WO2008072582A1 - Inorganic-particle-containing resin composition, transfer film, and process for producing flat panel display member - Google Patents

Inorganic-particle-containing resin composition, transfer film, and process for producing flat panel display member Download PDF

Info

Publication number
WO2008072582A1
WO2008072582A1 PCT/JP2007/073719 JP2007073719W WO2008072582A1 WO 2008072582 A1 WO2008072582 A1 WO 2008072582A1 JP 2007073719 W JP2007073719 W JP 2007073719W WO 2008072582 A1 WO2008072582 A1 WO 2008072582A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic powder
containing resin
meth
acrylate
resin layer
Prior art date
Application number
PCT/JP2007/073719
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Mashima
Tetsunori Sugawara
Yasutake Inoue
Hiroaki Kuwada
Michihiro Mita
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007042500A external-priority patent/JP2008201996A/en
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2008072582A1 publication Critical patent/WO2008072582A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/241Manufacture or joining of vessels, leading-in conductors or bases the vessel being for a flat panel display

Definitions

  • the present invention uses an inorganic powder-containing resin composition suitable for forming a panel member of a flat panel display, a transfer film having an inorganic powder-containing resin layer comprising the composition, and the transfer film.
  • FPD flat panel displays
  • PDP plasma display panels
  • FED field emission displays
  • the PDP forms a transparent electrode, encloses an inert gas such as argon or neon between two adjacent glass plates, causes plasma discharge, and emits the gas, thereby emitting light from the phosphor and displaying information. It is a display to show.
  • the FED emits electrons from the cathode into the vacuum by applying an electric field, and irradiates the phosphors on the anode to cause the phosphors to emit light.
  • FIG. 1 is a schematic diagram showing a cross-sectional shape of an AC type PDP.
  • 1 and 2 are glass substrates opposed to each other, 3 is a partition wall, and cells are partitioned by the glass substrate 1, the glass substrate 2 and the partition wall 3.
  • 4 is a transparent electrode fixed on the glass substrate 1
  • 5 is a bus electrode formed on the transparent electrode 4 for the purpose of reducing the resistance of the transparent electrode 4
  • 6 is an address electrode fixed on the glass substrate 2
  • 7 Fluorescent material held in the cell
  • 8 is a dielectric layer formed on the surface of the glass substrate 1 so as to cover the transparent electrode 4 and the bus electrode 5
  • 9 is a surface of the glass substrate 2 so as to cover the address electrode 6.
  • the dielectric layer 10 is formed of a protective film made of, for example, magnesium oxide.
  • a color filter red, green, blue
  • black matrix is provided between the glass substrate and the dielectric layer in order to obtain a high contrast image. Power to provide Sfc.
  • Examples of methods for manufacturing such FPD dielectrics, barrier ribs, electrodes, phosphors, color filters, and black stripes (matrix) include:
  • Patent Document 1 A method of forming an inorganic powder-containing resin layer on a substrate and firing it (see Patent Document 1)
  • a photosensitive inorganic powder-containing resin layer is formed on a substrate, and this film is irradiated with ultraviolet rays through a photomask and developed to form a pattern on the substrate, which is baked.
  • the method (see Patent Document 4) is known!
  • the inorganic powder-containing resin layer containing the inorganic powder and the binder resin on the flexible support film in the step of forming the inorganic powder-containing resin layer on the substrate, the inorganic powder-containing resin layer containing the inorganic powder and the binder resin on the flexible support film.
  • the method of transferring the inorganic powder-containing resin layer onto the substrate using the transfer film on which the film is formed enables a panel member having excellent film thickness uniformity and surface uniformity to be formed efficiently. Are preferably used.
  • the film since the inorganic powder-containing resin layer in the conventional transfer film does not have sufficient flexibility and transferability (heat adhesion to the substrate, the same applies hereinafter), the film is wound around a roll. In some cases, cracks may occur or cracks may occur on the surface of the inorganic powder-containing resin layer transferred to the substrate. In addition, since the transferability is not sufficient, problems such as peeling off of the substrate force may occur when firing the resin layer containing the inorganic powder.
  • the inorganic powder-containing resin layer in the conventional transfer film has low combustibility of organic matter. For this reason, when an inorganic powder-containing resin layer was formed on a substrate and passed through a firing process, many bubbles were generated in the formed inorganic layer. For this reason, there has been a problem that the strength of the member is insufficient due to the decrease in density, and the transmittance or reflectance is lowered depending on the member.
  • Patent Document 1 JP-A-9 102273
  • Patent document 2 Japanese Patent Laid-Open No. 11 162339
  • Patent Document 3 Japanese Patent Laid-Open No. 11 73875
  • Patent Document 4 JP-A-11 44949
  • the present invention provides an inorganic powder-containing resin composition capable of forming an FPD panel member (inorganic layer) having high transmittance, reflectance, surface smoothness and film thickness uniformity after firing. aimed to.
  • Another object of the present invention is to provide a transfer film that is excellent in flexibility, transferability and nodling properties and has an inorganic powder resin layer comprising the above composition.
  • the present invention provides an FPD panel member (dielectric layer, electrode, partition wall, phosphor, resistor, color filter, etc.) that has high transmittance and reflectivity and excellent surface smoothness and film thickness uniformity. It is an object of the present invention to provide a method for manufacturing an FP D capable of efficiently forming a black matrix and the like with high positional accuracy.
  • the inorganic powder-containing resin composition of the present invention contains an inorganic powder (A) and a binder resin (B), and the binder resin (B) has a weight-average molecular weight having a polyoxyalkylene moiety.
  • 10,000 to 50,000 (meth) acrylic polymer (B-1), and the polymer (B-1) is added to 0.0 part by weight of 100 parts by weight of the organic powder (A). ; Contained in an amount of ⁇ 50 parts by weight
  • the polymer (B-l) comprises 5 to 30% by weight of a structural unit derived from a (meth) acrylate compound having a polyoxyalkylene moiety, and (meth) acrylate having no polyoxyalkylene moiety. It is preferable to contain 30 to 50% by weight of the structural unit derived from the compound and 30 to 50% by weight of the structural unit derived from the aromatic bur compound.
  • the polymer (B-1) includes polyethylene glycol mono (meth) acrylate, ethoxyethylene glycol (meth) acrylate, methoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate.
  • Nourphenoxypolyethylene glycol (meth) acrylate, polypropylene glycol mono (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, ethoxy polypropylene glycol (meth) acrylate and noeur phenoxy polypropylene glycol (meth) acrylate It is preferable to have a structural unit derived from at least one (meth) acrylate compound selected from:
  • the inorganic powder-containing resin composition of the present invention preferably further contains a plasticity-imparting substance (C).
  • the inorganic powder-containing resin composition of the present invention comprises (D) a photosensitive component, (D-1) multifunctional
  • the transfer film of the present invention is characterized by having an inorganic powder-containing resin layer obtained from the above-mentioned inorganic powder-containing resin composition on a support film.
  • the transfer film of the present invention is characterized in that it has a laminate comprising a resist layer and an inorganic powder-containing resin layer obtained from the above-mentioned inorganic powder-containing resin composition on a support film.
  • the method for producing a flat panel display member of the present invention includes a step of transferring an inorganic powder-containing resin layer formed on the support film and obtained from the inorganic powder-containing resin composition onto a substrate, And a step of baking the inorganic powder-containing resin layer.
  • the method for producing a flat panel display member of the present invention includes a step of transferring an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition formed on a support film onto a substrate, Forming a resist layer on the inorganic powder-containing resin layer; A step of exposing the resist layer to form a latent image of the resist pattern, a step of developing the resist layer to reveal the resist pattern, and etching the inorganic powder-containing resin layer to form the resist.
  • the method includes a step of forming a pattern corresponding to the pattern, and a step of baking the pattern.
  • the method for producing a flat panel display member of the present invention comprises a laminate of a resist layer formed on a support film and an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition.
  • a step of etching the inorganic powder-containing resin layer to form a pattern corresponding to the resist pattern and a step of baking the pattern.
  • the method for producing a flat panel display member of the present invention includes a step of transferring an inorganic powder-containing resin layer obtained from the above-mentioned inorganic powder-containing resin composition formed on a support film onto a substrate; A step of exposing the inorganic powder-containing resin layer to form a latent image of a pattern, a step of developing the inorganic powder-containing resin layer to form a pattern, and a step of baking the pattern It is characterized by including.
  • the method for producing a flat panel display member of the present invention comprises a step of transferring an inorganic powder-containing resin layer formed on a support film and obtained from the inorganic powder-containing resin composition onto a substrate; A step of baking the inorganic powder-containing resin layer to form an inorganic film, a step of forming a resist pattern on the inorganic film, and an inorganic pattern corresponding to the resist pattern by etching the inorganic film And a process.
  • the flat panel display member is preferably selected from a dielectric layer, a partition, an electrode, a resistor, a phosphor, a color filter, and a black matrix.
  • an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition is formed on a substrate, and the inorganic powder-containing resin layer is fired.
  • a step of forming a dielectric layer on the substrate by the step of forming the inorganic powder-containing resin layer on the substrate using the transfer film is characterized by being.
  • the method for producing a flat panel display member of the present invention includes a step of forming a pattern containing a conductive powder-containing resin composition on a substrate, and an inorganic powder-containing resin constituting the transfer film on the pattern.
  • the method includes a step of transferring a composition layer to form a laminated film on the substrate, and a step of firing the laminated film.
  • the transfer film in which the inorganic powder-containing resin layer is formed using the inorganic powder-containing resin composition of the present invention can be easily transferred onto a pattern containing an unfired conductive powder-containing resin composition. S, suitable for simultaneous firing of a plurality of members, and excellent in flexibility and transferability.
  • the transfer film of the present invention in which the inorganic powder-containing resin layer is formed using the inorganic powder-containing resin composition of the present invention, is excellent in flexibility and transferability and also in excellent handling properties. Have Therefore, by using the transfer film of the present invention, after firing, an FPD panel member (dielectric layer, electrode, partition wall, excellent surface smoothness and film thickness uniformity, high transmittance or high reflectance). Phosphor, resistor, color filter, black matrix, etc.) can be efficiently formed with high positional accuracy.
  • FIG. 1 is a schematic diagram showing a cross-sectional shape of an AC type PDP.
  • FIG. 2 is a schematic view of a structural example of a transfer film of the present invention.
  • the inorganic powder-containing resin composition of the present invention contains an inorganic powder (A) and a binder resin (B).
  • the inorganic powder (A) used in the inorganic powder-containing resin composition of the present invention can be used for forming various panel members, and is particularly suitable for forming a dielectric layer. Hereinafter, it demonstrates for every kind of panel member.
  • Preferred inorganic powders used in the dielectric forming material and the partition wall forming material which are preferred embodiments of the present invention are, for example, glass powder, preferably glass powder having a softening point of 400 to 600 ° C. Can be mentioned.
  • the softening point of the glass powder is less than 00 ° C, organic substances such as the binder resin are not completely decomposed and removed during the firing process of the inorganic powder-containing resin layer! / At this stage, the glass powder melts, so part of the organic substance may remain in the formed member, and as a result of outgas diffusion in the resulting FPD, the lifetime of the phosphor may be reduced. Power.
  • the softening point of the glass powder exceeds 00 ° C, the inorganic powder-containing resin layer must be baked at a temperature higher than 600 ° C. May occur.
  • glass powder examples include lead oxide, boron oxide, silicon oxide and calcium oxide (PbO-BO-SiO-CaO) system; Zinc oxide, boron oxide and silicon oxide (ZnO— B 2 ⁇ 2 — Si ⁇ 2 ) system; lead oxide, boron oxide, silicon oxide and aluminum oxide (PbO— BO SiO -A1
  • Examples include bismuth oxide, boron oxide and silicon oxide (Bi O— B O— SiO).
  • the average particle size of the glass powder is preferably 0.5 to 2.5 m.
  • the glass powder may be used by mixing inorganic oxides such as aluminum oxide, chromium oxide, manganese oxide, titanium oxide, zirconium oxide, silicon oxide, cerium oxide and cobalt oxide. Good.
  • the content of the inorganic oxide to be mixed is preferably 40% by weight or less of the total amount of the inorganic powder (glass powder + inorganic oxide).
  • Examples of the inorganic powder used for the electrode forming material include Ag, Au, Al, Ni, Ag-Pd alloy, Cu, Cr and Co.
  • Examples of the inorganic powder used for the resistor forming material include RuO.
  • Examples of the inorganic powder used in the phosphor-forming material include:
  • Red phosphor such as Mn
  • Examples of the inorganic powder used in the color filter forming material include:
  • Red pigments such as Fe 2 O, Pb 2 O, CdS, CdSe, PbCrO, PbSO, Fe (NO 2);
  • Green pigments such as 2 3 2 2 2 3 3 4 2; 2 (A1 Na Si O) 'Na S), CoO-Al O and other blue pigments, as well as inorganic for color correction
  • Yellow face such as PbCrO-PbSO, PbCrO, PbCrO-PbO, CdS, TiO-NiO-SbO
  • Orange pigments such as Pb (Cr-Mo-S) 0;
  • Examples of the inorganic powder used for the black matrix forming material include Mn, Fe, Cr, Ni, Co, and oxides and composite oxides thereof.
  • the electrode, resistor, phosphor, color filter, and black matrix forming material are used in combination with the glass powder used for the barrier rib forming material and the dielectric forming material.
  • the content of the glass powder used in combination with the electrode is 30% by weight or less based on the total amount of the inorganic powder, and 20% by weight or less. Is particularly preferred.
  • the binder resin (B) constituting the resin composition containing the inorganic powder of the present invention is a (meth) acrylic polymer (B 1) having a polyoxyalkylene moiety and a weight average molecular weight of 10,000 to 50,000. And a polymer (B-2) other than the polymer (B-1).
  • the polymer (B-1) used in the present invention is a (meth) acrylic polymer having a polyoxyalkylene moiety and a weight average molecular weight () of 10,000 to 50,000.
  • the transfer film of the present invention having an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition of the present invention is excellent in flexibility and transferability.
  • the polymer (B-1) functions as a plasticizer. Therefore, even if the resin film containing inorganic powder is folded, the surface of the resin layer is not cracked, and the storage stability is good even if it is rolled up and stored. Is
  • the inorganic powder-containing resin composition contains the polymer (B-1)
  • the thermal decomposability of the inorganic powder-containing resin paste is improved, and after firing the inorganic powder-containing resin layer, In the inorganic layer The number of bubbles remaining in the gas can be reduced.
  • the polymer (B-1) is easily decomposed and removed by heat, the function of the inorganic layer obtained by firing the inorganic powder-containing resin layer does not deteriorate.
  • the dispersibility and storage stability of the inorganic powder-containing resin paste are improved, and the inorganic powder-containing resin layer and the inorganic powder-containing resin layer are fired.
  • the surface smoothness of the resulting inorganic layer is improved.
  • the polymer (B-1) constituting the binder resin of the present invention does not have a structural unit derived from a (meth) acrylate compound having a polyoxyalkylene moiety and a polyoxyalkylene moiety. It is preferable to contain a structural unit derived from a (meth) atallylate compound and a structural unit derived from an aromatic bur compound.
  • the polymer (B-1) is a homopolymer of a (meth) acrylate compound having a polyoxyalkylene moiety (hereinafter also referred to as “specific (meth) acrylate compound”), as well as the above-mentioned special polymer.
  • a constant (meth) acrylate compound and a (meth) acrylate compound having no polyoxyalkylene moiety represented by the following general formula (1) hereinafter also referred to as “(meth) acrylate compound (1)”
  • a copolymer with at least one selected from the group of aromatic bur compounds and other copolymer monomers hereinafter also referred to as “(meth) acrylate compound (1)
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a monovalent organic group.
  • the polymer (B-1) is an acrylic resin having a weight average molecular weight (Mw) of 10,000-50,000, preferably 20,000-40,000. Contains a polymer.
  • Specific (meth) acrylate compounds that are constituents of the polymer (B-1) include polyesters.
  • Lenglycol mono (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, nourphenoxy polyethylene glycol (meth) acrylate, polypropylene Examples include dallicol mono (meth) acrylate, methoxy polypropylene dallicol (meth) acrylate, ethoxy polypropylene glycol (meth) acrylate and nourphenoxypolypropylene acrylate (meth) acrylate.
  • the (meth) acrylate compound (1) which is a component of the polymer (B-1), includes alkyl (
  • alkyl (meth) acrylate examples include methyl (meth) acrylate and ethyl (meth)
  • hydroxyalkyl (meth) acrylate examples include hydroxyethyl (meth) acrylate.
  • Examples of the phenoxyalkyl (meth) acrylate include phenoxycetyl (meth) acrylate and 2-hydroxy-3-phenoxypropyl (meth) acrylate.
  • Examples of the alkoxyalkyl (meth) acrylate include 2-methoxyethyl (meth) acrylate, 2-ethoxy ethyl (meth) acrylate, 2-propoxy cetyl (meth) acrylate, 2-butoxetyl ( And (meth) acrylate and 2-methoxybutyl (meth) acrylate.
  • Examples of the cycloalkyl (meth) acrylate include cyclohexyl (meth) acrylate, 4-butyl cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentyl ( Examples include (meth) acrylate, dicyclopentagenyl (meth) acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate and tricyclodecanyl (meth) acrylate.
  • Preferable examples of the (meth) acrylate compound (1) include butyl (meth) acrylate, ethylhexyl (meth) acrylate, lauryl (meth) acrylate, isodecyl (meth) acrylate and Examples include 2-ethoxyethyl (meth) acrylate.
  • the aromatic bur compound that is a constituent of the polymer (B-1) is an aromatic compound having an ethylenically unsaturated bond, and the above-mentioned specific (meth) acrylate compound and (meth) acrylate compound (1) If you don't fall under this category, you'll need a compound! / There is no particular limitation as long as it is a compound that can be copolymerized with the specific (meth) acrylate compound or the (meth) acrylate compound (1).
  • styrene ⁇ -methyl styrene, butyl benzoic acid, phthalphthalic acid, vinyl Aromatic butyl compounds such as benzyl methyl ether and butyltoluene; polystyrene having a (meth) atalyloyl group at the end.
  • aromatic bur compound examples include bulubenzoic acid, burbendyl methyl ether, styrene, and ⁇ -methylstyrene.
  • the polymer ( ⁇ -1) is a copolymerizable monomer other than the specific (meth) acrylate compound, (meth) acrylate compound (1) and aromatic bur compound (hereinafter referred to as “other copolymer”). It may also be reacted with a “monomeric monomer”).
  • copolymerizable monomers include aminocarboxylic esters of unsaturated carboxylic acids such as aminoethyl acrylate; glycidyl (meth 1) Unsaturated carboxylic acid glycidyl esters such as acrylate; Carboxylic acid esters such as butyl acetate and propionate; Cyanide butyl compounds such as (meth) acrylonitrile and ⁇ -chloroacrylonitrile; 1, 3-butadiene And aliphatic conjugates such as isoprene; unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; unsaturated dicarboxylic acids such as itaconic acid, maleic acid and fumaric acid; other unsaturated carboxylic acids Bur ethers such as burbendyl methyl ether and burglycidyl ether; and macromonomers such as polymethyl (meth) acrylate, polybutyl (meth) acrylate and polysilicon.
  • Preferable examples of other copolymerizable monomers include (meth) acrylic acid, maleic acid, vinyldaricidyl ether, butadiene and isoprene.
  • the polymer ( ⁇ -1) includes the above-mentioned specific (meth) acrylate homopolymer, the specific (meth) acrylate, the (meth) acrylate compound (1), and the aromatic bur.
  • examples thereof include a copolymer and a copolymer containing at least one selected from other copolymerizable monomers as a constituent component.
  • Preferable specific examples of the copolymer include the specific (meth) acrylate and a copolymer of the (meth) acrylate compound (1) and aromatic bur compounds.
  • composition ratio of the copolymer is usually specified with respect to 100% by weight of the polymer ( ⁇ -1).
  • (Meth) Atari rate 5-30 wt 0/0, (meth) Atari Rate Compound (1) 30 to 50 weight 0/0, an aromatic Bulle compounds 30-50 wt%, the specific (meth) Atari Rate 10 -25% by weight, (meth) acrylate compound (1) 35-45% by weight, and aromatic bur compounds 35-45% by weight are more preferred.
  • Examples of the polymer (B-1) used in the present invention include polymethylene glycol (meth) ateryl one-to-polybutyl metatalylate copolymer, polyethylene glycol (meth) acrylate, polybutyl metatalylate copolymer , Polypropylene glycol (meth) acrylate Butylmetatalylate copolymer, polyethylene glycol poly (meth) acrylate relay methyl methacrylate, butyl metatalylate copolymer, polyethylene glycol poly (meth) acrylate-methyl methacrylate-butyl (meth) acrylate, styrene copolymer, polyethylene render Recall poly (meth) acrylate-(meth) acrylic acid-styrene copolymer, polypropylene glycol poly (meth) acrylate 2-ethoxyethyl (meth) acrylate styrene copolymer, polymethylene glycol (meta ) At
  • the polymer (B-1) is prepared from the specific (meth) acrylate compound and, if necessary, the (meth) acrylate compound (1) and other copolymerizable monomers by a known method. It is obtained by polymerizing.
  • the molecular weight of the polymer (B-1) can be adjusted by appropriately adjusting the amount of the polymerization initiator, the polymerization temperature and the polymerization time.
  • the preferred molecular weight of the polymer (B-1) is gel permeation chromatography.
  • weight average molecular weight (hereinafter also simply referred to as “weight average molecular weight” or “Mw”) is 10,000 to 50,000, more preferably 20,000 to 40,000. It is.
  • any resin other than the above can be used as long as it is other than the polymer (B-1).
  • a (meth) acrylate polymer (hereinafter also simply referred to as “acrylic resin”) having no polyoxyalkylene moiety is preferred.
  • the composition of the present invention contains an acrylic resin as the polymer (B-2)
  • the inorganic powder-containing resin layer formed from the composition exhibits excellent (heating) adhesion to the substrate. . Therefore, a transfer film produced by applying the composition of the present invention on a support film has excellent transferability (heat adhesion to a substrate) of the inorganic powder-containing resin layer.
  • an inorganic powder can be bound with appropriate adhesiveness, and it is completely oxidized and removed by baking treatment (400 to 600 ° C) of the inorganic powder-containing resin layer.
  • ( Co) polymers are preferred.
  • acrylic resin examples include a homopolymer of the (meth) acrylate compound (1), a copolymer containing two or more of the (meth) acrylate compound (1), and the (meth) acrylate. Copolymers of the rate compound (1) and other copolymerizable monomers are included.
  • the (meth) acrylate compound (1) used in the polymer (B-2) is, for example,
  • Examples include attalylate, cycloalkyl (meth) acrylate, benzyl (meth) acrylate and tetrahydrofurfuryl (meth) acrylate. More specific examples are shown below.
  • alkyl (meth) acrylate examples include methyl (meth) acrylate and ethyl (meth
  • hydroxyalkyl (meth) acrylate examples include hydroxyethyl (meth) acrylate.
  • phenoxyalkyl (meth) acrylate examples include phenoxychetyl (meth) acrylate and 2-hydroxy-3-phenoxypropyl (meth) acrylate.
  • alkoxyalkyl (meth) acrylate examples include 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-propoxy cetyl (meth) acrylate. And 2-butoxychetyl (meth) acrylate and 2-methoxybutyl (meth) acrylate.
  • alkyl glycidyl (meth) acrylate examples include glycidyl (meth) acrylate and / 3-methyldaricidyl (meth) acrylate.
  • Examples of the cycloalkyl (meth) acrylate include cyclohexyl (meth) acrylate, 4-butyl cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentyl ( Examples include (meth) acrylate, dicyclopentagenyl (meth) acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate and tricyclodecanyl (meth) acrylate.
  • alkyl (meth) acrylate is used, and particularly preferably, butyl (meth) acrylate, ethyl hexyl (meth) acrylate, lauryl (meth) acrylate, isodecyl (meth) acrylate. Rate and 2-ethoxyethyl (meth) acrylate are used.
  • Examples of the other copolymerizable monomers are not particularly limited as long as they are compounds that can be copolymerized with the (meth) acrylate compound, but (meth) acrylic acid, bull benzoic acid, malein. Unsaturated carboxylic acids such as acids and bullphthalic acid;
  • bur group-containing radically polymerizable compounds such as burbendyl methyl ether, burglycidyl ether, styrene, ⁇ -methyl styrene, butadiene and isoprene.
  • the copolymer component derived from the (meth) acrylate compound (1) represented by the general formula (1) is usually 70% by weight. Above, preferably 90% by weight or more.
  • acrylic resins include polymethyl methacrylate, polybutyl methacrylate, methyl methacrylate-butyl methacrylate copolymer and butyl methacrylate 2-to-hexyl hexyl methacrylate 2-hydroxypropyl. And metatalylate copolymers.
  • the Mw of the polymer (B-2) constituting the composition of the present invention is 4,000 to 300,000, preferably ⁇ 10,000 to 200,000.
  • the binder resin (B) is 5 to 80 parts by weight, preferably 10 in total of the polymer (B-1) and the polymer (B-2) with respect to 100 parts by weight of the inorganic powder (A). Used in an amount of ⁇ 50 parts by weight. If the amount of the binder resin (B) is too small, the inorganic powder may not be securely bound and held. On the other hand, if the amount of the binder resin (B) is excessive, the firing process takes a long time and the formed sintered body (for example, the dielectric layer) has sufficient strength and film thickness. May not.
  • the polymer (B-1) is usually used in an amount of 0.0;! To 50 parts by weight, preferably 0.05 to 30 parts by weight with respect to 100 parts by weight of the inorganic powder (A). It is done. If the amount of the polymer (B-1) is less than the above range! /, The handling property at room temperature of the inorganic powder-containing resin layer and the transferability of the resin layer (heat adhesion to the substrate) may be inferior. is there. On the other hand, if the amount of the polymer (B-1) is more than the above range, the adhesion and transferability of the formed inorganic powder-containing resin layer at the time of transfer become excessive, and it becomes difficult to peel off the support film. Or a transfer film having the resin layer may be inferior in handleability.
  • the inorganic powder-containing resin composition of the present invention may contain a plasticity-imparting substance (C) as an auxiliary agent for the binder resin (B) in order to give the transfer film good flexibility. ! / The inorganic powder-containing resin layer formed from the composition containing the plasticity-imparting substance (C) has sufficient flexibility.
  • plasticizing substance (C) examples include a compound represented by the following general formula (2), a plasticizer selected from the group consisting of a compound represented by the following general formula (3), polypropylene glycol, and Examples thereof include copolymerizable monomers such as the (meth) acrylate compound described above, and those having a boiling point of 150 ° C. or higher are preferred.
  • plasticizing substances (C) may be used alone or in combination of two or more! /.
  • R 3 and R 6 each independently represent a monovalent chain hydrocarbon group having 1 to 30 carbon atoms
  • R 4 and R 5 are each independently And a methylene group or a divalent chain hydrocarbon group having 2 to 30 carbon atoms
  • s is an integer of 0 to 5
  • t is an integer of 1 to 10
  • R 7 represents a monovalent chain hydrocarbon group having carbon number;! To 30.
  • the monovalent chain hydrocarbon group represented by R 3 or R 5 is a linear or branched alkyl group (saturated group) or alkenyl group (unsaturated group),
  • the chain hydrocarbon group has a carbon number of !! to 30, preferably 2 to 20, more preferably 4 to 10; If the number of carbon atoms in the chain hydrocarbon group is more than the above range, dissolve resistance is low in the solvent to be described later, is that the force s difficult to provide good flexibility inorganic powder-containing resin layer .
  • the divalent chain hydrocarbon group represented by R 4 or R 5 is a linear or branched alkylene group (saturated group) or alkenylene group (unsaturated group).
  • Examples of the compound represented by the general formula (2) include dibutyl adipate, diisobutyl adipate, di-2-ethenorehexino rare dipate, di-2-ethenorehexinorezelate, dibutyl sebacate, and dibutyl diacetate.
  • Examples include glycol adipate.
  • the monovalent chain hydrocarbon group represented by R 7 is a linear or branched alkyl group (saturated group) or alkenyl group (unsaturated group),
  • the chain hydrocarbon group has a carbon number of !!-30, preferably 2-20, more preferably 10--18.
  • Examples of the compound represented by the general formula (3) include propylene glycol monolaurate. And propylene glycol monooleate.
  • the weight average molecular weight (Mw) of the polypropylene glycol is preferably in the range of 200-3,000. A range of 2,000 is particularly preferred. If Mw is less than 200, it may be difficult to form an inorganic powder-containing resin layer having a high film strength on the support film, and the resin layer may be transferred from the support film to the glass substrate. In this case, when the support film is peeled off from the resin layer heat-bonded to the glass substrate, the resin layer may cause cohesive failure. On the other hand, if Mw exceeds 3,000, an inorganic powder-containing resin layer having good heat adhesion to the glass substrate as the transferred body may not be obtained.
  • the plasticity-imparting substance (C) has 10 or 10 carbon atoms. It is preferred to use 12 long chain alkyl (meth) acrylates.
  • the use of the plasticizing substance (C) can provide sufficient flexibility as a dry film and is easily decomposed or volatilized by a post-beta described later, and is therefore an essential property for sandblasting. This is because brittleness can be imparted.
  • Examples of the long-chain alkyl (meth) acrylate include forces such as isodecyl (meth) acrylate and lauryl (meth) acrylate, particularly isodecyl and lauryl methacrylate. preferable.
  • the plasticizer (C) is 3% by weight of the total components excluding the solvent from the composition of the present invention.
  • the composition of the present invention may be a photosensitive composition containing, as the photosensitive component (D), a polyfunctional (meth) acrylate (D-1) and a radiation polymerization initiator (D-2). Yo! / The polyfunctional (meth) acrylate (D-1) is polymerized by exposure to make the exposed part insoluble in alkali or hardly soluble in alkali.
