the surface 30 of the substrate S or perpendicular to this surface 30.
  • the body of the devices therefore also contain means for igniting the pyrotechnic charge 5 composed in particular of a microswitch M, M 'as described above and a heating resistive element, such as for example a resistive wire. 9, whose heating for initiating combustion pyrotechnic charge 5 is controlled by the microswitch M, M '.
  • the microswitch M, M ' is placed in series with respect to the resistive wire 9, itself connected on the one hand to earth and on the other hand to the main electrical circuit when the microswitch M, M' is closed .
  • the resistive wire 9 is located near the pyrotechnic charge 5, preferably in contact therewith or encased by it (variant not shown).
  • the combustion initiation of the pyrotechnic charge 5 can be carried out directly by the microswitch without the use of the resistive wire 9.
  • the microswitch can it is designed to volatilize by producing the energy required to ignite the pyrotechnic charge 5.
  • the microswitch comprises for example a fuse 20 adapted to volatilize when the controlled current is too strong.
  • FIG. 1 A first configuration of an interruption device is shown in FIG. 1.
  • This interruption device is intended to react to an external mechanical action.
  • This external mechanical action can be performed by various means, such as for example an increase in the pressure of a fluid (air, water or oil) or the action of an external mechanical part set in motion following a temperature variation. or in response to a shock.
  • Any other type of sensor could be envisaged, in particular a "multiphysics" sensor producing a mechanical response as a function of the variation of various physical parameters such as pressure, temperature, speed, etc.
  • the device comprises a movable permanent magnet 10, for example in the form of disk or torus, mounted on a mobile actuator OA on which the external mechanical action is exerted, so as to coaxial with respect to the axis (X) of the device.
  • This actuating member OA is able to move in translation during the application of a minimum external mechanical action calibrated, for example by means of a bellows mechanism 11, of an elastic membrane with sudden rupture (no shown) or with the aid of a fixed magnet in the form of a disk or a torus (not shown) arranged concentrically with respect to the moving permanent magnet 10.
  • the magnet Mobile standing 10 can therefore translate along the axis (X) of the device between a rest position and a working position.
  • the microswitch M ' employed is of the type of the second variant described below. This microswitch M 'is offset relative to the axis (X) of the device so as to be able to switch under the influence of the magnetic field created by the moving permanent magnet 10.
  • the actuating member OA When an external mechanical action of determined minimum intensity is exerted on the actuating member OA, the latter moves in translation along the axis (X) of the device by driving the movable permanent magnet 10.
  • the mobile permanent magnet In its position rest, the mobile permanent magnet for example has no influence on the microswitch M '.
  • the membrane 20 'of the microswitch M' is then in a rest position, parallel to the substrate as shown in FIG. 9 or raised as shown in FIG. 10 by internal mechanical prestressing.
  • the movable permanent magnet 10 When the movable permanent magnet 10 is in its low working position, its magnetic field induces a magnetic component in the membrane 20 'creating a magnetic torque imposing the closed position on the microswitch M' ( Figure 1 1).
  • the gases generated by the combustion of the pyrotechnic charge 5 then cause the bursting of the body 1 according to its breaking point 8 and simultaneously the ejection of the connecting piece 7, so as to interrupt the main electrical circuit between the two conductors 6a. , 6b.
  • the moving permanent magnet 10 is replaced by an excitation coil 40 arranged in the axis (X) of the device.
  • This interruption device is therefore no longer sensitive to an external mechanical action but to an electrical signal.
  • the microswitch M employed in this configuration is of the type of the first variant described above. It is therefore polarized by a fixed permanent magnet (not shown) for example secured to the substrate S and creating the magnetic field B 0 initially maintaining the microswitch M in the open position.
  • the microswitch M is offset with respect to the axis of the coil 40 so as to be under the influence of its substantially horizontal field lines.
  • the microswitch M is therefore placed under the dominating influence of the temporary magnetic field Bc (FIG. 7) parallel to its substrate S and controlling its membrane 20 between its two positions.
  • the excitation coil 40 is represented by a winding around a carcass but it should be understood that it can take any other form. As shown in FIG. 5, it can notably be of planar type, integrated in the substrate S supporting the microswitch M.
  • the excitation coil 40 is connected in parallel with the main electric circuit so as to be traversed by the current of the main electrical circuit.
  • the field generated by the coil 40 being proportional to the current flowing through it, the microswitch M can thus switch when the current exceeds a threshold value determined by the device to be protected.
  • the temporary magnetic field Bc created by the excitation coil 40 generates a magnetic component in the membrane 20 of the microswitch M, of sufficient intensity to impose its closed position (FIGS. 7 and 8). ), causing as in the first configuration, the ignition of the pyrotechnic charge 5 and the interruption of the main electrical circuit by ejection of the connection piece 7.
  • the interlocking device shown in FIG. 3 also operates by means of an excitation coil 400 which is here connected in parallel with the resistive wire 9 and the microswitch M 'employed.
  • the microswitch M 'employed in this interlocking device is of the type of the first variant described above (FIGS. 4 to 8).
  • Its membrane 20 is polarized by a fixed permanent magnet (not shown) and is controlled between its two positions by the temporary magnetic field Bc created by the coil 400.
  • the coil 400 may be of planar type, integrated into the substrate S of the microswitch ( Figure 5).
  • the excitation coil 400 is for example controlled at the closing by a sensor C.
  • This sensor C can for example take the form of a switch sensitive to one or more physical parameters, such as temperature, pressure, acceleration, etc.
  • an acceleration sensor comprising a plurality of MEMS-type microswitches conforming to FIG. invention placed on the electric circuit in series with the micro-switch M of ignition control of the load 5.
  • a permanent magnet is for example set in motion according to the intensity of the acceleration or deceleration to operate more or less micro-switches. When an acceleration or deceleration threshold is reached, all the microswitches are closed allowing the passage of current to the excitation coil 400.
  • the connecting piece 700 is mounted integral with a piston P separating the internal space of the body 1 into a first chamber 500 containing the pyrotechnic charge and a second chamber 600 traversed by the conductors 6a, 6b and containing the connection piece 700.
  • the piston P is for example retained by notches 300 formed on the internal face of the body 1.
  • the coil 400 In operation, when the coil 400 is activated, its magnetic field acts on the microswitch M imposing its closed position. The closing of the microswitch M causes the pyrotechnic charge 5 to be heated, and thus the generation of gas. The gases created in the first chamber 500 push the piston P in translation accompanied by the connection piece 700 until it comes to connect the two conductors 6a, 6b.
  • the device may for example provide a valve mechanism 800 for evacuating the combustion gases from the first chamber 500.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermally Actuated Switches (AREA)
  • Air Bags (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Electronic Switches (AREA)
  • Electromagnets (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Micromachines (AREA)

