WO2008075629A1 - 電子部品内蔵配線板、及び電子部品内蔵配線板の放熱方法 - Google Patents

電子部品内蔵配線板、及び電子部品内蔵配線板の放熱方法 Download PDF

Info

Publication number
WO2008075629A1
WO2008075629A1 PCT/JP2007/074152 JP2007074152W WO2008075629A1 WO 2008075629 A1 WO2008075629 A1 WO 2008075629A1 JP 2007074152 W JP2007074152 W JP 2007074152W WO 2008075629 A1 WO2008075629 A1 WO 2008075629A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
wiring board
built
metal
insulating member
Prior art date
Application number
PCT/JP2007/074152
Other languages
English (en)
French (fr)
Inventor
Kenji Sasaoka
Yoshitaka Fukuoka
Original Assignee
Dai Nippon Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007319474A external-priority patent/JP5326269B2/ja
Application filed by Dai Nippon Printing Co., Ltd. filed Critical Dai Nippon Printing Co., Ltd.
Priority to CN200780046529.5A priority Critical patent/CN101574024B/zh
Priority to US12/519,745 priority patent/US8198541B2/en
Priority to KR1020097014837A priority patent/KR101411194B1/ko
Publication of WO2008075629A1 publication Critical patent/WO2008075629A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/061Lamination of previously made multilayered subassemblies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4623Manufacturing multilayer circuits by laminating two or more circuit boards the circuit boards having internal via connections between two or more circuit layers before lamination, e.g. double-sided circuit boards