  • Examples of the polyfunctional (meth) acrylate (D-1) include di (meth) acrylates of alkylene glycols such as ethylene glycol and propylene glycol;
  • Di (meth) acrylates of both end hydroxylated polymers such as both end hydroxypolybutadiene, both end hydroxypolyisoprene and both end hydroxypoly force prolatatone; glycerin, 1, 2, 4 butanetriol, trimethylolalkane, tetramethylol Trivalent or higher polyvalent alcohols such as alkane, pentaerythritol and dipentaerythritol
  • Poly (meth) atrelates of polyalkylene glycol adducts of polyhydric alcohols with 3 or more valences;
  • Cyclic poliopolyesters such as 1,4-cyclohexanediol and 1,4 benzenediols (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, alkyd resin (meth) acrylate, silicone resin Examples thereof include oligo (meth) acrylates such as (meth) acrylate and spirane resin (meth) acrylate. These may be used alone or in combination of two or more. Among these, trimethylolpropane tritalylate, tripropylene glycol ditalylate and the like are particularly preferably used.
  • the molecular weight of the polyfunctional (meth) acrylate (D-1) is preferably 100 to 2,000.
  • the polyfunctional (meth) acrylate (D-1) is usually used in an amount of 5 to 50 parts by weight, preferably 10 to 40 parts by weight based on 100 parts by weight of the inorganic powder (A).
  • Examples of the radiation polymerization initiator (D-2) used in the present invention include benzyl, benzoin, benzophenone, camphorquinone, 2-hydroxy-1-methyl-1-phenylpropan-1-one, and 1-hydroxycyclohexane.
  • Azo and azide compounds such as azoisobutyronitrile and 4 azidobenzaldehyde;
  • Organic sulfur compounds such as mercabtan disulfide
  • Organic peroxides such as benzoyl peroxide, di-t-butyl peroxide, t-butyl hydride peroxide, cumene hydride oxyperoxide and paraffin hydride oxyperoxide;
  • imidazole dimers such as 2, 2, 1bis (2-black mouth phenol) 4, 5, 4,, 5, monotetraphenol 1, 2, and 1 imidazole. These can be used alone or in combination of two or more.
  • the radiation polymerization initiator (D-2) is usually 0.;! To 50.0 parts by weight, preferably 100 parts by weight of the polyfunctional (meth) acrylate (D-1). 1. 0-30. 0 parts by weight used
  • the composition of the present invention usually contains a solvent.
  • a solvent As such a solvent, the affinity for inorganic powder and the solubility of the binder resin are good, and it is possible to impart an appropriate viscosity to the composition, and it can be easily evaporated by drying treatment. It is preferable that it can be removed.
  • particularly preferred solvents include ketones, alcohols and esters (hereinafter referred to as "specific solvents") having a normal boiling point (boiling point at 1 atm) of 60 to 200 ° C.
  • specific solvents having a normal boiling point (boiling point at 1 atm) of 60 to 200 ° C.
  • Examples of the specific solvent include methyl ethyl ketone, jetyl ketone, methyl butyl keto , Ketones such as dipropyl ketone and cyclohexanone;
  • Anoleconoles such as n-pentanol, 4-methyl-2-pentanol, cyclohexanol and diacetonanoreconole;
  • Ether-based alcohols such as ethylene glycol monomethino ethenole, ethylene glycol monomethino ree tenole, ethylene glycol monobutyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether; n-butyl acetate and Saturated aliphatic monocarboxylic acid alkyl esters such as amyl acetate;
  • Examples thereof include lactic acid esters such as ethyl lactate and n-butyl lactate; etherol esters such as methinoreethenoleacetate and ethinoleyl 3-ethoxypropionate.
  • lactic acid esters such as ethyl lactate and n-butyl lactate
  • etherol esters such as methinoreethenoleacetate and ethinoleyl 3-ethoxypropionate.
  • methyl butyl ketone, cyclohexanone, diacetone alcoholone, ethylene glycol methanol monobutinoate ethere, propylene glycol monomethyl ether, ethyl lactate and ethyl 3-ethoxypropylone are preferred.
  • These specific solvents may be used alone or in combination of two or more.
  • Examples of usable solvents other than the above-mentioned specific solvents include turpentine oil, ethenorecello sonoleb, methinorecero sonoleb, tenorepineo monore, butinorecanorebitonoreacetate, butinorecanorebitonore, Use force S to list isopropyl alcohol and benzyl alcohol.
  • the solvent is used in an amount of 5 to 50 parts by weight, preferably 10 to 40 parts by weight, based on 100 parts by weight of the inorganic powder (A). It is done.
  • the ratio of the specific solvent to the total solvent is 50% by weight or more, preferably 70% by weight or more.
  • the composition of the present invention includes, as optional components, a dispersant, a development accelerator, an adhesion assistant, a halation inhibitor, a leveling agent, a storage stabilizer, an antifoaming agent, an antioxidant, an ultraviolet absorber, and a sensitizer.
  • a dispersant such as an agent or a chain transfer agent may be contained.
  • the inorganic powder-containing resin composition of the present invention comprises the above-mentioned inorganic powder (A), binder resin (B), if necessary, a plasticizer (C), and a polyfunctional (meth) acrylate (D-1). ), A radiation polymerization initiator (D-2), a solvent and various additives can be prepared by kneading using a kneader and a disperser such as a roll kneader, a mixer, a homomixer, or a sand mill. .
  • the viscosity of the composition of the present invention prepared as described above is preferably 0.3 to 30 Pa ′s.
  • the transfer film of the present invention has an inorganic powder-containing resin layer obtained from the above-described inorganic powder-containing resin composition of the present invention on a support film.
  • the transfer film of the present invention may be one having a laminated film of a resist film and the inorganic powder-containing resin layer on a supporting film (laminated transfer film).
  • a cover film may be provided on the surface of the inorganic powder-containing resin layer.
  • the transfer film of the present invention has a support film that supports the inorganic powder-containing resin layer.
  • the support film is preferably a resin film having heat resistance and solvent resistance and flexibility. Since the support film is flexible, the inorganic powder-containing resin composition can be applied to the surface of the support film with a roll coater or a blade coater, and the resulting transfer film is wound into a roll. It is possible to save or supply the product in a state of being stored.
  • Examples of the resin for forming the support film include polyethylene terephthalate, polyester, polyethylene, polypropylene, polystyrene, polyimide, polyvinylenoreconole, fluorine-containing resins such as polychlorinated butyl and polyfluoroethylene, nylon In addition, it is possible to raise the cell mouth.
  • the thickness of the support film is 20 to 100 m.
  • the surface of the support film has been subjected to a release treatment, so that in the transfer process to the glass substrate, The peeling operation of the support film can be easily performed.
  • a cover film may be provided on the surface of the resin layer in order to protect the surface of the inorganic powder-containing resin layer.
  • This cover film is preferably a resin film having flexibility, whereby the transfer film obtained can be stored or supplied in a roll shape.
  • Examples of the resin constituting the cover film include a polyethylene terephthalate film, a polyethylene film, and a polybulualcohol-based film.
  • the thickness of the cover film is 20 to 100 mm. Further, it is preferable that the surface of the cover film has a smaller adhesion to the inorganic powder-containing resin layer than the support film, which may be subjected to a release treatment.
  • the inorganic powder-containing resin layer is usually formed by coating the inorganic powder-containing resin composition on a support film, drying the resulting coating film, and removing all or part of the solvent.
  • a coating film with high uniformity in film thickness and large film thickness (for example, 10 ⁇ or more) is formed with high efficiency.
  • the force S is a method that can be applied S
  • specific examples include a coating method using a roll coater, a coating method using a blade coater, a coating method using a curtain coater, and a coating method using a wire coater.
  • the film thickness of the inorganic powder-containing resin layer is a force S depending on the height of the panel member to be formed, usually 10 to 300 111.
  • the drying condition of the coating film is, for example, 50 to; at 150 ° C for about 0.5 to 30 minutes, and the residual ratio of the solvent after drying (content in the inorganic powder-containing resin layer) Is usually within 2% by weight.
  • the resist film used for the laminated transfer film of the present invention is usually a resist assembly containing a binder polymer, a polyfunctional monomer (D-1) and a radiation polymerization initiator (D-2).
  • the composition is formed by coating on a support film.
  • the binder polymer used in the resist composition needs to be an alkali-soluble resin in the case of an alkali development type, and has an ethylenically unsaturated group having at least one carboxynole group in the molecule. It is a carboxyl group-containing copolymer obtained by polymerizing a monomer composition containing a carboxyl group-containing monomer and a copolymerizable monomer copolymerizable with the carboxyl group-containing monomer. Is preferred.
  • the copolymerization ratio of the carboxyl group-containing monomer in the binder polymer is 5 to 50% by weight, preferably 10 to 40% by weight, based on the total amount of the monomer. If the copolymerization ratio of the carboxyl group-containing monomer is lower than the above range, the resulting resist composition tends to be less soluble in an alkali developer. On the other hand, when the copolymerization ratio of the carboxyl group-containing monomer exceeds the above range, the resist pattern tends to fall off from the inorganic powder paste layer during development.
  • the copolymer having a structural unit derived from the carboxyl group-containing monomer has alkali solubility, and in particular, the copolymer having the structural unit in an amount within the above range is an alkaline developer. Excellent solubility. For this reason, by using such a copolymer as a binder polymer in the resist composition, the amount of undissolved material in the alkaline developer is essentially reduced. The occurrence of dirt and film residue can be reduced.
  • the resist pattern obtained from the resist composition containing the copolymer as a binder polymer has excellent adhesion to a resin layer containing an inorganic powder that does not excessively dissolve in an alkali developer. Therefore, it is difficult for the resin layer to fall off.
  • Examples of the carboxyl group-containing monomer include (i) unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid, and (ii) unsaturated compounds such as itaconic acid, maleic acid and fumaric acid. Examples include dicarboxylic acids and (iii) other unsaturated carboxylic acids. These may be used alone or in combination of two or more.
  • Aromatic butyl compounds such as styrene, ⁇ -methylstyrene and butyltoluene; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-hydride Unsaturated carboxylic acid alkyl esters such as loxochetyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, benzyleno (meth) acrylate and cyclohexyl (meth) acrylate;
  • Unsaturated carboxylic acid aminoamino esters such as aminoethyl acrylate; unsaturated carboxylic acid glycidyl esters such as glycidyl (meth) acrylate; carboxylic acid bis esters such as acetic acid and propionic acid;
  • Cyanide bur compounds such as (meth) acrylonitrile and ⁇ -chloroacrylonitrile
  • 1, 3, 3-aliphatic conjugates such as butadiene and isoprene;
  • Examples thereof include macromonomers such as polystyrene, polymethyl (meth) acrylate, polybutyl (meth) acrylate and poly-silicone having a (meth) attaroyl group at the terminal. These can be used alone or in combination of two or more.
  • the binder polymer has an Mw of 3,000-300,000, preferably 5,000-200,000.
  • a binder polymer having such a molecular weight By using a binder polymer having such a molecular weight, a resist composition having high image clarity can be obtained, whereby a resist pattern having sharp pattern edges can be formed, and a panel having a uniform pattern can be formed. Parts can be formed.
  • the above-mentioned polyfunctional (meta) acrylate (D-1) is preferably used.
  • the polyfunctional monomer is usually used in an amount of 5 to 100 parts by weight, preferably 10 to 70 parts by weight, based on 100 parts by weight of the binder polymer. If the amount of the polyfunctional monomer is lower than the above range, the resist pattern strength tends to be insufficient, and if the amount exceeds the above range, the alkali resolution decreases or the portion other than the resist pattern forming portion. Soiling and film residue may occur.
  • Examples of the radiation polymerization initiator used in the resist composition include the radiation polymerization initiator (D-2) described above.
  • the resist composition usually contains a solvent in order to impart appropriate fluidity or plasticity or good film-forming properties.
  • a solvent the specific solvent mentioned above etc. which are not specifically limited are used preferably.
  • the resist composition includes, as optional components, a development accelerator, an adhesion assistant, a halation inhibitor, a storage stabilizer, an antifoaming agent, an antioxidant, an ultraviolet absorber, a filler, a phosphor, Contains various additives such as pigments and / or dyes! /, May!
  • a resist composition is formed on a support film or an inorganic powder-containing resin layer to form a resist film, and the composition of the present invention is applied on the resist film. It is obtained by forming an inorganic powder-containing resin layer.
  • the laminated transfer film forms an inorganic powder-containing resin layer on the support film or the inorganic powder-containing resin layer, and forms a resist film on the protective film separately from the resin film surface. It can also be suitably formed by a method in which the resist film surface and the resist film surface are overlapped and pressure-bonded.
  • the thickness of the resist film to be formed is preferably 5 to 15 m.
  • the transfer film of the present invention is usually stored in a rolled state.
  • Preferred embodiments of the method for producing the FPD member of the present invention are as follows.
  • a panel member by a method comprising a step of transferring an inorganic powder-containing resin layer of a transfer film of the present invention onto a substrate and a step of firing the transferred inorganic powder-containing resin layer.
  • a method of forming a dielectric layer FPD manufacturing method (I)).
  • a method of forming at least one kind FPD manufacturing method (111)).
  • a method of forming at least one selected from a color filter and a black matrix FPD manufacturing method (IV)).
  • FPD production method (V) FPD production method
  • the transfer film wound in a roll shape is cut into a size corresponding to the area of the substrate.
  • the transfer film After removing the cover film as necessary from the surface of the inorganic powder-containing resin layer in the cut transfer film, the transfer film is overlaid so that the surface of the inorganic powder-containing resin layer is in contact with the surface of the substrate. .
  • the support film is peeled off from the inorganic powder-containing resin layer fixed to the substrate by thermocompression bonding.
  • the inorganic powder-containing resin layer on the support film is transferred onto the substrate. It is.
  • the transfer conditions at this time for example, the surface temperature of the heating roller is 60 to 120 ° C, the roll pressure by the heating roller is 1 to 5 kg / cm 2, and the moving speed of the heating roller is 0.2 to 10 Om / Minutes.
  • Such an operation can be performed by a laminator apparatus.
  • the preheating temperature at which the substrate may be preheated is, for example, 40 to 100 ° C.
  • the inorganic powder-containing resin layer transferred and formed on the surface of the substrate is fired to form an inorganic sintered body (dielectric layer).
  • the firing method include a method in which the substrate on which the inorganic powder-containing resin layer is transferred and formed is placed in a high-temperature atmosphere. By the baking treatment, the organic substance contained in the inorganic powder-containing resin layer is decomposed and removed, and the inorganic powder is melted and sintered.
  • the firing temperature is a force that varies depending on the melting temperature of the substrate and the constituent materials in the inorganic powder-containing resin layer, for example, 300 to 800 ° C, preferably 400 to 620 ° C.
  • the method for producing a flat panel display (FPD) member of the present invention comprises a step of forming a pattern containing a conductive powder-containing resin composition on a substrate, and an inorganic powder constituting the transfer film on the pattern. A step of transferring the body-containing resin composition layer to form a laminated film on the substrate; and a step of firing the laminated film.
  • a composition used for forming a general electrode can be used.
  • Examples of the conductive powder include Ag, Au, Al, Ni, Ag-Pd alloy, Cu, Cr, and Co.
  • the conductive powder-containing resin composition forms a film by screen printing or photosensitive paste, and is subjected to exposure and development to form a pattern.
  • the film thickness of the conductive powder-containing resin layer is usually 5 to 100 ⁇ m.
  • the inorganic powder-containing resin layer transferred and formed on the surface of the substrate on which the pattern containing the unfired conductive powder-containing resin composition is formed is fired to form a conductive sintered body (electrode layer) and inorganic sintering. It becomes a laminated structure of a body (dielectric layer).
  • a firing method unfired conductive And a method in which a substrate on which an inorganic powder-containing resin layer is transferred and formed on a pattern containing a conductive powder-containing resin composition is placed in a high-temperature atmosphere. By the firing treatment, the organic substances contained in the conductive powder-containing resin layer and the inorganic powder-containing resin layer are decomposed and removed, and the conductive powder and the inorganic powder are melted and sintered.
  • the FPD production method (II) includes a step of transferring the inorganic powder-containing resin layer of the transfer film of the present invention onto a substrate, and a step of forming a resist pattern on the transferred inorganic powder-containing resin layer. And a step of etching the inorganic powder-containing resin layer to form a pattern corresponding to the resist pattern, and a step of baking the pattern.
  • partition walls which are constituent elements of FPD, on the surface of the back substrate.
  • an inorganic powder-containing resin layer transfer step (2) a resist pattern forming step, (3) an inorganic powder-containing resin layer etching step, and (4) an inorganic powder
  • a partition wall is formed on the surface of the substrate by a process including a firing process of the containing resin pattern.
  • the mode of transferring the inorganic powder-containing resin layer onto the substrate is not limited to the mode of transferring onto the surface of the glass substrate, but is transferred onto the surface of the dielectric layer. Various embodiments are also included.
  • the transfer process of the inorganic powder-containing resin layer is the same as the transfer process in the FPD manufacturing method (I) described above.
  • a method for forming a resist pattern on the inorganic powder-containing resin layer is not particularly limited, but a resist pattern is preferably formed through steps of forming a resist film, exposing and developing.
  • the resist film may be formed by applying the above-described resist composition onto the inorganic powder-containing resin layer and drying it, or applying the resist composition onto a support film and drying it.
  • the resulting transfer film may be used to transfer and form a resist film on the inorganic powder-containing resin layer. However, considering the simplicity of the process, formation by transfer is preferred.
  • the surface of the formed resist film is selectively irradiated (exposed) with radiation such as ultraviolet rays through an exposure mask to form a latent image of the resist pattern.
  • the ultraviolet irradiation apparatus used for exposure is not particularly limited, and the ultraviolet irradiation apparatus generally used in the photolithography method, the exposure apparatus used when manufacturing semiconductors and liquid crystal display devices, etc. Is mentioned. Further, exposure may be performed by drawing laser light or the like without using an exposure mask. Note that it is preferable to perform the exposure process in a state where the resist film is coated on the resist film and not peeled, and peeled after the exposure.
  • the development of the resist film is a process for revealing a resist pattern (latent image) in the exposed resist film.
  • the development processing conditions include the type of developer, composition, concentration, development time, development temperature, development method (for example, dipping method, rocking method, shower method, spray method or paddle method) depending on the type of resist film. ) Or a developing device or the like can be selected as appropriate.
  • a resist pattern pattern corresponding to the exposure mask
  • the resist removal portion is formed.
  • This resist pattern acts as an etching mask in the next step (etching step of the inorganic powder-containing resin layer), and the constituent material (photocured resist) of the remaining resist portion contains inorganic powder. It is necessary that the dissolution rate in the developer used in the next step is lower than that of the constituent material of the resin layer.
  • the inorganic powder-containing resin layer is etched to form a partition pattern layer corresponding to the resist pattern. That is, the portion corresponding to the resist removal portion of the resist pattern in the inorganic powder-containing resin layer is selectively removed. Then, a predetermined portion of the inorganic powder-containing resin layer is completely removed, and the dielectric layer is exposed. As a result, an inorganic powder-containing resin pattern composed of the resin layer residual portion and the resin layer removal portion is formed.
  • a force S that can be appropriately selected according to the type of the inorganic powder-containing resin layer, an alkali development treatment or a sand blast treatment is preferably used.
  • the developer used for developing the resist film described above is used. However, it is preferable to continuously develop the resist film and the inorganic powder-containing resin layer under the same development conditions.
  • the type, composition, concentration, processing time, processing temperature, processing method (for example, dipping method, rocking method, shower method, spray method or paddle method) or processing device of the developing solution or the like can be appropriately selected.
  • the resist remaining portion constituting the resist pattern is gradually dissolved during the image processing, and is completely removed at the stage where the inorganic powder-containing resin pattern is formed (at the end of the image processing). It is preferable. Even if a part or all of the resist residue remains after the etching (development) process, the resist residue is removed in the next baking step.
  • the inorganic powder-containing resin layer is formed by using a transfer film containing plasticity-imparting substance (C), particularly, a long-chain alkyl (meth) acrylate, in the inorganic powder-containing resin layer. It is preferable to perform post-transfer treatment after the transfer. By performing post-baking, the residual solvent and plasticity-imparting substance (C) in the resin layer can be removed, and sandblasting (brittleness) can be imparted to the resin layer.
  • the post-beta treatment conditions are, for example, a treatment temperature of 100 to 300 ° C. and a treatment time of 15 to 120 minutes.
  • a resist pattern is formed on the resin layer, and the exposed portion of the inorganic powder-containing resin layer after the post-beta treatment is mainly removed by sandblasting using a sandblasting device, whereby a pattern having a desired form is obtained. Form. Even if a part or all of the resist residue remains after the etching process, the resist residue is removed in the next baking step.
  • the partition walls are formed by baking the inorganic powder-containing resin pattern.
  • the space partitioned by the partition (derived from the resin layer removal portion) Space) is a plasma action space.
  • the temperature of the baking treatment is required to be a temperature at which the organic substance is burned off, and is usually 400 to 600 ° C.
  • the firing time is usually 10 to 90 minutes.
  • FPD production method (III) is a preferred embodiment of FPD production method (II), in particular, This is a preferred embodiment when the strike film and the inorganic powder-containing resin layer are etched by alkali development.
  • the laminated film of the resist film and the inorganic powder-containing resin layer is transferred onto the substrate.
  • An example of the transfer process is as follows.
  • the transfer film is superimposed on the surface of the dielectric layer so that the surface of the inorganic powder-containing resin layer is in contact with the surface of the dielectric layer. Thermocompression bonding. As a result, the laminated film of the inorganic powder-containing resin layer and the resist film is transferred and adhered to the surface of the dielectric layer.
  • the transfer conditions for example, the surface temperature of the heating roller is 80 to 140 ° C., the roller pressure by the heating roller is 1 to 5 kg / cm 2, and the moving speed of the heating roller is 0.;! To 10. Om / min .
  • the glass substrate may be preheated, and the preheating temperature may be, for example, 40 to 100 ° C.
  • the process after transfer of the laminated film in the FPD manufacturing method (III) is the same as the steps (2) to (4) in the FPD manufacturing method (II) (in particular, the resist film and the inorganic powder-containing resin layer). In the case of alkali development).
  • the FPD production method (IV) transfers an inorganic powder-containing resin layer constituting the photosensitive transfer film of the present invention onto a substrate and exposes the resin layer to form a latent image of a pattern.
  • the inorganic powder-containing resin layer constituting the transfer film of the present invention is transferred onto a substrate, the resin layer is baked to form an inorganic film, and a resist pattern is formed on the inorganic film.
  • a panel material such as a partition is formed by forming a film and etching the inorganic film to form an inorganic film pattern corresponding to the resist pattern.
  • the "calculation process of the inorganic powder-containing resin pattern” First, an inorganic film is formed, a resist pattern is formed on the inorganic film under the conditions in accordance with the “resist pattern forming step”, and then the inorganic film is etched using the resist pattern as a mask. Thereby, a partition is formed on the surface of the substrate. Note that the resist remaining on the partition wall surface is usually stripped using a stripping solution or the like.
  • the etching solution for the inorganic film an acid solution such as nitric acid, hydrochloric acid and sulfuric acid is usually used, and nitric acid is particularly preferably used.
  • the concentration of the etching solution is usually 0.2;! To 10% by weight, preferably 0.2 to 2% by weight.
  • the etching step is preferably performed by spraying an etching solution onto the inorganic film by spraying or the like, for example, spray pressure;! To 5 MPa, temperature 20 to 60 ° C., and etching time 5 to 20 minutes.
  • Propylene glycol monomethyl ether 240 parts, n-butyl methacrylate, 120 parts, 2-ethylhexyl methacrylate, 20 parts, 2-ethoxyethyl methacrylate, 1 part, and azobisisobutyronitrile, 1 part
  • the mixture was placed in an autoclave and stirred under a nitrogen atmosphere until it was uniform at room temperature. After stirring, polymerization was carried out at 75 ° C. for 3 hours, and further, the polymerization reaction was continued at 80 ° C. for 1 hour, followed by cooling to room temperature to obtain a polymer solution.
  • the resulting polymer solution had a polymerization rate of 98%, and the Mw of the copolymer (hereinafter, also referred to as “resin (5)”) from which this polymer solution strength was deposited was 100,000. [0177] ⁇ Synthesis Example 6>
  • the composition prepared in the above (1) was coated on a support film (width 400 mm, length 30 m, thickness 38 ⁇ m) made of polyethylene terephthalate (PET), which had been subjected to release treatment in advance, using a blade coater.
  • the formed coating film was dried at 100 ° C. for 5 minutes to remove the solvent, thereby forming an inorganic powder-containing resin layer having a thickness of 50 ⁇ 111 on the support film.
  • a cover film (width 400 mm, length 30 m, thickness 25 mm) made of PET that had been subjected to release treatment in advance was placed on the inorganic powder-containing resin layer, as shown in FIG.
  • a transfer film of the present invention having such a structure was produced.
  • the obtained transfer film had flexibility and could easily be wound up into a roll. In addition, even if this transfer film is bent, the resin layer does not cause cracks (bending cracks) on the surface of the inorganic powder-containing resin layer. The resin layer has excellent flexibility. Met.
  • the surface of the glass substrate for 21-inch panel on which the pattern containing the resin composition containing unfired conductive powder is formed bus electrode
  • the transfer film was superposed on the fixing surface of the resin layer so that the surface of the inorganic powder-containing resin layer was in contact, and the transfer film was thermocompression bonded with a heating roll.
  • the pressure bonding conditions the surface temperature of the heating roll was 110 ° C, the roll pressure was 3 kg / cm 2, and the moving speed of the heating roll was 1 m / min.
  • the resin layer had a sufficiently large film strength without causing the agglomeration failure of the resin layer containing inorganic powder. Furthermore, the transferred inorganic powder-containing resin layer had good adhesion to the pattern surface including the conductive powder-containing resin composition, and also had good embedding between patterns.
  • the glass substrate on which the inorganic powder-containing resin is transferred and formed on the pattern containing the unfired conductive powder-containing resin composition according to (3) above is placed in a firing furnace, and the temperature in the furnace is reduced to 590 ° C. After the temperature was raised at a rate of 10 ° C, the electrode was made of a glass sintered body and a dielectric layer on the surface of the glass substrate by firing at 590 ° C for 20 minutes. The obtained layer was observed with an optical microscope (X6UW-NR, manufactured by Nihon Kogyo Co., Ltd.) at a magnification of 50 times. The fact that stratification was obtained was a component. [0186] Table 1 shows the result of microscopic observation of the generation of bubbles on or between the electrodes on the substrate after firing. The force when a bubble of 20 m or more is not observed is indicated by ⁇ , and when observed, X is indicated.
  • a composition was prepared in the same manner as in Example 1 except that the resin (5) was used instead of the resin (4) to produce a transfer film.
  • the obtained transfer film was transferred onto a substrate in the same manner as in Example 1 and baked. The results are shown in Table 1.
  • a composition was prepared in the same manner as in Example 1 except that the resin (6) was used instead of the resin (4) to produce a transfer film.
  • the obtained transfer film was transferred onto a substrate in the same manner as in Example 1 and baked. The results are shown in Table 1.
  • a transfer film was produced by obtaining a composition in the same manner as in Example 1, except that the resin (1) was not used. The obtained transfer film was transferred onto a substrate in the same manner as in Example 1 and baked. The results are shown in Table 1.
  • a composition was prepared in the same manner as in Example 1 except that the resin (2) was used instead of the resin (1) to produce a transfer film.
  • the obtained transfer film was transferred onto a substrate in the same manner as in Example 1 and baked. The results are shown in Table 1.
  • a composition was prepared in the same manner as in Example 1 except that the resin (3) was used instead of the resin (1) to produce a transfer film.
  • the obtained transfer film was transferred onto a substrate in the same manner as in Example 1 and baked. The results are shown in Table 1.
  • Resin (1) A composition was prepared in the same manner as in Example 1 except that 0.005 part of resin (1) was used instead of 10 part, and a transfer film was produced. The obtained transfer film was transferred onto a substrate in the same manner as in Example 1 and baked. The results are shown in Table 1.
  • Example 5 A composition was prepared in the same manner as in Example 1 except that 100 parts of the resin (1) was used instead of 10 parts of the resin (1), and a transfer film was produced. The obtained transfer film was transferred onto a substrate in the same manner as in Example 1 and baked. The results are shown in Table 1.
  • a composition of S was prepared.
  • the inorganic powder-containing resin layer was fired in the same manner as in Example 1 except that the temperature in the firing furnace was 520 ° C.
  • the obtained dielectric layer had high transparency and high surface smoothness.
  • the composition was the same as in Example 1 except that a PbO—B 2 O—SiO-based mixture (softening point 455 ° C., average particle size 3.9 111) was used as the glass powder (inorganic powder).
  • the viscosity of this composition was 3 Pa ⁇ s.
  • the transfer film of the inorganic powder-containing organic composition showed sufficient transferability with respect to the glass substrate, and was easy to handle. It was also good.
  • the obtained dielectric layer had high transmittance and high surface smoothness.
  • the composition was the same as in Example 1 except that a PbO—B 2 O—SiO-based mixture (softening point 455 ° C., average particle size 2. 0 111) was used as the glass powder (inorganic powder). Was prepared.
  • the viscosity of this composition was 3 Pa ⁇ s.
  • the transfer film of the inorganic powder-containing organic composition showed sufficient transferability to the glass substrate, and was easy to handle. It was also good.
  • the obtained dielectric layer had high transmittance and high surface smoothness.
  • Example 2 As in Example 1, except that a PbO—B 2 O 3 —SiO-based mixture (softening point 505 ° C., average particle size 2.6 111) was used as the glass powder (inorganic powder (A)), A composition was prepared. This The viscosity of this composition was 3 Pa's.
  • the transfer film of the organic composition containing inorganic powder showed sufficient transferability to the glass substrate, and was easy to handle. It was also good.
  • the obtained dielectric layer had high transmittance and high surface smoothness.
  • the composition was prepared in the same manner as in Example 1 except that the average particle size 2.6 111) was used.
  • the viscosity of this composition was 3 Pa's.
  • the transfer film of the inorganic powder-containing organic composition showed sufficient transferability to the glass substrate, and was easy to handle. It was also good.
  • the obtained dielectric layer had high transmittance and high surface smoothness.
  • glass powder inorganic powder (A)
  • PbO-B 2 O-SiO series mixture softening point 455 ° C, average particle size 2.6 m
  • binder resin with butyl metatalylate / 2 Ethyl hexyl metatalylate copolymer weight ratio: 50/50 Mw: 100,000
  • plasticizer (C) 3 parts bis (2-ethylhexyl) azelate and propylene solvent
  • a composition having a viscosity of 3 Pa.s was prepared by kneading 35 parts of glycol monomethyl ether using a disperser.