Abstract

La présente invention concerne un dispositif d'interruption/enclenchement d'un circuit électrique, comportant : une charge (5) apte à être initiée en combustion pour entraîner l'interruption respectivement l'enclenchement du circuit électrique, des moyens d'allumage de la charge pyrotechnique (5), caractérisé en ce que : les moyens d'allumage sont reliés au circuit électrique, les moyens d'allumage comprennent un micro-interrupteur (M, M') à actionnement magnétique apte à commander l'allumage de la charge pyrotechnique (5).

Description

Dispositif d'interruption/enclenchement d'un circuit électrique
La présente invention se rapporte à un dispositif d'interruption/enclenchement d'un circuit électrique. Ce dispositif fonctionne à partir d'une charge pyrotechnique.
Il est connu notamment par le document DE 44 06 730 un dispositif d'interruption d'un circuit électrique. Ce dispositif comporte notamment un actionneur pyrotechnique comportant une charge pyrotechnique et un piston commandé en translation sous l'effet des gaz générés par la combustion de la charge pyrotechnique. Le piston porte un doigt susceptible de venir appuyer sur un pont de connexion réalisant initialement la liaison électrique entre deux conducteurs. Ce pont est monté sur un ressort. En fonctionnement, les gaz générés par la combustion de la charge pyrotechnique entraînent le piston en mouvement qui vient pousser sur le pont pour déconnecter les deux conducteurs et ainsi interrompre le circuit électrique.
Pour commander l'initiation de la charge pyrotechnique, ce dispositif de l'art antérieur nécessite l'emploi d'un organe de détection externe. En outre, il utilise principalement des moyens mécaniques qui sont susceptibles de s'user au cours du temps, pouvant entraîner des dysfonctionnements.
Le but de l'invention est de proposer un dispositif d'interruption/enclenchement d'un circuit électrique qui est non sensible à l'usure dans le temps et qui fonctionne à l'aide d'une charge pyrotechnique dont l'allumage est commandé directement dans le dispositif.
Ce but est atteint par un dispositif d'interruption/enclenchement d'un circuit électrique, comportant : une charge pyrotechnique destinée à être initiée en combustion pour entraîner l'interruption, respectivement l'enclenchement, du circuit électrique, des moyens d'allumage de la charge pyrotechnique, caractérisé en ce que : les moyens d'allumage sont connectés au circuit électrique, les moyens d'allumage comprennent un micro-interrupteur à actionnement magnétique apte à commander l'allumage de la charge pyrotechnique.
Selon une particularité, le micro-interrupteur est placé sur une branche de circuit reliée d'une part au circuit électrique et d'autre part à la terre. Selon une autre particularité, les moyens d'allumage comprennent un élément résistif chauffant monté en série avec le micro-interrupteur et apte à initier en combustion la charge pyrotechnique.
Selon une première variante de réalisation, le micro-interrupteur est commandé par un aimant permanent mobile, par exemple actionnable en translation.
Selon une seconde variante de réalisation, le micro-interrupteur est commandé par une bobine d'excitation.
Dans une première configuration, la bobine d'excitation est montée en parallèle par rapport au circuit électrique. Le dispositif de l'invention est alors un dispositif d'interruption du circuit électrique dans lequel le circuit électrique comporte deux conducteurs et une pièce de connexion déplaçable sous l'effet des gaz générés par la combustion de la charge pyrotechnique, la pièce de connexion reliant initialement les deux conducteurs.
Dans une seconde configuration, la bobine d'excitation est montée en parallèle par rapport au micro-interrupteur. Dans ce cas elle est commandée par un capteur. Le dispositif de l'invention est alors un dispositif d'enclenchement dans lequel le circuit électrique comporte deux conducteurs et une pièce de connexion déplaçable sous l'effet des gaz générés par la combustion de la charge pyrotechnique. Dans ce dispositif d'enclenchement, la pièce de connexion est initialement déconnectée des deux conducteurs et elle est par exemple solidaire d'un piston séparant une première chambre comportant la charge pyrotechnique d'une deuxième chambre traversée par les deux conducteurs.
Selon l'invention, le micro-interrupteur employé comporte par exemple une membrane en matériau ferromagnétique apte à être piloté entre deux positions en s'alignant sur les lignes de champ d'un champ magnétique.
D'autres caractéristiques et avantages vont apparaître dans la description détaillée qui suit en se référant à un mode de réalisation donné à titre d'exemple et représenté par les dessins annexés sur lesquels : la figure 1 représente schématiquement un dispositif d'interruption d'un circuit électrique selon l'invention, répondant à une action mécanique externe, la figure 2 représente schématiquement un dispositif d'interruption d'un circuit électrique selon l'invention, répondant à une surintensité dans le circuit électrique, la figure 3 représente schématiquement un dispositif d'enclenchement d'un circuit électrique selon l'invention, les figures 4 à 8 montrent une première variante d'un micro-interrupteur utilisé dans l'invention,
Les figures 9 à 11 montrent une seconde variante d'un micro-interrupteur employé dans l'invention.
L'invention concerne un dispositif d'interruption ou d'enclenchement d'un circuit électrique principal. Ce circuit électrique principal peut par exemple être réservé à l'alimentation d'une batterie, de transformateurs, de freins d'ascenseurs ou de tous types de circuits nécessitant une interruption ou un enclenchement rapide et fiable.
Les dispositifs d'interruption représentés en figures 1 et 2 et le dispositif d'enclenchement représenté en figure 3 comportent chacun un corps 1 traversé par deux conducteurs électriques 6a, 6b espacés connectés sur un circuit électrique principal d'alimentation (figure 1 ) par exemple d'un appareil A alimenté par un générateur G. Dans un dispositif d'interruption, ces deux conducteurs 6a, 6b sont initialement joints par une pièce de connexion 7 déplaçable réalisant initialement la connexion électrique tandis que dans le dispositif d'enclenchement, ces deux conducteurs 6a, 6b sont initialement espacés et sont destinés à être connectés par une pièce de connexion 700 déplaçable. Le corps 1 de ces dispositifs est fermé de manière hermétique et comporte une paroi inférieure sur laquelle est réalisé un sillon d'amorce de rupture 8.