Definitions

  • the present invention relates to an electronic component built-in wiring board in which an electronic component is embedded in an insulating member, the electronic component built-in wiring board capable of effectively radiating heat generated from the electronic component, and heat dissipation thereof. Regarding the method.
  • a multilayer wiring board a plurality of wiring patterns are arranged so as to be substantially parallel to each other, an insulating member is arranged between the wiring patterns, and an electronic component such as a semiconductor component is An insulating layer is embedded in the insulating member so as to be electrically connected to at least one of the wiring patterns, and an interlayer connection body (via) penetrating the insulating members in the thickness direction is formed. They are electrically connected to each other (for example, see Patent Document 1).
  • the amount of heat generated is relatively large in the case of an electronic component embedded in the insulating member, particularly a semiconductor component.
  • the insulating member that embeds the electronic component is composed of a member having poor thermal conductivity such as a resin, so that the heat generated from the electronic component is efficiently transferred to the outside of the wiring board. Can't dissipate heat. For this reason, the temperature inside the wiring board rises, causing problems such as destruction of the component mounting part or damage to the connection part of the wiring board. In addition, there were cases where problems such as smoke and fire occurred as the temperature rose.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-197849
  • the present invention provides an electronic component built-in wiring board in which an electronic component is embedded in an insulating member to effectively dissipate heat generated from the electronic component, thereby reducing heat generated from the electronic component.
  • the purpose is to solve various problems such as the destruction of the mounted part.
  • a metal body provided on at least a main surface of the electronic component and thermally connected to the electronic component;
  • the present invention also provides:
  • an electronic component built-in wiring board comprising at least a pair of wiring patterns, an insulating member held between the pair of wiring patterns, and an electronic component embedded in the insulating member
  • a metal body that is thermally connected to the electronic component is formed on at least a main surface of the electronic component in the insulating member, and heat generated from the electronic component is dissipated.
  • the present invention relates to a heat dissipation method for an electronic component built-in wiring board.
  • the present inventor has intensively studied to solve the above problems.
  • the metal body so as to be thermally connected to at least the main surface of the electronic component embedded in the insulating member of the electronic component-embedded wiring board, the metal body is at least the electronic component. Since heat comes from the component toward the surface of the wiring board, the heat generated by the electronic component Can effectively dissipate heat to the surface of the wiring board and further to the outside through the surface. Therefore, avoid the above-mentioned problems such as the destruction of the component mounting part due to the temperature rise inside the wiring board, the damage at the connection part of the wiring board, and the smoke and fire. Touch with force S.
  • the "thermal connection” means a connection in a state in which heat generated from the electronic component is conducted to the metal body, and the two are not necessarily in direct contact with each other. It is not a requirement. However, since the metal body is generally composed of a good heat conductor, it is actually preferable that the electronic component and the metal body be directly connected to each other. Such direct connection is effective in the case where the electronic component does not form an ohmic contact at the connection portion, such as a semiconductor component, and the operation of the semiconductor component is not hindered.
  • the metal body when the electronic component is a good electrical conductor and its operation is hindered by direct contact with the metal body, the metal body directly contacts the electronic component. Cannot be connected. In such a case, the metal body is arranged apart from the electronic component. Furthermore, in such a case, since the metal body and the electronic component are present in the insulating member of the wiring board, a part of the insulating member may be interposed between them, or separately.
  • the surface of the electronic component is covered with a protective layer having an insulating property and preferably excellent thermal conductivity, and the metal body is placed in contact with the protective layer.
  • the at least one pair of wiring patterns are a plurality of wiring patterns, and the pair of wiring patterns are provided on the front surface and the back surface of the insulating member, respectively.
  • the remaining wiring pattern is embedded in the insulating member, and at least a part of the plurality of wiring patterns, at least a part of the plurality of wiring patterns, and the electronic component are electrically connected by a plurality of interlayer connectors.
  • the electronic component built-in wiring board can be manufactured in such a manner as to be connected to each other.
  • the wiring board can be a so-called multilayer wiring board, satisfying the demand for high density and high functionality and improving the heat dissipation from the electronic components described above. it can.
  • the metal body and at least one of the plurality of interlayer connection bodies are formed by the same process. In this case, since it is not necessary to provide a separate process for forming the metal body, the manufacturing cost of the electronic component built-in wiring board can be reduced. In this case, by forming both the metal body and the interlayer insulator from the same material, these forming steps can be simplified.
  • the metal body includes a conductive composition in which a metal powder composed only of a metal material such as copper, aluminum, gold, or silver is dispersed in a resin and exhibits metallic properties.
  • the electronic component built-in wiring board includes a metal heat radiating plate formed at substantially the same level as at least one of the plurality of wiring patterns, and the metal body includes Thermally connected to the metal heat sink.
  • the heat generated from the electronic component is radiated from the metal heat radiating plate through the metal body, so that the heat radiation efficiency can be further increased.
  • the metal body is a plurality of metal bodies, and at least a part of the plurality of metal bodies is thermally connected to each other in the thickness direction of the insulating member.
  • the heat generated from the electronic component can be dissipated to the outside of the electronic component built-in wiring board.
  • the heat generated from the electronic component can be efficiently radiated to the outside of the wiring board through the metal body, so that the heat radiation efficiency can be further increased.
  • the plurality of metal bodies are connected via the metal heat radiating plate, the heat radiating effect can be further increased due to the heat radiating effect of the metal heat radiating plate.
  • a heat dissipating member thermally connected to the metal body located on the outermost surface of the electronic component built-in wiring board of the plurality of metal bodies is provided.
  • the heat generated from the electronic component is radiated to the outside through the heat dissipation member after passing through the metal body, so that the heat dissipation effect can be further increased.
  • the heat generated from the electronic component is effectively dissipated, and the heat generated from the electronic component is reduced.
  • Various problems such as the destruction of the mounted part can be solved.
  • FIG. 1 is a cross-sectional configuration diagram showing an electronic component built-in wiring board according to a first embodiment.
  • FIG. 2 is a cross-sectional configuration diagram showing a modification of the electronic component built-in wiring board according to the first embodiment.
  • FIG. 3 is a cross-sectional configuration diagram showing an electronic component built-in wiring board according to a second embodiment.
  • FIG. 4 is a cross-sectional configuration diagram showing a modification of the electronic component built-in wiring board according to the second embodiment.
  • FIG. 5 is a cross-sectional configuration diagram showing an electronic component built-in wiring according to a third embodiment.
  • FIG. 6 is a diagram showing a manufacturing process of the electronic component built-in wiring board according to the first embodiment.
  • FIG. 7 is a diagram showing manufacturing steps of the electronic component built-in wiring board in the same first embodiment.
  • FIG. 8 is a diagram showing manufacturing steps of the electronic component built-in wiring board in the same first embodiment.