  • the dielectric layer obtained from the transfer film of the organic composition containing inorganic powder had a transparency that was poor in surface smoothness. It was inferior.
  • the present invention has a viscosity of 3,400 cp by kneading 10 parts of dipentaerythritol hexatalylate as plasticizing substance (C) and
  • a blade coater on a support film (width 400 mm, length 30 m, thickness 38 ⁇ m) made of polyethylene terephthalate (PET) that has been pre-released from the composition of the present invention prepared in (1) above.
  • PET polyethylene terephthalate
  • the solvent was removed by drying the formed coating film at 80 ° C. for 5 minutes, thereby forming an inorganic powder-containing resin layer having a thickness of 12 ⁇ on the support film.
  • a transfer film was manufactured by pasting a cover film (width 400 mm, length 30 m, thickness 38 m) made of PET, which had been subjected to release treatment in advance, on the inorganic powder-containing resin layer.
  • the transfer film (in which the surface of the inorganic powder-containing resin layer is brought into contact with the surface of the 21-inch panel glass substrate) A laminate of a support film and an inorganic powder-containing resin layer) was laminated, and this transfer film was thermocompression bonded with a heating roll.
  • the pressure bonding conditions the surface temperature of the heating roll was 90 ° C, the roll pressure was 2 kg / cm 2, and the moving speed of the heating roll was 0.6 m / min.
  • the support film was peeled off from the inorganic powder-containing resin layer fixed (heat bonded) to the surface of the glass substrate, and the transfer of the inorganic powder-containing resin layer was completed.
  • Benzyl methacrylate / methacrylic acid 75/25 (wt%) copolymer (weight average molecular weight 30,000) as binder resin 60 parts, tripropylene as multifunctional monomer (D-1) 40 parts of diglycol ditalylate, 20 parts of 2 benzyl-2-dimethylamino-1 (4 morpholinophenyl) butane as a photopolymerization initiator (D-2) and 100 parts of propylene glycol monomethyl ether acetate as a solvent After kneading, an alkali development type radiation sensitive resist composition (hereinafter referred to as “resist composition”) was prepared by filtering with a cartridge filter (2 ⁇ m diameter).
  • resist composition alkali development type radiation sensitive resist composition
  • the resist composition prepared in (4) above was coated on a support film (width 400 mm, length 30 m, thickness 38 ⁇ m) made of polyethylene terephthalate (PET), which had been pre-released, using a blade coater. Then, the solvent was removed by drying the formed coating film at 80 ° C. for 5 minutes, thereby forming a resist film having a thickness of 10 m on the support film. Next, a resist film was manufactured by shelling a cover film (width 40 Omm, length 30 m, thickness 38 m) made of PET that had been subjected to mold release treatment on the resist film in advance.
  • a cover film width 40 Omm, length 30 m, thickness 38 m
  • the surface of the resist film abuts on the inorganic powder-containing resin layer formed on the 21-inch glass substrate prepared in (3) above.
  • the resist film (support film and resist film) was overlaid as described above, and this transfer film was thermocompression bonded with a heating roll.
  • the pressure bonding conditions the surface temperature of the heating roll was 90 ° C., the roll pressure was 2 kg / cm 2, and the moving speed of the heating roll was 0.6 m / min.
  • the support film After completion of thermocompression treatment, the support film is peeled off from the laminated film of the inorganic powder-containing resin layer and resist film fixed (heat bonded) to the surface of the glass substrate, and the transfer of the inorganic powder-containing resin layer is completed. did.
  • An ultra-high pressure mercury lamp is passed through a striped negative exposure mask with a line width of 100 ⁇ m and a space width of 400 ⁇ m against the laminated film of the inorganic powder-containing resin layer and resist film formed on the glass substrate.
  • the exposure amount at that time is 200 mJ in terms of illuminance measured with a 365 nm sensor.
  • the exposed resist film was developed by a shower method using a 0.3% by mass sodium carbonate aqueous solution as a developer at a liquid temperature of 30 ° C.
  • the etching process was performed for 90 seconds.
  • the water washing process by ultrapure water was performed.
  • a resist pattern was formed, and then an inorganic powder-containing resin pattern corresponding to the resist pattern was formed.
  • the obtained inorganic powder-containing resin pattern was observed with an optical microscope, no development residue was observed on the substrate in the resist unexposed area, and no pattern chipping was observed.
  • the glass substrate on which the inorganic powder-containing resin pattern was formed was baked in a baking furnace for 30 minutes in a temperature atmosphere of 590 ° C.
  • a panel material in which an electrode having a pattern width of 100 ⁇ m and a thickness of 6 Hm was formed on the surface of the glass substrate could be obtained.
  • inorganic powder (A) 100 parts of Ag powder having a specific surface area of 0.5 m 2 / g, average particle size of 2.3 m, and Bi O—BO—SiO glass frit with an average particle size of 3 111 (indeterminate, (Softening point 520 ° C) 10
  • polymer (B-1) as resin (1) 10 parts, polymer (B-2) as methacrylic acid / succinic acid mono (2-methacryloyl quichetil) / methacrylic acid 2-hydroxypropyl / methacrylic acid n —Butyl copolymer (weight ratio 20/15/25/40 and weight average molecular weight 90,000) 15 parts, oleic acid 1 part as a dispersant, 10 parts of pentaerythritol tritalylate as a plasticizer, and propylene glycol as a solvent After kneading 100 parts of monomethyl ether with a bead mill, an inorganic powder-containing resin composition (conductive paste composition) was prepared by filtering with a stainless mesh (400 mesh, 38 m diameter).
  • Benzyl methacrylate / methacrylic acid 75/25 (wt%) copolymer (weight average molecular weight 30, 000) 60 parts as binder resin, trimethylolpropane tritalylate 40 parts as multifunctional monomer (D-1), Photopolymerization initiator (D-2) 2, 2, 1-bis 2-chloro Phenyl 4,4 5,5 Tetraphenylbiimidazole (compound (i)) 6 parts, 4, 4 Bis (jetylamino) benzophenone (compound (ii)) 3 parts, 2-mercaptobenzozothiazole (compound (iii) ) l.
  • resist composition 5 parts, 3,3'-carbonylbis (7-jetylamino) coumarin as a photosensitizer, 0.55 parts, and 100 parts of propylene glycol monomethyl ether acetate as a solvent were kneaded, and then a cartridge filter (2, 1 m diameter) to prepare an alkali-developable radiation-sensitive resist composition (hereinafter referred to as “resist composition”).
  • the electrode film-forming transfer film of the present invention in which a laminated film obtained by laminating a resist film and an inorganic powder-containing resin layer in this order is formed on a support film by the operations (i) and (c) below. did.
  • the inorganic powder-containing resin composition prepared in (1) was applied onto a support film ( ⁇ ) made of PET film with a film thickness of 38, im using a blade turret. The solvent was removed by drying for minutes, and a 12 m thick resin layer containing inorganic powder was formed on the support film.
  • the transfer film was overlaid so that the surfaces of the resist film prepared in (i) and (mouth) and the inorganic powder-containing resin layer were in contact with each other, and thermocompression bonded with a heating roller.
  • the pressing conditions were such that the surface temperature of the heating roller was 90 ° C, the roll pressure was 2.5 kg / cm, and the moving speed of the heating roller was 0.5 m / min.
  • a transfer film was produced in which a laminated film having a resist film and an inorganic powder-containing resin layer was formed between support films.
  • the transfer film was superposed on the surface of the glass substrate so that the surface of the inorganic powder-containing resin layer of the transfer film prepared in (3) was in contact, and this transfer film was hot-pressed on a heating roller.
  • the pressing conditions were such that the surface temperature of the heating roller was 90 ° C, the roll pressure was 2.5 kg / cm, and the moving speed of the heating roller was 0.5 m / min. Thereby, the surface of the glass substrate The transfer film was transferred to and became in close contact.
  • the resist film in the laminated film formed on the glass substrate was irradiated with a laser beam having a wavelength of 405 nm from the support film to the portion where the pattern was to be formed.
  • the amount of laser beam irradiation energy was set to lOmj / cm 2 .
  • the support film on the resist film is peeled off, and then the resist film by a shower method using a 0.3% by mass sodium carbonate aqueous solution (30 ° C.) as a developing solution is applied to the exposed resist film.
  • the development process was performed for 120 seconds.
  • the uncured resist that was not irradiated with ultraviolet rays was removed, and a resist pattern was formed.
  • the resist pattern had a uniform pattern shape and a good shape with excellent pattern edge linearity.
  • the inorganic powder-containing resin layer was etched for 60 seconds by a shower method using a 0.3% by mass sodium carbonate aqueous solution (30 ° C.) as an etching solution, following the above steps.
  • the glass substrate on which the pattern of the inorganic powder-containing resin layer was formed was baked at 560 ° C. for 10 minutes in the atmosphere in the baking furnace. As a result, an electrode pattern with a thickness of 4 ⁇ m was formed on the surface of the glass substrate.
  • the obtained electrode pattern had an excellent shape free from cracks and chips.
  • inorganic powder (A) 100 parts of Ag powder having a specific surface area of 0.5 m 2 / g, average particle size of 2.3 m, and Bi O—BO—SiO glass frit with an average particle size of 3 111 (indeterminate, (Softening point 520 ° C) 10
  • the inorganic powder-containing resin composition (I) prepared in (1) above was applied onto a support film made of a PET film having a film thickness of 38 Hm, which had been subjected to a release treatment in advance, using a blade coater.
  • the transfer film of the present invention was produced by drying at 3 ° C. for 3 minutes to remove the solvent and forming a 7 ⁇ m-thick inorganic powder-containing resin layer on the support film.
  • the transfer film produced in (2) above was superposed and thermocompression bonded with a heating roller so that the surface of the inorganic powder-containing resin layer was brought into contact with the surface of the glass substrate.
  • the pressure bonding conditions the surface temperature of the heating roller was 100 ° C, the roll pressure was 2.5 kg / cm, and the moving speed of the heating roller was 0.5 m / min. As a result, the transfer film was transferred to and adhered to the surface of the glass substrate.
  • the resin layer containing inorganic powder formed on the glass substrate is irradiated with i-rays (ultraviolet light with a wavelength of 365 nm) from the support film with an ultrahigh pressure mercury lamp through an exposure mask (5 cm x 5 cm). Then, a latent image of the pattern was formed on the inorganic powder-containing resin layer.
  • the dose was 20 Omj / cm 2 .
  • the support film is peeled off and then developed for 30 seconds by a shower method using a 0.3 mass% sodium carbonate aqueous solution at a liquid temperature of 30 ° C. as a developer, followed by using ultrapure water. And washed with water.
  • a paste-like inorganic particle-containing resin composition was prepared by kneading 6 parts of 2-ethylhexylazelate and 50 parts of propylene glycol monomethyl ether as a solvent.
  • composition prepared in (1) is applied onto a support film (width 200 mm, length 30 m, thickness 38 ⁇ m) made of a polyethylene terephthalate (PET) film, which has been subjected to release treatment in advance, using a roll coater. A film was formed. The formed coating film was dried at 100 ° C. for 10 minutes to remove the solvent, thereby producing a transfer film in which an inorganic particle-containing resin layer having a thickness of 260 m was formed on the supporting fin.
  • PET polyethylene terephthalate
  • the transfer film was thermocompression bonded to the surface of a glass substrate for a 6-inch panel in which electrodes (100 m wide) for generating plasma were arranged by a heating roller.
  • the pressing conditions were such that the surface temperature of the heating roller was 100 ° C, the roll pressure was 4 kg / cm, and the moving speed of the heating roller was 0.5 m / min.
  • the support film was peeled off from the inorganic particle-containing resin layer (1).
  • the inorganic particle-containing resin layer (1) was laminated on the surface of the glass substrate, it was transferred and brought into close contact.
  • the film thickness of the laminated film of the inorganic particle-containing resin layer (1) was measured, it was in the range of 260 m ⁇ 2 m. It was.
  • the glass substrate on which the inorganic particle-containing resin layer was formed was baked for 15 minutes in a temperature atmosphere of 560 ° C. As a result, a glass sintered body was formed on the glass substrate.
  • a transfer film was superimposed on the surface of the glass sintered body so that the surface of the resist film was in contact with this, and this transfer film was thermocompression bonded with a heating roller under the same pressure bonding conditions as described above. After completion of the thermocompression treatment, the support film was peeled off from the resist film. As a result, the resist film was transferred and adhered to the surface of the glass sintered body. When the film thickness of the resist film transferred to the surface of the sintered glass was measured, it was in the range of 20 m ⁇ 1 m.
  • the resist film formed on the glass sintered body is irradiated with i-rays (ultraviolet light with a wavelength of 365 nm) with an ultrahigh pressure mercury lamp through an exposure mask (100 Hm stripe pattern). did.
  • the irradiation dose was 400 mj / cm 2 .
  • the exposed resist film was developed for 30 seconds by a shower method using a 0.3 wt% aqueous sodium carbonate solution (30 ° C.) as a developer. Subsequently, a water washing treatment with ultrapure water was performed, whereby ultraviolet rays were irradiated to remove the resist and the uncured resist, and a resist pattern was formed.
  • an etching process was performed for 10 minutes by the shattering method using a 1 wt% nitric acid aqueous solution (40 ° C.) as an etching solution.
  • washing with ultrapure water and drying were performed.
  • a partition wall pattern composed of the material layer remaining portion and the material layer removal portion was formed.
  • a resist stripping process was performed for 60 seconds using the sodium carbonate method using sodium carbonate 1% (30 ° C) as a stripping solution.
  • the water washing process by ultrapure water was performed and the partition pattern was formed by this.
  • glass paste composition (resin composition containing inorganic powder)
  • a glass powder (inorganic powder) (A)
  • a PbO—BO SiO-based mixture (softening point 500 ° C) 100 parts having a composition of 70% by weight of lead oxide, 10% by weight of boron oxide and 20% by weight of silicon oxide
  • Polymer (B-1) as resin (1) 10 parts, Polymer (B-2) as butyl methacrylate / 2-ethylhexyl methacrylate / 2-hydroxypropyl methacrylate copolymer (weight) Ratio: 30/60/10 and Mw: 100,000) 20 parts, as plasticizer (C), 3 parts of bis (2-ethylhexyl) azelate (hereinafter also referred to as “DOAz”) and as solvent
  • a composition having a viscosity of 3 Pa ′s was prepared by kneading 35 parts of propylene glycol monomethyl ether (hereinafter also referred to as “PGME
  • the obtained transfer film was flexible and could easily be wound into a roll. Further, even when this transfer film was bent, the resin layer had excellent flexibility without causing cracks (bending cracks) on the surface of the inorganic powder-containing resin layer.
  • the transfer film was superposed on the surface of the glass substrate for the panel (fixing surface of the bus electrode) so that the surface of the resin layer containing the inorganic powder was in contact, and this transfer film was thermocompression bonded with a heating roll.
  • the pressure bonding conditions the surface temperature of the heating roll was 110 ° C., the roll pressure was 3 kg / cm 2, and the moving speed of the heating roll was lm / min.
  • the support film was peeled and removed from the inorganic powder-containing resin layer fixed (heat bonded) to the surface of the glass substrate to complete the transfer of the resin layer.
  • the inorganic powder-containing resin layer did not cause agglomeration failure, and the resin layer had a sufficiently large film strength. Furthermore, the transferred inorganic powder-containing resin layer had good adhesion to the surface of the glass substrate.
  • the inorganic powder-containing resin fixed (heat-bonded) to the surface of the glass substrate was baked for 20 minutes in a baking furnace in a temperature atmosphere of 590 ° C.
  • a temperature atmosphere of 590 ° C As a result, it was possible to obtain a panel material in which a dielectric having a thickness of 40 am was formed on the surface of the glass substrate.
  • Example 13 a composition was prepared in the same manner as in Example 13 except that the polymer (B-1) was used in the amount and amount of resin shown in Table 2, and a transfer film and a panel material were produced.
  • Example 13 the same force as in Example 13 was used, except that the polymer (B-1) was not used.
  • an inorganic powder-containing resin composition was prepared, and a transfer film was produced, baked and evaluated.
  • Inorganic powders were obtained in the same manner as in Example 13, except that the polymer (B-1) was replaced with the resin (16) instead of the resin (1). A contained resin composition was prepared, and a transfer film was prepared, baked and evaluated.
  • Example 13 an inorganic powder-containing resin composition was prepared in the same manner as in Example 13 except that the resin (2) was used instead of the resin (1) as the polymer (B-1).
  • the transfer film was prepared, baked and evaluated.
  • Example 13 an inorganic powder-containing resin composition was prepared in the same manner as in Example 13, except that the resin (17) was used instead of the resin (1) as the polymer (B-1). The transfer film was prepared, fired and evaluated.
  • Example 13 an inorganic powder-containing resin composition was prepared in the same manner as in Example 13 except that 0.005 part by weight of the resin (1) was used as the polymer (B-1). Fabrication, firing and evaluation were performed.
  • Example 13 an inorganic powder-containing resin composition was prepared in the same manner as in Example 13 except that 100 parts by weight of the resin (1) was used as the polymer (B-1), and a transfer film was produced. Calcination and evaluation were performed. [0234] ⁇ Evaluation method of transfer film>
  • the paste before film coating is stored at 5 ° C, and the phase that has not been phase-separated after 30 days or more is ⁇ , the phase that has been phase-separated for 10 days or more but less than 30 days is ⁇ , the phase is less than 10 days
  • the separated one was designated as X.
  • the linear transmittance (measurement wavelength: 550 nm) of the dielectric layer formed on the fired panel was measured with a spectrophotometer (UV-2450: manufactured by Shimadzu Corporation).
  • the case where the transmittance was 70% or more was rated as ⁇ , the transmittance exceeding 65% and less than 70% as ⁇ , and the transmittance as less than 65% as X.
  • the difference between the maximum and minimum values of the above linear transmittance is less than 2% ⁇ , more than 2% and less than 10% ⁇ , more than 10% X It was.
  • the measurement range is 500 m X 500 m
  • the measurement pitch is 10 ⁇ m
  • the 10-point average roughness (Rz ) Is the surface roughness.
  • the surface roughness was performed based on the following evaluation criteria.
  • Tables 3 to 4 show the results of Examples 13 to 24 and Comparative Examples 7 to 12;

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[PROBLEMS] An inorganic-particle-containing resin composition for forming FPD panel members. Even when a layer of this inorganic-particle-containing resin is burned simultaneously with a pattern comprising an unburned conductive-particle-containing resin composition, no bubbles generate on the electrodes or between the electrodes. Also provided are: an inorganic-particle-containing resin composition for forming FPD panel members which, after burning, is high in transmittance, reflectance, surface smoothness, and film thickness evenness; a transfer film having an inorganic-particle-containing resin layer made of either of the compositions, the film being excellent in flexibility, transferability, and handleability; and a process for producing an FPD panel member which is high in transmittance and reflectance and excellent in surface smoothness and film thickness evenness. [MEANS FOR SOLVING PROBLEMS] The resin compositions comprise an inorganic powder (A) and a binder resin (B) or comprise an inorganic powder (A), a binder resin (B), a silylated compound (E), and a metal alkoxide (F), wherein the binder resin (B) comprises a (meth)acrylic polymer (B-1) having an Mw of 10,000-50,000 which has a polyoxyalkylene segment.

Description

明 細 書  Specification
無機粉体含有樹脂組成物、転写フィルムおよびフラットパネルディスプレ ィ部材の製造方法  Inorganic powder-containing resin composition, transfer film, and method for producing flat panel display member
技術分野  Technical field
[0001] 本発明は、フラットパネルディスプレイのパネル部材を形成するために好適な無機 粉体含有樹脂組成物、該組成物からなる無機粉体含有樹脂層を有する転写フィル ムおよび該転写フィルムを用いたフラットパネルディスプレイ部材の製造方法に関す 背景技術  The present invention uses an inorganic powder-containing resin composition suitable for forming a panel member of a flat panel display, a transfer film having an inorganic powder-containing resin layer comprising the composition, and the transfer film. BACKGROUND OF THE INVENTION
[0002] 近年、平板状の蛍光表示体としてプラズマディスプレイパネル(以下「PDP」ともいう 。)およびフィールドェミッションディスプレイ(以下「FED」ともいう。)などのフラットパ ネルディスプレイ(以下「FPD」ともいう。)が注目されている。 PDPは、透明電極を形 成し、近接した 2枚のガラス板の間にアルゴンまたはネオンなどの不活性ガスを封入 し、プラズマ放電を起こしてガスを光らせることにより、蛍光体を発光させて情報を表 示するディスプレイである。一方、 FEDは、電界印可によって陰極から真空中に電子 を放出させ、その電子を陽極上の蛍光体に照射することにより、蛍光体を発光させて  In recent years, flat panel displays (hereinafter also referred to as “FPD”) such as plasma display panels (hereinafter also referred to as “PDP”) and field emission displays (hereinafter also referred to as “FED”) as flat-plate fluorescent displays. .) Is attracting attention. The PDP forms a transparent electrode, encloses an inert gas such as argon or neon between two adjacent glass plates, causes plasma discharge, and emits the gas, thereby emitting light from the phosphor and displaying information. It is a display to show. On the other hand, the FED emits electrons from the cathode into the vacuum by applying an electric field, and irradiates the phosphors on the anode to cause the phosphors to emit light.
[0003] 図 1は交流型の PDPの断面形状を示す模式図である。同図において、 1および 2は 対向配置されたガラス基板、 3は隔壁であり、ガラス基板 1、ガラス基板 2および隔壁 3 によりセルが区画形成されている。 4はガラス基板 1に固定された透明電極、 5は透明 電極 4の抵抗を下げる目的で、当該透明電極 4上に形成されたバス電極、 6はガラス 基板 2に固定されたアドレス電極、 7はセル内に保持された蛍光物質、 8は透明電極 4およびバス電極 5を被覆するようガラス基板 1の表面に形成された誘電体層、 9はァ ドレス電極 6を被覆するようガラス基板 2の表面に形成された誘電体層、 10はたとえ ば酸化マグネシウムよりなる保護膜である。 FIG. 1 is a schematic diagram showing a cross-sectional shape of an AC type PDP. In the figure, 1 and 2 are glass substrates opposed to each other, 3 is a partition wall, and cells are partitioned by the glass substrate 1, the glass substrate 2 and the partition wall 3. 4 is a transparent electrode fixed on the glass substrate 1, 5 is a bus electrode formed on the transparent electrode 4 for the purpose of reducing the resistance of the transparent electrode 4, 6 is an address electrode fixed on the glass substrate 2, and 7 is Fluorescent material held in the cell, 8 is a dielectric layer formed on the surface of the glass substrate 1 so as to cover the transparent electrode 4 and the bus electrode 5, and 9 is a surface of the glass substrate 2 so as to cover the address electrode 6. The dielectric layer 10 is formed of a protective film made of, for example, magnesium oxide.
[0004] また、カラー FPDにあっては、コントラストの高い画像を得るため、ガラス基板と誘電 体層との間に、カラーフィルター(赤色、緑色、青色)またはブラックマトリックスなどを 設けること力 Sfcる。 [0004] Also, in color FPD, a color filter (red, green, blue) or black matrix is provided between the glass substrate and the dielectric layer in order to obtain a high contrast image. Power to provide Sfc.
[0005] このような FPDの誘電体、隔壁、電極、蛍光体、カラーフィルターおよびブラックスト ライプ (マトリクス)の製造方法としては、たとえば、  [0005] Examples of methods for manufacturing such FPD dielectrics, barrier ribs, electrodes, phosphors, color filters, and black stripes (matrix) include:
(1)無機粉体含有樹脂層を基板上に形成し、これを焼成する方法 (特許文献 1参照)  (1) A method of forming an inorganic powder-containing resin layer on a substrate and firing it (see Patent Document 1)
(2)無機粉体含有樹脂層を基板上に形成し、該樹脂層上にレジストパターンを形成 し、これをマスクとして無機粉体含有樹脂層をエッチングしてパターンを形成し、これ を焼成する方法 (特許文献 2, 3参照)、 (2) An inorganic powder-containing resin layer is formed on a substrate, a resist pattern is formed on the resin layer, and the inorganic powder-containing resin layer is etched using this as a mask to form a pattern, which is baked Method (see Patent Documents 2 and 3),
(3)感光性の無機粉体含有樹脂層を基板上に形成し、この膜にフォトマスクを介して 紫外線を照射した上で現像することにより基板上にパターンを形成し、これを焼成す る方法(特許文献 4参照)などが知られて!/、る。  (3) A photosensitive inorganic powder-containing resin layer is formed on a substrate, and this film is irradiated with ultraviolet rays through a photomask and developed to form a pattern on the substrate, which is baked. The method (see Patent Document 4) is known!
[0006] 上記の方法のうち、無機粉体含有樹脂層を基板上に形成する工程において、可撓 性を有する支持フィルム上に無機粉体と結着樹脂とを含有する無機粉体含有樹脂 層を形成した転写フィルムを用いて、該無機粉体含有樹脂層を基板上に転写する方 法が、膜厚均一性および表面均一性に優れたパネル部材を作業効率よく形成するこ とができることから、好適に利用されている。  [0006] Among the above methods, in the step of forming the inorganic powder-containing resin layer on the substrate, the inorganic powder-containing resin layer containing the inorganic powder and the binder resin on the flexible support film. The method of transferring the inorganic powder-containing resin layer onto the substrate using the transfer film on which the film is formed enables a panel member having excellent film thickness uniformity and surface uniformity to be formed efficiently. Are preferably used.
[0007] しかしながら、従来の転写フィルムにおける無機粉体含有樹脂層は、可撓性および 転写性(基板に対する加熱密着性、以下同じ)を十分に有していなかつたため、フィ ルムをロールに巻き取る際、ひび割れが生じたり、基板に転写した無機粉体含有樹 脂層表面にクラックが生じる場合があった。また、転写性が十分でないため、前記無 機粉体含有樹脂層を焼成する時、基板力 剥がれるなどの問題が起こる場合もあつ た。  However, since the inorganic powder-containing resin layer in the conventional transfer film does not have sufficient flexibility and transferability (heat adhesion to the substrate, the same applies hereinafter), the film is wound around a roll. In some cases, cracks may occur or cracks may occur on the surface of the inorganic powder-containing resin layer transferred to the substrate. In addition, since the transferability is not sufficient, problems such as peeling off of the substrate force may occur when firing the resin layer containing the inorganic powder.
[0008] これらの問題を解決するためには、無機粉体含有樹脂層を構成する結着樹脂のガ ラス転移点を下げたり、可塑剤を多量に添加することで可撓性および転写性を向上 させることが考えられる力 得られる転写フィルムのハンドリング性が低下したり、無機 粉体含有樹脂層を高い位置精度で効率よく転写形成することが困難になるなどの問 題があった。  In order to solve these problems, flexibility and transferability are improved by lowering the glass transition point of the binder resin constituting the inorganic powder-containing resin layer or adding a large amount of plasticizer. Forces that could be improved There were problems such as poor handling of the resulting transfer film and difficulty in efficiently transferring and forming the inorganic powder-containing resin layer with high positional accuracy.
[0009] また、従来の転写フィルムにおける無機粉体含有樹脂層は、有機物の燃焼性が低 ぐこのため無機粉体含有樹脂層を基板上に形成し、焼成過程を経ると、形成される 無機層中に気泡が多く生じていた。このため、密度低下によって部材の強度が不足 したり、部材によっては透過率もしくは反射率が低くなるという問題が生じていた。 [0009] In addition, the inorganic powder-containing resin layer in the conventional transfer film has low combustibility of organic matter. For this reason, when an inorganic powder-containing resin layer was formed on a substrate and passed through a firing process, many bubbles were generated in the formed inorganic layer. For this reason, there has been a problem that the strength of the member is insufficient due to the decrease in density, and the transmittance or reflectance is lowered depending on the member.
[0010] そして、従来の材料設計では、無機粉体含有樹脂ペースト調製時に、分散不良が 起こりやすかつた。分散不良が生じると、ペースト中に凝集した無機粉体が存在する ために、転写フィルム中にピンホールが生じたり、表面平滑性および膜厚均一性が 低くなると!/、う問題が生じて!/、た。 [0010] In the conventional material design, a dispersion failure is likely to occur during the preparation of the inorganic powder-containing resin paste. When poor dispersion occurs, there is an aggregated inorganic powder in the paste, so if there are pinholes in the transfer film, or if surface smoothness and film thickness uniformity are low! /
特許文献 1:特開平 9 102273号公報  Patent Document 1: JP-A-9 102273
特許文献 2:特開平 11 162339号公報  Patent document 2: Japanese Patent Laid-Open No. 11 162339
特許文献 3:特開平 11 73875号公報  Patent Document 3: Japanese Patent Laid-Open No. 11 73875
特許文献 4 :特開平 11 44949号公報  Patent Document 4: JP-A-11 44949
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 本発明は、焼成後の透過率、反射率、表面平滑性および膜厚均一性が高い FPD パネル部材 (無機層)を形成することができる無機粉体含有樹脂組成物を提供するこ とを目的とする。 [0011] The present invention provides an inorganic powder-containing resin composition capable of forming an FPD panel member (inorganic layer) having high transmittance, reflectance, surface smoothness and film thickness uniformity after firing. aimed to.
[0012] また本発明は、可撓性、転写性およびノヽンドリング性に優れ、かつ、上記組成物か らなる無機粉体樹脂層を有する転写フィルムを提供することを目的する。  [0012] Another object of the present invention is to provide a transfer film that is excellent in flexibility, transferability and nodling properties and has an inorganic powder resin layer comprising the above composition.
[0013] さらに、本発明は、透過率および反射率が高ぐ表面平滑性および膜厚均一性に 優れた FPDのパネル部材 (誘電体層、電極、隔壁、蛍光体、抵抗体、カラーフィルタ 一およびブラックマトリックス等)を高い位置精度で効率よく形成することができる FP Dの製造方法を提供することを目的とする。  [0013] Further, the present invention provides an FPD panel member (dielectric layer, electrode, partition wall, phosphor, resistor, color filter, etc.) that has high transmittance and reflectivity and excellent surface smoothness and film thickness uniformity. It is an object of the present invention to provide a method for manufacturing an FP D capable of efficiently forming a black matrix and the like with high positional accuracy.