Dans les dispositifs d'interruption, la pièce de connexion 7 est par exemple calée entre les deux conducteurs 6a, 6b et la paroi inférieure du corps.
Une charge pyrotechnique 5, par exemple de type composite, est placée à l'intérieur du corps 1. L'initiation en combustion de cette charge 5 permet de générer des gaz à l'intérieur du corps 1 et de provoquer l'interruption du circuit électrique principal ou l'enclenchement du circuit électrique principal par déplacement de la pièce de connexion 7, 700. Les gaz sont libérés par éclatement du corps 1 suivant le sillon 8 d'amorce de rupture.
Selon l'invention, les dispositifs d'interruption/enclenchement comportent également un micro-interrupteur M, M' à actionnement magnétique tel que décrit ci- dessous. Ce type de micro-interrupteur est particulièrement avantageux car il est logé dans un boîtier parfaitement hermétique et car il est insensible aux problèmes d'électricité statique pouvant entraîner des mises à feu intempestives de la charge pyrotechnique. Il pourra notamment être fabriqué par une technologie de type MEMS (Micro-Electro- Mechanical System).
Deux variantes de ce type de micro-interrupteur M, M' sont représentées sur les figures 4 et 9. D'autres types de micro-interrupteurs répondant parfaitement aux besoins de l'invention pourraient être envisagés, notamment des micro-interrupteurs de type "reed".
Dans les deux variantes de réalisation représentées aux figures 4 et 9, le microinterrupteur M, M' comporte un élément mobile monté sur un substrat S fabriqué dans des matériaux comme le silicium, le verre, des céramiques ou sous forme de circuits imprimés. Le substrat S porte par exemple sur sa surface 30 au moins deux contacts ou pistes conductrices 31 , 32 planes, identiques et espacées, destinées à être reliées électriquement par un contact électrique mobile 21 , 21 ' afin d'obtenir la fermeture d'un circuit électrique. L'élément mobile est composé d'une membrane 20, 20' déformable présentant au moins une couche en matériau ferromagnétique. Le matériau ferromagnétique est par exemple du type magnétique doux et peut être par exemple un alliage de fer et de nickel (« permalloy » Ni8oFe2o)- Selon l'orientation d'une composante magnétique créée dans la membrane, la membrane 20, 20' peut prendre une position basse, dite de fermeture, dans laquelle son contact mobile 21 , 21' relie électriquement les deux pistes 31 , 32 conductrices fixes de manière à fermer le circuit électrique ou une position haute, relevée, dite d'ouverture, dans laquelle son contact mobile 21 , 21 ' est éloigné des deux pistes conductrices de manière à ouvrir le circuit électrique. En position d'ouverture, l'espace libre devra être suffisant pour tenir la norme de "non feu" en cas de courant parasite.
Dans la première variante représentée en figure 4, la membrane 20 du microinterrupteur M présente un axe longitudinal (A) et est solidaire du substrat S par l'intermédiaire de deux bras 22a, 22b de liaison reliant ladite membrane 20 à deux plots d'ancrage 23a, 23b disposés symétriquement de part et d'autre de son axe longitudinal (A) et s'étendant perpendiculairement par rapport à cet axe (A). Par torsion des deux bras de liaison 22a, 22b, la membrane 20 est apte à pivoter entre sa position d'ouverture et sa position de fermeture suivant un axe de rotation (R) parallèle à l'axe décrit par les points de contact de la membrane 20 avec les pistes électriques 31 , 32 et perpendiculaire à son axe longitudinal (A). Son contact électrique mobile 21 est disposé sous la membrane 20, à une extrémité de celle-ci.
Dans cette première variante, l'actionnement magnétique du micro-interrupteur M consiste à soumettre la membrane 20 à un champ magnétique permanent B0, préférentiellement uniforme et par exemple de direction perpendiculaire à la surface 30 du substrat S pour maintenir la membrane 20 dans chacune de ses positions, et à appliquer un champ magnétique temporaire Bc de commande pour piloter le passage de la membrane 20 d'une position à l'autre, par inversion du couple magnétique s'exerçant sur la membrane 20. Forcer la membrane 20 à l'ouverture en employant un champ magnétique temporaire B0 peut s'avérer nécessaire pour résister aux décharges électrostatiques et pour conférer au micro-interrupteur M une forte isolation galvanique. Cependant, il est possible de se passer de l'application du champ magnétique permanent B0 si la membrane au repos garantit un espace à l'ouverture suffisant. Pour garantir cet espace à l'ouverture suffisant, la membrane 20 peut être précontrainte mécaniquement, par exemple en lui adjoignant une couche réalisée dans un matériau précontraint.
Pour générer le champ magnétique permanent B0, on utilise un aimant permanent (non représenté) par exemple fixé sous le substrat S. Le champ magnétique temporaire Bc est par exemple généré à l'aide d'une bobine d'excitation 4 associée au micro-interrupteur M. Cette bobine d'excitation 4 peut être planaire (figure 5), intégrée au substrat, ou externe, par exemple de type solénoïde. Le passage d'un courant dans la bobine d'excitation 4 génère un champ magnétique temporaire de direction parallèle au substrat S et parallèle à l'axe longitudinal (A) de la membrane 20 pour commander, selon le sens du courant dans la bobine, le basculement de la membrane 20 de l'une de ses positions vers l'autre de ses positions. Le fonctionnement d'un tel micro-interrupteur M est détaillé ci-dessous en liaison avec les figures 6 à 8. Sur les figures 2 et 3, la bobine 40, 400 est représentée sous la forme d'un enroulement mais il faut comprendre qu'elle peut prendre toute autre forme, notamment une forme planaire intégrée au substrat du microinterrupteur M (figure 5).