  • FIG. 9 is a diagram showing a manufacturing process of the electronic component built-in wiring board according to the first embodiment.
  • FIG. 10 is a diagram showing a manufacturing process of the electronic component built-in wiring board according to the first embodiment.
  • FIG. 11 is a diagram showing a manufacturing process of the electronic component built-in wiring board according to the first embodiment.
  • FIG. 1 is a cross-sectional configuration diagram showing an example of an electronic component built-in wiring board according to the present invention.
  • the wiring board 10 with a built-in electronic component shown in FIG. 1 has a first wiring pattern 11 and a second wiring pattern 12 which are located on the front surface and the back surface thereof and are substantially parallel to each other. And a third wiring pattern 13 and a fourth wiring pattern 14 that maintain a substantially parallel relationship with the first spring pattern 11 and the second spring pattern.
  • a first insulating member 21 is disposed between the first wiring pattern 11 and the third wiring pattern 13, and the second wiring pattern 12 and the fourth wiring pattern 14 are interposed between the first wiring pattern 11 and the third wiring pattern 13.
  • Two insulating members 22 are arranged.
  • a third insulating member 23 is disposed between the third wiring pattern 13 and the fourth wiring pattern 14.
  • an electronic component 31 is embedded in the third insulating member 23 and is electrically connected to the fourth wiring pattern 14 via the connecting member 31A.
  • a fourth insulating member 24 is interposed in the third insulating member 23.
  • a fifth wiring pattern 15 is formed on the front surface of the fourth insulating member 24, and a sixth wiring pattern 16 is formed on the back surface of the fourth insulating member 24.
  • the first wiring pattern 11 and the third wiring pattern 13 are electrically connected by a bump 41 formed so as to penetrate through the first insulating member 21, and the second wiring pattern 12.
  • the fourth wiring pattern 14 is electrically connected by a bump 42 formed so as to penetrate through the second insulating member 22.
  • the third wiring pattern 13 and the fifth wiring pattern 15 are electrically connected by the bump 43 formed so as to penetrate the portion of the third insulating member 23 located between the patterns.
  • the fourth wiring pattern 14 and the sixth wiring pattern 16 are electrically connected by the bumps 44 formed so as to penetrate the portion of the third insulating member 23 located between the patterns. Yes.
  • the fifth wiring pattern 15 and the sixth wiring pattern 16 are electrically connected by an internal conductor 45 formed on the inner wall portion of the through hole formed in the fourth insulating member 24. It has been continued. Accordingly, the first wiring pattern 11 to the sixth wiring pattern 16 are electrically connected to each other by the amplifiers 4;! To 44 and the internal conductor 45. Furthermore, the electronic component 31 is also electrically connected to the above-described wiring pattern via the fourth wiring pattern 14.
  • the bumps 4! To 44 and the internal conductor 45 constitute an interlayer connection body, respectively.
  • a metal heat radiating plate 33 is provided at substantially the same level as that of the third wiring pattern 13.
  • a metal body 32 is provided so as to be in contact with the upper surface of the electronic component 31.
  • the metal body 32 exists from the electronic component 31 toward the surface of the wiring board 10, the heat generated by the electronic component 31 is easily transmitted to the vicinity of the surface of the wiring board 10. Further, the metal body 32 is connected to a metal heat radiating plate 33 provided in the vicinity of the surface of the wiring board 10. Therefore, the heat generated in the electronic component 31 is transferred to the vicinity of the surface of the wiring board 10 and then released. Since heat is dissipated in the hot plate 33, the heat S can be dissipated in the vicinity of the surface of the wiring board 10.
  • the heat generated in the electronic component 31 embedded in the third insulating member 23 is transmitted near the surface and further through the surface. Can effectively dissipate heat to the outside. Therefore, destruction of the component mounting part due to the temperature rise inside the wiring board 10, i.e., joint damage between the electronic component 31 and the fourth wiring pattern 14, damage at the connection part between each wiring pattern and the bump, etc. Problems such as smoke and fire can be avoided.
  • the metal body 32 and the metal heat radiating plate 33 can be composed of a good heat conductor such as copper, aluminum, gold, silver or the like. It can also be composed of a conductive composition in which metal powder is dispersed in a resin.
  • the bumps 4 !-44, the internal conductor 45, and the wiring patterns 11-16 can also be composed of the same good heat conductor. From the viewpoint of strength, the metal body 32 and the bump 43 can be formed in a single process in the same manufacturing process. Further, the metal heat sink 33 and the third wiring pattern 13 can be formed together in the same manufacturing process with the force S.
  • the first insulating member 21 to the fourth insulating member 24 are described so as to be distinguishable from each other.
  • the insulating members are sequentially formed, they can be identified as a general state. However, there are cases where they cannot be distinguished from each other depending on the material constituting the insulating member and the heating conditions.
  • the first insulating member 21 to the fourth insulating member 24 may appropriately contain reinforcing fibers (members) such as glass fibers.
  • the relatively thick fourth insulating member 24 can easily contain the above-described reinforcing fiber, and thereby the strength of the entire electronic component built-in wiring board 10 can be increased.
  • Each insulating member can be made of a general-purpose thermosetting resin, and the connecting member 31A for connecting the electronic component 31 to the fourth wiring pattern can be made of solder or the like.
  • FIG. 2 is a configuration diagram showing the electronic component built-in wiring board 10 configured such that the metal body 32 does not directly contact the electronic component 31.
  • a part of the third insulating member 23 is interposed between the metal body 32 and the electronic component 31 in which the metal body 32 is not brought into direct contact with the upper surface of the electronic component 31.
  • the heat radiation from the electronic component 31 is transmitted through the third insulating member 23 and then absorbed by the metal body 32. It comes to be. Thereafter, the heat absorbed by the metal body 32 is transmitted to the metal heat radiating plate 33 and is radiated to the outside from the surface of the wiring board 10. Therefore, destruction of the component mounting part due to the temperature rise inside the wiring board 10, that is, bonding damage between the electronic component 31 and the fourth wiring pattern 14, damage at the connection part between each wiring pattern and the bump, etc. Problems such as smoke, fire, etc. can be avoided.
  • the distance between the tip of the metal body 32 and the upper surface of the electronic component 31 that secure the heat dissipation effect described above is, for example, 5 It is preferable to set the distance between 111 and 100 m.
  • the direct heat contact increases the heat radiation effect from the electronic component 31 with the force S.
  • the electronic component 31 when the metal body 32 is brought into direct contact with the electronic component 31, the electronic component 31 needs to be such that operation is not impaired by the contact. Specifically, a semiconductor component or the like is preferable. In other words, the configuration as shown in FIG. 1 is most effective when the electronic component 31 is a semiconductor component.
  • the electronic component 31 is a good electrical conductor and its operation is impaired by the contact with the metal body 32 described above, the electronic component 31 is made of an insulating and preferably thermal good conductor. By coating with a protective layer, the disadvantages mentioned above due to direct contact can be eliminated.
  • the force provided with the metal heat sink 33 Even when only the metal body 32 is provided without providing it, the heat dissipation effect from the electronic component 31 can be sufficiently ensured. However, by providing the metal heat radiating plate 33, the heat radiating effect can be further increased.
  • FIG. 3 is a cross-sectional configuration diagram showing another example of the electronic component built-in wiring board of the present invention.
  • the same or similar components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.
  • an additional heat radiating plate 35 is provided on the first insulating member 21 at the same plane level as the first wiring pattern 11, and the first insulating member 21 is attached to the first insulating member 21.
  • the other components are the same as each other in that an additional metal body 34 that penetrates and is connected to the heat sinks 33 and 35 is provided.