課題を解決するための手段  Means for solving the problem
[0014] 本発明の無機粉体含有樹脂組成物は、無機粉体 (A)および結着樹脂 (B)を含有 し、該結着樹脂 (B)が、ポリオキシアルキレン部位を有する重量平均分子量 10, 000 〜50, 000の(メタ)アクリル系重合体(B—1)を含み、かつ該重合体(B—1)を該無 機粉体 (A) 100重量部に対して 0. 0;!〜 50重量部の量で含有することを特徴とする [0015] 前記重合体 (B—l)は、ポリオキシアルキレン部位を有する(メタ)アタリレート化合 物に由来する構成単位 5〜30重量%と、ポリオキシアルキレン部位を有しない(メタ) アタリレート化合物に由来する構成単位 30〜 50重量%と、芳香族ビュル化合物に由 来する構成単位 30〜50重量%とを含有することが好ましい。 [0014] The inorganic powder-containing resin composition of the present invention contains an inorganic powder (A) and a binder resin (B), and the binder resin (B) has a weight-average molecular weight having a polyoxyalkylene moiety. 10,000 to 50,000 (meth) acrylic polymer (B-1), and the polymer (B-1) is added to 0.0 part by weight of 100 parts by weight of the organic powder (A). ; Contained in an amount of ~~ 50 parts by weight [0015] The polymer (B-l) comprises 5 to 30% by weight of a structural unit derived from a (meth) acrylate compound having a polyoxyalkylene moiety, and (meth) acrylate having no polyoxyalkylene moiety. It is preferable to contain 30 to 50% by weight of the structural unit derived from the compound and 30 to 50% by weight of the structural unit derived from the aromatic bur compound.
[0016] 前記重合体(B— 1)は、ポリエチレングリコールモノ(メタ)アタリレート、ェトキシジェ チレングリコール(メタ)アタリレート、メトキシポリエチレングリコール(メタ)アタリレート、 フエノキシポリエチレングリコール(メタ)アタリレート、ノユルフェノキシポリエチレングリ コール(メタ)アタリレート、ポリプロピレングリコールモノ(メタ)アタリレート、メトキシポリ プロピレングリコール(メタ)アタリレート、エトキシポリプロピレングリコール(メタ)アタリ レートおよびノユルフェノキシポリプロピレングリコール(メタ)アタリレートから選ばれる 少なくとも 1種の (メタ)アタリレート化合物に由来の構成単位を有することが好ましい。 本発明の無機粉体含有樹脂組成物は、さらに可塑性付与物質 (C)を含有すること が好ましい。  [0016] The polymer (B-1) includes polyethylene glycol mono (meth) acrylate, ethoxyethylene glycol (meth) acrylate, methoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate. , Nourphenoxypolyethylene glycol (meth) acrylate, polypropylene glycol mono (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, ethoxy polypropylene glycol (meth) acrylate and noeur phenoxy polypropylene glycol (meth) acrylate It is preferable to have a structural unit derived from at least one (meth) acrylate compound selected from: The inorganic powder-containing resin composition of the present invention preferably further contains a plasticity-imparting substance (C).
[0017] 本発明の無機粉体含有樹脂組成物は、(D)感光性成分として、(D— 1)多官能性  [0017] The inorganic powder-containing resin composition of the present invention comprises (D) a photosensitive component, (D-1) multifunctional
(メタ)アタリレートおよび (D— 2)放射線重合開始剤をさらに含有することが好ましい It is preferable to further contain (meth) acrylate and (D-2) a radiation polymerization initiator.
Yes
[0018] 本発明の転写フィルムは、支持フィルム上に、上記無機粉体含有樹脂組成物から 得られる無機粉体含有樹脂層を有することを特徴とする。  [0018] The transfer film of the present invention is characterized by having an inorganic powder-containing resin layer obtained from the above-mentioned inorganic powder-containing resin composition on a support film.
[0019] 本発明の転写フィルムは、支持フィルム上に、レジスト層と、上記無機粉体含有樹 脂組成物から得られる無機粉体含有樹脂層とを含む積層体を有することを特徴とす The transfer film of the present invention is characterized in that it has a laminate comprising a resist layer and an inorganic powder-containing resin layer obtained from the above-mentioned inorganic powder-containing resin composition on a support film.
[0020] 本発明のフラットパネルディスプレイ部材の製造方法は、支持フィルム上に形成さ れた、上記無機粉体含有樹脂組成物から得られる無機粉体含有樹脂層を基板上に 転写する工程と、該無機粉体含有樹脂層を焼成処理する工程とを含むことを特徴と する。 [0020] The method for producing a flat panel display member of the present invention includes a step of transferring an inorganic powder-containing resin layer formed on the support film and obtained from the inorganic powder-containing resin composition onto a substrate, And a step of baking the inorganic powder-containing resin layer.
[0021] 本発明のフラットパネルディスプレイ部材の製造方法は、支持フィルム上に形成さ れた、上記無機粉体含有樹脂組成物から得られる無機粉体含有樹脂層を基板上に 転写する工程と、該無機粉体含有樹脂層上にレジスト層を形成する工程と、該レジス ト層を露光処理してレジストパターンの潜像を形成する工程と、該レジスト層を現像処 理してレジストパターンを顕在化させる工程と、該無機粉体含有樹脂層をエッチング 処理して該レジストパターンに対応するパターンを形成する工程と、該パターンを焼 成処理する工程とを含むことを特徴とする。 [0021] The method for producing a flat panel display member of the present invention includes a step of transferring an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition formed on a support film onto a substrate, Forming a resist layer on the inorganic powder-containing resin layer; A step of exposing the resist layer to form a latent image of the resist pattern, a step of developing the resist layer to reveal the resist pattern, and etching the inorganic powder-containing resin layer to form the resist The method includes a step of forming a pattern corresponding to the pattern, and a step of baking the pattern.
[0022] 本発明のフラットパネルディスプレイ部材の製造方法は、支持フィルム上に形成さ れた、レジスト層と、上記無機粉体含有樹脂組成物から得られる無機粉体含有樹脂 層との積層体を基板上に転写する工程と、該積層体を構成するレジスト層を露光処 理してレジストバターンの潜像を形成する工程と、該レジスト層を現像処理してレジス トパターンを顕在化させる工程と、該無機粉体含有樹脂層をエッチング処理してレジ ストパターンに対応するパターンを形成する工程と、該パターンを焼成処理する工程 とを含むことを特徴とする。  [0022] The method for producing a flat panel display member of the present invention comprises a laminate of a resist layer formed on a support film and an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition. A step of transferring onto a substrate, a step of exposing a resist layer constituting the laminate to form a latent image of a resist pattern, and a step of developing the resist layer to reveal a resist pattern And a step of etching the inorganic powder-containing resin layer to form a pattern corresponding to the resist pattern, and a step of baking the pattern.
[0023] 本発明のフラットパネルディスプレイ部材の製造方法は、支持フィルム上に形成さ れた、上記無機粉体含有樹脂組成物から得られる無機粉体含有樹脂層を基板上に 転写する工程と、該無機粉体含有樹脂層を露光処理してパターンの潜像を形成する 工程と、該無機粉体含有樹脂層を現像処理してパターンを形成する工程と、該パタ ーンを焼成処理する工程とを含むことを特徴とする。  [0023] The method for producing a flat panel display member of the present invention includes a step of transferring an inorganic powder-containing resin layer obtained from the above-mentioned inorganic powder-containing resin composition formed on a support film onto a substrate; A step of exposing the inorganic powder-containing resin layer to form a latent image of a pattern, a step of developing the inorganic powder-containing resin layer to form a pattern, and a step of baking the pattern It is characterized by including.
[0024] 本発明のフラットパネルディスプレイ部材の製造方法は、支持フィルム上に形成さ れた、上記無機粉体含有樹脂組成物から得られる無機粉体含有樹脂層を基板上に 転写する工程と、該無機粉体含有樹脂層を焼成して無機膜を形成する工程と、該無 機膜上にレジストパターンを形成する工程と、無機膜をエッチング処理してレジストパ ターンに対応する無機パターンを形成する工程とを含むことを特徴とする。  [0024] The method for producing a flat panel display member of the present invention comprises a step of transferring an inorganic powder-containing resin layer formed on a support film and obtained from the inorganic powder-containing resin composition onto a substrate; A step of baking the inorganic powder-containing resin layer to form an inorganic film, a step of forming a resist pattern on the inorganic film, and an inorganic pattern corresponding to the resist pattern by etching the inorganic film And a process.
[0025] 前記フラットパネルディスプレイ部材は、誘電体層、隔壁、電極、抵抗体、蛍光体、 カラーフィルターおよびブラックマトリックスから選ばれることが好ましい。  [0025] The flat panel display member is preferably selected from a dielectric layer, a partition, an electrode, a resistor, a phosphor, a color filter, and a black matrix.
[0026] 本発明のフラットパネルディスプレイ部材の製造方法は、上記無機粉体含有樹脂 組成物から得られる無機粉体含有樹脂層を基板上に形成し、該無機粉体含有樹脂 層を焼成することにより該基板上に誘電体層を形成する工程を含むことを特徴とする 前記無機粉体含有樹脂層は、上記転写フィルムを用いて基板上に転写形成された ものであることを特徴とする。 [0026] In the method for producing a flat panel display member of the present invention, an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition is formed on a substrate, and the inorganic powder-containing resin layer is fired. A step of forming a dielectric layer on the substrate by the step of forming the inorganic powder-containing resin layer on the substrate using the transfer film. It is characterized by being.
[0027] 本発明のフラットパネルディスプレイ部材の製造方法は、基板上に導電性粉末含 有樹脂組成物を含むパターンを形成する工程と、該パターン上に上記転写フィルム を構成する無機粉体含有樹脂組成層を転写して前記基板上に積層膜を形成するェ 程と、該積層膜を焼成する工程とを含むことを特徴とする。 [0027] The method for producing a flat panel display member of the present invention includes a step of forming a pattern containing a conductive powder-containing resin composition on a substrate, and an inorganic powder-containing resin constituting the transfer film on the pattern. The method includes a step of transferring a composition layer to form a laminated film on the substrate, and a step of firing the laminated film.
発明の効果  The invention's effect
[0028] 本発明の無機粉体含有樹脂組成物を用いて無機粉体含有樹脂層を形成した転写 フィルムは、未焼成の導電性粉末含有樹脂組成物を含むパターン上に容易に転写 すること力 Sでき、複数部材の同時焼成に好適であるとともに、可撓性および転写性に 優れた効果を有する。  [0028] The transfer film in which the inorganic powder-containing resin layer is formed using the inorganic powder-containing resin composition of the present invention can be easily transferred onto a pattern containing an unfired conductive powder-containing resin composition. S, suitable for simultaneous firing of a plurality of members, and excellent in flexibility and transferability.
[0029] 本発明の無機粉体含有樹脂組成物を用いて無機粉体含有樹脂層を形成した本発 明の転写フィルムは、可撓性および転写性に優れるとともに、ハンドリング性にも優れ た効果を有する。したがって、本発明の転写フィルムを用いることにより、焼成後、表 面平滑性および膜厚均一性に優れ、高い透過率もしくは高い反射率を有した FPD のパネル部材 (誘電体層、電極、隔壁、蛍光体、抵抗体、カラーフィルターおよびブ ラックマトリックス等)を高い位置精度で効率的に形成することができる。  [0029] The transfer film of the present invention, in which the inorganic powder-containing resin layer is formed using the inorganic powder-containing resin composition of the present invention, is excellent in flexibility and transferability and also in excellent handling properties. Have Therefore, by using the transfer film of the present invention, after firing, an FPD panel member (dielectric layer, electrode, partition wall, excellent surface smoothness and film thickness uniformity, high transmittance or high reflectance). Phosphor, resistor, color filter, black matrix, etc.) can be efficiently formed with high positional accuracy.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]交流型の PDPの断面形状を示す模式図である。  FIG. 1 is a schematic diagram showing a cross-sectional shape of an AC type PDP.
[図 2]本発明の転写フィルムの構成例の概略図である。  FIG. 2 is a schematic view of a structural example of a transfer film of the present invention.
符号の説明  Explanation of symbols
[0031] 1 ガラス基板 [0031] 1 Glass substrate
2 ガラス基板  2 Glass substrate
3 隔壁  3 Bulkhead
4 透明電極  4 Transparent electrode
5 バス電極  5 Bus electrode
6 アドレス電極 10 保護層 6 Address electrode 10 Protective layer
11 隔壁  11 Bulkhead
F1 支持フィルム  F1 support film
F2 部材形成材料層  F2 Material forming material layer
F3 カバーフィルム  F3 cover film
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 以下、本発明の無機粉体含有樹脂組成物、転写フィルムおよび FPDの製造方法 について詳細に説明する。 Hereinafter, the inorganic powder-containing resin composition, transfer film, and method for producing FPD of the present invention will be described in detail.
[0033] 〔無機粉体含有樹脂組成物〕 [Inorganic powder-containing resin composition]
本発明の無機粉体含有樹脂組成物は、無機粉体 (A)および結着樹脂 (B)を含有 する。  The inorganic powder-containing resin composition of the present invention contains an inorganic powder (A) and a binder resin (B).
[0034] [無機粉体 (A) ]  [0034] [Inorganic powder (A)]
本発明の無機粉体含有樹脂組成物に用いられる無機粉体 (A)は、各種パネル部 材の形成に用いることができ、なかでも誘電体層の形成に適している。以下、パネル 部材の種類ごとに説明する。  The inorganic powder (A) used in the inorganic powder-containing resin composition of the present invention can be used for forming various panel members, and is particularly suitable for forming a dielectric layer. Hereinafter, it demonstrates for every kind of panel member.
[0035] 本発明の好まし!/、態様である誘電体形成材料および隔壁形成材料に用いられる 無機粉体としては、たとえば、ガラス粉末、好ましくは軟化点が 400〜600°Cのガラス 粉末が挙げられる。  [0035] Preferred inorganic powders used in the dielectric forming material and the partition wall forming material which are preferred embodiments of the present invention are, for example, glass powder, preferably glass powder having a softening point of 400 to 600 ° C. Can be mentioned.
[0036] ガラス粉末の軟化点力 00°C未満である場合には、無機粉体含有樹脂層の焼成 工程にぉレ、て、結着樹脂などの有機物質が完全に分解除去されな!/、段階でガラス 粉末が溶融してしまうため、形成される部材中に有機物質の一部が残留することがあ り、得られる FPD内にアウトガスが拡散する結果、蛍光体の寿命を低下させるおそれ 力 る。一方、ガラス粉末の軟化点力 00°Cを超える場合には、無機粉体含有樹脂 層を 600°Cより高温で焼成する必要があるため、該樹脂層の被転写体であるガラス 基板に歪みなどが発生することがある。  [0036] When the softening point of the glass powder is less than 00 ° C, organic substances such as the binder resin are not completely decomposed and removed during the firing process of the inorganic powder-containing resin layer! / At this stage, the glass powder melts, so part of the organic substance may remain in the formed member, and as a result of outgas diffusion in the resulting FPD, the lifetime of the phosphor may be reduced. Power. On the other hand, if the softening point of the glass powder exceeds 00 ° C, the inorganic powder-containing resin layer must be baked at a temperature higher than 600 ° C. May occur.
[0037] 上記ガラス粉末として好適な具体例としては、酸化鉛、酸化ホウ素、酸化ケィ素およ び酸化カルシウム(PbO— B O - SiO—CaO)系; 酸化亜鉛、酸化ホウ素および酸化ケィ素(ZnO— B22— Si〇2)系; 酸化鉛、酸化ホウ素、酸化ケィ素および酸化アルミニウム(PbO— B O SiO -A1[0037] Specific examples suitable for the glass powder include lead oxide, boron oxide, silicon oxide and calcium oxide (PbO-BO-SiO-CaO) system; Zinc oxide, boron oxide and silicon oxide (ZnO— B 22 — Si ○ 2 ) system; lead oxide, boron oxide, silicon oxide and aluminum oxide (PbO— BO SiO -A1
O )系; O) system;
3  Three
酸化鉛、酸化亜鉛、酸化ホウ素および酸化ケィ素(PbO— ZnO— B Ο— SiO )系; 酸化鉛、酸化亜鉛、酸化ホウ素、酸化ケィ素および酸化チタン (PbO— ZnO— B O  Lead oxide, zinc oxide, boron oxide and silicon oxide (PbO—ZnO—B B—SiO) system; lead oxide, zinc oxide, boron oxide, silicon oxide and titanium oxide (PbO—ZnO—BO)
2 3 SiO— TiO )系;  2 3 SiO-TiO) system;
酸化ビスマス、酸化ホウ素および酸化ケィ素(Bi O— B O— SiO )系などを挙げる  Examples include bismuth oxide, boron oxide and silicon oxide (Bi O— B O— SiO).
2 3 2 3 2  2 3 2 3 2
ことができる。  be able to.
[0038] 上記ガラス粉末の平均粒子径は、 0. 5〜2· 5 mであることが好ましい。  [0038] The average particle size of the glass powder is preferably 0.5 to 2.5 m.
[0039] また、上記ガラス粉末には、たとえば、酸化アルミニウム、酸化クロム、酸化マンガン 、酸化チタン、酸化ジルコニウム、酸化ケィ素、酸化セリウムおよび酸化コバルトなど の無機酸化物を混合して使用してもよい。混合する無機酸化物の含有量は、無機粉 体全量 (ガラス粉末 +無機酸化物)の 40重量%以下であることが好ましい。  [0039] The glass powder may be used by mixing inorganic oxides such as aluminum oxide, chromium oxide, manganese oxide, titanium oxide, zirconium oxide, silicon oxide, cerium oxide and cobalt oxide. Good. The content of the inorganic oxide to be mixed is preferably 40% by weight or less of the total amount of the inorganic powder (glass powder + inorganic oxide).
[0040] 電極形成材料に用いられる無機粉体としては、たとえば、 Ag、 Au、 Al、 Ni、 Ag-P d合金、 Cu、 Crおよび Coなどを挙げることカできる。  [0040] Examples of the inorganic powder used for the electrode forming material include Ag, Au, Al, Ni, Ag-Pd alloy, Cu, Cr and Co.
[0041] 抵抗体形成材料に用いられる無機粉体としては、たとえば、 RuOなどを挙げること ができる。  [0041] Examples of the inorganic powder used for the resistor forming material include RuO.
[0042] 蛍光体形成材料に用いられる無機粉体としては、たとえば、  [0042] Examples of the inorganic powder used in the phosphor-forming material include:
Y O: Eu3+、 Y SiO: Eu3+、 Y Al O : Eu3+、 YVO: Eu3+、 (Y,Gd)BO: Eu3+、 Zn (POYO: Eu 3+ , Y SiO: Eu 3+ , Y Al O: Eu 3+ , YVO: Eu 3+ , (Y, Gd) BO: Eu 3+ , Zn (PO
2 3 2 5 3 5 12 4 3 32 3 2 5 3 5 12 4 3 3
): Mnなどの赤色用蛍光体; ): Red phosphor such as Mn;
4 2  4 2
Zn SiO: Mnゝ BaAl 〇 : Mnゝ BaMgAl 〇 : Mnゝ LaPO: (Ce, Tb)、 Y (Al, G  Zn SiO: Mn ゝ BaAl ○: Mn ゝ BaMgAl ○: Mn M LaPO: (Ce, Tb), Y (Al, G
2 4 12 19 14 23 4 3 a) O : Tbなどの緑色用蛍光体;  2 4 12 19 14 23 4 3 a) O: green phosphor such as Tb;
5 12  5 12
Y SiO: Ceゝ BaMgAl 〇 : Eu2\ BaMgAl 〇 : Eu2\ (Ca, Sr, Ba) (PO ) CY SiO: Ce ゝ BaMgAl 〇: Eu 2 \ BaMgAl 〇: Eu 2 \ (Ca, Sr, Ba) (PO) C
2 5 10 17 14 23 10 4 6 122 5 10 17 14 23 10 4 6 12
: Eu2+、(Zn, Cd) S :Agなどの青色用蛍光体などを挙げることができる。 : Blue phosphors such as Eu 2+ and (Zn, Cd) 2 S: Ag.
[0043] カラーフィルター形成材料に用いられる無機粉体としては、たとえば、 [0043] Examples of the inorganic powder used in the color filter forming material include:
Fe O、 Pb O、 CdS、 CdSe、 PbCrO、 PbSO、 Fe (NO )などの赤色用顔料; Red pigments such as Fe 2 O, Pb 2 O, CdS, CdSe, PbCrO, PbSO, Fe (NO 2);
2 3 3 4 4 4 3 3 2 3 3 4 4 4 3 3
Cr O、 TiO -CoO- NiO- ZnO、 CoO- CrO- TiO -Al O、 Co (PO )、 CoO- ZnO Cr O, TiO -CoO- NiO- ZnO, CoO- CrO- TiO -Al O, Co (PO), CoO- ZnO
2 3 2 2 2 3 3 4 2 などの緑色用顔料; 2(A1 Na Si O )'Na S )、 CoO-Al Oなどの青色用顔料のほか、色補正用の無機Green pigments such as 2 3 2 2 2 3 3 4 2; 2 (A1 Na Si O) 'Na S), CoO-Al O and other blue pigments, as well as inorganic for color correction
2 2 3 10 2 4 2 3 2 2 3 10 2 4 2 3
顔料として、  As pigment
PbCrO - PbSO、 PbCrO、 PbCrO - PbO、 CdS、 TiO - NiO- Sb Oなどの黄色顔 Yellow face such as PbCrO-PbSO, PbCrO, PbCrO-PbO, CdS, TiO-NiO-SbO
4 4 4 4 2 2 3 4 4 4 4 2 2 3
料;  Fee;
Pb(Cr-Mo-S)0などの橙色顔料;  Orange pigments such as Pb (Cr-Mo-S) 0;
4  Four
Co (PO )などの紫色顔料を挙げることができる。  Mention may be made of purple pigments such as Co (PO 4).
3 4 2  3 4 2
[0044] ブラックマトリックス形成材料に用いられる無機粉体としては、たとえば、 Mn、 Fe、 C r、 Ni、 Coおよびこれらの酸化物および複合酸化物などを挙げることができる。  [0044] Examples of the inorganic powder used for the black matrix forming material include Mn, Fe, Cr, Ni, Co, and oxides and composite oxides thereof.
[0045] なお、上記電極、抵抗体、蛍光体、カラーフィルターおよびブラックマトリックスの形 成材料には、上述した無機粉体に加えて、隔壁形成材料および誘電体形成材料に 用いるガラス粉末を併用してもよ!/、。  [0045] In addition to the inorganic powder described above, the electrode, resistor, phosphor, color filter, and black matrix forming material are used in combination with the glass powder used for the barrier rib forming material and the dielectric forming material. Anyway!
[0046] 一例を示せば、電極につ!/、ては、併用するガラス粉末の含有割合は、無機粉体全 量の 30重量%以下であることが好ましぐ 20重量%以下であることが特に好ましい。  [0046] For example, it is preferable that the content of the glass powder used in combination with the electrode is 30% by weight or less based on the total amount of the inorganic powder, and 20% by weight or less. Is particularly preferred.
[0047] [結着樹脂 (B) ]  [0047] [Binder resin (B)]
本発明の無機粉体含有樹脂組成物を構成する結着樹脂 (B)は、ポリオキシアルキ レン部位を有する重量平均分子量 10, 000〜50, 000の(メタ)アクリル系重合体(B 1)と、該重合体 (B— 1)以外の重合体 (B— 2)とを含む。  The binder resin (B) constituting the resin composition containing the inorganic powder of the present invention is a (meth) acrylic polymer (B 1) having a polyoxyalkylene moiety and a weight average molecular weight of 10,000 to 50,000. And a polymer (B-2) other than the polymer (B-1).
[0048] <重合体(B— 1)〉  [0048] <Polymer (B-1)>
本発明で用いられる重合体 (B— 1)は、ポリオキシアルキレン部位を有する重量平 均分子量( ) 10,000〜50,000の(メタ)ァクリル系重合体でぁる。重合体(B— 1) を含有させると、本発明の無機粉体含有樹脂組成物から得られる無機粉体含有樹 脂層を有する本発明の転写フィルムは、可撓性および転写性に優れたものになる。 これは、重合体 (B— 1)が可塑剤として機能するためである。したがって、無機粉体 含有樹脂フィルムを折り曲げても樹脂層の表面に微小な亀裂 (ひび割れ)が発生す るようなことがなく、また、ロール状に巻き取って保存しても保存安定性は良好である The polymer (B-1) used in the present invention is a (meth) acrylic polymer having a polyoxyalkylene moiety and a weight average molecular weight () of 10,000 to 50,000. When the polymer (B-1) is contained, the transfer film of the present invention having an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition of the present invention is excellent in flexibility and transferability. Become a thing. This is because the polymer (B-1) functions as a plasticizer. Therefore, even if the resin film containing inorganic powder is folded, the surface of the resin layer is not cracked, and the storage stability is good even if it is rolled up and stored. Is
Yes
[0049] また、無機粉体含有樹脂組成物が重合体 (B— 1)を含有することにより、無機粉体 含有樹脂ペーストの熱分解性が向上し、無機粉体含有樹脂層の焼成後、無機層中 に残留する気泡数を減少させることができる。しかも、重合体 (B— 1)は、熱により容 易に分解除去されるため、前記無機粉体含有樹脂層を焼成して得られる無機層の 機能が低下することがない。 [0049] Further, since the inorganic powder-containing resin composition contains the polymer (B-1), the thermal decomposability of the inorganic powder-containing resin paste is improved, and after firing the inorganic powder-containing resin layer, In the inorganic layer The number of bubbles remaining in the gas can be reduced. In addition, since the polymer (B-1) is easily decomposed and removed by heat, the function of the inorganic layer obtained by firing the inorganic powder-containing resin layer does not deteriorate.
[0050] さらに、重合体 (B— 1)を含有すると、無機粉体含有樹脂ペーストの分散性および 保存安定性が高まり、無機粉体含有樹脂層および前記無機粉体含有樹脂層を焼成 して得られる無機層の表面平滑性が向上する。 [0050] Further, when the polymer (B-1) is contained, the dispersibility and storage stability of the inorganic powder-containing resin paste are improved, and the inorganic powder-containing resin layer and the inorganic powder-containing resin layer are fired. The surface smoothness of the resulting inorganic layer is improved.
[0051] 本発明の結着樹脂を構成する重合体 (B— 1)は、ポリオキシアルキレン部位を有す る(メタ)アタリレート化合物に由来する構成単位とポリオキシアルキレン部位を有しな い (メタ)アタリレート化合物に由来する構成単位と芳香族ビュル化合物に由来する 構成単位とを含有することが好ましレヽ。 [0051] The polymer (B-1) constituting the binder resin of the present invention does not have a structural unit derived from a (meth) acrylate compound having a polyoxyalkylene moiety and a polyoxyalkylene moiety. It is preferable to contain a structural unit derived from a (meth) atallylate compound and a structural unit derived from an aromatic bur compound.
[0052] 前記重合体 (B—1)は、ポリオキシアルキレン部位を有する(メタ)アタリレート化合 物(以下、「特定 (メタ)アタリレート化合物」ともいう。)の単独重合体、ならびに前記特 定 (メタ)アタリレート化合物と、下記一般式( 1 )で表されるポリオキシアルキレン部位 を有しない (メタ)アタリレート化合物(以下、「(メタ)アタリレート化合物(1)」ともいう。 ) 、芳香族ビュル化合物およびその他の共重合体単量体の中から選ばれる少なくとも 1種との共重合体が挙げられる。  [0052] The polymer (B-1) is a homopolymer of a (meth) acrylate compound having a polyoxyalkylene moiety (hereinafter also referred to as "specific (meth) acrylate compound"), as well as the above-mentioned special polymer. A constant (meth) acrylate compound and a (meth) acrylate compound having no polyoxyalkylene moiety represented by the following general formula (1) (hereinafter also referred to as “(meth) acrylate compound (1)”) And a copolymer with at least one selected from the group of aromatic bur compounds and other copolymer monomers.
[0053] [化 1]  [0053] [Chemical 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0054] (式(1)中、 R1は水素原子またはメチル基を示し、 R2は 1価の有機基を示す。 ) 以下に、重合体 (B— 1)を構成する単位を形成する化合物についてそれぞれ説明 する。 (In the formula (1), R 1 represents a hydrogen atom or a methyl group, and R 2 represents a monovalent organic group.) The units constituting the polymer (B-1) are formed below. Each compound will be explained.
[0055] 本発明の無機粉体含有樹脂組成物において、重合体(B— 1)は、 10,000-50,0 00、好ましくは 20,000〜40,000の重量平均分子量(Mw)を有するアクリル重合体 を含有する。  [0055] In the inorganic powder-containing resin composition of the present invention, the polymer (B-1) is an acrylic resin having a weight average molecular weight (Mw) of 10,000-50,000, preferably 20,000-40,000. Contains a polymer.
[0056] 特定 (メタ)アタリレート化合物  [0056] Specific (meth) atallylate compound
重合体 (B— 1)の構成成分である特定 (メタ)アタリレート化合物としては、ポリェチ レングリコールモノ(メタ)アタリレート、エトキシジエチレングリコール(メタ)アタリレート 、メトキシポリエチレングリコール(メタ)アタリレート、フエノキシポリエチレングリコール( メタ)アタリレート、ノユルフェノキシポリエチレングリコール(メタ)アタリレート、ポリプロ ピレンダリコールモノ(メタ)アタリレート、メトキシポリプロピレンダリコール(メタ)アタリレ ート、エトキシポリプロピレングリコール(メタ)アタリレートおよびノユルフェノキシポリプ ロピレンダリコール (メタ)アタリレートなどが挙げられる。 Specific (meth) acrylate compounds that are constituents of the polymer (B-1) include polyesters. Lenglycol mono (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, nourphenoxy polyethylene glycol (meth) acrylate, polypropylene Examples include dallicol mono (meth) acrylate, methoxy polypropylene dallicol (meth) acrylate, ethoxy polypropylene glycol (meth) acrylate and nourphenoxypolypropylene acrylate (meth) acrylate.