Le substrat S supportant la membrane 20 est placé sous l'effet du champ magnétique permanent B0 déjà défini ci-dessus. Comme représenté en figure 6, le premier champ magnétique B0 génère initialement une composante magnétique BP2 dans la membrane 20 suivant son axe longitudinal (A). Le couple magnétique résultant du premier champ magnétique B0 et de la composante BP2 générée dans la membrane 20 maintient la membrane 20 dans l'une de ses positions, par exemple la position d'ouverture sur la figure 6. En référence à la figure 7, le passage d'un courant de commande dans un sens défini à travers la bobine d'excitation 4 permet de générer le champ magnétique temporaire de commande Bc dont la direction est parallèle au substrat S, son sens dépendant du sens du courant délivré dans la bobine 4. Le champ magnétique temporaire Bc génère la composante magnétique BP3 dans la couche magnétique de la membrane 20. Si le courant de commande est délivré dans un sens approprié, cette nouvelle composante magnétique BP3 s'oppose à la composante BP2 générée dans la couche magnétique de la membrane 20 par le premier champ magnétique B0. Si la composante BP3 est d'intensité supérieure à celle générée par le premier champ magnétique B0, le couple magnétique résultant du premier champ magnétique B0 et de cette composante BP3 s'inverse et provoque le basculement de la membrane 20 de sa position d'ouverture vers sa position de fermeture (figure 7).
Une fois le basculement de la membrane 20 effectué, l'alimentation en courant de la bobine 4 n'est plus nécessaire. Selon l'invention, le champ magnétique Bc n'est généré que de manière transitoire pour faire basculer la membrane 20 d'une position à l'autre. Comme représenté en figure 8, la membrane 20 est ensuite maintenue dans sa position de fermeture sous l'effet du seul premier champ magnétique B0 créant une nouvelle composante magnétique BP4 dans la membrane 20 et donc un nouveau couple magnétique imposant à la membrane 20 de se maintenir dans sa position de fermeture (figure 8).
Dans la deuxième variante représentée en figure 9, la membrane 20' du microinterrupteur M' présente un axe longitudinal (A') et est reliée, à l'une de ses extrémités, par l'intermédiaire de bras de liaison 22a', 22b', à un ou plusieurs plots 23' d'ancrage solidaires du substrat S. La membrane 20' est apte à pivoter par rapport au substrat suivant un axe (R') de rotation perpendiculaire à son axe longitudinal (A'). Les bras 22a', 22b' de liaison forment une liaison élastique entre la membrane 20' et le plot 23' d'ancrage et sont sollicités en flexion lors du pivotement de la membrane 20'.
Dans cette deuxième variante de réalisation, l'actionnement magnétique du micro-interrupteur M' est illustré sur les figures 10 et 1 1. Il consiste à appliquer un champ magnétique créé par un aimant permanent 4'. Selon ce mode d'actionnement, la membrane 20' ferromagnétique se déplace entre ses deux états en s'alignant sur les lignes de champ L du champ magnétique généré par l'aimant permanent 4'. Le champ magnétique créé par l'aimant permanent 4' présente en effet des lignes de champ L dont l'orientation génère une composante magnétique (BP'O, BP'-i) dans une couche ferromagnétique de la membrane 20' suivant son axe longitudinal (A'). Cette composante magnétique (BP'O, BP^) générée dans la membrane 20' engendre un couple magnétique imposant à la membrane 20' de prendre l'une de ses positions d'ouverture (figure 10) ou de fermeture (figure 11 ). En déplaçant l'aimant permanent 4', il est donc possible de soumettre la membrane 20' à deux orientations différentes des lignes de champ L du champ magnétique de l'aimant permanent 4' et de faire basculer la membrane 20' entre ses deux positions. Pour faire basculer la membrane 20', le déplacement de l'aimant permanent 4' peut être réalisé suivant une direction parallèle à la surface 30 du substrat S ou perpendiculaire à cette surface 30.
Le corps des dispositifs renferment donc également des moyens d'allumage de la charge pyrotechnique 5 composés notamment d'un micro-interrupteur M, M' tel que décrit ci-dessus et d'un élément résistif chauffant, tel que par exemple un fil résistif 9, dont réchauffement destiné à initier en combustion la charge pyrotechnique 5 est commandé par le micro-interrupteur M, M'. Le micro-interrupteur M, M' est placé en série par rapport au fil résistif 9, lui-même relié d'une part à la terre et d'autre part au circuit électrique principal lorsque le micro-interrupteur M, M' est fermé. Le fil résistif 9 est situé à proximité de la charge pyrotechnique 5, préférentiellement en contact avec celle-ci ou enrobé par celle-ci (variante non représentée). En variante, l'initiation en combustion de la charge pyrotechnique 5 peut être réalisé directement par le micro-interrupteur en se passant de l'emploi du fil résistif 9. En effet, à partir d'un certain courant, le micro-interrupteur peut être conçu pour se volatiliser en produisant l'énergie nécessaire à la mise à feu de la charge pyrotechnique 5. Pour cela, le micro-interrupteur comporte par exemple une membrane 20 fusible apte à se volatiliser lorsque le courant commandé est trop fort.
Une première configuration d'un dispositif d'interruption est représentée en figure 1. Ce dispositif d'interruption est destiné à réagir à une action mécanique externe. Cette action mécanique externe peut être réalisée par différents moyens, telle que par exemple une augmentation de la pression d'un fluide (air, eau ou huile) ou l'action d'une pièce mécanique externe mise en mouvement suite à une variation de température ou en réponse à un choc. Tout autre type de capteur pourrait être envisagé, notamment un capteur "multiphysique" produisant une réponse mécanique en fonction de la variation de différents paramètres physiques tels que la pression, la température, la vitesse...
Dans cette première configuration, le dispositif comporte un aimant permanent mobile 10, par exemple en forme de disque ou de tore, monté sur un organe d'actionnement OA mobile sur lequel est exercée l'action mécanique externe, de manière coaxiale par rapport à l'axe (X) du dispositif. Cet organe d'actionnement OA est apte à se déplacer en translation lors de l'application d'une action mécanique externe minimale calibrée par exemple à l'aide d'un mécanisme à soufflet 11 , d'une membrane élastique à rupture brusque (non représentée) ou à l'aide d'un aimant fixe en forme de disque ou de tore (non représenté) disposé de manière concentrique par rapport à l'aimant permanent mobile 10. Entraîné par l'organe d'actionnement OA, l'aimant permanent mobile 10 peut donc se translater suivant l'axe (X) du dispositif entre une position de repos et une position de travail.