  • the metal bodies 32 and 34 are connected to each other via the metal heat sink 33 and the metal body 34 is provided on the outermost surface of the wiring board 10. It is connected to the metal heat sink 35. Therefore, the heat generated from the electronic component 31 is transferred to the metal heat sink 35 located on the outermost surface via the metal bodies 32 and 34 and the metal heat sink 33 and then directly wired by the metal heat sink 35. It is possible to dissipate heat to the outside of the plate 10 S. Therefore, compared with the electronic component built-in wiring board 10 shown in FIG. 1, the electronic component built-in wiring board 10 of this example further increases the heat radiation effect from the electronic component 31.
  • the heat generated in the electronic component 31 embedded in the third insulating member 23 is in the vicinity of the surface, and further the surface force, Heat can be effectively dissipated to the outside. Therefore, destruction of the component mounting part due to the temperature rise inside the wiring board 10, that is, joint damage between the electronic component 31 and the fourth wiring pattern 14, damage at the connection part between each wiring pattern and the bump, etc. Fuming Problems such as fire can be avoided.
  • the additional metal body 34 and the additional metal heat radiating plate 35 can also be made of the same material as that of the metal body 32 and the metal heat radiating plate 33, respectively.
  • the additional metal body 34 and the additional metal heat sink 35 can be composed of the same good thermal conductor as the bumps 4;! -44 and the wiring patterns 11-; And the bump 41 can be formed at the same time in the same manufacturing process, and the metal heat sink 35 and the first wiring pattern 11 can also be formed at the same time in the same manufacturing process.
  • each wiring pattern can be configured in the same manner as shown in FIG.
  • FIG. 4 is a configuration diagram showing a modification of the present embodiment.
  • FIG. 4 is a configuration diagram showing the electronic component built-in wiring board 10 configured such that the metal body 32 is excluded and the metal body contributing to heat release is not in direct contact with the electronic component 31.
  • the heat generated from the electronic component 31 is transmitted through a part of the third insulating member 23 interposed between the electronic component 31 and the metal heat sink 33, and then the metal It is absorbed by the heat sink 33 and further reaches the additional metal heat sink 35 via the additional metal body 34.
  • the heat generated by the electronic component 31 is radiated from the wiring board 10 to the outside through the additional metal heat sink 35.
  • both the electronic component 31 and the metal heat radiating plate 33 may be connected thermally.
  • the distance between must be set appropriately. For example, a distance of 5 m to 100 m is preferable.
  • FIG. 5 is a cross-sectional configuration diagram showing another example of the electronic component built-in wiring board of the present invention.
  • the electronic component built-in wiring board in this example has the same components as shown in Figs. Or similar components are indicated using the same reference numerals.
  • an additional heat dissipating plate 35 is provided on the first insulating member 21 at the same plane level as the first wiring pattern 11, and the first insulating member 21 is attached to the first insulating member 21.
  • a heat sink 37 as a heat radiating member is provided so as to be in contact with the metal heat radiating plate 35.
  • the metal bodies 32 and 34 are connected to each other via the metal heat radiating plate 33, and the metal body 34 is provided on the outermost surface of the wiring board 10. It is connected to the metal heat sink 35. In addition, a heat sink 37 is provided in contact with the metal heat sink 35!
  • the heat generated from the electronic component 31 is transmitted to the metal heat radiating plate 35 located on the outermost surface via the metal bodies 32 and 34 and the metal heat radiating plate 33, and then to the metal heat radiating plate 35.
  • the connected heat sink 37 effectively dissipates heat. Therefore, compared with the electronic component built-in wiring board 10 shown in FIGS. 1 to 4, the electronic component built-in wiring board 10 of this example further increases the heat radiation effect from the electronic component 31.
  • the electronic component built-in wiring board 10 in this example has sufficiently high heat dissipation characteristics compared to the electronic component built-in wiring boards shown in FIGS.
  • the heat generated in the electronic component 31 embedded in the third insulating member 23 is in the vicinity of the surface, and further the surface force, Heat can be effectively dissipated to the outside. Therefore, destruction of the component mounting part due to the temperature rise inside the wiring board 10, that is, joint damage between the electronic component 31 and the fourth wiring pattern 14, damage at the connection part between each wiring pattern and the bump, etc. Problems such as smoke, fire, etc. can be avoided.
  • the additional metal body 34 and the additional metal heat radiating plate 35 can be made of the same material as the metal body 32 and the metal heat radiating plate 33, respectively.
  • the additional metal body 34 and the additional metal heat sink 35 are provided with a bar
  • the metal body 34 and the bump 41 can be formed at the same time in the same manufacturing process because it can be composed of the same good heat conductor as the amplifiers 4;! To 44 and the wiring patterns 11 to;
  • the metal heat sink 35 and the first wiring pattern 11 can be formed by a single process in the same manufacturing process.
  • interlayer connection such as each wiring pattern, each insulating member, and bump can be configured in the same manner as shown in FIG.
  • the heat sink 37 has a configuration in which a plurality of heat radiating plates 37B are provided on the base 37A. In this case, a more effective heat dissipation effect can be obtained by increasing the arrangement density of the heat dissipation plates 37B.
  • heat radiating member in addition to the heat sink, microscale boring or the like can be used.
  • a direct refrigerant circulation device or the like can be used.
  • the total number of insulating members is 4 and can be appropriately changed depending on the force S, the number of electronic components to be embedded, and the like. For example, there can be two layers, or five or more layers. In this case, the number of wiring patterns is appropriately set according to the number of the insulating members.
  • the electronic component built-in wiring board shown in the above specific example can be manufactured by any method, preferably B 2 it (B'SQUARE ': registered trademark).
  • B 2 it B'SQUARE ': registered trademark
  • ALIVH other manufacturing methods
  • B 2 it and ALIVH are known techniques described in, for example, “Build-up multilayer printed wiring board technology (June 20, 2000, published by Nikkan Kogyo Shimbun)”.
  • FIGS. 6 to 11 are a series of process diagrams when manufacturing the electronic component built-in wiring board according to the first embodiment.
  • a metal (eg, copper) foil 51 for example, by screen printing
  • a conical bump 52 made of a conductive material is formed.
  • an insulating layer 53 is formed so that the bump 52 penetrates.
  • a metal (for example, copper) foil 56 is placed on the insulating layer 53, and then the insulating layer 53 is cured by applying a heat and pressure press, and a double-sided metal (copper) foil is applied. Form a plate. At this time, the apex of the bump 52 is flattened to become the target bump 41.
  • the metal foil 51 is subjected to patterning by photolithography to form the wiring pattern 13 and the metal heat radiating plate 33 as shown in FIG.
  • a conical bump 43 is formed on the wiring pattern 13, and a conical metal body 32 is formed on the metal heat sink 33, and the bump 43 and the metal body 32 penetrate therethrough.
  • an insulating layer 54 is formed so as to be embedded.
  • the wiring pattern 13 and the metal heat radiating plate 33 are formed at the same time, and the bump 43 and the metal body 32 are formed at the same time, so that the heat generated from the electronic component 31 is released.
  • the metal body 32 and the metal heat radiating plate 33 can be formed by being incorporated into a normal manufacturing process without going through another process.
  • the assembly obtained in the process of FIG. 10 and the other assembly on which the electronic component 31 is mounted are stacked in the vertical direction and heated under pressure. Thereafter, by patterning the metal foil 56, the first wiring layer 11 is obtained, and the electronic component built-in wiring board 10 as shown in FIG. 1 can be obtained.
  • the additional metal body 34 is formed simultaneously with the formation of the bumps 41 in the manufacturing process described above. To do. Further, when the first wiring layer 11 is formed by patterning, an additional metal heat sink 35 is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 少なくとも一対の配線パターンと、前記一対の配線パターン間に保持された絶縁部材と、前記絶縁部材中に埋設された電子部品とを具える電子部品内蔵配線板において、前記絶縁部材中における、前記電子部品の、少なくとも主面上において、前記電子部品と熱的に接続された金属体を形成し、前記電子部品から発せられる熱を放熱させる。