[0057] (メタ)アタリレート化合物(1) [0057] (Meth) atarylate compound (1)
重合体 (B— 1)の構成成分である(メタ)アタリレート化合物(1)としては、アルキル(  The (meth) acrylate compound (1), which is a component of the polymer (B-1), includes alkyl (
[0058] 前記アルキル(メタ)アタリレートの例としては、メチル(メタ)アタリレート、ェチル(メタ [0058] Examples of the alkyl (meth) acrylate include methyl (meth) acrylate and ethyl (meth)
)アタリレート、イソブチル(メタ)アタリレート、 t—ブチル(メタ)アタリレート、ペンチル( メタ)アタリレート、アミノレ (メタ)アタリレート、イソアミノレ (メタ)アタリレート、へキシル (メ タ)アタリレート、ヘプチル(メタ)アタリレート、ォクチル(メタ)アタリレート、イソォクチル (メタ)アタリレート、ェチルへキシル (メタ)アタリレート、ノニル (メタ)アタリレート、デシ デシル (メタ)アタリレート、ラウリノレ (メタ)アタリレート、ステアリノレ (メタ)アタリレートおよ びイソステアリル (メタ)アタリレートなどが挙げられる。 ) Atalylate, Isobutyl (meth) acrylate, t-Butyl (meth) acrylate, Pentyl (meth) acrylate, Amino (meth) acrylate, Isoamino (meth) acrylate, Hexyl (meth) acrylate Heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decdecyl (meth) acrylate, laurinore (meth) ate Rate, stearinole (meth) acrylate and isostearyl (meth) acrylate.
[0059] 前記ヒドロキシアルキル(メタ)アタリレートの例としては、ヒドロキシェチル(メタ)アタリ [0059] Examples of the hydroxyalkyl (meth) acrylate include hydroxyethyl (meth) acrylate.
および 4ーヒドロキシブチル (メタ)アタリレートなどが挙げられる。 And 4-hydroxybutyl (meth) acrylate.
[0060] 前記フエノキシアルキル(メタ)アタリレートの例としては、フエノキシェチル(メタ)ァク リレートおよび 2—ヒドロキシー3—フエノキシプロピル (メタ)アタリレートなどが挙げら れる。 [0061] 前記アルコキシアルキル(メタ)アタリレートの例としては、 2—メトキシェチル(メタ)ァ タリレート、 2—エトキシェチル(メタ)アタリレート、 2—プロポキシェチル(メタ)アタリレ ート、 2—ブトキシェチル (メタ)アタリレートおよび 2—メトキシブチル (メタ)アタリレート などが挙げられる。 [0060] Examples of the phenoxyalkyl (meth) acrylate include phenoxycetyl (meth) acrylate and 2-hydroxy-3-phenoxypropyl (meth) acrylate. [0061] Examples of the alkoxyalkyl (meth) acrylate include 2-methoxyethyl (meth) acrylate, 2-ethoxy ethyl (meth) acrylate, 2-propoxy cetyl (meth) acrylate, 2-butoxetyl ( And (meth) acrylate and 2-methoxybutyl (meth) acrylate.
[0062] 前記シクロアルキル(メタ)アタリレートの例としては、シクロへキシル(メタ)アタリレー ト、 4ーブチルシクロへキシル(メタ)アタリレート、ジシクロペンタニル(メタ)アタリレート 、ジシクロペンテュル(メタ)アタリレート、ジシクロペンタジェニル(メタ)アタリレート、ボ ルニル(メタ)アタリレート、イソボルニル(メタ)アタリレートおよびトリシクロデカニル(メ タ)アタリレートなどが挙げられる。  [0062] Examples of the cycloalkyl (meth) acrylate include cyclohexyl (meth) acrylate, 4-butyl cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentyl ( Examples include (meth) acrylate, dicyclopentagenyl (meth) acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate and tricyclodecanyl (meth) acrylate.
[0063] (メタ)アタリレート化合物(1)の好ましい例としては、ブチル (メタ)アタリレート、ェチ ルへキシル(メタ)アタリレート、ラウリル(メタ)アタリレート、イソデシル(メタ)アタリレー トおよび 2—エトキシェチル (メタ)アタリレートなどが挙げられる。  [0063] Preferable examples of the (meth) acrylate compound (1) include butyl (meth) acrylate, ethylhexyl (meth) acrylate, lauryl (meth) acrylate, isodecyl (meth) acrylate and Examples include 2-ethoxyethyl (meth) acrylate.
[0064] ビュル ,  [0064] Bulle,
重合体 (B— 1)の構成成分である芳香族ビュル化合物としては、エチレン性不飽和 結合を有する芳香族化合物であって上記特定 (メタ)アタリレート化合物および (メタ) アタリレート化合物(1)に該当しなレ、化合物を!/、う。上記特定 (メタ)アタリレート化合 物または (メタ)アタリレート化合物(1)と共重合可能な化合物ならば特に制限はない 、たとえば、スチレン、 α—メチルスチレン、ビュル安息香酸、ビュルフタル酸、ビニ ルベンジルメチルエーテルおよびビュルトルエンなどの芳香族ビュル化合物類;末 端に (メタ)アタリロイル基を有するポリスチレンなどが挙げられる。これらは、 1種単独 で用いてもよく、また 2種類以上を組み合わせて用いてもょレ、。  The aromatic bur compound that is a constituent of the polymer (B-1) is an aromatic compound having an ethylenically unsaturated bond, and the above-mentioned specific (meth) acrylate compound and (meth) acrylate compound (1) If you don't fall under this category, you'll need a compound! / There is no particular limitation as long as it is a compound that can be copolymerized with the specific (meth) acrylate compound or the (meth) acrylate compound (1). For example, styrene, α-methyl styrene, butyl benzoic acid, phthalphthalic acid, vinyl Aromatic butyl compounds such as benzyl methyl ether and butyltoluene; polystyrene having a (meth) atalyloyl group at the end. These may be used alone or in combination of two or more.
[0065] 上記芳香族ビュル化合物の好ましい例としては、ビュル安息香酸、ビュルべンジル メチルエーテル、スチレンおよび α—メチルスチレンが挙げられる。  [0065] Preferable examples of the aromatic bur compound include bulubenzoic acid, burbendyl methyl ether, styrene, and α-methylstyrene.
[0066] その他の共重合性単量体  [0066] Other copolymerizable monomers
上記重合体 (Β— 1)は、上記特定 (メタ)アタリレート化合物、(メタ)アタリレート化合 物(1)および芳香族ビュル化合物以外の共重合性単量体(以下、「その他の共重合 性単量体」ともいう。)と反応させてもよい。その他の共重合性単量体としては、ァミノ ェチルアタリレートなどの不飽和カルボン酸ァミノアルキルエステル類;グリシジル (メ タ)アタリレートなどの不飽和カルボン酸グリシジルエステル類;酢酸ビュルおよびプ ロピオン酸ビュルなどのカルボン酸ビュルエステル類;(メタ)アクリロニトリルおよび α クロルアクリロニトリルなどのシアン化ビュル化合物類; 1 , 3—ブタジエンおよびイソ プレンなどの脂肪族共役ジェン類; (メタ)アクリル酸およびクロトン酸などの不飽和モ ノカルボン酸;ィタコン酸、マレイン酸およびフマル酸などの不飽和ジカルボン酸;そ の他の不飽和カルボン酸;ビュルべンジルメチルエーテルおよびビュルグリシジルェ 一テルなどのビュルエーテル類;ポリメチル(メタ)アタリレート、ポリブチル(メタ)アタリ レートおよびポリシリコーンなどのマクロモノマー類などが挙げられる。 The polymer (Β-1) is a copolymerizable monomer other than the specific (meth) acrylate compound, (meth) acrylate compound (1) and aromatic bur compound (hereinafter referred to as “other copolymer”). It may also be reacted with a “monomeric monomer”). Other copolymerizable monomers include aminocarboxylic esters of unsaturated carboxylic acids such as aminoethyl acrylate; glycidyl (meth 1) Unsaturated carboxylic acid glycidyl esters such as acrylate; Carboxylic acid esters such as butyl acetate and propionate; Cyanide butyl compounds such as (meth) acrylonitrile and α-chloroacrylonitrile; 1, 3-butadiene And aliphatic conjugates such as isoprene; unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; unsaturated dicarboxylic acids such as itaconic acid, maleic acid and fumaric acid; other unsaturated carboxylic acids Bur ethers such as burbendyl methyl ether and burglycidyl ether; and macromonomers such as polymethyl (meth) acrylate, polybutyl (meth) acrylate and polysilicon.
[0067] その他の共重合性単量体の好ましい例としては、(メタ)アクリル酸、マレイン酸、ビ ニルダリシジルエーテル、ブタジエンおよびイソプレンが挙げられる。  [0067] Preferable examples of other copolymerizable monomers include (meth) acrylic acid, maleic acid, vinyldaricidyl ether, butadiene and isoprene.
[0068] <重合体(Β— 1)〉  [0068] <Polymer (Β-1)>
上述したように、重合体 (Β— 1)としては、上記特定 (メタ)アタリレートの単独重合体 、ならびに該特定 (メタ)アタリレートと、(メタ)アタリレート化合物(1)、芳香族ビュル化 合物とおよびその他の共重合性単量体の中から選ばれる少なくとも 1種を構成成分と して含む共重合体が挙げられる。前記共重合体の好ましい具体例としては、上記特 定 (メタ)アタリレートと、上記 (メタ)アタリレート化合物(1)と芳香族ビュル化合物類と の共重合体が挙げられる。  As described above, the polymer (Β-1) includes the above-mentioned specific (meth) acrylate homopolymer, the specific (meth) acrylate, the (meth) acrylate compound (1), and the aromatic bur. Examples thereof include a copolymer and a copolymer containing at least one selected from other copolymerizable monomers as a constituent component. Preferable specific examples of the copolymer include the specific (meth) acrylate and a copolymer of the (meth) acrylate compound (1) and aromatic bur compounds.
[0069] 前記共重合体の組成比としては、重合体 (Β— 1) 100重量%に対して、通常、特定  [0069] The composition ratio of the copolymer is usually specified with respect to 100% by weight of the polymer (Β-1).
(メタ)アタリレート 5〜30重量0 /0、(メタ)アタリレート化合物(1) 30〜50重量0 /0、芳香 族ビュル化合物類 30〜50重量%であり、特定 (メタ)アタリレート 10〜25重量%、(メ タ)アタリレート化合物(1) 35〜45重量%、芳香族ビュル化合物類 35〜45重量%が より好ましい。また、その他の共重合体単量体を含有する場合には、重合体 (Β— 1) 100重量%に対して、;!〜 20重量%、より好ましくは 5〜; 15重量%の組成比で含有 すること力 無機粉体含有樹脂転写フィルムの可撓性および転写性の更なる向上の ため、好ましい。 (Meth) Atari rate 5-30 wt 0/0, (meth) Atari Rate Compound (1) 30 to 50 weight 0/0, an aromatic Bulle compounds 30-50 wt%, the specific (meth) Atari Rate 10 -25% by weight, (meth) acrylate compound (1) 35-45% by weight, and aromatic bur compounds 35-45% by weight are more preferred. In addition, when other copolymer monomers are contained, the composition ratio of !! to 20% by weight, more preferably 5 to 15% by weight, with respect to 100% by weight of the polymer (Β-1) Power to contain in Inorganic powder containing resin transfer film It is preferable for further improving the flexibility and transferability of the resin transfer film.
[0070] 本発明で用いられる重合体 (B— 1)としては、ポリメチレングリコール (メタ)アタリレ 一トーポリブチルメタタリレート共重合体、ポリエチレングリコール(メタ)アタリレート ポリブチルメタタリレート共重合体、ポリプロピレングリコール(メタ)アタリレート ポリ ブチルメタタリレート共重合体、ポリエチレングリコールポリ(メタ)アタリレートーメチル メタタリレート ブチルメタタリレート共重合体、ポリエチレングリコールポリ(メタ)アタリ レートーメチルメタクリレートーブチル(メタ)アタリレート スチレン共重合体、ポリェチ レンダリコールポリ(メタ)アタリレート—(メタ)アクリル酸—スチレン共重合体、ポリプロ ピレンダリコールポリ(メタ)アタリレート一 2—エトキシェチル(メタ)アタリレート一スチ レン共重合体、ポリメチレングリコール(メタ)アタリレート 2—ェチルへキシルアタリ レート スチレン共重合体ポリエチレングリコール(メタ)アタリレート 2—ェチルへキ シルアタリレート スチレン共重合体およびポリプロレンダリコール(メタ)アタリレート 2—ェチルへキシルアタリレート スチレン共重合体などが挙げられる。 [0070] Examples of the polymer (B-1) used in the present invention include polymethylene glycol (meth) ateryl one-to-polybutyl metatalylate copolymer, polyethylene glycol (meth) acrylate, polybutyl metatalylate copolymer , Polypropylene glycol (meth) acrylate Butylmetatalylate copolymer, polyethylene glycol poly (meth) acrylate relay methyl methacrylate, butyl metatalylate copolymer, polyethylene glycol poly (meth) acrylate-methyl methacrylate-butyl (meth) acrylate, styrene copolymer, polyethylene render Recall poly (meth) acrylate-(meth) acrylic acid-styrene copolymer, polypropylene glycol poly (meth) acrylate 2-ethoxyethyl (meth) acrylate styrene copolymer, polymethylene glycol (meta ) Atarylate 2-ethylhexyl acrylate Styrene copolymer Polyethylene glycol (meth) acrylate 2-Ethyl hexyl acrylate Styrene copolymer and polyprorendral acrylate (meth) acrylate 2 — Ethylhexyl acrylate, styrene copolymer and the like.
[0071] 重合体 (B— 1)は、上記特定 (メタ)アタリレート化合物および必要に応じて上記 (メ タ)アタリレート化合物(1)、他の共重合性単量体を公知の方法により重合させること によって得られる。なお、重合体 (B— 1)の分子量は、重合開始剤の量、重合温度お よび重合時間を適宜調製することによって、調節することができる。  [0071] The polymer (B-1) is prepared from the specific (meth) acrylate compound and, if necessary, the (meth) acrylate compound (1) and other copolymerizable monomers by a known method. It is obtained by polymerizing. The molecular weight of the polymer (B-1) can be adjusted by appropriately adjusting the amount of the polymerization initiator, the polymerization temperature and the polymerization time.
[0072] 重合体(B—1)の好ましい分子量としては、ゲルパーミエーシヨンクロマトグラフィー  [0072] The preferred molecular weight of the polymer (B-1) is gel permeation chromatography.
(GPC)によるポリスチレン換算の重量平均分子量 (以下、単に「重量平均分子量」ま たは「Mw」ともいう。)で 10, 000—50, 000であり、さらに好ましくは 20, 000—40, 000である。  (GPC) polystyrene-reduced weight average molecular weight (hereinafter also simply referred to as “weight average molecular weight” or “Mw”) is 10,000 to 50,000, more preferably 20,000 to 40,000. It is.
[0073] <重合体(B— 2)〉  [0073] <Polymer (B-2)>
本発明で用いられる重合体 (B— 2)は、上記重合体 (B— 1)以外であれば、上記以 外の樹脂を特に制限されずに使用することができる。なかでもポリオキシアルキレン 部位を有さない (メタ)アタリレート重合体(以下、単に「アクリル樹脂」ともいう。)が好ま しい。本発明の組成物が、重合体 (B— 2)としてアクリル樹脂を含有することにより、 該組成物から形成される無機粉体含有樹脂層は、基板に対する優れた (加熱)接着 性を発揮する。したがって、本発明の組成物を支持フィルム上に塗布して製造した転 写フィルムは、無機粉体含有樹脂層の転写性(基板への加熱接着性)に優れたもの となる。  As the polymer (B-2) used in the present invention, any resin other than the above can be used as long as it is other than the polymer (B-1). Of these, a (meth) acrylate polymer (hereinafter also simply referred to as “acrylic resin”) having no polyoxyalkylene moiety is preferred. When the composition of the present invention contains an acrylic resin as the polymer (B-2), the inorganic powder-containing resin layer formed from the composition exhibits excellent (heating) adhesion to the substrate. . Therefore, a transfer film produced by applying the composition of the present invention on a support film has excellent transferability (heat adhesion to a substrate) of the inorganic powder-containing resin layer.
[0074] 上記アクリル樹脂としては、適度な粘着性を有して無機粉体を結着させることができ 、無機粉体含有樹脂層の焼成処理 (400〜600°C)によって完全に酸化除去される( 共)重合体であることが好ましレ、。 [0074] As the acrylic resin, an inorganic powder can be bound with appropriate adhesiveness, and it is completely oxidized and removed by baking treatment (400 to 600 ° C) of the inorganic powder-containing resin layer. ( Co) polymers are preferred.
[0075] このようなアクリル樹脂としては、上記 (メタ)アタリレート化合物(1)の単独重合体、 上記 (メタ)アタリレート化合物(1)を 2種以上含む共重合体ならびに上記 (メタ)アタリ レート化合物(1)と他の共重合性単量体との共重合体が含まれる。  [0075] Examples of the acrylic resin include a homopolymer of the (meth) acrylate compound (1), a copolymer containing two or more of the (meth) acrylate compound (1), and the (meth) acrylate. Copolymers of the rate compound (1) and other copolymerizable monomers are included.
[0076] 上記重合体 (B— 2)に用いられる(メタ)アタリレート化合物(1)としては、たとえば、  [0076] The (meth) acrylate compound (1) used in the polymer (B-2) is, for example,
アタリレート、シクロアルキル(メタ)アタリレート、ベンジル(メタ)アタリレートおよびテト ラヒドロフルフリル (メタ)アタリレートなどが挙げられる。より具体的な例を以下に示す Examples include attalylate, cycloalkyl (meth) acrylate, benzyl (meth) acrylate and tetrahydrofurfuryl (meth) acrylate. More specific examples are shown below.
[0077] 上記アルキル (メタ)アタリレートの例としては、メチル (メタ)アタリレート、ェチル (メタ [0077] Examples of the alkyl (meth) acrylate include methyl (meth) acrylate and ethyl (meth
)アタリレート、イソブチル(メタ)アタリレート、 t—ブチル(メタ)アタリレート、ペンチル( メタ)アタリレート、アミノレ (メタ)アタリレート、イソアミノレ (メタ)アタリレート、へキシル (メ タ)アタリレート、ヘプチル(メタ)アタリレート、ォクチル(メタ)アタリレート、イソォクチル (メタ)アタリレート、ェチルへキシル (メタ)アタリレート、ノニル (メタ)アタリレート、デシ デシル (メタ)アタリレート、ラウリノレ (メタ)アタリレート、ステアリノレ (メタ)アタリレートおよ びイソステアリル (メタ)アタリレートなどが挙げられる。 ) Atalylate, Isobutyl (meth) acrylate, t-Butyl (meth) acrylate, Pentyl (meth) acrylate, Amino (meth) acrylate, Isoamino (meth) acrylate, Hexyl (meth) acrylate Heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decdecyl (meth) acrylate, laurinore (meth) ate Rate, stearinole (meth) acrylate and isostearyl (meth) acrylate.
[0078] 上記ヒドロキシアルキル (メタ)アタリレートの例としては、ヒドロキシェチル (メタ)アタリ [0078] Examples of the hydroxyalkyl (meth) acrylate include hydroxyethyl (meth) acrylate.
および 4ーヒドロキシブチル (メタ)アタリレートなどが挙げられる。 And 4-hydroxybutyl (meth) acrylate.
[0079] 上記フエノキシアルキル(メタ)アタリレートの例としては、フエノキシェチル(メタ)ァク リレートおよび 2—ヒドロキシー3—フエノキシプロピル (メタ)アタリレートなどが挙げら れる。 [0079] Examples of the phenoxyalkyl (meth) acrylate include phenoxychetyl (meth) acrylate and 2-hydroxy-3-phenoxypropyl (meth) acrylate.
[0080] 上記アルコキシアルキル(メタ)アタリレートの例としては、 2—メトキシェチル(メタ)ァ タリレート、 2—エトキシェチル(メタ)アタリレート、 2—プロポキシェチル(メタ)アタリレ ート、 2—ブトキシェチル (メタ)アタリレートおよび 2—メトキシブチル (メタ)アタリレート などが挙げられる。 [0080] Examples of the alkoxyalkyl (meth) acrylate include 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-propoxy cetyl (meth) acrylate. And 2-butoxychetyl (meth) acrylate and 2-methoxybutyl (meth) acrylate.
[0081] 上記アルキルグリシジル(メタ)アタリレートの例としては、グリシジル(メタ)アタリレー ト、 /3—メチルダリシジル (メタ)アタリレートなどが挙げられる。  [0081] Examples of the alkyl glycidyl (meth) acrylate include glycidyl (meth) acrylate and / 3-methyldaricidyl (meth) acrylate.
[0082] 上記シクロアルキル(メタ)アタリレートの例としては、シクロへキシル(メタ)アタリレー ト、 4ーブチルシクロへキシル(メタ)アタリレート、ジシクロペンタニル(メタ)アタリレート 、ジシクロペンテュル(メタ)アタリレート、ジシクロペンタジェニル(メタ)アタリレート、ボ ルニル(メタ)アタリレート、イソボルニル(メタ)アタリレートおよびトリシクロデカニル(メ タ)アタリレートなどが挙げられる。  [0082] Examples of the cycloalkyl (meth) acrylate include cyclohexyl (meth) acrylate, 4-butyl cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentyl ( Examples include (meth) acrylate, dicyclopentagenyl (meth) acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate and tricyclodecanyl (meth) acrylate.
く用いられ、より好ましくは、アルキル (メタ)アタリレートが用いられ、特に好ましくは、 ブチル(メタ)アタリレート、ェチルへキシル(メタ)アタリレート、ラウリル(メタ)アタリレー ト、イソデシル (メタ)アタリレートおよび 2—エトキシェチル (メタ)アタリレートが用いら れる。 More preferably, alkyl (meth) acrylate is used, and particularly preferably, butyl (meth) acrylate, ethyl hexyl (meth) acrylate, lauryl (meth) acrylate, isodecyl (meth) acrylate. Rate and 2-ethoxyethyl (meth) acrylate are used.
[0084] 上記他の共重合性単量体の例としては、上記 (メタ)アタリレート化合物と共重合可 能な化合物ならば特に制限はないが、(メタ)アクリル酸、ビュル安息香酸、マレイン 酸およびビュルフタル酸などの不飽和カルボン酸類;  [0084] Examples of the other copolymerizable monomers are not particularly limited as long as they are compounds that can be copolymerized with the (meth) acrylate compound, but (meth) acrylic acid, bull benzoic acid, malein. Unsaturated carboxylic acids such as acids and bullphthalic acid;
ビュルべンジルメチルエーテル、ビュルグリシジルエーテル、スチレン、 α—メチルス チレン、ブタジエンおよびイソプレンなどのビュル基含有ラジカル重合性化合物が挙 げられる。  Examples include bur group-containing radically polymerizable compounds such as burbendyl methyl ether, burglycidyl ether, styrene, α-methyl styrene, butadiene and isoprene.
[0085] 本発明の組成物を構成する重合体 (Β— 2)における、上記一般式(1)で表される( メタ)アタリレート化合物(1)由来の共重合成分は、通常 70重量%以上、好ましくは 9 0重量%以上である。  [0085] In the polymer (Β-2) constituting the composition of the present invention, the copolymer component derived from the (meth) acrylate compound (1) represented by the general formula (1) is usually 70% by weight. Above, preferably 90% by weight or more.
[0086] 好ましいアクリル樹脂の具体例としては、ポリメチルメタタリレート、ポリブチルメタタリ レート、メチルメタクリレートーブチルメタタリレート共重合体およびブチルメタクリレー トー 2—ェチルへキシルメタクリレートー 2—ヒドロキシプロピルメタタリレート共重合体 などが挙げられる。 [0087] 本発明の組成物を構成する重合体(B— 2)の Mwは、 4, 000—300, 000、好まし <は 10, 000—200, 000である。 [0086] Specific examples of preferred acrylic resins include polymethyl methacrylate, polybutyl methacrylate, methyl methacrylate-butyl methacrylate copolymer and butyl methacrylate 2-to-hexyl hexyl methacrylate 2-hydroxypropyl. And metatalylate copolymers. [0087] The Mw of the polymer (B-2) constituting the composition of the present invention is 4,000 to 300,000, preferably <10,000 to 200,000.
[0088] <結着樹脂 (B)の配合量〉  [0088] <Binder resin (B) content>
上記結着樹脂 (B)は、無機粉体 (A) 100重量部に対して、上記重合体 (B— 1)と 重合体(B— 2)の合計で 5〜80重量部、好ましくは 10〜50重量部の量で用いられる 。結着樹脂 (B)の量が過小である場合には、無機粉体を確実に結着保持することが できない場合がある。一方、結着樹脂(B)の量が過大である場合には、焼成工程に 長い時間を要したり、形成される焼結体 (たとえば、誘電体層)が十分な強度や膜厚 を有しない場合がある。  The binder resin (B) is 5 to 80 parts by weight, preferably 10 in total of the polymer (B-1) and the polymer (B-2) with respect to 100 parts by weight of the inorganic powder (A). Used in an amount of ~ 50 parts by weight. If the amount of the binder resin (B) is too small, the inorganic powder may not be securely bound and held. On the other hand, if the amount of the binder resin (B) is excessive, the firing process takes a long time and the formed sintered body (for example, the dielectric layer) has sufficient strength and film thickness. May not.
[0089] 重合体(B— 1)は、無機粉体 (A) 100重量部に対して、通常、 0. 0;!〜 50重量部、 好ましくは 0. 05〜30重量部の量で用いられる。重合体(B— 1)の量が上記範囲より も少な!/、と、無機粉体含有樹脂層の室温でのハンドリング性および該樹脂層の転写 性 (基板に対する加熱接着性)が劣る場合がある。また、重合体 (B— 1)の量が上記 範囲よりも多いと、形成される無機粉体含有樹脂層の転写時における密着性および 転写性が過剰になり、支持フィルムの剥離が困難になったり、該樹脂層を有する転写 フィルムの取扱性に劣る場合がある。  [0089] The polymer (B-1) is usually used in an amount of 0.0;! To 50 parts by weight, preferably 0.05 to 30 parts by weight with respect to 100 parts by weight of the inorganic powder (A). It is done. If the amount of the polymer (B-1) is less than the above range! /, The handling property at room temperature of the inorganic powder-containing resin layer and the transferability of the resin layer (heat adhesion to the substrate) may be inferior. is there. On the other hand, if the amount of the polymer (B-1) is more than the above range, the adhesion and transferability of the formed inorganic powder-containing resin layer at the time of transfer become excessive, and it becomes difficult to peel off the support film. Or a transfer film having the resin layer may be inferior in handleability.
[0090] [可塑性付与物質(C) ]  [0090] [Plasticizer (C)]
本発明の無機粉体含有樹脂組成物は、転写フィルムに良好な柔軟性を与えるため に、上記結着樹脂 (B)の補助剤として可塑性付与物質 (C)を含有してレ、てもよ!/、。 可塑性付与物質 (C)を含有する組成物から形成される無機粉体含有樹脂層は、十 分な柔軟性を有するものとなる。  The inorganic powder-containing resin composition of the present invention may contain a plasticity-imparting substance (C) as an auxiliary agent for the binder resin (B) in order to give the transfer film good flexibility. ! / The inorganic powder-containing resin layer formed from the composition containing the plasticity-imparting substance (C) has sufficient flexibility.
[0091] 前記可塑性付与物質 (C)としては、下記一般式 (2)で表される化合物、下記一般 式(3)で表される化合物からなる群より選ばれた可塑剤、ポリプロピレングリコールお よび前述した (メタ)アタリレート化合物などの共重合性単量体などが挙げられ、これら の中では沸点が 150°C以上のものが好ましい。このような可塑性付与物質(C)は 1種 単独で用いても、 2種以上を組み合わせて用いてもよ!/、。  [0091] Examples of the plasticizing substance (C) include a compound represented by the following general formula (2), a plasticizer selected from the group consisting of a compound represented by the following general formula (3), polypropylene glycol, and Examples thereof include copolymerizable monomers such as the (meth) acrylate compound described above, and those having a boiling point of 150 ° C. or higher are preferred. Such plasticizing substances (C) may be used alone or in combination of two or more! /.
[0092] [化 2]
Figure imgf000020_0001
[0092] [Chemical 2]
Figure imgf000020_0001
[0093] (式(2)中、 R3および R6は、それぞれ独立して炭素数が 1〜30の 1価の鎖式炭化水 素基を示し、 R4および R5は、それぞれ独立してメチレン基または炭素数が 2〜30の 2 価の鎖式炭化水素基を示す。 sは 0〜5の整数であり、 tは 1〜; 10の整数である。 )(In the formula (2), R 3 and R 6 each independently represent a monovalent chain hydrocarbon group having 1 to 30 carbon atoms, and R 4 and R 5 are each independently And a methylene group or a divalent chain hydrocarbon group having 2 to 30 carbon atoms, s is an integer of 0 to 5, and t is an integer of 1 to 10).
[0094] [化 3] [0094] [Chemical 3]
H I I Π  H I I Π
H3C— C— C—〇一 C— R7 . . . ( 3 ) H 3 C— C— C—〇 一 C— R 7 ... (3)
OH H 〇  OH H ○
[0095] (式(3)中、 R7は炭素数が;!〜 30の 1価の鎖式炭化水素基を示す。 ) (In the formula (3), R 7 represents a monovalent chain hydrocarbon group having carbon number;! To 30.)
上記一般式(2)において、 R3または R5で示される 1価の鎖式炭化水素基は、直鎖 状もしくは分岐状のアルキル基 (飽和基)またはアルケニル基(不飽和基)であり、鎖 式炭化水素基の炭素数は;!〜 30、好ましくは 2〜20、より好ましくは 4〜; 10である。 鎖式炭化水素基の炭素数が上記範囲を超える場合には、後述する溶剤に対する溶 解性が低くなり、無機粉体含有樹脂層に良好な柔軟性を与えることが困難になること 力 sある。 In the general formula (2), the monovalent chain hydrocarbon group represented by R 3 or R 5 is a linear or branched alkyl group (saturated group) or alkenyl group (unsaturated group), The chain hydrocarbon group has a carbon number of !! to 30, preferably 2 to 20, more preferably 4 to 10; If the number of carbon atoms in the chain hydrocarbon group is more than the above range, dissolve resistance is low in the solvent to be described later, is that the force s difficult to provide good flexibility inorganic powder-containing resin layer .
[0096] R4または R5で示される 2価の鎖式炭化水素基は、直鎖状もしくは分岐状のアルキレ ン基 (飽和基)またはアルケニレン基(不飽和基)である。 [0096] The divalent chain hydrocarbon group represented by R 4 or R 5 is a linear or branched alkylene group (saturated group) or alkenylene group (unsaturated group).