Dans cette première configuration, le micro-interrupteur M' employé est du type de la seconde variante décrite ci-dessous. Ce micro-interrupteur M' est décalé par rapport à l'axe (X) du dispositif de manière à pouvoir basculer sous l'influence du champ magnétique créé par l'aimant permanent mobile 10.
Le fonctionnement de cette première configuration du dispositif d'interruption est le suivant :
Lorsqu'une action mécanique externe d'intensité minimale déterminée est exercée sur l'organe d'actionnement OA, celui-ci se déplace en translation suivant l'axe (X) du dispositif en entraînant l'aimant permanent mobile 10. Dans sa position de repos, l'aimant permanent mobile n'a par exemple aucune influence sur le micro-interrupteur M'. La membrane 20' du micro-interrupteur M' est alors dans une position de repos, parallèle au substrat comme représenté sur la figure 9 ou relevée comme représenté sur la figure 10 par précontrainte mécanique interne. Lorsque l'aimant permanent mobile 10 est dans sa position basse de travail, son champ magnétique induit une composante magnétique dans la membrane 20' créant un couple magnétique imposant la position de fermeture au micro-interrupteur M' (figure 1 1 ).
La fermeture du micro-interrupteur M' provoque une mise à la terre brusque permettant d'échauffer le fil résistif 9 et de le volatiliser de manière à produire l'énergie nécessaire à l'initiation de la charge pyrotechnique 5.
Les gaz générés par la combustion de la charge pyrotechnique 5 provoquent ensuite l'éclatement du corps 1 suivant son amorce de rupture 8 et simultanément l'éjection de la pièce de connexion 7, de manière à interrompre le circuit électrique principal entre les deux conducteurs 6a, 6b.
Dans la seconde configuration du dispositif d'interruption représentée en figure 2, on remplace l'aimant permanent mobile 10 par une bobine d'excitation 40 disposée dans l'axe (X) du dispositif. Ce dispositif d'interruption n'est donc plus sensible à une action mécanique externe mais à un signal électrique.
Le micro-interrupteur M employé dans cette configuration est du type de la première variante décrite ci-dessus. Il est donc polarisé par un aimant permanent fixe (non représenté) par exemple solidaire du substrat S et créant le champ magnétique B0 maintenant initialement le micro-interrupteur M en position d'ouverture. Le microinterrupteur M est décalé par rapport à l'axe de la bobine 40 de manière à être sous l'influence de ses lignes de champ sensiblement horizontales. Lorsque la bobine 40 est activée, le micro-interrupteur M est donc placé sous l'influence prépondérante du champ magnétique temporaire Bc (figure 7) parallèle à son substrat S et commandant sa membrane 20 entre ses deux positions.
Sur la figure 2, la bobine d'excitation 40 est représentée par un enroulement autour d'une carcasse mais il faut comprendre qu'elle peut prendre toute autre forme. Comme représenté en figure 5, elle peut notamment être de type planaire, intégrée au substrat S supportant le micro-interrupteur M.
La bobine d'excitation 40 est montée en parallèle par rapport au circuit électrique principal de manière à être traversé par le courant du circuit électrique principal. Le champ généré par la bobine 40 étant proportionnel au courant qui la traverse, le microinterrupteur M peut ainsi basculer lorsque le courant dépasse une valeur seuil déterminée fonction de l'appareil à protéger. Lorsque cette valeur seuil est dépassée, le champ magnétique temporaire Bc créé par la bobine d'excitation 40 génère une composante magnétique dans la membrane 20 du micro-interrupteur M, d'intensité suffisante pour lui imposer sa position de fermeture (figures 7 et 8), entraînant comme dans la première configuration, l'allumage de la charge pyrotechnique 5 et l'interruption du circuit électrique principal par éjection de la pièce de connexion 7.
Le dispositif d'enclenchement représenté en figure 3 fonctionne également à l'aide d'une bobine d'excitation 400 qui est ici montée en parallèle par rapport au fil résistif 9 et au micro-interrupteur M' employé. Le micro-interrupteur M' employé dans ce dispositif d'enclenchement est du type de la première variante décrite ci-dessus (figures 4 à 8). Sa membrane 20 est polarisée par un aimant permanent fixe (non représenté) et est commandé entre ses deux positions par le champ magnétique temporaire Bc créé par la bobine 400. Comme précédemment, la bobine 400 peut être de type planaire, intégrée au substrat S du micro-interrupteur (figure 5). La bobine d'excitation 400 est par exemple commandé à la fermeture par un capteur C. Ce capteur C peut par exemple prendre la forme d'un interrupteur sensible à un ou plusieurs paramètres physiques, tels que la température, la pression, l'accélération... Il est notamment possible d'envisager un capteur d'accélération comportant plusieurs micro-interrupteurs de type MEMS conformes à l'invention placés sur le circuit électrique en série avec le micro-interrupteur M de commande d'allumage de la charge 5. Un aimant permanent est par exemple mis en mouvement en fonction de l'intensité de l'accélération ou de la décélération pour actionner plus ou moins de micro-interrupteurs. Lorsqu'un seuil d'accélération ou de décélération est atteint, tous les micro-interrupteurs sont fermés permettant le passage du courant vers la bobine d'excitation 400.
La pièce de connexion 700 est montée solidaire d'un piston P séparant l'espace interne du corps 1 en une première chambre 500 contenant la charge pyrotechnique et une seconde chambre 600 traversée par les conducteurs 6a, 6b et contenant la pièce de connexion 700. Le piston P est par exemple retenu par des crans 300 formés sur la face interne du corps 1.
En fonctionnement, lorsque la bobine 400 est activée, son champ magnétique agit sur le micro-interrupteur M lui imposant sa position de fermeture. La fermeture du micro-interrupteur M entraîne réchauffement de la charge pyrotechnique 5, et ainsi la génération de gaz. Les gaz créés dans la première chambre 500 poussent le piston P en translation accompagné de la pièce de connexion 700 jusqu'à ce que celle-ci vienne relier les deux conducteurs 6a, 6b. Le dispositif peut par exemple prévoir un mécanisme de soupape 800 pour évacuer les gaz de combustion de la première chambre 500.
Il est bien entendu que l'on peut, sans sortir du cadre de l'invention, imaginer d'autres variantes et perfectionnements de détail et de même envisager l'emploi de moyens équivalents.