Description

明 細 書
電子部品内蔵配線板、及び電子部品内蔵配線板の放熱方法
技術分野
[0001] 本発明は、絶縁部材中に電子部品を埋設してなる電子部品内蔵配線板において、 前記電子部品から発せられる熱を効果的に放熱することができる電子部品内蔵配線 板、及びその放熱方法に関する。
背景技術
[0002] 近年の電子機器の高性能化 ·小型化の流れの中、回路部品の高密度、高機能化 がー層求められている。かかる観点より、回路部品を搭載したモジュールにおいても 、高密度、高機能化への対応が要求されている。このような要求に答えるベぐ現在 では配線板を多層化することが盛んに行われている。
[0003] このような多層化配線板においては、複数の配線パターンを互いに略平行となるよ うにして配置し、前記配線パターン間に絶縁部材を配し、半導体部品などの電子部 品は前記絶縁部材中に前記配線パターンの少なくとも 1つの電気的に接続するよう にして埋設するとともに、前記絶縁部材間を厚さ方向に貫通した層間接続体 (ビア) を形成し、前記複数の配線パターンを互いに電気的に接続するようにしている(例え ば、特許文献 1参照)。
[0004] しかしながら、このような電子部品内蔵配線板においては、その絶縁部材中に埋設 した電子部品、特に半導体部品などの場合においては、その発熱量が比較的大きく なる。一方、前記電子部品を埋設する前記絶縁部材は、樹脂などの熱伝導性に劣る 部材から構成して!/、るため、前記電子部品から発せられた熱を前記配線板の外方に 効率良く放熱することができない。このため、前記配線板内部の温度が上昇し、その 部品実装部分を破壊したり、前記配線板の接続部分にダメージを与えたりとレ、う問題 が生じていた。さらには、温度上昇に伴って発煙、発火などの問題を生じる場合もあ つた。
[0005] 力、かる問題に鑑み、上記電子部品内蔵配線板を構成する絶縁部材に熱伝導性を 付与することが試みられている力 そのような材料の入手が困難であるとともに、材料 も高価であるため、前記配線板のコスト増につながるという問題があった。
[0006] したがって、現状においては、前記電子部品内蔵配線板において、その内部にお ける絶縁部材中に埋設された電子部品からの発熱を効果的に発散させ、その温度 上昇を抑制することができるような方法は未だ開発途上にあり、十分に実用化できる ものは未だ得られて!/、な!/、。
特許文献 1:特開 2003— 197849公報
発明の開示
[0007] 本発明は、絶縁部材中に電子部品が埋設されてなる電子部品内蔵配線板にお!/ヽ て、前記電子部品からの発熱を効果的に発散させ、前記電子部品からの発熱に起 因した実装部分の破壊などの諸問題を解消することを目的とする。
[0008] 上記目的を達成すベぐ本発明は、
少なくとも一対の配線パターンと、
前記一対の配線パターン間に保持された絶縁部材と、
前記絶縁部材中に埋設された電子部品と、
前記絶縁部材中において、前記電子部品の、少なくとも主面上において設けられ、 前記電子部品と熱的に接続された金属体と、
を具えることを特徴とする、電子部品内蔵配線板に関する。
[0009] また、本発明は、
少なくとも一対の配線パターンと、前記一対の配線パターン間に保持された絶縁部 材と、前記絶縁部材中に埋設された電子部品とを具える電子部品内蔵配線板にお いて、
前記絶縁部材中における、前記電子部品の、少なくとも主面上において、前記電 子部品と熱的に接続された金属体を形成し、前記電子部品から発せられる熱を放熱 させることを特徴とする、電子部品内蔵配線板の放熱方法に関する。
[0010] 本発明者は、上記課題を解決すべく鋭意検討を実施した。その結果、電子部品内 蔵配線板の、絶縁部材中に埋設された電子部品の、少なくとも主面と熱的に接続す るようにして金属体を設けることにより、前記金属体は、少なくとも前記電子部品から 前記配線板の表面に向けて存在するようになるので、前記電子部品で発せられた熱 は、前記配線板の表面、さらにはその表面を介して外部に効果的に放熱できる。した がって、上述したような、前記配線板内部の温度上昇に起因した部品実装部分の破 壊や、前記配線板の接続部分におけるダメージ、さらには、発煙、発火などの問題を 回避すること力 Sでさる。
[0011] なお、上記"熱的接続"とは、上記電子部品から発せられる熱が前記金属体に伝導 するような状態の接続を意味するものであり、両者が必ずしも直接接触していることを 要求するものではない。し力もながら、上記金属体は一般には良好な熱伝導体から 構成するものであるため、実際には、前記電子部品と前記金属体とは互いに直接的 に接続すること力好ましい。このような直接的な接続は、前記電子部品が半導体部品 などのように、その接続部分においてォーミック接触が形成されず、前記半導体部品 の動作が妨害されないような場合に有効である。
[0012] 一方、上記電子部品が電気的良導体であり、前記金属体と直接接触することによつ て、その動作が妨害されるような場合は、前記金属体は前記電子部品に対して直接 的に接続することができない。このような場合は、前記金属体を、前記電子部品より 離隔して配置することになる。さらに、このような場合は、前記金属体及び前記電子 部品が配線板の絶縁部材中に存在するので、両者の間には前記絶縁部材の一部が 介在するようにすることもできるし、別途、前記電子部品の表面を絶縁性かつ好ましく は熱導電性に優れた保護層で被覆し、前記金属体を前記保護層に接触するように 酉己置することあでさる。
[0013] 本発明の一態様においては、前記少なくとも一対の配線パターンは複数の配線パ ターンであり、前記複数の配線パターンの内、一対の配線パターンがそれぞれ前記 絶縁部材の表面及び裏面上に設けられ、残りの配線パターンが前記絶縁部材中に 埋設され、前記複数の配線パターンの少なくとも一部同士及び前記複数配線パター ンの少なくとも一部と前記電子部品とが複数の層間接続体で電気的機械的に接続 するようにして上記電子部品内蔵配線板を製造することができる。
[0014] この場合は、上記配線板をいわゆる多層化配線板とすることができ、高密度、高機 能化の要求を満足するとともに、上述した電子部品からの放熱性をも向上させること ができる。 [0015] さらに、本発明の一態様においては、前記金属体と前記複数の層間接続体の少な くとも 1つとは、同一の工程によって形成する。この場合、前記金属体を形成するため に別途工程を設ける必要がないので、電子部品内蔵配線板の製造コストを低減する ことができる。なお、この場合は、前記金属体及び前記層間絶縁体ともに同じ材料か ら構成することにより、これらの形成工程をより簡易化することができる。
[0016] なお、前記金属体は、銅、アルミニウム、金、銀などの金属材料のみでなぐ金属粉 末が樹脂中に分散し、金属的性質を呈する導電性組成物などを含む。
[0017] また、本発明の一態様において、前記電子部品内蔵配線板は、前記複数の配線 パターンの少なくとも 1つと略同一の平面レベルで形成された金属放熱板を有し、前 記金属体は前記金属放熱板と熱的に接続されるようにする。この場合、前記電子部 品から発せられた熱は前記金属体を介して前記金属放熱板から放熱されるようにな るので、放熱効率をより増大させることができる。
[0018] さらに、本発明の一態様において、前記金属体は複数の金属体であって、これら複 数の金属体の少なくとも一部を前記絶縁部材の厚さ方向において互いに熱的に接 続し、前記電子部品から発せられた熱を前記電子部品内蔵配線板の外方に放熱す るようにすること力 Sできる。この場合、前記電子部品から発せられた熱を、前記金属体 を介して前記配線板の外方に効率的に放熱することができるので、放熱効率をより増 大させること力 Sできる。この際、金属放熱板を介して前記複数の金属体を接続すれば 、前記金属放熱板の放熱効果にも起因して放熱効果をより増大させることができる。
[0019] また、本発明の一態様においては、前記複数の金属体の、前記電子部品内蔵配 線板の最表面に位置する金属体と熱的に接続された放熱部材を設ける。この場合、 前記電子部品から発せられた熱は、前記金属体を介した後、前記放熱部材を介して 外方に放熱されるようになるので、その放熱効果をより増大させることができる。
[0020] 以上、本発明によれば、絶縁部材中に電子部品が埋設されてなる電子部品内蔵配 線板において、前記電子部品からの発熱を効果的に発散させ、前記電子部品から の発熱に起因した実装部分の破壊などの諸問題を解消することができる。
図面の簡単な説明
[0021] [図 1]第 1の実施形態の電子部品内蔵配線板を示す断面構成図である。 [図 2]第 1の実施形態における電子部品内蔵配線板の変形例を示す断面構成図で ある。
[図 3]第 2の実施形態の電子部品内蔵配線板を示す断面構成図である。
[図 4]第 2の実施形態における電子部品内蔵配線板の変形例を示す断面構成図で ある。
[図 5]第 3の実施形態における電子部品内蔵配線を示す断面構成図である。
[図 6]第 1の実施形態に電子部品内蔵配線板の製造工程を示す図である。
[図 7]同じぐ第 1の実施形態に電子部品内蔵配線板の製造工程を示す図である。
[図 8]同じぐ第 1の実施形態に電子部品内蔵配線板の製造工程を示す図である。
[図 9]同じぐ第 1の実施形態に電子部品内蔵配線板の製造工程を示す図である。
[図 10]同じぐ第 1の実施形態に電子部品内蔵配線板の製造工程を示す図である。
[図 11]同じぐ第 1の実施形態に電子部品内蔵配線板の製造工程を示す図である。 発明を実施するための最良の形態
[0022] 以下、本発明の具体的特徴について、発明を実施するための最良の形態に基づ いて説明する。
[0023] (第 1の実施形態)