[0097] 上記一般式(2)で表される化合物の例としては、ジブチルアジペート、ジイソブチル アジペート、ジー 2—ェチノレへキシノレアジペート、ジー 2—ェチノレへキシノレァゼレート 、ジブチルセバケートおよびジブチルジグリコールアジペートなどが挙げられる。  [0097] Examples of the compound represented by the general formula (2) include dibutyl adipate, diisobutyl adipate, di-2-ethenorehexino rare dipate, di-2-ethenorehexinorezelate, dibutyl sebacate, and dibutyl diacetate. Examples include glycol adipate.
[0098] 上記一般式(3)において、 R7で示される 1価の鎖式炭化水素基は、直鎖状もしくは 分岐状のアルキル基 (飽和基)またはアルケニル基(不飽和基)であり、鎖式炭化水 素基の炭素数は;!〜 30、好ましくは 2〜20、より好ましくは 10〜; 18である。 In the above general formula (3), the monovalent chain hydrocarbon group represented by R 7 is a linear or branched alkyl group (saturated group) or alkenyl group (unsaturated group), The chain hydrocarbon group has a carbon number of !!-30, preferably 2-20, more preferably 10--18.
[0099] 上記一般式(3)で表される化合物の例としては、プロピレングリコールモノラウレート およびプロピレングリコールモノォレートなどが挙げられる。 [0099] Examples of the compound represented by the general formula (3) include propylene glycol monolaurate. And propylene glycol monooleate.
[0100] また、可塑性付与物質(C)としてポリプロピレングリコールを用いる場合には、該ポ リプロピレングリコールの重量平均分子量(Mw)は、 200—3, 000の範囲にあること が好ましぐ 300-2, 000の範囲にあることが特に好ましい。 Mwが 200未満である 場合には、膜強度の大きい無機粉体含有樹脂層を支持フィルム上に形成することが 困難になる場合があり、該樹脂層を支持フィルムからガラス基板に転写する工程にお いて、ガラス基板に加熱接着された該樹脂層から支持フィルムを剥離する際に、該樹 脂層の凝集破壊を起こすことがある。一方、 Mwが 3, 000を超える場合には、被転 写体であるガラス基板との加熱接着性が良好な無機粉体含有樹脂層が得られない 場合がある。 [0100] When polypropylene glycol is used as the plasticizing substance (C), the weight average molecular weight (Mw) of the polypropylene glycol is preferably in the range of 200-3,000. A range of 2,000 is particularly preferred. If Mw is less than 200, it may be difficult to form an inorganic powder-containing resin layer having a high film strength on the support film, and the resin layer may be transferred from the support film to the glass substrate. In this case, when the support film is peeled off from the resin layer heat-bonded to the glass substrate, the resin layer may cause cohesive failure. On the other hand, if Mw exceeds 3,000, an inorganic powder-containing resin layer having good heat adhesion to the glass substrate as the transferred body may not be obtained.
[0101] また、 FPDの製造方法 (II)において本発明の組成物を用いて、無機粉体含有樹 脂層のエッチングをサンドブラスト処理によって行う場合、可塑性付与物質(C)として 、炭素数 10または 12の長鎖アルキル (メタ)アタリレートを用いることが好ましい。前記 可塑性付与物質(C)を用いると、ドライフィルムとして十分な柔軟性が付与できるとと もに、後述するポストベータによって容易に分解または揮発されるため、サンドブラス ト処理に不可欠な性質である脆性を付与できるからである。  [0101] In addition, when etching the inorganic powder-containing resin layer by sandblasting using the composition of the present invention in the FPD production method (II), the plasticity-imparting substance (C) has 10 or 10 carbon atoms. It is preferred to use 12 long chain alkyl (meth) acrylates. The use of the plasticizing substance (C) can provide sufficient flexibility as a dry film and is easily decomposed or volatilized by a post-beta described later, and is therefore an essential property for sandblasting. This is because brittleness can be imparted.
[0102] 前記記長鎖アルキル (メタ)アタリレートの例としては、イソデシル (メタ)アタリレートお よびラウリル (メタ)アタリレートが挙げられる力 特にイソデシルメタタリレートおよびラ ゥリルメタタリレートが好ましい。  [0102] Examples of the long-chain alkyl (meth) acrylate include forces such as isodecyl (meth) acrylate and lauryl (meth) acrylate, particularly isodecyl and lauryl methacrylate. preferable.
[0103] 上記可塑性付与物質(C)は、本発明の組成物から溶剤を除いた全成分の 3重量 [0103] The plasticizer (C) is 3% by weight of the total components excluding the solvent from the composition of the present invention.
%以上、好ましくは 4〜; 15重量%となる量で用いられる。可塑性付与物質(C)の含有 量が過小である場合には、形成する転写フィルムに良好な柔軟性を与えることが困 難となる場合がある。 % Or more, preferably 4 to 15% by weight. When the content of the plasticity-imparting substance (C) is too small, it may be difficult to give good flexibility to the transfer film to be formed.
[0104] [感光性成分 (D) ]  [0104] [Photosensitive component (D)]
本発明の組成物は、感光性成分 (D)として、多官能性 (メタ)アタリレート(D— 1)お よび放射線重合開始剤(D— 2)を含有する感光性組成物であってもよ!/、。多官能性 (メタ)アタリレート(D— 1)は露光により重合し、露光部分をアルカリ不溶性またはァ ルカリ難溶性にする性質を有する。 [0105] く多官能性 (メタ)アタリレート(D— 1)〉 The composition of the present invention may be a photosensitive composition containing, as the photosensitive component (D), a polyfunctional (meth) acrylate (D-1) and a radiation polymerization initiator (D-2). Yo! / The polyfunctional (meth) acrylate (D-1) is polymerized by exposure to make the exposed part insoluble in alkali or hardly soluble in alkali. [0105] Highly multifunctional (meth) atarylate (D— 1)>
上記多官能性(メタ)アタリレート(D— 1)の例としては、エチレングリコールおよびプ ロピレングリコールなどのアルキレングリコールのジ(メタ)アタリレート類;  Examples of the polyfunctional (meth) acrylate (D-1) include di (meth) acrylates of alkylene glycols such as ethylene glycol and propylene glycol;
両末端ヒドロキシポリブタジエン、両末端ヒドロキシポリイソプレンおよび両末端ヒドロ キシポリ力プロラタトンなどの両末端ヒドロキシル化重合体のジ (メタ)アタリレート類; グリセリン、 1 , 2, 4 ブタントリオール、トリメチロールアルカン、テトラメチロールアル カン、ペンタエリスリトールおよびジペンタエリスリトールなどの 3価以上の多価アルコ Di (meth) acrylates of both end hydroxylated polymers such as both end hydroxypolybutadiene, both end hydroxypolyisoprene and both end hydroxypoly force prolatatone; glycerin, 1, 2, 4 butanetriol, trimethylolalkane, tetramethylol Trivalent or higher polyvalent alcohols such as alkane, pentaerythritol and dipentaerythritol
3価以上の多価アルコールのポリアルキレングリコール付加物のポリ(メタ)アタリレー ト類; Poly (meth) atrelates of polyalkylene glycol adducts of polyhydric alcohols with 3 or more valences;
1 , 4ーシクロへキサンジオールおよび 1 , 4 ベンゼンジオール類などの環式ポリオ ポリエステル (メタ)アタリレート、エポキシ (メタ)アタリレート、ウレタン(メタ)アタリレート 、アルキド樹脂 (メタ)アタリレート、シリコーン樹脂 (メタ)アタリレートおよびスピラン樹 脂 (メタ)アタリレート等のオリゴ (メタ)アタリレート類などを挙げることができる。これら は 1種単独で用いても、 2種以上を組み合わせて用いてもよい。これらの中では、トリ メチロールプロパントリアタリレート、トリプロピレングリコールジアタリレートなどが特に 好ましく用いられる。  Cyclic poliopolyesters such as 1,4-cyclohexanediol and 1,4 benzenediols (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, alkyd resin (meth) acrylate, silicone resin Examples thereof include oligo (meth) acrylates such as (meth) acrylate and spirane resin (meth) acrylate. These may be used alone or in combination of two or more. Among these, trimethylolpropane tritalylate, tripropylene glycol ditalylate and the like are particularly preferably used.
[0106] 上記多官能性(メタ)アタリレート(D— 1)の分子量としては、 100〜2, 000であるこ とが好ましい。上記多官能性 (メタ)アタリレート (D— 1)は、上記無機粉体 (A) 100重 量部に対して、通常 5〜50重量部、好ましくは 10〜40重量部用いられる。  [0106] The molecular weight of the polyfunctional (meth) acrylate (D-1) is preferably 100 to 2,000. The polyfunctional (meth) acrylate (D-1) is usually used in an amount of 5 to 50 parts by weight, preferably 10 to 40 parts by weight based on 100 parts by weight of the inorganic powder (A).
[0107] <放射線重合開始剤(D— 2)〉  [0107] <Radiation polymerization initiator (D-2)>
本発明で用いられる放射線重合開始剤(D— 2)の例としては、ベンジル、ベンゾィ ン、ベンゾフエノン、カンファーキノン、 2—ヒドロキシ一 2—メチル 1—フエニルプロ パン一 1—オン、 1—ヒドロキシシクロへキシルフェニルケトン、 2, 2—ジメトキシ一 2— フエニルァセトフエノン、 2 メチルー〔4' (メチルチオ)フエニル〕ー2 モルフォリノ — 1—プロパノン、 2—ベンジル 2—ジメチルァミノ一 1— (4—モルフオリノフエ二ノレ) ブタン 1 オンおよび 1 [9ーェチルー 6—(2 メチルベンゾィル) 9·Η·—力 ノレバゾールー 3—ィノレ]ーェタン 1 オンォキシム Ο ァセタートなどのカルボ二 ル化合物; Examples of the radiation polymerization initiator (D-2) used in the present invention include benzyl, benzoin, benzophenone, camphorquinone, 2-hydroxy-1-methyl-1-phenylpropan-1-one, and 1-hydroxycyclohexane. Xylphenylketone, 2,2-dimethoxy-2-phenylacetophenone, 2 methyl- [4 '(methylthio) phenyl] -2 morpholino — 1—propanone, 2—benzyl 2—dimethylamino 1— (4-morpholinophenol) butane 1 on and 1 [9-ethyl-6- (2 methylbenzoyl) 9 · Η · —force nolevazol 3—inole] ethane 1 onoxime Carbonate compounds such as acetate;
ァゾイソブチロニトリルおよび 4 アジドベンズアルデヒドなどのァゾ化合物およびァ ジド化合物;  Azo and azide compounds such as azoisobutyronitrile and 4 azidobenzaldehyde;
メルカブタンジスルフイドなどの有機硫黄化合物;  Organic sulfur compounds such as mercabtan disulfide;
ベンゾィルパーォキシド、ジー t ブチルパーォキシド、 t ブチルハイド口パーォキ シド、クメンハイド口パーォキシドおよびパラメタンハイド口パーォキシドなどの有機パ ーォキシド;  Organic peroxides such as benzoyl peroxide, di-t-butyl peroxide, t-butyl hydride peroxide, cumene hydride oxyperoxide and paraffin hydride oxyperoxide;
1 , 3 ビス(トリクロロメチル) 5— (2, 一クロ口フエ二ル)一 1 , 3, 5 トリアジンおよ び 2—〔2—(2 フラニノレ)ェチレニル〕 4, 6 ビス(トリクロロメチル) 1 , 3, 5 ト リアジンなどのトリハロメタン類;  1, 3 Bis (trichloromethyl) 5— (2, monocyclic phenyl) 1, 3, 5 triazine and 2— [2- (2 furaninole) ethylenyl] 4, 6 Bis (trichloromethyl) 1 , 3, 5 Trihalomethanes such as triazine;
2, 2, 一ビス(2—クロ口フエ二ノレ) 4, 5, 4, , 5, 一テトラフエ二ノレ 1 , 2, 一ビイミダゾー ルなどのイミダゾールニ量体などが挙げられる。これらは 1種単独で用いても、 2種以 上を組み合わせて用いてもょレ、。  Examples include imidazole dimers such as 2, 2, 1bis (2-black mouth phenol) 4, 5, 4,, 5, monotetraphenol 1, 2, and 1 imidazole. These can be used alone or in combination of two or more.
[0108] 上記放射線重合開始剤 (D— 2)は、上記多官能性 (メタ)アタリレート (D— 1) 100 重量部に対して、通常 0. ;!〜 50. 0重量部、好ましくは 1. 0-30. 0重量部用いられ [0108] The radiation polymerization initiator (D-2) is usually 0.;! To 50.0 parts by weight, preferably 100 parts by weight of the polyfunctional (meth) acrylate (D-1). 1. 0-30. 0 parts by weight used
[0109] [溶剤] [0109] [Solvent]
本発明の組成物は、通常、溶剤を含有する。このような溶剤としては、無機粉体との 親和性および結着樹脂の溶解性が良好で、かつ、組成物に適度な粘性を付与する こと力 Sできるとともに、乾燥処理をすれば容易に蒸発除去できるものであることが好ま しい。  The composition of the present invention usually contains a solvent. As such a solvent, the affinity for inorganic powder and the solubility of the binder resin are good, and it is possible to impart an appropriate viscosity to the composition, and it can be easily evaporated by drying treatment. It is preferable that it can be removed.
[0110] また、特に好ましい溶剤として、標準沸点(1気圧における沸点)が 60〜200°Cであ るケトン類、アルコール類およびエステル類(以下、これらを「特定溶剤」という。)を挙 げること力 Sでさる。  [0110] Also, particularly preferred solvents include ketones, alcohols and esters (hereinafter referred to as "specific solvents") having a normal boiling point (boiling point at 1 atm) of 60 to 200 ° C. The power S
[0111] 上記特定溶剤の例としては、メチルェチルケトン、ジェチルケトン、メチルブチルケト ン、ジプロピルケトンおよびシクロへキサノンなどのケトン類; [0111] Examples of the specific solvent include methyl ethyl ketone, jetyl ketone, methyl butyl keto , Ketones such as dipropyl ketone and cyclohexanone;
n—ペンタノール、 4ーメチルー 2—ペンタノール、シクロへキサノールおよびジァセト ンァノレコーノレなどのァノレコーノレ類;  Anoleconoles such as n-pentanol, 4-methyl-2-pentanol, cyclohexanol and diacetonanoreconole;
エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、ェ チレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルおよ びプロピレングリコールモノェチルエーテルなどのエーテル系アルコール類; 酢酸 n—ブチルおよび酢酸ァミルなどの飽和脂肪族モノカルボン酸アルキルエステ ル類;  Ether-based alcohols such as ethylene glycol monomethino ethenole, ethylene glycol monomethino ree tenole, ethylene glycol monobutyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether; n-butyl acetate and Saturated aliphatic monocarboxylic acid alkyl esters such as amyl acetate;
乳酸ェチルおよび乳酸 n—ブチルなどの乳酸エステル類; メチノレエーテノレアセテートおよびェチノレー 3—エトキシプロピオネートなどのエーテノレ 系エステル類などを挙げることができる。これらの中では、メチルブチルケトン、シクロ へキサノン、ジアセトンァノレコーノレ、エチレングリコーノレモノブチノレエーテノレ、プロピレ ングリコールモノメチルエーテル、乳酸ェチルおよびェチルー 3—エトキシプロビオネ ートなどが好ましい。これらの特定溶剤は、 1種単独で用いても、 2種以上を組み合わ せて用いてもよい。  Examples thereof include lactic acid esters such as ethyl lactate and n-butyl lactate; etherol esters such as methinoreethenoleacetate and ethinoleyl 3-ethoxypropionate. Among these, methyl butyl ketone, cyclohexanone, diacetone alcoholone, ethylene glycol methanol monobutinoate ethere, propylene glycol monomethyl ether, ethyl lactate and ethyl 3-ethoxypropylone are preferred. These specific solvents may be used alone or in combination of two or more.
[0112] また、上記特定溶剤以外の使用可能な溶剤としては、たとえば、テレビン油、ェチ ノレセロソノレブ、メチノレセロソノレブ、テノレピネオ一ノレ、ブチノレカノレビトーノレアセテート、 ブチノレカノレビトーノレ、イソプロピルアルコールおよびべンジルアルコールなどを挙げ ること力 Sでさる。  [0112] Examples of usable solvents other than the above-mentioned specific solvents include turpentine oil, ethenorecello sonoleb, methinorecero sonoleb, tenorepineo monore, butinorecanorebitonoreacetate, butinorecanorebitonore, Use force S to list isopropyl alcohol and benzyl alcohol.
[0113] 上記溶剤は、組成物の粘度を好適な範囲に維持する観点から、無機粉体 (A) 100 重量部に対して 5〜50重量部、好ましくは 10〜40重量部の量で用いられる。また、 全溶剤に対する特定溶剤の割合は、 50重量%以上、好ましくは 70重量%以上であ  [0113] From the viewpoint of maintaining the viscosity of the composition within a suitable range, the solvent is used in an amount of 5 to 50 parts by weight, preferably 10 to 40 parts by weight, based on 100 parts by weight of the inorganic powder (A). It is done. The ratio of the specific solvent to the total solvent is 50% by weight or more, preferably 70% by weight or more.
[0114] [各種添加剤] [0114] [Various additives]
本発明の組成物は、任意成分として、分散剤、現像促進剤、接着助剤、ハレーショ ン防止剤、レべリング剤、保存安定剤、消泡剤、酸化防止剤、紫外線吸収剤、増感 剤または連鎖移動剤などの各種添加剤を含有してもよい。 [0115] [無機粉体含有樹脂組成物の調製方法] The composition of the present invention includes, as optional components, a dispersant, a development accelerator, an adhesion assistant, a halation inhibitor, a leveling agent, a storage stabilizer, an antifoaming agent, an antioxidant, an ultraviolet absorber, and a sensitizer. Various additives such as an agent or a chain transfer agent may be contained. [0115] [Preparation method of resin composition containing inorganic powder]
本発明の無機粉体含有樹脂組成物は、上記無機粉体 (A)、結着樹脂 (B)、必要 に応じて可塑性付与物質 (C)、多官能性 (メタ)アタリレート (D— 1)、放射線重合開 始剤(D— 2)、溶剤および各種添加剤を、ロール混練機、ミキサー、ホモミキサーまた はサンドミルなどの混練機および分散機を用いて混練することにより調製することが できる。前記のようにして調製される本発明の組成物の粘度は、 0. 3〜30Pa ' sであ ることが好ましい。  The inorganic powder-containing resin composition of the present invention comprises the above-mentioned inorganic powder (A), binder resin (B), if necessary, a plasticizer (C), and a polyfunctional (meth) acrylate (D-1). ), A radiation polymerization initiator (D-2), a solvent and various additives can be prepared by kneading using a kneader and a disperser such as a roll kneader, a mixer, a homomixer, or a sand mill. . The viscosity of the composition of the present invention prepared as described above is preferably 0.3 to 30 Pa ′s.
[0116] 〔転写フィルム〕  [0116] [Transfer film]
本発明の転写フィルムは、支持フィルム上に、上述した本発明の無機粉体含有樹 脂組成物から得られる無機粉体含有樹脂層を有することを特徴とする。  The transfer film of the present invention has an inorganic powder-containing resin layer obtained from the above-described inorganic powder-containing resin composition of the present invention on a support film.
[0117] 本発明の転写フィルムは、支持フィルム上に、レジスト膜と、前記無機粉体含有樹 脂層との積層膜を有するもの(積層型転写フィルム)であってもよい。  [0117] The transfer film of the present invention may be one having a laminated film of a resist film and the inorganic powder-containing resin layer on a supporting film (laminated transfer film).
[0118] また、必要に応じて、無機粉体含有樹脂層の表面上にカバーフィルムを有していて あよい。  [0118] If necessary, a cover film may be provided on the surface of the inorganic powder-containing resin layer.
[0119] 以下、転写フィルムの各構成要素について具体的に説明する。  [0119] Each component of the transfer film will be specifically described below.
(1)支持フィルム  (1) Support film
本発明の転写フィルムは、無機粉体含有樹脂層を支持する支持フィルムを有する。 この支持フィルムは、耐熱性および耐溶剤性を有するとともに可撓性を有する樹脂フ イルムであることが好ましい。支持フィルムが可撓性を有することにより、ロールコータ 一またはブレードコーターなどによって支持フィルムの表面に無機粉体含有樹脂組 成物を塗布することができ、得られる転写フィルムを、ロール状に巻回した状態で保 存または供給すること力 Sできる。  The transfer film of the present invention has a support film that supports the inorganic powder-containing resin layer. The support film is preferably a resin film having heat resistance and solvent resistance and flexibility. Since the support film is flexible, the inorganic powder-containing resin composition can be applied to the surface of the support film with a roll coater or a blade coater, and the resulting transfer film is wound into a roll. It is possible to save or supply the product in a state of being stored.
[0120] 支持フィルムを形成する樹脂の例としては、ポリエチレンテレフタレート、ポリエステ ノレ、ポリエチレン、ポリプロピレン、ポリスチレン、ポリイミド、ポリビニノレアノレコーノレ、ポ リ塩化ビュルおよびポリフロロエチレンなどの含フッ素樹脂、ナイロンならびにセル口 ースなどを挙げること力 Sできる。  [0120] Examples of the resin for forming the support film include polyethylene terephthalate, polyester, polyethylene, polypropylene, polystyrene, polyimide, polyvinylenoreconole, fluorine-containing resins such as polychlorinated butyl and polyfluoroethylene, nylon In addition, it is possible to raise the cell mouth.
[0121] 支持フィルムの厚みは、 20〜; 100 mである。また、支持フィルムの表面には離型 処理が施されていることが好ましぐこれにより、ガラス基板への転写工程において、 支持フィルムの剥離操作を容易に行うことができる。 [0121] The thickness of the support film is 20 to 100 m. In addition, it is preferable that the surface of the support film has been subjected to a release treatment, so that in the transfer process to the glass substrate, The peeling operation of the support film can be easily performed.
(2)カバーフィルム  (2) Cover film
本発明の転写フィルムにおいては、無機粉体含有樹脂層の表面を保護するために 該樹脂層の表面上にカバーフィルムが設けられていてもよい。このカバーフィルムは 、可撓性を有する樹脂フィルムであることが好ましぐこれにより、得られる転写フィノレ ムをロール状に巻回した状態で保存または供給することができる。  In the transfer film of the present invention, a cover film may be provided on the surface of the resin layer in order to protect the surface of the inorganic powder-containing resin layer. This cover film is preferably a resin film having flexibility, whereby the transfer film obtained can be stored or supplied in a roll shape.
[0122] カバーフィルムを構成する樹脂の例としては、ポリエチレンテレフタレートフィルム、 ポリエチレンフィルムおよびポリビュルアルコール系フィルムなどを挙げることができる [0122] Examples of the resin constituting the cover film include a polyethylene terephthalate film, a polyethylene film, and a polybulualcohol-based film.
[0123] カバーフィルムの厚みは、 20〜; 100〃 mである。また、カバーフィルムの表面には 離型処理が施されていてもよぐ無機粉体含有樹脂層との密着性が、支持フィルムよ りも小さいことが好ましい。 [0123] The thickness of the cover film is 20 to 100 mm. Further, it is preferable that the surface of the cover film has a smaller adhesion to the inorganic powder-containing resin layer than the support film, which may be subjected to a release treatment.
(3)無機粉体含有樹脂層  (3) Resin layer containing inorganic powder
無機粉体含有樹脂層は、通常、無機粉体含有樹脂組成物を支持フィルム上に塗 布し、得られる塗布膜を乾燥して、溶剤の全部または一部を除去することにより形成 される。  The inorganic powder-containing resin layer is usually formed by coating the inorganic powder-containing resin composition on a support film, drying the resulting coating film, and removing all or part of the solvent.
[0124] 前記無機粉体含有樹脂組成物を支持フィルム上に塗布する方法としては、膜厚の 均一性が高ぐかつ膜厚が大きい (たとえば、 10 πι以上)塗膜を高い効率で形成す ること力 Sできる方法であること力 S好ましく、具体的には、ロールコーターによる塗布方 法、ブレードコーターによる塗布方法、カーテンコーターによる塗布方法およびワイヤ ーコーターによる塗布方法などが挙げられる。無機粉体含有樹脂層の膜厚は、形成 すべきパネル部材の高さにもよる力 S、通常、 10〜300 111である。  [0124] As a method for applying the inorganic powder-containing resin composition onto a support film, a coating film with high uniformity in film thickness and large film thickness (for example, 10 πι or more) is formed with high efficiency. The force S is a method that can be applied S Preferably, specific examples include a coating method using a roll coater, a coating method using a blade coater, a coating method using a curtain coater, and a coating method using a wire coater. The film thickness of the inorganic powder-containing resin layer is a force S depending on the height of the panel member to be formed, usually 10 to 300 111.
[0125] 塗膜の乾燥条件としては、たとえば、 50〜; 150°Cで 0. 5〜30分間程度であり、乾 燥後における溶剤の残存割合 (無機粉体含有樹脂層中の含有率)は、通常、 2重量 %以内である。  [0125] The drying condition of the coating film is, for example, 50 to; at 150 ° C for about 0.5 to 30 minutes, and the residual ratio of the solvent after drying (content in the inorganic powder-containing resin layer) Is usually within 2% by weight.
(4)レジスト層  (4) Resist layer
本発明の積層型転写フィルムに用いられるレジスト膜は、通常、バインダーポリマー 、多官能性モノマー(D— 1)および放射線重合開始剤(D— 2)を含有するレジスト組 成物を、支持フィルム上に塗布して形成される。 The resist film used for the laminated transfer film of the present invention is usually a resist assembly containing a binder polymer, a polyfunctional monomer (D-1) and a radiation polymerization initiator (D-2). The composition is formed by coating on a support film.
[0126] レジスト組成物に用いられるバインダーポリマーは、アルカリ現像型の場合にはアル カリ可溶性樹脂であることが必要であり、分子中に少なくとも 1個以上のカルボキシノレ 基を有するエチレン不飽和性のカルボキシル基含有単量体と、このカルボキシル基 含有単量体と共重合可能な共重合性単量体とを含む単量体組成物を重合すること により得られるカルボキシル基含有共重合体であることが好ましい。 [0126] The binder polymer used in the resist composition needs to be an alkali-soluble resin in the case of an alkali development type, and has an ethylenically unsaturated group having at least one carboxynole group in the molecule. It is a carboxyl group-containing copolymer obtained by polymerizing a monomer composition containing a carboxyl group-containing monomer and a copolymerizable monomer copolymerizable with the carboxyl group-containing monomer. Is preferred.
[0127] 上記バインダーポリマーにおけるカルボキシル基含有単量体の共重合割合は、単 量体全量に対して 5〜50重量%、好ましくは 10〜40重量%である。カルボキシル基 含有単量体の共重合割合が上記範囲よりも低いと、得られるレジスト組成物は、アル カリ現像液に対する溶解性が低くなる傾向がある。一方、カルボキシル基含単量体 の共重合割合が上記範囲を超えると、現像時にレジストパターンが無機粉体ペースト 層から脱落する傾向がある。  [0127] The copolymerization ratio of the carboxyl group-containing monomer in the binder polymer is 5 to 50% by weight, preferably 10 to 40% by weight, based on the total amount of the monomer. If the copolymerization ratio of the carboxyl group-containing monomer is lower than the above range, the resulting resist composition tends to be less soluble in an alkali developer. On the other hand, when the copolymerization ratio of the carboxyl group-containing monomer exceeds the above range, the resist pattern tends to fall off from the inorganic powder paste layer during development.
[0128] 上記カルボキシル基含有単量体に由来する構成単位を有する共重合体はアルカリ 溶解性を有し、特に該構成単位を上記範囲の量で有する共重合体は、アルカリ現像 液に対して優れた溶解性を示す。そのため、このような共重合体をレジスト組成物に おけるバインダーポリマーとして用いることにより、アルカリ現像液に対する未溶解物 が本質的に少ないものとなり、現像処理において基板のレジストパターン形成部以外 の個所における地汚れおよび膜残りなどの発生を低減することができる。  [0128] The copolymer having a structural unit derived from the carboxyl group-containing monomer has alkali solubility, and in particular, the copolymer having the structural unit in an amount within the above range is an alkaline developer. Excellent solubility. For this reason, by using such a copolymer as a binder polymer in the resist composition, the amount of undissolved material in the alkaline developer is essentially reduced. The occurrence of dirt and film residue can be reduced.
[0129] また、上記共重合体をバインダーポリマーとして含むレジスト組成物から得られるレ ジストパターンは、アルカリ現像液に過剰に溶解することがなぐさらに無機粉体含有 樹脂層に対して優れた密着性を有するため、該樹脂層から脱落しにくい。  [0129] Further, the resist pattern obtained from the resist composition containing the copolymer as a binder polymer has excellent adhesion to a resin layer containing an inorganic powder that does not excessively dissolve in an alkali developer. Therefore, it is difficult for the resin layer to fall off.
[0130] 上記カルボキシル基含有単量体としては、たとえば、(i) (メタ)アクリル酸およびクロト ン酸などの不飽和モノカルボン酸、(ii)ィタコン酸、マレイン酸およびフマル酸などの 不飽和ジカルボン酸ならびに(iii)その他の不飽和カルボン酸が挙げられる。これら は 1種単独で用いても、 2種類以上を組み合わせて用いてもよい。  [0130] Examples of the carboxyl group-containing monomer include (i) unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid, and (ii) unsaturated compounds such as itaconic acid, maleic acid and fumaric acid. Examples include dicarboxylic acids and (iii) other unsaturated carboxylic acids. These may be used alone or in combination of two or more.