Claims

REVENDICATIONS
1. Dispositif d'interruption/enclenchement d'un circuit électrique, comportant : une charge pyrotechnique (5) destinée à être initiée en combustion pour entraîner l'interruption, respectivement l'enclenchement, du circuit électrique,
- des moyens d'allumage de la charge pyrotechnique (5), caractérisé en ce que : les moyens d'allumage sont connectés au circuit électrique, les moyens d'allumage comprennent un micro-interrupteur (M, M') à actionnement magnétique apte à commander l'allumage de la charge pyrotechnique (5).
2. Dispositif selon la revendication 1 , caractérisé en ce que le micro-interrupteur (M, M') est placé sur une branche de circuit reliée d'une part au circuit électrique et d'autre part à la terre.
3. Dispositif selon la revendication 2, caractérisé en ce que les moyens d'allumage comprennent un élément résistif (9) chauffant monté en série avec le micro-interrupteur (M, M') et apte à initier en combustion la charge pyrotechnique (5).
4. Dispositif selon la revendication 3, caractérisé en ce que le micro-interrupteur (M') est commandé par un aimant permanent mobile (10).
5. Dispositif selon la revendication 4, caractérisé en ce que l'aimant permanent mobile (10) est actionnable en translation.
6. Dispositif selon la revendication 3, caractérisé en ce que le micro-interrupteur (M, M') est commandé par une bobine d'excitation (40, 400).
7. Dispositif selon la revendication 6, caractérisé en ce que la bobine d'excitation (40) est montée en parallèle par rapport au circuit électrique.
8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que le circuit électrique comporte deux conducteurs (6a, 6b) et une pièce de connexion (7) déplaçable sous l'effet des gaz générés par la combustion de la charge pyrotechnique.
9. Dispositif selon la revendication 8, caractérisé en ce que la pièce de connexion (7) relie initialement les deux conducteurs (6a, 6b)
10. Dispositif selon la revendication 6, caractérisé en ce que la bobine d'excitation (400) est montée en parallèle par rapport au micro-interrupteur.
11. Dispositif selon la revendication 8, caractérisé en ce que la bobine d'excitation (400) est commandée par un capteur (C).
12. Dispositif selon la revendication 10 ou 1 1 , caractérisé en ce que le circuit électrique comporte deux conducteurs (6a, 6b) et une pièce de connexion (700) déplaçable sous l'effet des gaz générés par la combustion de la charge pyrotechnique (5).
13. Dispositif selon la revendication 12, caractérisé en ce que la pièce de connexion (700) est initialement déconnectée des deux conducteurs (6a, 6b).
14. Dispositif selon la revendication 12 ou 13, caractérisé en ce que la pièce de connexion (700) est solidaire d'un piston (P) séparant une première chambre (500) comportant la charge pyrotechnique (5) d'une deuxième chambre (600) traversée par les deux conducteurs (6a, 6b).
15. Dispositif selon l'une des revendications 1 à 14, caractérisé en ce que le micro-interrupteur (M, M') comporte une membrane (20, 20') en matériau ferromagnétique apte à être piloté entre deux positions en s'alignant sur les lignes de champ d'un champ magnétique.
PCT/EP2008/050434 2007-01-19 2008-01-16 Dispositif d'interruption / enclenchement d'un circuit electrique WO2008090065A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/523,668 US8446241B2 (en) 2007-01-19 2008-01-16 Device for breaking/making an electric circuit
DE602008002897T DE602008002897D1 (de) 2007-01-19 2008-01-16 Vorrichtung zur ein- und ausschaltung eines elektrischen schaltkreises
CN2008800060664A CN101622684B (zh) 2007-01-19 2008-01-16 用于接通和中断电路的装置
EP08707924A EP2109871B1 (fr) 2007-01-19 2008-01-16 Dispositif d'interruption / enclenchement d'un circuit electrique
AT08707924T ATE484068T1 (de) 2007-01-19 2008-01-16 Vorrichtung zur ein- und ausschaltung eines elektrischen schaltkreises
JP2009545914A JP5133354B2 (ja) 2007-01-19 2008-01-16 電気回路の投入/遮断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0752763A FR2911719B1 (fr) 2007-01-19 2007-01-19 Dispositif d'interruption/enclenchement d'un circuit electrique
FR0752763 2007-01-19