図 1は、本発明の電子部品内蔵配線板の一例を示す断面構成図である。図 1に示 す電子部品内蔵配線板 10は、その表面及び裏面に位置し、互いに略平行な第 1の 配線パターン 11及び第 2の配線パターン 12を有するとともに、その内側において、 互いに略平行であるとともに、第 1の配泉パターン 11及び第 2の配泉パターンとも略 平行な関係を保持する第 3の配線パターン 13及び第 4の配線パターン 14を有してい
[0024] 第 1の配線パターン 11及び第 3の配線パターン 13の間には、第 1の絶縁部材 21が 配置され、第 2の配線パターン 12及び第 4の配線パターン 14の間には、第 2の絶縁 部材 22が配置されている。また、第 3の配線パターン 13及び第 4の配線パターン 14 の間には、第 3の絶縁部材 23が配置されている。さらに、第 3の絶縁部材 23中には、 電子部品 31が埋設され、接続部材 31Aを介して第 4の配線パターン 14に電気的に 接続されている。 [0025] また、図 1に示す電子部品内蔵配線板 10においては、第 3の絶縁部材 23中に第 4 の絶縁部材 24が介在している。そして、第 4の絶縁部材 24の表面には第 5の配線パ ターン 15が形成され、第 4の絶縁部材 24の裏面には第 6の配線パターン 16が形成 されている。
[0026] 第 1の配線パターン 11と第 3の配線パターン 13とは、第 1の絶縁部材 21中を貫通 するようにして形成されたバンプ 41によって電気的に接続され、第 2の配線パターン 12と第 4の配線パターン 14とは、第 2の絶縁部材 22中を貫通するようにして形成され たバンプ 42によって電気的に接続されている。また、第 3の配線パターン 13と第 5の 配線パターン 15とは、第 3の絶縁部材 23の、前記パターン間に位置する部分を貫通 するようにして形成されたバンプ 43によって電気的に接続され、第 4の配線パターン 14と第 6の配線パターン 16とは、第 3の絶縁部材 23の、前記パターン間に位置する 部分を貫通するようにして形成されたバンプ 44によって電気的に接続されている。
[0027] また、第 5の配線パターン 15と第 6の配線パターン 16とは、第 4の絶縁部材 24に形 成されたスルーホールの内壁部分に形成された内部導電体 45によって電気的に接 続されている。これによつて、第 1の配線パターン 11〜第 6の配線パターン 16は、 , ンプ 4;!〜 44及び内部導電体 45によって互いに電気的に接続されることになる。さら に、第 4の配線パターン 14を介して、電子部品 31も前述した配線パターンと電気的 に接続されることになる。
[0028] なお、バンプ 4;!〜 44及び内部導電体 45は、それぞれ層間接続体を構成する。
[0029] また、図 1に示す電子部品内蔵配線板 10においては、第 3の配線パターン 13と略 同一の平面レベルにお!/、て金属放熱板 33が設けられ、この金属放熱板 33及び電 子部品 31の上面と接触するようにして金属体 32が設けられている。これによつて、電 子部品 31が動作状態となり発熱した場合においても、その発生した熱は金属体 32 を介して金属放熱板 33に伝導した後、この放熱板を介して放熱されることになる。
[0030] 金属体 32は、電子部品 31から配線板 10の表面に向けて存在するので、電子部品 31で発せられた熱は、配線板 10の表面近傍にまで簡易に伝達される。また、金属体 32は、配線板 10の表面近傍に設けられた金属放熱板 33に接続されている。したが つて、電子部品 31で発生した熱は配線板 10の表面近傍まで伝達された後、金属放 熱板 33において放熱されるようになるので、前記熱を配線板 10の表面近傍で放熱 すること力 S可倉 となる。
[0031] したがって、図 1に示す構成の電子部品内蔵配線板 10においては、第 3の絶縁部 材 23中に埋設された電子部品 31で発生した熱をその表面近傍、さらにはその表面 を介して外部に効果的に放熱できる。したがって、配線板 10内部の温度上昇に起因 した部品実装部分の破壊、すなわち電子部品 31と第 4の配線パターン 14との接合 破損や、各配線パターンとバンプなどとの接続部分におけるダメージ、さらには、発 煙、発火などの問題を回避することができる。
[0032] なお、金属体 32及び金属放熱板 33は、良好な熱伝導体、例えば銅やアルミニウム 、金、銀など力、ら構成すること力 Sできる。また、樹脂中に金属粉末を分散させた導電 性組成物などから構成することもできる。一方、バンプ 4;!〜 44、内部導電体 45及び 配線パターン 11〜 16も同じ良好な熱伝導体から構成することができる。力、かる観点 より、特に金属体 32とバンプ 43とは同一の製造工程において一括して形成すること 力 Sできる。また、金属放熱板 33と第 3の配線パターン 13とも同一の製造工程におい て一括して形成すること力 Sでさる。
[0033] また、図 1において、第 1の絶縁部材 21〜第 4の絶縁部材 24は、それぞれ互いに 識別可能に記載されている力 これは製造工程において元部材であるプリプレダを 形成するとともに加熱して、前記絶縁部材を順次に形成するために一般的な状態と して識別可能としたものである。し力、しながら、これら絶縁部材を構成する材料や加 熱条件などによっては互いに識別できな!/、場合がある。
[0034] なお、第 1の絶縁部材 21〜第 4の絶縁部材 24中には、適宜ガラス繊維などの強化 繊維(部材)を含有させることができる。特に、比較的厚い第 4の絶縁部材 24中には 上述した強化繊維を簡易に含有させることができ、これによつて、電子部品内蔵配線 板 10全体の強度を増大させることができる。
[0035] また、各絶縁部材は汎用の熱硬化性樹脂から構成することができ、電子部品 31を 第 4の配線パターンに接続するための接続部材 31 Aは半田などから構成することが できる。
[0036] なお、本例では、金属体 32を電子部品 31の上面に直接接触させている力 S、電子 部品 31からの放熱が金属体 32に対して十分に伝達できれば、必ずしも接触させる 必要はなぐそれらの間に第 3の絶縁部材 23の一部が介在するようにしても良い。
[0037] 図 2は、金属体 32が電子部品 31に対して直接接触しないように構成した電子部品 内蔵配線板 10を示す構成図である。図 2に示すように、本実施形態では、金属体 32 を電子部品 31の上面に直接接触させることなぐ金属体 32と電子部品 31との間に 第 3の絶縁部材 23の一部が介在して!/、る。
[0038] 本実施形態においても、金属体 32と電子部品 31との距離を適宜調整すれば、電 子部品 31からの放熱は第 3の絶縁部材 23内を伝達した後、金属体 32で吸収される ようになる。その後、金属体 32で吸収された熱は金属放熱板 33に伝達し、配線板 10 の表面から外部に放熱されるようになる。したがって、配線板 10内部の温度上昇に 起因した部品実装部分の破壊、すなわち電子部品 31と第 4の配線パターン 14との 接合破損や、各配線パターンとバンプなどとの接続部分におけるダメージ、さらには 、発煙、発火などの問題を回避することができる。
[0039] なお、図 2に示すような実施形態の電子部品内蔵配線板 10では、上述した放熱効 果を担保すベぐ金属体 32の先端と電子分品 31の上面との距離は、例えば 5 111〜 100 mの距離に設定することが好ましい。
[0040] 但し、図 1に示すように直接接触させることによって、電子部品 31からの放熱効果を 増大させること力 Sでさる。
[0041] また、図 1に示すように、金属体 32を電子部品 31に直接接触させる場合は、電子 部品 31は、その接触によって動作が損なわれないようなものであることが必要である 。具体的には半導体部品などであることが好ましい。換言すれば、図 1に示すような 構成は、電子部品 31が半導体部品である場合において最も効果的である。
[0042] 一方、電子部品 31が電気的良導体であって、上述した金属体 32との接触によって その動作が損なわれるような場合は、電子部品 31を絶縁性かつ好ましくは熱的良導 体の保護層で被覆することによって、直接接触による上述した不利益は解消すること ができる。
[0043] また、本例においては金属放熱板 33を設けている力 このような金属放熱板 33を 設けることなく金属体 32のみを設けた場合においても、電子部品 31からの放熱効果 を十分に確保することができる。し力もながら、金属放熱板 33を設けることによって、 前記放熱効果をより増大させることができる。
[0044] (第 2の実施形態)
図 3は、本発明の電子部品内蔵配線板の他の例を示す断面構成図である。なお、 本例における電子部品内蔵配線板において、図 1及び 2に示す構成要素と同一ある いは類似の構成要素に関しては同じ参照数字を用いて表している。
[0045] また、本例においては、第 1の絶縁部材 21上において、第 1の配線パターン 11と同 一の平面レベルにおいて追加の放熱板 35が設けられており、第 1の絶縁部材 21を 貫通するとともに、放熱板 33及び 35に接続された追加の金属体 34が設けられてい る点で、図 1に示す電子部品内蔵配線板 10と異なり、その他の構成要素に関しては 互いに同一である。
[0046] 図 3に示す電子部品内蔵配線板 10においては、金属体 32及び 34が金属放熱板 33を介して互いに接続されているとともに、金属体 34は配線板 10の最表面に設けら れた金属放熱板 35と接続されている。したがって、電子部品 31から発せられた熱は 、金属体 32及び 34並びに金属放熱板 33を介して最表面に位置する金属放熱板 35 にまで伝達された後、金属放熱板 35によって直接的に配線板 10の外部に放熱する こと力 Sできる。したがって、図 1に示す電子部品内蔵配線板 10に比較して、本例の電 子部品内蔵配線板 10は電子部品 31からの放熱効果がより増大されることになる。