[0131] また、上記共重合性単量体としては、たとえば、  [0131] Further, as the copolymerizable monomer, for example,
スチレン、 α—メチルスチレンおよびビュルトルエンなどの芳香族ビュル化合物類; メチル (メタ)アタリレート、ェチル (メタ)アタリレート、ブチル (メタ)アタリレート、 2—ヒド ロキシェチル(メタ)アタリレート、 2—ヒドロキシプロピル(メタ)アタリレート、ベンジノレ( メタ)アタリレートおよびシクロへキシル(メタ)アタリレートなどの不飽和カルボン酸アル キルエステル類; Aromatic butyl compounds such as styrene, α-methylstyrene and butyltoluene; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-hydride Unsaturated carboxylic acid alkyl esters such as loxochetyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, benzyleno (meth) acrylate and cyclohexyl (meth) acrylate;
アミノエチルアタリレートなどの不飽和カルボン酸ァミノアルキルエステル類; グリシジル (メタ)アタリレートなどの不飽和カルボン酸グリシジルエステル類; 酢酸ビュルおよびプロピオン酸ビュルなどのカルボン酸ビュルエステル類; Unsaturated carboxylic acid aminoamino esters such as aminoethyl acrylate; unsaturated carboxylic acid glycidyl esters such as glycidyl (meth) acrylate; carboxylic acid bis esters such as acetic acid and propionic acid;
(メタ)アクリロニトリルおよび α —クロルアクリロニトリルなどのシアン化ビュル化合物 類; Cyanide bur compounds such as (meth) acrylonitrile and α-chloroacrylonitrile;
1 , 3—ブタジエンおよびイソプレンなどの脂肪族共役ジェン類;  1, 3, 3-aliphatic conjugates such as butadiene and isoprene;
末端に (メタ)アタリロイル基を有するポリスチレン、ポリメチル (メタ)アタリレート、ポリブ チル (メタ)アタリレートおよびポリシリコーンなどのマクロモノマー類などが挙げられる 。これらは、 1種単独で若しくは 2種類以上を組み合わせて用いることができる。  Examples thereof include macromonomers such as polystyrene, polymethyl (meth) acrylate, polybutyl (meth) acrylate and poly-silicone having a (meth) attaroyl group at the terminal. These can be used alone or in combination of two or more.
[0132] 上記バインダーポリマーは、 Mwが 3, 000—300, 000、好ましくは 5, 000—200 , 000である。このような分子量を有するバインダーポリマーを用いることによって、現 像性の高いレジスト組成物が得られ、これにより、シャープなパターンエッジを有する レジストパターンを形成することができるとともに、均一なパターンを有するパネル部 材を形成できる。 [0132] The binder polymer has an Mw of 3,000-300,000, preferably 5,000-200,000. By using a binder polymer having such a molecular weight, a resist composition having high image clarity can be obtained, whereby a resist pattern having sharp pattern edges can be formed, and a panel having a uniform pattern can be formed. Parts can be formed.
[0133] 上記レジスト組成物に用いられる多官能性モノマーとしては、上述した多官能性 (メ タ)アタリレート (D— 1)が好ましく用いられる。多官能性モノマーは、バインダーポリマ 一 100重量部に対して、通常 5〜; 100重量部、好ましくは 10〜70重量部用いられる 。多官能性モノマーの量が上記範囲よりも低いと、レジストパターン強度が不十分な ものとなる傾向があり、上記範囲を超えると、アルカリ解像性が低下したり、レジストパ ターン形成部以外の部分の地汚れおよび膜残りなどが発生することがある。  [0133] As the polyfunctional monomer used in the resist composition, the above-mentioned polyfunctional (meta) acrylate (D-1) is preferably used. The polyfunctional monomer is usually used in an amount of 5 to 100 parts by weight, preferably 10 to 70 parts by weight, based on 100 parts by weight of the binder polymer. If the amount of the polyfunctional monomer is lower than the above range, the resist pattern strength tends to be insufficient, and if the amount exceeds the above range, the alkali resolution decreases or the portion other than the resist pattern forming portion. Soiling and film residue may occur.
[0134] 上記レジスト組成物に用いられる放射線重合開始剤としては、上述した放射線重合 開始剤 (D— 2)が挙げられる。  [0134] Examples of the radiation polymerization initiator used in the resist composition include the radiation polymerization initiator (D-2) described above.
[0135] 上記レジスト組成物には、適当な流動性もしくは可塑性、または良好な膜形成性を 付与するために、通常、溶剤が含有される。このような溶剤としては、特に制限される ものではなぐ上述した特定溶剤などが好ましく用いられる。 [0136] また、上記レジスト組成物には、任意成分として、現像促進剤、接着助剤、ハレーシ ヨン防止剤、保存安定剤、消泡剤、酸化防止剤、紫外線吸収剤、フィラー、蛍光体、 顔料および/または染料などの各種添加剤が含有されて!/、てもよ!/、。 [0135] The resist composition usually contains a solvent in order to impart appropriate fluidity or plasticity or good film-forming properties. As such a solvent, the specific solvent mentioned above etc. which are not specifically limited are used preferably. [0136] The resist composition includes, as optional components, a development accelerator, an adhesion assistant, a halation inhibitor, a storage stabilizer, an antifoaming agent, an antioxidant, an ultraviolet absorber, a filler, a phosphor, Contains various additives such as pigments and / or dyes! /, May!
[0137] 上記積層型転写フィルムは、支持フィルムまたは無機粉体含有樹脂層上に、レジス ト組成物を塗布してレジスト膜を形成し、該レジスト膜上に本発明の組成物を塗布し て無機粉体含有樹脂層を形成することにより得られる。また、上記積層型転写フィル ムは、支持フィルムまたは無機粉体含有樹脂層上に、無機粉体含有樹脂層を形成し 、これとは別に保護フィルム上にレジスト膜を形成し、該樹脂層表面とレジスト膜表面 とを重ね合わせて圧着する方法によっても、好適に形成することができる。  [0137] In the laminated transfer film, a resist composition is formed on a support film or an inorganic powder-containing resin layer to form a resist film, and the composition of the present invention is applied on the resist film. It is obtained by forming an inorganic powder-containing resin layer. In addition, the laminated transfer film forms an inorganic powder-containing resin layer on the support film or the inorganic powder-containing resin layer, and forms a resist film on the protective film separately from the resin film surface. It can also be suitably formed by a method in which the resist film surface and the resist film surface are overlapped and pressure-bonded.
[0138] レジスト組成物を塗布および乾燥する方法としては、上述した無機粉体含有樹脂組 成物の塗布および乾燥方法を用いることができる。  [0138] As a method for applying and drying the resist composition, the above-described method for applying and drying the inorganic powder-containing resin composition can be used.
[0139] 形成されるレジスト膜の厚さは、 5〜; 15 mであることが好ましい。  [0139] The thickness of the resist film to be formed is preferably 5 to 15 m.
[0140] 本発明の転写フィルムは、通常、ロール状に巻かれた状態で保管される。  [0140] The transfer film of the present invention is usually stored in a rolled state.
[0141] 〔FPD部材の製造方法〕  [0141] [Method for manufacturing FPD member]
本発明の FPD部材の製造方法として好ましい態様は、下記の通りである。  Preferred embodiments of the method for producing the FPD member of the present invention are as follows.
[1]基板上に、本発明の転写フィルムの無機粉体含有樹脂層を転写する工程と、転 写された無機粉体含有樹脂層を焼成する工程とを含む方法により、パネル部材であ る誘電体層を形成する方法 (FPDの製造方法 (I) )。  [1] A panel member by a method comprising a step of transferring an inorganic powder-containing resin layer of a transfer film of the present invention onto a substrate and a step of firing the transferred inorganic powder-containing resin layer. A method of forming a dielectric layer (FPD manufacturing method (I)).
[2]基板上に、本発明の転写フィルムの無機粉体含有樹脂層を転写する工程と、転 写された無機粉体含有樹脂層上にレジストパターンを形成する工程と、無機粉体含 有樹脂層をエッチング処理してレジストパターンに対応するパターンを形成する工程 と、該パターンを焼成処理する工程とを含む方法により、パネル部材である誘電体層 、電極、隔壁、蛍光体、抵抗体、カラーフィルターおよびブラックマトリックスから選ば れる少なくとも一種を形成する方法 (FPDの製造方法 (II) )。  [2] A step of transferring the inorganic powder-containing resin layer of the transfer film of the present invention onto a substrate, a step of forming a resist pattern on the transferred inorganic powder-containing resin layer, and an inorganic powder-containing step A dielectric layer, an electrode, a partition, a phosphor, a resistor, which is a panel member, by a method including a step of etching a resin layer to form a pattern corresponding to a resist pattern and a step of baking the pattern A method of forming at least one selected from a color filter and a black matrix (FPD production method (II)).
[3]基板上に、積層型転写フィルムの積層膜を無機粉体含有樹脂層が基板に当接 するように転写する工程と、転写された積層膜におけるレジスト膜を露光処理してレ ジストパターンの潜像を形成する工程と、レジスト膜を現像処理してレジストパターン を顕在化させる工程と、無機粉体含有樹脂層をエッチング処理してレジストパターン に対応するパターンを形成する工程と、該パターンを焼成処理する工程とを含む方 法により、パネル部材である誘電体層、電極、隔壁、蛍光体、抵抗体、カラーフィルタ 一およびブラックマトリックスから選ばれる少なくとも一種を形成する方法 (FPDの製 造方法 (111) )。 [3] A step of transferring a laminated film of a laminated transfer film on a substrate so that the inorganic powder-containing resin layer is in contact with the substrate, and exposing the resist film in the transferred laminated film to a resist pattern Forming a latent image, developing the resist film to reveal the resist pattern, etching the inorganic powder-containing resin layer, and forming a resist pattern Selected from a dielectric layer, an electrode, a barrier rib, a phosphor, a resistor, a color filter, and a black matrix, which are panel members, by a method including a step of forming a pattern corresponding to the pattern and a step of baking the pattern. A method of forming at least one kind (FPD manufacturing method (111)).
[4]基板上に、感光性転写フィルムの無機粉体含有樹脂層を転写する工程と、転写 された無機粉体含有樹脂層を露光処理してパターンの潜像を形成する工程と、該無 機粉体含有樹脂層を現像処理してパターンを形成する工程と、該パターンを焼成処 理する工程とを含む方法により、パネル部材である誘電体層、電極、隔壁、蛍光体、 抵抗体、カラーフィルターおよびブラックマトリックスから選ばれる少なくとも一種を形 成する方法 (FPDの製造方法 (IV) )。  [4] A step of transferring an inorganic powder-containing resin layer of a photosensitive transfer film onto a substrate, a step of exposing the transferred inorganic powder-containing resin layer to form a latent image of a pattern, A dielectric layer, an electrode, a partition wall, a phosphor, a resistor, which is a panel member, by a method including a step of developing a machine powder-containing resin layer to form a pattern and a step of firing the pattern. A method of forming at least one selected from a color filter and a black matrix (FPD manufacturing method (IV)).
[5]基板上に、本発明の転写フィルムの無機粉体含有樹脂層を転写する工程と、転 写された無機粉体含有樹脂層を焼成して無機膜を形成する工程と、該無機膜上に レジストパターンを形成する工程と、無機膜をエッチング処理してレジストパターンに 対応するパターンを形成する工程とを含む方法により、パネル部材である誘電体層、 電極、隔壁、蛍光体、抵抗体、カラーフィルターおよびブラックマトリックスから選ばれ る少なくとも一種を形成する方法 (FPDの製造方法 (V) )。  [5] A step of transferring the inorganic powder-containing resin layer of the transfer film of the present invention onto a substrate, a step of baking the transferred inorganic powder-containing resin layer to form an inorganic film, and the inorganic film A dielectric layer, an electrode, a partition, a phosphor, and a resistor, which are panel members, by a method including a step of forming a resist pattern thereon and a step of etching the inorganic film to form a pattern corresponding to the resist pattern And a method of forming at least one selected from a color filter and a black matrix (FPD production method (V)).
[0142] 以下、各態様について説明する。  [0142] Each aspect will be described below.
[0143] < FPDの製造方法(I) >  [0143] <FPD manufacturing method (I)>
上記 FPDの製造方法 (I)における転写工程の一例を示せば以下の通りである。 An example of the transfer process in the FPD manufacturing method (I) is as follows.
(1)ロール状に巻回された状態の転写フィルムを、基板の面積に応じた大きさに裁断 する。 (1) The transfer film wound in a roll shape is cut into a size corresponding to the area of the substrate.
(2)裁断した転写フィルムにおける無機粉体含有樹脂層表面から必要に応じてカバ 一フィルムを剥離した後、基板の表面に無機粉体含有樹脂層の表面が当接するよう に転写フィルムを重ね合わせる。  (2) After removing the cover film as necessary from the surface of the inorganic powder-containing resin layer in the cut transfer film, the transfer film is overlaid so that the surface of the inorganic powder-containing resin layer is in contact with the surface of the substrate. .
(3)基板に重ね合わされた転写フィルム上に加熱ローラを移動させて熱圧着させる。  (3) The heating roller is moved on the transfer film superimposed on the substrate and thermocompression bonded.
(4)熱圧着により基板に固定された無機粉体含有樹脂層から支持フィルムを剥離除 去する。  (4) The support film is peeled off from the inorganic powder-containing resin layer fixed to the substrate by thermocompression bonding.
[0144] 上記のような操作により、支持フィルム上の無機粉体含有樹脂層が基板上に転写さ れる。このときの転写条件としては、たとえば、加熱ローラの表面温度が 60〜; 120°C 、加熱ローラによるロール圧が l〜5kg/cm2および加熱ローラの移動速度が 0. 2〜 10. Om/分である。このような操作 (転写工程)は、ラミネータ装置により行うことがで きる。なお、基板は予熱されていてもよぐ予熱温度としては、たとえば 40〜100°Cと すること力 Sでさる。 [0144] By the operation as described above, the inorganic powder-containing resin layer on the support film is transferred onto the substrate. It is. As the transfer conditions at this time, for example, the surface temperature of the heating roller is 60 to 120 ° C, the roll pressure by the heating roller is 1 to 5 kg / cm 2, and the moving speed of the heating roller is 0.2 to 10 Om / Minutes. Such an operation (transfer process) can be performed by a laminator apparatus. Note that the preheating temperature at which the substrate may be preheated is, for example, 40 to 100 ° C.
[0145] 基板の表面に転写および形成された無機粉体含有樹脂層は、焼成されて無機焼 結体 (誘電体層)となる。焼成方法としては、無機粉体含有樹脂層が転写および形成 された基板を高温雰囲気下に配置する方法が挙げられる。焼成処理により、無機粉 体含有樹脂層に含有されて!/、る有機物質が分解されて除去され、無機粉体が溶融 して焼結する。焼成温度としては、基板の溶融温度および無機粉体含有樹脂層中の 構成物質などによっても異なる力 たとえば 300〜800°C、好ましくは 400〜620°C である。  [0145] The inorganic powder-containing resin layer transferred and formed on the surface of the substrate is fired to form an inorganic sintered body (dielectric layer). Examples of the firing method include a method in which the substrate on which the inorganic powder-containing resin layer is transferred and formed is placed in a high-temperature atmosphere. By the baking treatment, the organic substance contained in the inorganic powder-containing resin layer is decomposed and removed, and the inorganic powder is melted and sintered. The firing temperature is a force that varies depending on the melting temperature of the substrate and the constituent materials in the inorganic powder-containing resin layer, for example, 300 to 800 ° C, preferably 400 to 620 ° C.
[0146] 本発明のフラットパネルディスプレイ (FPD)部材の製造方法は、基板上に導電性 粉末含有樹脂組成物を含むパターンを形成する工程と、該パターン上に上記転写フ イルムを構成する無機粉体含有樹脂組成層を転写して前記基板上に積層膜を形成 する工程と、該積層膜を焼成する工程とを含む。  [0146] The method for producing a flat panel display (FPD) member of the present invention comprises a step of forming a pattern containing a conductive powder-containing resin composition on a substrate, and an inorganic powder constituting the transfer film on the pattern. A step of transferring the body-containing resin composition layer to form a laminated film on the substrate; and a step of firing the laminated film.
[0147] f †半 ま ^ j旨 成 1^»含むパターンの开成,  [0147] f † Half ^ ^ J Composition 1 ^ »Development of patterns including,
本発明で用いられる導電性粉末含有樹脂組成物は、一般的な電極を形成するた めに用いる組成物を用いることができる。  As the conductive powder-containing resin composition used in the present invention, a composition used for forming a general electrode can be used.
[0148] 導電性粉末としては、たとえば Ag、 Au、 Al、 Ni、 Ag— Pd合金、 Cu、 Cr、および C oなどを挙げることができる。  [0148] Examples of the conductive powder include Ag, Au, Al, Ni, Ag-Pd alloy, Cu, Cr, and Co.
[0149] 導電性粉末含有樹脂組成物は、スクリーン印刷または感光性ペーストによって膜を 形成し、露光および現像を行い、パターン形成する。導電性粉末含有樹脂層の膜厚 は、通常 5〜; 100 μ mである。  [0149] The conductive powder-containing resin composition forms a film by screen printing or photosensitive paste, and is subjected to exposure and development to form a pattern. The film thickness of the conductive powder-containing resin layer is usually 5 to 100 μm.
[0150] 分ま ϋ旨 成^: び ネ幾 {本 ϋ旨 §の '焼成,  [0150] Boiled rice cakes ^: Bine {Bake of 本, 本
未焼成の導電性粉末含有樹脂組成物を含むパターンが形成された基板の表面に 転写および形成された無機粉体含有樹脂層は、焼成されて導電性焼結体 (電極層) および無機焼結体 (誘電体層)の積層構造となる。焼成方法としては、未焼成の導電 性粉末含有樹脂組成物を含むパターン上に無機粉体含有樹脂層が転写および形 成された基板を高温雰囲気下に配置する方法が挙げられる。焼成処理により、導電 性粉末含有樹脂層および無機粉体含有樹脂層に含有されている有機物質が分解さ れて除去され、導電性粉末および無機粉体が溶融して焼結する。 The inorganic powder-containing resin layer transferred and formed on the surface of the substrate on which the pattern containing the unfired conductive powder-containing resin composition is formed is fired to form a conductive sintered body (electrode layer) and inorganic sintering. It becomes a laminated structure of a body (dielectric layer). As a firing method, unfired conductive And a method in which a substrate on which an inorganic powder-containing resin layer is transferred and formed on a pattern containing a conductive powder-containing resin composition is placed in a high-temperature atmosphere. By the firing treatment, the organic substances contained in the conductive powder-containing resin layer and the inorganic powder-containing resin layer are decomposed and removed, and the conductive powder and the inorganic powder are melted and sintered.
[0151] < FPDの製造方法(II)〉  [0151] <FPD manufacturing method (II)>
上記 FPDの製造方法 (II)は、基板上に、本発明の転写フィルムの無機粉体含有 樹脂層を転写する工程と、転写された無機粉体含有樹脂層上にレジストパターンを 形成する工程と、無機粉体含有樹脂層をエッチング処理してレジストパターンに対応 するパターンを形成する工程と、該パターンを焼成処理する工程とを含む。  The FPD production method (II) includes a step of transferring the inorganic powder-containing resin layer of the transfer film of the present invention onto a substrate, and a step of forming a resist pattern on the transferred inorganic powder-containing resin layer. And a step of etching the inorganic powder-containing resin layer to form a pattern corresponding to the resist pattern, and a step of baking the pattern.
[0152] 以下、 FPDの構成要素である「隔壁」を背面基板上の表面に形成する方法につい て説明する。この方法においては、(1)無機粉体含有樹脂層の転写工程と、(2)レジ ストパターンの形成工程と、(3)無機粉体含有樹脂層のエッチング工程と、(4)無機 粉体含有樹脂パターンの焼成工程とからなる工程により基板の表面に隔壁が形成さ れる。  Hereinafter, a method for forming “partition walls”, which are constituent elements of FPD, on the surface of the back substrate will be described. In this method, (1) an inorganic powder-containing resin layer transfer step, (2) a resist pattern forming step, (3) an inorganic powder-containing resin layer etching step, and (4) an inorganic powder A partition wall is formed on the surface of the substrate by a process including a firing process of the containing resin pattern.
[0153] なお、本発明において、無機粉体含有樹脂層を基板上に転写する態様としては、 前記ガラス基板の表面に転写するような態様のほかに、前記誘電体層の表面に転写 するような態様も含まれる。  [0153] In the present invention, the mode of transferring the inorganic powder-containing resin layer onto the substrate is not limited to the mode of transferring onto the surface of the glass substrate, but is transferred onto the surface of the dielectric layer. Various embodiments are also included.
(1)無機粉体含有樹脂層の転写工程  (1) Transfer process of resin layer containing inorganic powder
無機粉体含有樹脂層の転写工程は、上述した FPDの製造方法 (I)における転写 工程と同様である。  The transfer process of the inorganic powder-containing resin layer is the same as the transfer process in the FPD manufacturing method (I) described above.
(2)レジストパターンの形成工程  (2) Resist pattern formation process
無機粉体含有樹脂層上にレジストパターンを形成する方法としては特に限定され ないが、好ましくは、レジスト膜の形成、露光および現像の工程を経て、レジストバタ ーンが形成される。  A method for forming a resist pattern on the inorganic powder-containing resin layer is not particularly limited, but a resist pattern is preferably formed through steps of forming a resist film, exposing and developing.
[0154] レジスト膜の形成は、上述したレジスト組成物を無機粉体含有樹脂層の上に塗布し 、乾燥させて行ってもよいし、支持フィルム上にレジスト組成物を塗布し、乾燥して得 られた転写フィルムを用いて、無機粉体含有樹脂層上にレジスト膜を転写して形成し てもよいが、工程の簡便性を考慮すると、転写による形成が好ましい。 [0155] レジスト膜の露光は、形成されたレジスト膜の表面に、露光用マスクを介して、紫外 線などの放射線を選択的に照射(露光)して、レジストパターンの潜像を形成する。露 光の際に用いられる紫外線照射装置としては、特に限定されず、フォトリソグラフィー 法で一般的に使用されている紫外線照射装置、半導体および液晶表示装置を製造 する際に使用されている露光装置などが挙げられる。また、露光用マスクを介さず、 レーザー光などを描画することにより露光を行ってもよい。なお、レジスト膜上に被覆 されて!/、る支持フィルムは剥離しな!/、状態で露光工程を行い、露光後に剥離すること が好ましい。 [0154] The resist film may be formed by applying the above-described resist composition onto the inorganic powder-containing resin layer and drying it, or applying the resist composition onto a support film and drying it. The resulting transfer film may be used to transfer and form a resist film on the inorganic powder-containing resin layer. However, considering the simplicity of the process, formation by transfer is preferred. [0155] In the exposure of the resist film, the surface of the formed resist film is selectively irradiated (exposed) with radiation such as ultraviolet rays through an exposure mask to form a latent image of the resist pattern. The ultraviolet irradiation apparatus used for exposure is not particularly limited, and the ultraviolet irradiation apparatus generally used in the photolithography method, the exposure apparatus used when manufacturing semiconductors and liquid crystal display devices, etc. Is mentioned. Further, exposure may be performed by drawing laser light or the like without using an exposure mask. Note that it is preferable to perform the exposure process in a state where the resist film is coated on the resist film and not peeled, and peeled after the exposure.
[0156] レジスト膜の現像は、露光されたレジスト膜におけるレジストパターン (潜像)を顕在 化させる処理である。現像処理条件としては、レジスト膜の種類などに応じて、現像 液の種類、組成、濃度、現像時間、現像温度、現像方法 (たとえば、浸漬法、揺動法 、シャワー法、スプレー法またはパドル法)または現像装置などを適宜選択することが できる。この現像工程により、レジスト残留部とレジスト除去部とから構成されるレジス トパターン (露光用マスクに対応するパターン)が形成される。  [0156] The development of the resist film is a process for revealing a resist pattern (latent image) in the exposed resist film. The development processing conditions include the type of developer, composition, concentration, development time, development temperature, development method (for example, dipping method, rocking method, shower method, spray method or paddle method) depending on the type of resist film. ) Or a developing device or the like can be selected as appropriate. By this development step, a resist pattern (pattern corresponding to the exposure mask) composed of the resist remaining portion and the resist removal portion is formed.
[0157] このレジストパターンは、次工程 (無機粉体含有樹脂層のエッチング工程)における エッチングマスクとして作用するものであり、レジスト残留部の構成材料 (光硬化され たレジスト)は、無機粉体含有樹脂層の構成材料よりも、次工程で用いる現像液に対 する溶解速度が小さレ、ことが必要である。  [0157] This resist pattern acts as an etching mask in the next step (etching step of the inorganic powder-containing resin layer), and the constituent material (photocured resist) of the remaining resist portion contains inorganic powder. It is necessary that the dissolution rate in the developer used in the next step is lower than that of the constituent material of the resin layer.
(3)無機粉体含有樹脂層のエッチング工程  (3) Inorganic powder-containing resin layer etching process
この工程においては、無機粉体含有樹脂層をエッチング処理し、レジストパターン に対応する隔壁パターン層を形成する。すなわち、無機粉体含有樹脂層のうち、レ ジストパターンのレジスト除去部に対応する部分が選択的に除去される。そして、無 機粉体含有樹脂層における所定の部分が完全に除去されて誘電体層が露出する。 これにより、樹脂層残留部と樹脂層除去部とから構成される無機粉体含有樹脂バタ ーンが形成される。  In this step, the inorganic powder-containing resin layer is etched to form a partition pattern layer corresponding to the resist pattern. That is, the portion corresponding to the resist removal portion of the resist pattern in the inorganic powder-containing resin layer is selectively removed. Then, a predetermined portion of the inorganic powder-containing resin layer is completely removed, and the dielectric layer is exposed. As a result, an inorganic powder-containing resin pattern composed of the resin layer residual portion and the resin layer removal portion is formed.
[0158] エッチング方法としては、無機粉体含有樹脂層の種類などに応じて適宜選択するこ とができる力 S、アルカリ現像処理またはサンドブラスト処理が好ましく用いられる。  [0158] As the etching method, a force S that can be appropriately selected according to the type of the inorganic powder-containing resin layer, an alkali development treatment or a sand blast treatment is preferably used.
[0159] アルカリ現像処理を行う場合には、上述したレジスト膜の現像に用いた現像液を用 い、同様の現像条件で、レジスト膜および無機粉体含有樹脂層の現像を連続して行 うことが好ましい。現像液の種類、組成、濃度、処理時間、処理温度、処理方法 (たと えば、浸漬法、揺動法、シャワー法、スプレー法またはパドル法)または処理装置など を適宜選択することができる。上記レジストパターンを構成するレジスト残留部は、現 像処理の際に徐々に溶解され、無機粉体含有樹脂パターンが形成された段階 (現 像処理の終了時)で完全に除去されるものであることが好ましい。なお、エッチング( 現像)処理後にレジスト残留部の一部または全部が残留していても、該レジスト残留 部は、次の焼成工程で除去される。 [0159] When the alkali development treatment is performed, the developer used for developing the resist film described above is used. However, it is preferable to continuously develop the resist film and the inorganic powder-containing resin layer under the same development conditions. The type, composition, concentration, processing time, processing temperature, processing method (for example, dipping method, rocking method, shower method, spray method or paddle method) or processing device of the developing solution or the like can be appropriately selected. The resist remaining portion constituting the resist pattern is gradually dissolved during the image processing, and is completely removed at the stage where the inorganic powder-containing resin pattern is formed (at the end of the image processing). It is preferable. Even if a part or all of the resist residue remains after the etching (development) process, the resist residue is removed in the next baking step.
[0160] サンドブラスト処理を行う場合には、無機粉体含有樹脂層に可塑性付与物質 (C)、 特に、長鎖アルキル (メタ)アタリレートを含有する転写フィルムを用いて無機粉体含 有樹脂層の転写を行い、転写の後にポストベータ処理を行うことが好ましい。ポストべ ークを行うことにより、該樹脂層中の残留溶媒および可塑性付与物質 (C)を除去し、 樹脂層にサンドブラスト性 (脆性)を付与することができる。ここで、ポストベータ処理 条件は、たとえば処理温度が 100〜300°Cおよび処理時間が 15〜120分間である。 その後、上記樹脂層上にレジストパターンを形成し、サンドブラスト装置により、主に ポストベータ処理後の無機粉体含有樹脂層の露出部分をサンドブラスト処理して除 去することにより、所望の形態のパターンを形成する。なお、エッチング処理後にレジ スト残留部の一部または全部が残留していても、該レジスト残留部は次の焼成工程 で除去される。 [0160] In the case of sandblasting, the inorganic powder-containing resin layer is formed by using a transfer film containing plasticity-imparting substance (C), particularly, a long-chain alkyl (meth) acrylate, in the inorganic powder-containing resin layer. It is preferable to perform post-transfer treatment after the transfer. By performing post-baking, the residual solvent and plasticity-imparting substance (C) in the resin layer can be removed, and sandblasting (brittleness) can be imparted to the resin layer. Here, the post-beta treatment conditions are, for example, a treatment temperature of 100 to 300 ° C. and a treatment time of 15 to 120 minutes. After that, a resist pattern is formed on the resin layer, and the exposed portion of the inorganic powder-containing resin layer after the post-beta treatment is mainly removed by sandblasting using a sandblasting device, whereby a pattern having a desired form is obtained. Form. Even if a part or all of the resist residue remains after the etching process, the resist residue is removed in the next baking step.
(4)無機粉体含有樹脂パターンの焼成工程  (4) Inorganic powder-containing resin pattern firing process
この工程にお!/、ては、無機粉体含有樹脂パターンを焼成処理して隔壁を形成する 。これにより、樹脂層残留部中の有機物質が焼失して隔壁が形成され、誘電体層の 表面に隔壁が形成されてなるパネル材料において、隔壁により区画される空間(樹 脂層除去部に由来する空間)はプラズマ作用空間となる。  In this process, the partition walls are formed by baking the inorganic powder-containing resin pattern. As a result, in the panel material in which the organic material in the resin layer remaining portion is burned out to form a partition and the partition is formed on the surface of the dielectric layer, the space partitioned by the partition (derived from the resin layer removal portion) Space) is a plasma action space.
[0161] 焼成処理の温度としては、有機物質が焼失される温度であることが必要であり、通 常 400〜600°Cである。また、焼成時間は、通常 10〜90分間である。 [0161] The temperature of the baking treatment is required to be a temperature at which the organic substance is burned off, and is usually 400 to 600 ° C. The firing time is usually 10 to 90 minutes.
[0162] < FPDの製造方法(III) > [0162] <Method for producing FPD (III)>
FPDの製造方法 (III)は、 FPDの製造方法 (II)における好ましい態様、特に、レジ スト膜および無機粉体含有樹脂層をアルカリ現像処理によりエッチングする場合の好 ましい態様である。 FPD production method (III) is a preferred embodiment of FPD production method (II), in particular, This is a preferred embodiment when the strike film and the inorganic powder-containing resin layer are etched by alkali development.