Publications (1)

Publication Number Publication Date
WO2008090065A1 true WO2008090065A1 (fr) 2008-07-31

Family

ID=38135003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/050434 WO2008090065A1 (fr) 2007-01-19 2008-01-16 Dispositif d'interruption / enclenchement d'un circuit electrique

Country Status (10)

Country Link
US (1) US8446241B2 (fr)
EP (1) EP2109871B1 (fr)
JP (1) JP5133354B2 (fr)
CN (1) CN101622684B (fr)
AT (1) ATE484068T1 (fr)
DE (1) DE602008002897D1 (fr)
ES (1) ES2352412T3 (fr)
FR (1) FR2911719B1 (fr)
RU (1) RU2410790C1 (fr)
WO (1) WO2008090065A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2737670C (fr) * 2010-04-15 2015-09-22 Hanchett Entry Systems, Inc. Dispositif recoltant l'energie electromagnetique et mecanisme de deverrouillage de porte servant de source d'energie pour le dispositif recoltant l'energie
US20130043111A1 (en) * 2011-08-15 2013-02-21 Honeywell International Inc. Circuit breaker position sensing and health monitoring system
US9543745B2 (en) * 2013-08-13 2017-01-10 Cooper Technologies Company Arrester bypass devices
DE102014115396A1 (de) * 2014-10-22 2014-12-18 Peter Lell Trennschalter für hohe Gleich- oder Wechselströme bei hohen Spannungen
DE102015201371A1 (de) 2015-01-27 2016-07-28 Leoni Bordnetz-Systeme Gmbh Pyrotechnisches Sicherungselement
RU2589035C1 (ru) * 2015-04-01 2016-07-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Устройство для замыкания сильноточных электрических цепей
US11239038B2 (en) * 2015-05-18 2022-02-01 Gigavac, Llc Mechanical fuse device
US10566160B2 (en) 2015-05-18 2020-02-18 Gigavac, Llc Passive triggering mechanisms for use with switching devices incorporating pyrotechnic features
DE102016204287A1 (de) * 2016-03-16 2017-09-21 Bayerische Motoren Werke Aktiengesellschaft Dc-überstromschutzvorrichtung
KR102237377B1 (ko) * 2016-08-12 2021-04-06 삼성에스디아이 주식회사 전기 커넥터
FR3060834B1 (fr) * 2016-12-20 2019-05-24 Airbus Safran Launchers Sas Court-circuiteur pyrotechnique
JP7441605B2 (ja) * 2018-01-02 2024-03-01 ギガバック リミテッド ライアビリティ カンパニー パイロテクニック式切断機能一体型接触器装置
TWI627651B (zh) * 2018-01-18 2018-06-21 Nat Chung Shan Inst Science & Tech 波紋片式壓力開關
US11276535B2 (en) * 2018-08-28 2022-03-15 Gigavac, Llc Passive triggering mechanisms for use with switching devices incorporating pyrotechnic features
GB2612232B (en) * 2018-08-27 2023-07-19 Gigavac Llc Passive triggering mechanisms for use with switching devices incorporating pyrotechnic features
GB2577347A (en) * 2018-09-24 2020-03-25 Eaton Intelligent Power Ltd Switch with pyrotechnic actuator
US11443910B2 (en) 2019-09-27 2022-09-13 Gigavac, Llc Contact levitation triggering mechanisms for use with switching devices incorporating pyrotechnic features
DE102019126192B3 (de) * 2019-09-27 2021-02-25 Ruag Ammotec Gmbh Verfahren und System zum Bereitstellen einer vorbestimmten pyrotechnischen Energieabgabe
WO2023071713A1 (fr) * 2021-10-27 2023-05-04 西安中熔电气股份有限公司 Appareil de protection contre l'excitation à source d'excitation unique agissant étape par étape