[0047] なお、電子部品 31において発せられた熱は、大部分が金属放熱板 35を介して外 部に放熱されるが、金属放熱板 33及び金属体 32、 34を介しても放熱される。このこ と力 も、本例における電子部品内蔵配線板 10は、図 1に示す電子部品内蔵配線板 に比較して十分に放熱特性が高いことが分かる。
[0048] したがって、図 3に示す構成の電子部品内蔵配線板 10においては、第 3の絶縁部 材 23中に埋設された電子部品 31で発生した熱をその表面近傍、さらにはその表面 力、ら外部に効果的に放熱できる。したがって、配線板 10内部の温度上昇に起因した 部品実装部分の破壊、すなわち電子部品 31と第 4の配線パターン 14との接合破損 や、各配線パターンとバンプなどとの接続部分におけるダメージ、さらには、発煙、発 火などの問題を回避することができる。
[0049] また、追加の金属体 34及び追加の金属放熱板 35も、それぞれ金属体 32及び金属 放熱板 33と同じ材料から構成することができる。
[0050] さらに、追加の金属体 34及び追加の金属放熱板 35は、バンプ 4;!〜 44及び配線 パターン 11〜; 16と同じ良好な熱伝導体から構成することができるので、金属体 34と バンプ 41とは同一の製造工程において一括して形成することができ、金属放熱板 3 5と第 1の配線パターン 11も同一の製造工程において一括して形成することができる
[0051] なお、その他、各配線パターンや各絶縁部材、バンプなどの層間接続体は、図 1に 示すものと同様に構成することができる。
[0052] 図 4は、本実施形態の変形例を示す構成図である。図 4は、金属体 32を排除し、放 熱に寄与する金属体が電子部品 31に対して直接接触しないように構成した電子部 品内蔵配線板 10を示す構成図である。図 4に示すように、本実施形態では、電子部 品 31からの発熱は、電子部品 31と金属放熱板 33との間に介在する第 3の絶縁部材 23の一部内を伝達した後、金属放熱板 33に吸収され、さらに追加の金属体 34を介 して追加の金属放熱板 35に至るようになる。この結果、追加の金属放熱板 35を介し て電子部品 31の発熱は、配線板 10から外部に放熱されるようになる。
[0053] したがって、配線板 10内部の温度上昇に起因した部品実装部分の破壊、すなわち 電子部品 31と第 4の配線パターン 14との接合破損や、各配線パターンとバンプなど との接続部分におけるダメージ、さらには、発煙、発火などの問題を回避することがで きる。
[0054] 但し、本実施形態では、電子部品 31と金属放熱板 33との間に金属体 32が存在し ないので、電子部品 31と金属放熱板 33とを熱的に接続するには、両者の間の距離 を適切に設定する必要がある。例えば 5 m〜; 100 mの距離に設定することが好ま しい。
[0055] (第 3の実施形態)
図 5は、本発明の電子部品内蔵配線板のその他の例を示す断面構成図である。な お、本例における電子部品内蔵配線板において、図;!〜 4に示す構成要素と同一あ るいは類似の構成要素に関しては同じ参照数字を用いて表している。
[0056] また、本例においては、第 1の絶縁部材 21上において、第 1の配線パターン 11と同 一の平面レベルにおいて追加の放熱板 35が設けられており、第 1の絶縁部材 21を 貫通するとともに、放熱板 33及び 35に接続された追加の金属体 34が設けられてい る。さらに、金属放熱板 35と接触するようにして放熱部材であるヒートシンク 37が設け られている。
[0057] 図 5に示す電子部品内蔵配線板 10においては、金属体 32及び 34が金属放熱板 33を介して互いに接続されているとともに、金属体 34は配線板 10の最表面に設けら れた金属放熱板 35と接続されている。さらに、金属放熱板 35と接触するようにしてヒ ートシンク 37が設けられて!/、る。
[0058] したがって、電子部品 31から発せられた熱は、金属体 32及び 34並びに金属放熱 板 33を介して最表面に位置する金属放熱板 35にまで伝達された後、金属放熱板 3 5に接続されたヒートシンク 37によって効果的に放熱が行われることになる。したがつ て、図 1〜4に示す電子部品内蔵配線板 10に比較して、本例の電子部品内蔵配線 板 10は電子部品 31からの放熱効果がより増大されることになる。
[0059] なお、電子部品 31において発せられた熱は、大部分がヒートシンク 37を介して放 熱されるが、金属放熱板 33、 35及び金属体 32、 34を介しても放熱される。このこと 力もも、本例における電子部品内蔵配線板 10は、図;!〜 4に示す電子部品内蔵配線 板に比較して十分に放熱特性が高いことが分かる。
[0060] したがって、図 5に示す構成の電子部品内蔵配線板 10においては、第 3の絶縁部 材 23中に埋設された電子部品 31で発生した熱をその表面近傍、さらにはその表面 力、ら外部に効果的に放熱できる。したがって、配線板 10内部の温度上昇に起因した 部品実装部分の破壊、すなわち電子部品 31と第 4の配線パターン 14との接合破損 や、各配線パターンとバンプなどとの接続部分におけるダメージ、さらには、発煙、発 火などの問題を回避することができる。
[0061] また、図 3に示す例と同様に、追加の金属体 34及び追加の金属放熱板 35も、それ ぞれ金属体 32及び金属放熱板 33と同じ材料から構成することができる。
[0062] さらに、図 3に示す例と同様に、追加の金属体 34及び追加の金属放熱板 35は、バ ンプ 4;!〜 44及び配線パターン 11〜; 16と同じ良好な熱伝導体から構成することがで きるので、金属体 34とバンプ 41とは同一の製造工程において一括して形成すること ができ、金属放熱板 35と第 1の配線パターン 11も同一の製造工程において一括して 形成すること力でさる。
[0063] なお、その他、各配線パターンや各絶縁部材、バンプなどの層間接続体は、図 1に 示すものと同様に構成することができる。
[0064] また、ヒートシンク 37は、図 5に示すように、ベース 37Aに対して複数の放熱板 37B が設けられたような構成を呈している。この場合、放熱板 37Bの配置密度を高くする ことにより、より効果的な放熱効果を得ることができる。
[0065] さらに、放熱部材としては、上記ヒートシンクの他に、マイクロスケールボーリングな どを用いることもできる。あるいは、直接的な冷媒循環装置などを用いることもできる。
[0066] 以上、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例 に限定されるものではなぐ本発明の範疇を逸脱しない限りにおいて、あらゆる変形 や変更が可能である。
[0067] 例えば、上記具体例にお!/、ては、絶縁部材を合計 4層として!/、る力 S、埋設すべき電 子部品の数などに応じて適宜変化させることができる。例えば、 2層とすることもできる し、 5層以上とすることもできる。この場合、配線パターンの数は前記絶縁部材の数に 応じて適宜に設定する。
[0068] また、上記具体例に示す電子部品内蔵配線板は、任意の方法で製造することがで きる力 好ましくは、 B2it (ビー 'スクェア'イット:登録商標)によって製造することができ る。なお、これら以外の製造方法、例えば ALIVHなどの方法を当然に用いることもで きる。 B2it及び ALIVHは、例えば「ビルドアップ多層プリント配線板技術(2000年 6 月 20日、 日刊工業新聞社発行)」などに記載されて!/、る公知の技術である。
[0069] 以下に、上述した実施形態の電子部品内蔵配線板を B2itによって製造する場合の 工程を簡単に説明する。
[0070] 図 6〜; 11は、第 1の実施形態における電子部品内蔵配線板を製造する際の一連の 工程図である。
[0071] 最初に、図 6に示すように、金属(例えば銅)箔 51上に例えばスクリーン印刷により、 導電性材料からなる円錐状のバンプ 52を形成する。次いで、図 7に示すように、バン プ 52が貫通するようにして絶縁層 53を形成する。次いで、図 8に示すように、絶縁層 53上に金属(例えば銅)箔 56を配置し、その後、加熱加圧プレスを実施して絶縁層 5 3を硬化し、両面金属 (銅)箔張り板を形成する。この際、バンプ 52の頂点は平坦化さ れ、 目的とするバンプ 41となる。
[0072] 次いで、金属箔 51に対してフォトリソグラフィによるパターユングを施し、図 9に示す ように配線パターン 13及び金属放熱板 33を形成する。次いで、図 10に示すように、 配線パターン 13上に円錐状のバンプ 43を形成するとともに、金属放熱板 33上の円 錐状の金属体 32を形成し、バンプ 43及び金属体 32が貫通するとともにそれらを埋 設するようにして絶縁層 54を形成する。
[0073] このように、上記製造方法では、配線パターン 13及び金属放熱板 33を同時に形成 するとともに、バンプ 43及び金属体 32を同時に形成しているので、電子部品 31から の発熱を放出するための金属体 32及び金属放熱板 33を別の工程を経ることなぐ 通常の製造工程に組み込んで形成することができる。
[0074] 次いで、図 11に示すように、図 10の工程で得たアセンブリ、及びその他、電子部品 31がマウントされたアセンブリ等を上下方向に積層して加圧下加熱する。その後、金 属箔 56をパターユングすることによって第 1の配線層 11とし、図 1に示すような電子 分品内蔵配線板 10を得ることができる。
[0075] なお、図 3に示す第 2の実施形態の電子部品内蔵配線板 10を製造する場合には、 上述した製造工程において、バンプ 41の形成と同時に追加の金属体 34を形成する ようにする。また、第 1の配線層 11をパターユングして形成する際に追加の金属放熱 板 35を形成する。

Claims

請求の範囲
[1] 少なくとも一対の配線パターンと、
前記一対の配線パターン間に保持された絶縁部材と、
前記絶縁部材中に埋設された電子部品と、
前記絶縁部材中において、前記電子部品の、少なくとも主面上において設けられ、 前記電子部品と熱的に接続された金属体と、
を具えることを特徴とする、電子部品内蔵配線板。
[2] 前記少なくとも一対の配線パターンは複数の配線パターンであり、前記複数の配線 パターンの内、一対の配線パターンがそれぞれ前記絶縁部材の表面及び裏面上に 設けられ、残りの配線パターンが前記絶縁部材中に埋設され、前記複数の配線バタ ーンの少なくとも一部同士及び前記複数配線パターンの少なくとも一部と前記電子 部品とが複数の層間接続体で電気的に接続されてなることを特徴とする、請求項 1に 記載の電子部品内蔵配線板。
[3] 前記複数の層間接続体の少なくとも 1つは、前記絶縁部材の厚さ方向に一致する 軸を有し、前記軸方向の径が前記絶縁部材の厚さ方向で変化することを特徴とする 、請求項 2に記載の電子部品内蔵配線板。
[4] 前記金属体と、前記複数の層間接続体の少なくとも 1つとは、同一の材料によって 形成されていることを特徴とする、請求項 2又は 3に記載の電子部品内蔵配線板。
[5] 前記金属体と、前記複数の層間接続体の少なくとも 1つとは、同一の導電性組成物 によって形成されていることを特徴とする、請求項 2又は 3に記載の電子部品内蔵配 線板。
[6] 前記金属体と前記複数の層間接続体の少なくとも 1つとは、同一の工程によって形 成されたことを特徴とする、請求項 1〜5のいずれか一に記載の電子部品内蔵配線 板。
[7] 前記複数の配線パターンの少なくとも 1つと略同一の平面レベルで形成された金属 放熱板を有し、前記金属体は前記金属放熱板と熱的に接続されて!、ることを特徴と する、請求項 2〜6のいずれか一に記載の電子部品内蔵配線板。
[8] 前記金属体は複数の金属体であって、これら複数の金属体の少なくとも一部は前 記絶縁部材の厚さ方向において互いに熱的に接続され、前記電子部品から発せら れた熱を前記電子部品内蔵配線板の外方に放熱するようにしたことを特徴とする、請 求項;!〜 7のいずれか一に記載の電子部品内蔵配線板。
[9] 前記複数の金属体の前記少なくとも一部は、前記絶縁部材の厚さ方向において、 前記金属放熱板を介して互いに接続されたことを特徴とする、請求項 8に記載の電 子部品内蔵配線板。
[10] 前記複数の金属体の、前記電子部品内蔵配線板の最表面側に位置する金属体と 熱的に接続された放熱部材を具えることを特徴とする、請求項 8又は 9に記載の電子 部品内蔵配線板。
[11] 前記電子部品は半導体部品であることを特徴とする、請求項;!〜 10のいずれか一 に記載の電子部品内蔵配線板。
[12] 少なくとも一対の配線パターンと、前記一対の配線パターン間に保持された絶縁部 材と、
前記絶縁部材中に埋設された電子部品とを具える電子部品内蔵配線板において 前記絶縁部材中における、前記電子部品の、少なくとも主面上において、前記電 子部品と熱的に接続された金属体を形成し、前記電子部品から発せられる熱を放熱 させることを特徴とする、電子部品内蔵配線板の放熱方法。
[13] 前記電子部品内蔵配線板において、前記少なくとも一対の配線パターンは複数の 配線パターンであり、前記複数の配線パターンの内、一対の配線パターンがそれぞ れ前記絶縁部材の表面及び裏面上に設けられ、残りの配線パターンが前記絶縁部 材中に埋設され、前記複数の配線パターンの少なくとも一部同士及び前記複数配線 ノ ターンの少なくとも一部と前記電子部品とが複数の層間接続体で電気的機械的に 接続されてなり、
前記複数の配線パターンの少なくとも 1つと略同一の平面レベルで形成された金属 放熱板を形成し、前記金属体を前記金属放熱板と熱的に接続して、前記電子部品 力も発せられる熱を放熱させることを特徴とする、請求項 12に記載の電子部品内蔵 配線板の放熱方法。
[14] 前記金属体は複数の金属体であって、これら複数の金属体の少なくとも一部を前 記絶縁部材の厚さ方向において互いに熱的に接続し、前記電子部品から発せられ た熱を前記電子部品内蔵配線板の外方に放熱するようにしたことを特徴とする、請求 項 12又は 13に記載の電子部品内蔵配線板の放熱方法。
[15] 前記複数の金属体の前記少なくとも一部は、前記絶縁部材の厚さ方向において、 前記金属放熱板を介して互いに接続されたことを特徴とする、請求項 14に記載の電 子部品内蔵配線板の放熱方法。
[16] 前記複数の金属体の、前記電子部品内蔵配線板の最表面側に位置する金属体と 放熱部材とを熱的に接続し、前記電子部品から発せられた熱を、前記金属体及び前 記放熱部材を介して前記電子部品内蔵配線板の外方に放出することを特徴とする、 請求項 14又は 15に記載の電子部品内蔵配線板の放熱方法。
PCT/JP2007/074152 2006-12-18 2007-12-14 電子部品内蔵配線板、及び電子部品内蔵配線板の放熱方法 WO2008075629A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780046529.5A CN101574024B (zh) 2006-12-18 2007-12-14 电子部件内置布线板以及电子部件内置布线板的散热方法
US12/519,745 US8198541B2 (en) 2006-12-18 2007-12-14 Electronic component built-in wiring board and method for radiating heat generated at the same
KR1020097014837A KR101411194B1 (ko) 2006-12-18 2007-12-14 전자 부품 내장 배선판, 및 전자 부품 내장 배선판의 방열 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-339689 2006-12-18
JP2006339689 2006-12-18
JP2007-319474 2007-12-11
JP2007319474A JP5326269B2 (ja) 2006-12-18 2007-12-11 電子部品内蔵配線板、及び電子部品内蔵配線板の放熱方法

Publications (1)

Publication Number Publication Date
WO2008075629A1 true WO2008075629A1 (ja) 2008-06-26

Family

ID=39536260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074152 WO2008075629A1 (ja) 2006-12-18 2007-12-14 電子部品内蔵配線板、及び電子部品内蔵配線板の放熱方法

Country Status (1)

Country Link
WO (1) WO2008075629A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318428B2 (ja) 2019-09-04 2023-08-01 Tdk株式会社 電子部品内蔵回路基板及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327624A (ja) * 2003-04-23 2004-11-18 Shinko Electric Ind Co Ltd 部品内蔵多層回路基板
JP2005302991A (ja) * 2004-04-12 2005-10-27 Yamaichi Electronics Co Ltd 多層配線基板の製造方法
JP2005311249A (ja) * 2004-04-26 2005-11-04 Taiyo Yuden Co Ltd 部品内蔵型多層基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327624A (ja) * 2003-04-23 2004-11-18 Shinko Electric Ind Co Ltd 部品内蔵多層回路基板
JP2005302991A (ja) * 2004-04-12 2005-10-27 Yamaichi Electronics Co Ltd 多層配線基板の製造方法
JP2005311249A (ja) * 2004-04-26 2005-11-04 Taiyo Yuden Co Ltd 部品内蔵型多層基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318428B2 (ja) 2019-09-04 2023-08-01 Tdk株式会社 電子部品内蔵回路基板及びその製造方法

Similar Documents

Publication Publication Date Title
JP5326269B2 (ja) 電子部品内蔵配線板、及び電子部品内蔵配線板の放熱方法
KR100902128B1 (ko) 방열 인쇄회로기판 및 반도체 칩 패키지
CN100417310C (zh) 具有散热元件的印刷电路板,其制作方法和包含它的器件
KR20070085917A (ko) 인쇄기판 및 인쇄기판의 제조방법
JP2007180105A (ja) 回路基板、回路基板を用いた回路装置、及び回路基板の製造方法
KR101181105B1 (ko) 방열회로기판 및 그 제조 방법
JP2010080572A (ja) 電子装置
KR20080102300A (ko) 열적 비아와 통합되는 led
JP2006165299A5 (ja)
JP2010157663A (ja) 部品内蔵配線板、部品内蔵配線板の製造方法
JP2007305617A (ja) 多層配線基板
US9089072B2 (en) Heat radiating substrate and method for manufacturing the same
JP2008251950A (ja) 配線基板
JP2007324330A (ja) 回路基板
JP2010062199A (ja) 回路基板
JP2011091142A (ja) フレックスリジッド基板
US9699885B2 (en) Circuit board including heat dissipation structure
WO2008075629A1 (ja) 電子部品内蔵配線板、及び電子部品内蔵配線板の放熱方法
JP6870184B2 (ja) プリント回路基板及びプリント回路基板の製造方法
KR102149794B1 (ko) 인쇄회로기판 및 그 제조방법
WO2015098502A1 (ja) 電子機器
JP2004179171A (ja) 配線基板
JP2011166029A (ja) 配線基板、それを用いた電子装置、及び配線基板の製造方法
KR101154665B1 (ko) 방열회로기판 및 그의 제조 방법
KR102071921B1 (ko) 높은 방열 성능을 갖는 방열 프레임

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780046529.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12519745

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097014837

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07850656

Country of ref document: EP

Kind code of ref document: A1