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406730A1 (de) * 1994-03-02 1995-09-14 Bayern Chemie Gmbh Flugchemie Vorrichtung zum Unterbrechen der Stromversorgung eines Kraftfahrzeuges bei einem Unfall
DE10054153A1 (de) * 1999-11-05 2001-07-19 Yazaki Corp Leistungsschalter und diesen verwendendes Kabelbaumgerät

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342978A (en) * 1979-03-19 1982-08-03 S&C Electric Company Explosively-actuated switch and current limiting, high voltage fuse using same
US4479105A (en) * 1983-03-08 1984-10-23 G & W Electric Company Pyrotechnic current interrupter
JPH0356994Y2 (fr) * 1987-04-17 1991-12-25
JPH09251829A (ja) * 1996-03-15 1997-09-22 Fujitsu Takamizawa Component Kk 衝撃センサ
US5732634A (en) * 1996-09-03 1998-03-31 Teledyne Industries, Inc. Thin film bridge initiators and method of manufacture
US6107581A (en) * 1998-02-17 2000-08-22 Harness System Technologies Research, Ltd. Circuit breaking device
JP2000251599A (ja) * 1999-03-03 2000-09-14 Yazaki Corp 電源遮断器
JP2001068000A (ja) * 1999-08-27 2001-03-16 Yazaki Corp 回路遮断装置
US7336474B2 (en) * 1999-09-23 2008-02-26 Schlumberger Technology Corporation Microelectromechanical devices
FR2836907B1 (fr) * 2002-03-11 2005-03-18 Commissariat Energie Atomique Microvanne a actionnement pyrotechnique
DE102004062266A1 (de) * 2004-12-23 2006-07-13 Siemens Ag Verfahren und Vorrichtung zum sicheren Betrieb eines Schaltgerätes
FR2880729B1 (fr) * 2005-01-10 2009-02-27 Schneider Electric Ind Sas Microsysteme a commande electromagnetique
US7538990B2 (en) * 2006-12-14 2009-05-26 Hamilton Sundstrand Corporation High voltage DC contactor hybrid without a DC arc break

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406730A1 (de) * 1994-03-02 1995-09-14 Bayern Chemie Gmbh Flugchemie Vorrichtung zum Unterbrechen der Stromversorgung eines Kraftfahrzeuges bei einem Unfall
DE10054153A1 (de) * 1999-11-05 2001-07-19 Yazaki Corp Leistungsschalter und diesen verwendendes Kabelbaumgerät

Also Published As

Publication number Publication date
FR2911719B1 (fr) 2009-02-27
FR2911719A1 (fr) 2008-07-25
US8446241B2 (en) 2013-05-21
DE602008002897D1 (de) 2010-11-18
CN101622684A (zh) 2010-01-06
EP2109871A1 (fr) 2009-10-21
JP2010517212A (ja) 2010-05-20
JP5133354B2 (ja) 2013-01-30
EP2109871B1 (fr) 2010-10-06
US20100089739A1 (en) 2010-04-15
CN101622684B (zh) 2012-04-04
ES2352412T3 (es) 2011-02-18
ATE484068T1 (de) 2010-10-15
RU2410790C1 (ru) 2011-01-27

Similar Documents

Publication Publication Date Title
EP2109871B1 (fr) Dispositif d'interruption / enclenchement d'un circuit electrique
EP0017575A1 (fr) Contacteur à commande d'ouverture rapide sur défaut
FR3101478A1 (fr) Mecanismes de declenchement par levitation de contacts a utiliser avec des dispositifs de commutation incorporant des elements pyrotechniques
FR3071660B1 (fr) Dispositif de coupure pyrotechnique
EP0007867A1 (fr) Perfectionnements aux dispositifs pour détecter la rupture d'un élément de circuit électrique
FR3051281A1 (fr) Dispositif de coupure electrique et systeme electrique securise comprenant un tel dispositif
EP1743346A1 (fr) Dispositif de protection contre les surtensions pourvu de moyens de coupure d'arc
FR2600181A1 (fr) Dispositif de commande electrique du deplacement d'un element entre deux positions predeterminees
EP3109878B1 (fr) Ampoule à vide et appareillage de protection électrique comportant une telle ampoule
EP2678877B1 (fr) Actionneur magnétothermique.
EP0382134B1 (fr) Dispositif de sécurité pour appareil électrique à gaz diélectrique, notamment pour disjoncteurs ou réducteurs de mesure
EP0475247A1 (fr) Commande de disjoncteur
WO2008090059A2 (fr) Initiateur electro-pyrotechnique a commande magnetique
WO2007036481A1 (fr) Dispositif de neutralisation d'un appareil electrique interrupteur
EP1058323B1 (fr) Contacteur-disjoncteur actionné par un moteur piezo-électrique
EP3499541B1 (fr) Appareil de protection électrique comportant un système d'actionnement pyrotechnique
EP0881653B1 (fr) Dispositif porte-fusible tel un puits-fusible pour appareillage électrique
GB2400741A (en) Latching relay
EP2545574B1 (fr) Interrupteur electrique moyenne et haute tension avec retour sur fermeture et dispositif d'insertion d'une resistance
EP0926694A1 (fr) Dispositif de déclenchement magnéto-thermique et disjoncteur équipé de ce dispositif
EP0693765A1 (fr) Propulseur électromagnétique de disjoncteur basse tension
EP1501112B1 (fr) Sous-ensemble magnétique amélioré et disjoncteur comportant un tel sous-ensemble magnétique
FR2492580A1 (fr) Poussoir magnetique de commande
FR2896617A1 (fr) Dispositif d'actionnement pour controler la vitesse de course des contacts mobiles dans un contacteur
EP1836713A1 (fr) Microsysteme integrant un circuit magnetique reluctant

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880006066.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08707924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008707924

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009545914

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009131448

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12523668

Country of ref document: US