[0163] FPDの製造方法 (III)にお!/、ては、レジスト膜および無機粉体含有樹脂層の積層 膜を基板上に転写する。転写工程の一例を示せば以下のとおりである。  [0163] In the FPD manufacturing method (III), the laminated film of the resist film and the inorganic powder-containing resin layer is transferred onto the substrate. An example of the transfer process is as follows.
[0164] 転写フィルムのカバーフィルムを剥離した後、誘電体層の表面に、無機粉体含有樹 脂層の表面が当接されるように転写フィルムを重ね合わせ、この転写フィルムを加熱 ローラなどにより熱圧着する。これにより、誘電体層の表面に無機粉体含有樹脂層と レジスト膜との積層膜が転写されて密着した状態となる。転写条件としては、たとえば 、加熱ローラの表面温度が 80〜140°C、加熱ローラによるローラ圧が l〜5kg/cm2 および加熱ローラの移動速度が 0. ;!〜 10. Om/分である。また、ガラス基板は予熱 されていてもよく、予熱温度としては、たとえば 40〜; 100°Cとすることができる。 [0164] After the cover film of the transfer film is peeled off, the transfer film is superimposed on the surface of the dielectric layer so that the surface of the inorganic powder-containing resin layer is in contact with the surface of the dielectric layer. Thermocompression bonding. As a result, the laminated film of the inorganic powder-containing resin layer and the resist film is transferred and adhered to the surface of the dielectric layer. As the transfer conditions, for example, the surface temperature of the heating roller is 80 to 140 ° C., the roller pressure by the heating roller is 1 to 5 kg / cm 2, and the moving speed of the heating roller is 0.;! To 10. Om / min . Further, the glass substrate may be preheated, and the preheating temperature may be, for example, 40 to 100 ° C.
[0165] FPDの製造方法 (III)における積層膜転写後の工程は、 FPDの製造方法 (II)にお ける(2)〜(4)の工程 (特に、レジスト膜と無機粉体含有樹脂層を共にアルカリ現像 する場合)に準ずる。  [0165] The process after transfer of the laminated film in the FPD manufacturing method (III) is the same as the steps (2) to (4) in the FPD manufacturing method (II) (in particular, the resist film and the inorganic powder-containing resin layer). In the case of alkali development).
[0166] < FPDの製造方法(IV) >  [0166] <Method for manufacturing FPD (IV)>
FPDの製造方法 (IV)は、本発明の感光性転写フィルムを構成する無機粉体含有 樹脂層を基板上に転写し、該樹脂層を露光処理してパターンの潜像を形成し、該樹 脂層を現像処理してパターンを形成し、該パターンを焼成処理することにより、誘電 体層、隔壁、電極、抵抗体、蛍光体、カラーフィルターおよびブラックマトリックスから 選ばれるパネル部材を形成する工程を含む。  The FPD production method (IV) transfers an inorganic powder-containing resin layer constituting the photosensitive transfer film of the present invention onto a substrate and exposes the resin layer to form a latent image of a pattern. The process of forming a panel member selected from a dielectric layer, a partition, an electrode, a resistor, a phosphor, a color filter, and a black matrix by developing the oil layer to form a pattern and firing the pattern. Including.
[0167] この方法においては、たとえば隔壁を形成する場合、上記 FPDの製造方法 (II)に おける「無機粉体含有樹脂層の転写工程」の後、「レジスト膜の露光工程」および「レ ジスト膜の現像工程」に準じた方法および条件で無機粉体含有樹脂パターンを形成 し、その後「無機粉体含有樹脂パターンの焼成工程」により、基板の表面に隔壁が形 成される。  In this method, for example, when a partition wall is formed, after the “transfer process of the inorganic powder-containing resin layer” in the FPD manufacturing method (II), the “resist film exposure step” and “resist An inorganic powder-containing resin pattern is formed by a method and conditions according to the “development process of the film”, and then a partition wall is formed on the surface of the substrate by the “firing process of the inorganic powder-containing resin pattern”.
[0168] < FPDの製造方法(V) >  [0168] <FPD manufacturing method (V)>
FPDの製造方法 (V)は、本発明の転写フィルムを構成する無機粉体含有樹脂層 を基板上に転写し、該樹脂層を焼成して無機膜を形成し、該無機膜上にレジストバタ ーンを形成し、該無機膜をエッチング処理してレジストパターンに対応する無機膜パ ターンを形成することにより隔壁などのパネル材料を形成する。 In the FPD manufacturing method (V), the inorganic powder-containing resin layer constituting the transfer film of the present invention is transferred onto a substrate, the resin layer is baked to form an inorganic film, and a resist pattern is formed on the inorganic film. A panel material such as a partition is formed by forming a film and etching the inorganic film to form an inorganic film pattern corresponding to the resist pattern.
[0169] この方法においては、たとえば隔壁を形成する場合、上記 FPDの製造方法 (II)に おける「無機粉体含有樹脂層の転写工程」の後、「無機粉体含有樹脂パターンの焼 成工程」を先に行って無機膜を形成し、該無機膜上に「レジストパターンの形成工程 」に準じた条件でレジストパターンを形成し、その後、該レジストパターンをマスクとし て無機膜をエッチング処理することにより、基板の表面に隔壁が形成される。なお、 隔壁表面に残留するレジストは、通常、剥離液等を用いて剥離する。  [0169] In this method, for example, when a partition wall is formed, after the "transfer process of the inorganic powder-containing resin layer" in the FPD manufacturing method (II), the "calculation process of the inorganic powder-containing resin pattern" First, an inorganic film is formed, a resist pattern is formed on the inorganic film under the conditions in accordance with the “resist pattern forming step”, and then the inorganic film is etched using the resist pattern as a mask. Thereby, a partition is formed on the surface of the substrate. Note that the resist remaining on the partition wall surface is usually stripped using a stripping solution or the like.
[0170] 無機膜のエッチング液としては、通常、硝酸、塩酸および硫酸等の酸の溶液が用い られ、特に硝酸が好適に用いられる。エッチング液の濃度としては、通常、 0. ;!〜 10 重量%、好ましくは 0. 2〜2重量%である。エッチング工程は、好ましくは、エッチング 液を無機膜にスプレー等により噴射することにより行われ、たとえば、スプレー圧;!〜 5MPa、温度 20〜60°Cおよびエッチング時間 5〜20分間で行われる。  [0170] As the etching solution for the inorganic film, an acid solution such as nitric acid, hydrochloric acid and sulfuric acid is usually used, and nitric acid is particularly preferably used. The concentration of the etching solution is usually 0.2;! To 10% by weight, preferably 0.2 to 2% by weight. The etching step is preferably performed by spraying an etching solution onto the inorganic film by spraying or the like, for example, spray pressure;! To 5 MPa, temperature 20 to 60 ° C., and etching time 5 to 20 minutes.
[0171] 〔実施例〕  [Example]
以下、本発明の実施例を示すが、本発明はこれらの実施例に限定されるものでは ない。なお、以下において「部」は「重量部」を示す。  Examples of the present invention are shown below, but the present invention is not limited to these examples. In the following, “part” means “part by weight”.
[0172] <合成例;!〉 [0172] <Synthesis example;!>
ポリエチレングリコールメタタリレート 40部、 2—ェチルへキシルアタリレート 40部、ス チレン 20部および N, N,—ァゾビスイソブチロニトリル 0. 75部を、攪拌機付きオート クレープに仕込み、窒素雰囲気下において室温で均一になるまで攪拌した。攪拌後 、 80°Cで 3時間重合させ、さらに N, N'—ァゾビスイソブチロニトリル 0. 25部を加え て 1時間重合し、 100°Cで 1時間重合反応を継続させた後、室温まで冷却してポリマ 一溶液を得た。得られたポリマー溶液は重合率が 98%であり、このポリマー溶液から 析出した共重合体(以下、「樹脂(1)」ともいう。)の Mwは 30,000であった。  Charge 40 parts of polyethylene glycol methacrylate, 40 parts of 2-ethylhexyl acrylate, 20 parts of styrene, and 0.75 part of N, N, -azobisisobutyronitrile into an autoclave with a stirrer, and a nitrogen atmosphere. Under stirring at room temperature until homogeneous. After stirring, polymerize at 80 ° C for 3 hours, further add 0.25 part of N, N'-azobisisobutyronitrile, polymerize for 1 hour, and continue the polymerization reaction at 100 ° C for 1 hour. Then, it was cooled to room temperature to obtain a polymer solution. The resulting polymer solution had a polymerization rate of 98%, and the Mw of the copolymer precipitated from this polymer solution (hereinafter also referred to as “resin (1)”) was 30,000.
[0173] <合成例 2〉 [Synthesis Example 2]
ポリエチレングリコールメタタリレート 40部、 2—ェチルへキシルアタリレート 40部、ス チレン 20部および N, N,—ァゾビスイソブチロニトリル 5. 0部を、攪拌機付きオートク レーブに仕込み、窒素雰囲気下において室温で均一になるまで攪拌した。攪拌後、 90°Cで 1時間重合させ、さらに N, Ν'—ァゾビスイソブチロニトリル 1 · 0部を加えて 1 時間重合し、 100°Cで 1時間重合反応を継続させた後、室温まで冷却してポリマー溶 液を得た。得られたポリマー溶液は重合率が 98%であり、このポリマー溶液から析出 した共重合体(以下、「樹脂(2)」ともいう。)の Mwは 1,000であった。 Charge 40 parts of polyethylene glycol methacrylate, 40 parts of 2-ethylhexyl acrylate, 20 parts of styrene, and 5.0 parts of N, N, -azobisisobutyronitrile into an autoclave with a stirrer and a nitrogen atmosphere. Under stirring at room temperature until homogeneous. After stirring, Polymerize at 90 ° C for 1 hour, add N, Ν'-azobisisobutyronitrile 1 · 0 parts, polymerize for 1 hour, continue polymerization reaction at 100 ° C for 1 hour, then to room temperature The polymer solution was obtained by cooling. The resulting polymer solution had a polymerization rate of 98%, and the copolymer precipitated from this polymer solution (hereinafter also referred to as “resin (2)”) had a Mw of 1,000.
[0174] <合成例 3〉  [0174] <Synthesis Example 3>
ポリエチレングリコールメタタリレート 40部、 2 ェチルへキシルアタリレート 40部、ス チレン 20部および N, N,—ァゾビスイソブチロニトリル 0. 50部を、攪拌機付きオート クレープに仕込み、窒素雰囲気下において室温で均一になるまで攪拌した。攪拌後 、 65°Cで 4時間重合させ、さらに N, N'—ァゾビスイソブチロニトリル 0. 25部を加え て 2時間重合し、 100°Cで 1時間重合反応を継続させた後、室温まで冷却してポリマ 一溶液を得た。得られたポリマー溶液は重合率が 98%であり、このポリマー溶液から 析出した共重合体(以下、「樹脂(3)」ともいう。)の Mwは 200,000であった。  Charge 40 parts of polyethylene glycol methacrylate, 40 parts of 2-ethylhexyl acrylate, 20 parts of styrene, and 0.50 part of N, N, -azobisisobutyronitrile into an autoclave equipped with a stirrer, under a nitrogen atmosphere. At room temperature until homogeneous. After stirring, polymerize at 65 ° C for 4 hours, further add 0.25 part of N, N'-azobisisobutyronitrile, polymerize for 2 hours, and continue the polymerization reaction at 100 ° C for 1 hour. Then, it was cooled to room temperature to obtain a polymer solution. The resulting polymer solution had a polymerization rate of 98%, and the Mw of the copolymer precipitated from this polymer solution (hereinafter also referred to as “resin (3)”) was 200,000.
[0175] <合成例 4〉  [0175] <Synthesis Example 4>
プロピレングリコールモノメチルエーテル 240部、 n ブチルメタタリレート 60部、 2 ェチルへキシルメタタリレート 120部、 2—ヒドロキシプロピルメタタリレート 20部、お よびァゾビスイソプチロニトリル 1部を、攪拌機付きオートクレープに仕込み、窒素雰 囲気下において、室温で均一になるまで攪拌した。攪拌後、 75°Cで 3時間重合させ 、さらに 80°Cで 1時間重合反応を継続させた後、室温まで冷却してポリマー溶液を得 た。得られたポリマー溶液は重合率が 98%であり、このポリマー溶液から析出した共 重合体(以下、「樹脂(4)」ともいう。)の Mwは 100, 000であった。  240 parts propylene glycol monomethyl ether, 60 parts n-butyl methacrylate, 120 parts 2-ethylhexyl methacrylate, 20 parts 2-hydroxypropyl methacrylate, and 1 part azobisisoptyronitrile The mixture was placed in a crepe and stirred at room temperature in a nitrogen atmosphere until uniform. After stirring, polymerization was carried out at 75 ° C. for 3 hours, and the polymerization reaction was further continued at 80 ° C. for 1 hour, followed by cooling to room temperature to obtain a polymer solution. The resulting polymer solution had a polymerization rate of 98%, and the Mw of the copolymer precipitated from this polymer solution (hereinafter also referred to as “resin (4)”) was 100,000.
[0176] <合成例 5〉  [0176] <Synthesis Example 5>
プロピレングリコールモノメチルエーテル 240部、 n ブチルメタタリレート 60部、 2 ェチルへキシルメタタリレート 120部、 2—エトキシェチルメタタリレート 20部、およ びァゾビスイソプチロニトリル 1部を、攪拌機付きオートクレープに仕込み、窒素雰囲 気下において、室温で均一になるまで攪拌した。攪拌後、 75°Cで 3時間重合させ、さ らに 80°Cで 1時間重合反応を継続させた後、室温まで冷却してポリマー溶液を得た 。得られたポリマー溶液は重合率が 98%であり、このポリマー溶液力も析出した共重 合体(以下、「樹脂(5)」ともいう。)の Mwは 100, 000であった。 [0177] <合成例 6〉 Propylene glycol monomethyl ether 240 parts, n-butyl methacrylate, 120 parts, 2-ethylhexyl methacrylate, 20 parts, 2-ethoxyethyl methacrylate, 1 part, and azobisisobutyronitrile, 1 part The mixture was placed in an autoclave and stirred under a nitrogen atmosphere until it was uniform at room temperature. After stirring, polymerization was carried out at 75 ° C. for 3 hours, and further, the polymerization reaction was continued at 80 ° C. for 1 hour, followed by cooling to room temperature to obtain a polymer solution. The resulting polymer solution had a polymerization rate of 98%, and the Mw of the copolymer (hereinafter, also referred to as “resin (5)”) from which this polymer solution strength was deposited was 100,000. [0177] <Synthesis Example 6>
プロピレングリコールモノメチルエーテル 240部、 n ブチルメタタリレート 60部、 2 ェチルへキシルメタタリレート 120部、 2—ヒドロキシプロピルメタタリレート 10部、グ リシジルメタタリレート 10部、およびァゾビスイソブチロニトリル 1部を、攪拌機付きォー トクレーブに仕込み、窒素雰囲気下において、室温で均一になるまで攪拌した。攪拌 後、 75°Cで 3時間重合させ、さらに 80°Cで 1時間重合反応を継続させた後、室温ま で冷却してポリマー溶液を得た。得られたポリマー溶液は重合率が 98%であり、この ポリマー溶液から析出した共重合体(以下、「樹脂(6)」ともいう。)の Mwは 100, 000 であった。  240 parts propylene glycol monomethyl ether, 60 parts n-butyl methacrylate, 120 parts 2-ethylhexyl methacrylate, 10 parts 2-hydroxypropyl methacrylate, 10 parts glycidyl methacrylate, and azobisisobutyrate One part of ronitrile was charged into an autoclave equipped with a stirrer and stirred at room temperature in a nitrogen atmosphere until uniform. After stirring, polymerization was carried out at 75 ° C. for 3 hours, and further the polymerization reaction was continued at 80 ° C. for 1 hour, followed by cooling to room temperature to obtain a polymer solution. The resulting polymer solution had a polymerization rate of 98%, and the Mw of the copolymer precipitated from this polymer solution (hereinafter also referred to as “resin (6)”) was 100,000.
[0178] [実施例 1]  [0178] [Example 1]
(1)ガラスペースト組成物(無機粉体含有樹脂組成物)の調製  (1) Preparation of glass paste composition (resin composition containing inorganic powder)
ガラス粉末(無機粉体 (A) )として、酸化鉛 70重量%、酸化ホウ素 10重量%および 酸化ケィ素 20重量%の組成を有する PbO— B O SiO系の混合物(軟化点 500 °C) 100部、重合体 (B— 1)として樹脂(1) 10部、重合体 (B— 2)として樹脂 (4) 20部 、可塑性付与物質(C)として、ビス(2-ェチルへキシル)ァゼレート 3部、ならびに溶 剤として、プロピレングリコールモノメチルエーテル 35部を、分散機を用いて混練する ことにより、粘度が 3Pa' sの組成物を調製した。  100 parts of a PbO-BO SiO-based mixture (softening point 500 ° C) having a composition of 70% by weight of lead oxide, 10% by weight of boron oxide and 20% by weight of silicon oxide as glass powder (inorganic powder (A)) Resin (1) 10 parts as polymer (B-1), Resin (4) 20 parts as polymer (B-2), Bis (2-ethylhexyl) azelate 3 parts as plasticizer (C) As a solvent, 35 parts of propylene glycol monomethyl ether was kneaded using a disperser to prepare a composition having a viscosity of 3 Pa's.
[0179] (2)転写フィルムの製造および評価(可撓性およびノヽンドリング性)  [0179] (2) Manufacture and evaluation of transfer film (flexibility and nodling)
上記(1)で調製した組成物を、あらかじめ離型処理したポリエチレンテレフタレート( PET)よりなる支持フィルム(幅 400mm、長さ 30m、厚さ 38 μ m)上にブレードコータ 一を用いて塗布した。形成された塗膜を 100°Cで 5分間乾燥して溶剤を除去すること により、厚さ 50 ^ 111の無機粉体含有樹脂層を支持フィルム上に形成した。次いで、前 記無機粉体含有樹脂層上に、あらかじめ離型処理した PETよりなるカバーフィルム( 幅 400mm、長さ 30m、厚さ 25〃 m)を貝占り付けることにより、図 2に示したような構成 を有する本発明の転写フィルムを製造した。  The composition prepared in the above (1) was coated on a support film (width 400 mm, length 30 m, thickness 38 μm) made of polyethylene terephthalate (PET), which had been subjected to release treatment in advance, using a blade coater. The formed coating film was dried at 100 ° C. for 5 minutes to remove the solvent, thereby forming an inorganic powder-containing resin layer having a thickness of 50 ^ 111 on the support film. Next, a cover film (width 400 mm, length 30 m, thickness 25 mm) made of PET that had been subjected to release treatment in advance was placed on the inorganic powder-containing resin layer, as shown in FIG. A transfer film of the present invention having such a structure was produced.
[0180] 得られた転写フィルムは柔軟性を有しており、ロール状に巻き取る操作を容易に行 うこと力 Sできた。また、この転写フィルムを折り曲げても、無機粉体含有樹脂層の表面 にひび割れ (屈曲亀裂)が生じることはなぐ該樹脂層は優れた可撓性を有するもの であった。 [0180] The obtained transfer film had flexibility and could easily be wound up into a roll. In addition, even if this transfer film is bent, the resin layer does not cause cracks (bending cracks) on the surface of the inorganic powder-containing resin layer. The resin layer has excellent flexibility. Met.
[0181] また、この転写フィルムからカバーフィルムを剥離し、無機粉体含有樹脂層の表面 がガラス基板の表面に当接されるように、該転写フィルムを加圧することなく重ね合わ せた後、該転写フィルムをガラス基板の表面から剥がしてみた。その結果、前記樹脂 層はガラス基板に対して適度な粘着性を示しており、しかも、該樹脂層が凝集破壊を 起こすことなく転写フィルムを剥がすことができ、転写フィルムとしてのハンドリング性 は良好なものであった。  [0181] Further, after peeling the cover film from the transfer film and superposing the transfer film without applying pressure so that the surface of the inorganic powder-containing resin layer is in contact with the surface of the glass substrate, The transfer film was peeled off from the surface of the glass substrate. As a result, the resin layer exhibits moderate adhesiveness to the glass substrate, and the transfer film can be peeled off without causing cohesive failure of the resin layer, and the handling property as a transfer film is good. It was a thing.
[0182] (3)無機粉体含有樹脂層の転写性  [0182] (3) Transferability of resin layer containing inorganic powder
上記(2)により得られた転写フィルムからカバーフィルムを剥離した後、未焼成の導 電性粉末含有樹脂組成物を含むパターンが形成されている 21インチパネル用のガ ラス基板の表面 (バス電極の固定面)に、無機粉体含有樹脂層の表面が当接される ように該転写フィルムを重ね合わせ、この転写フィルムを加熱ロールにより熱圧着した 。圧着条件としては、加熱ロールの表面温度を 110°C、ロール圧を 3kg/cm2および 加熱ロールの移動速度を lm/分とした。 After peeling the cover film from the transfer film obtained in (2) above, the surface of the glass substrate for 21-inch panel on which the pattern containing the resin composition containing unfired conductive powder is formed (bus electrode The transfer film was superposed on the fixing surface of the resin layer so that the surface of the inorganic powder-containing resin layer was in contact, and the transfer film was thermocompression bonded with a heating roll. As the pressure bonding conditions, the surface temperature of the heating roll was 110 ° C, the roll pressure was 3 kg / cm 2, and the moving speed of the heating roll was 1 m / min.
[0183] この転写工程において、支持フィルムを剥離するときに、無機粉体含有樹脂層が凝 集破壊を起こすようなことはなぐ該樹脂層は十分大きな膜強度を有するものであつ た。さらに、転写された無機粉体含有樹脂層は、導電性粉末含有樹脂組成物を含む ノ ターン面に対して良好な接着性を有し、かつパターン間の埋め込み性も良好であ つた。  [0183] In this transfer step, when the support film was peeled off, the resin layer had a sufficiently large film strength without causing the agglomeration failure of the resin layer containing inorganic powder. Furthermore, the transferred inorganic powder-containing resin layer had good adhesion to the pattern surface including the conductive powder-containing resin composition, and also had good embedding between patterns.
[0184] 結果を表 1に示す。フィルム転写性の良好なものを〇、不良なものを Xで表す。  [0184] The results are shown in Table 1. Good film transferability is indicated by ◯, and poor film transfer is indicated by X.
[0185] (4)焼成工程  [0185] (4) Firing process
上記(3)により未焼成の導電性粉末含有樹脂組成物を含むパターン上に無機粉 体含有樹脂を転写形成したガラス基板を焼成炉内に配置し、炉内の温度を 590°Cま で毎分 10°Cの割合で昇温させた後、 590°Cで 20分間焼成処理することにより、ガラ ス基板の表面に、ガラス焼結体よりなる電極および誘電体層を形成した。得られた層 を光学顕微鏡(日本光学工業株式会社製、 X6UW-NR)を用いて、 50倍の倍率で 観察したところ、電極上または電極間に 20 in以上の気泡の発生がなぐ良好な形 成層が得られていることが分力、つた。 [0186] 焼成後の基板上の電極上または電極間の気泡の発生を顕微鏡観察した結果を表 1に示す。 20 m以上の気泡が観察されな力、つた場合を〇、観察された場合を Xで 表す。 The glass substrate on which the inorganic powder-containing resin is transferred and formed on the pattern containing the unfired conductive powder-containing resin composition according to (3) above is placed in a firing furnace, and the temperature in the furnace is reduced to 590 ° C. After the temperature was raised at a rate of 10 ° C, the electrode was made of a glass sintered body and a dielectric layer on the surface of the glass substrate by firing at 590 ° C for 20 minutes. The obtained layer was observed with an optical microscope (X6UW-NR, manufactured by Nihon Kogyo Co., Ltd.) at a magnification of 50 times. The fact that stratification was obtained was a component. [0186] Table 1 shows the result of microscopic observation of the generation of bubbles on or between the electrodes on the substrate after firing. The force when a bubble of 20 m or more is not observed is indicated by ◯, and when observed, X is indicated.
[0187] [実施例 2] [0187] [Example 2]
樹脂 (4)に替えて樹脂(5)を使用した以外は、実施例 1と同様にして組成物を調製 し、転写フィルムを製造した。得られた転写フィルムを実施例 1と同様に基板上に転 写し、焼成を行った。結果を表 1に示す。  A composition was prepared in the same manner as in Example 1 except that the resin (5) was used instead of the resin (4) to produce a transfer film. The obtained transfer film was transferred onto a substrate in the same manner as in Example 1 and baked. The results are shown in Table 1.
[0188] [実施例 3] [Example 3]
樹脂 (4)に替えて樹脂(6)を使用した以外は、実施例 1と同様にして組成物を調製 し、転写フィルムを製造した。得られた転写フィルムを実施例 1と同様に基板上に転 写し、焼成を行った。結果を表 1に示す。  A composition was prepared in the same manner as in Example 1 except that the resin (6) was used instead of the resin (4) to produce a transfer film. The obtained transfer film was transferred onto a substrate in the same manner as in Example 1 and baked. The results are shown in Table 1.
[0189] [比較例 1] [0189] [Comparative Example 1]
樹脂(1)を使用しな力 た以外は、実施例 1と同様にして組成物を得て、転写フィ ルムを製造した。得られた転写フィルムを実施例 1と同様に基板上に転写し、焼成を 行った。結果を表 1に示す。  A transfer film was produced by obtaining a composition in the same manner as in Example 1, except that the resin (1) was not used. The obtained transfer film was transferred onto a substrate in the same manner as in Example 1 and baked. The results are shown in Table 1.
[0190] [比較例 2] [0190] [Comparative Example 2]
樹脂(1)に替えて樹脂(2)を使用した以外は、実施例 1と同様にして組成物を調製 し、転写フィルムを製造した。得られた転写フィルムを実施例 1と同様に基板上に転 写し、焼成を行った。結果を表 1に示す。  A composition was prepared in the same manner as in Example 1 except that the resin (2) was used instead of the resin (1) to produce a transfer film. The obtained transfer film was transferred onto a substrate in the same manner as in Example 1 and baked. The results are shown in Table 1.
[0191] [比較例 3] [0191] [Comparative Example 3]
樹脂(1)に替えて樹脂(3)を使用した以外は、実施例 1と同様にして組成物を調製 し、転写フィルムを製造した。得られた転写フィルムを実施例 1と同様に基板上に転 写し、焼成を行った。結果を表 1に示す。  A composition was prepared in the same manner as in Example 1 except that the resin (3) was used instead of the resin (1) to produce a transfer film. The obtained transfer film was transferred onto a substrate in the same manner as in Example 1 and baked. The results are shown in Table 1.
[0192] [比較例 4] [0192] [Comparative Example 4]
樹脂(1) 10部に替えて樹脂(1) 0. 005部を使用した以外は、実施例 1と同様にし て組成物を調製し、転写フィルムを製造した。得られた転写フィルムを実施例 1と同様 に基板上に転写し、焼成を行った。結果を表 1に示す。  Resin (1) A composition was prepared in the same manner as in Example 1 except that 0.005 part of resin (1) was used instead of 10 part, and a transfer film was produced. The obtained transfer film was transferred onto a substrate in the same manner as in Example 1 and baked. The results are shown in Table 1.
[0193] [比較例 5] 樹脂(1) 10部に替えて樹脂(1) 100部を使用した以外は実施例 1と同様に組成物 を調製し、転写フィルムを製造した。得られた転写フィルムを実施例 1と同様に基板 上に転写し、焼成を行った。結果を表 1に示す。 [0193] [Comparative Example 5] A composition was prepared in the same manner as in Example 1 except that 100 parts of the resin (1) was used instead of 10 parts of the resin (1), and a transfer film was produced. The obtained transfer film was transferred onto a substrate in the same manner as in Example 1 and baked. The results are shown in Table 1.
[表 1] [table 1]
I 1 j  I 1 j
Figure imgf000041_0001
Figure imgf000041_0001
[実施例 4]  [Example 4]
(1)ガラスペースト組成物(無機粉体含有組成物)の調製  (1) Preparation of glass paste composition (composition containing inorganic powder)
ガラス粉末(無機粉体 (A) )として、 PbO-B O— SiO系の混合物(軟化点 455°C 、平均粒径 2. 6 ^ 111) 100部、重合体 (B— 1)として樹脂(1) 10部、重合体 (B— 2)と してブチルメタタリレート /2—ェチルへキシルメタタリレート /2—ヒドロキシプロピル メタタリレート共重合体(重量比: 30/60/10、 Mw: 100, 000) 20部、可塑性付与 物質(C)としてビス(2-ェチルへキシル)ァゼレート 3部、および溶剤としてプロピレン グリコールモノメチルエーテル 35部を分散機を用いて混練することにより、粘度が 3P a ' Sの組成物を調製した。  Glass powder (inorganic powder (A)), PbO-B 2 O—SiO-based mixture (softening point 455 ° C, average particle size 2.6 ^ 111) 100 parts, polymer (B-1) resin ( 1) 10 parts, polymer (B-2) as butyl methacrylate / 2-ethylhexyl methacrylate / 2-hydroxypropyl methacrylate copolymer (weight ratio: 30/60/10, Mw: 100) , 000) 20 parts, 3 parts of bis (2-ethylhexyl) azelate as plasticizing substance (C) and 35 parts of propylene glycol monomethyl ether as a solvent are kneaded using a disperser. A composition of S was prepared.
(2)転写フィルムの製造および評価(可撓性 ·取扱性)  (2) Production and evaluation of transfer film (flexibility and handling)
実施例 1と同様にして、転写フィルムを製造し、可撓性および取扱性の評価を行つ た。  In the same manner as in Example 1, a transfer film was produced and evaluated for flexibility and handleability.
(3)無機粉体含有樹脂層の転写 転写フィルムを熱圧着する際の加熱ロールの表面温度を 90°Cにした以外は、実施 例 1と同様にして、無機粉体含有樹脂層の転写を行った。 (3) Transfer of resin layer containing inorganic powder The inorganic powder-containing resin layer was transferred in the same manner as in Example 1 except that the surface temperature of the heating roll during thermocompression bonding of the transfer film was 90 ° C.
(4)無機粉体含有樹脂層の焼成工程  (4) Inorganic powder-containing resin layer firing step
焼成炉内の温度を 520°Cにした以外は、実施例 1と同様にして、無機粉体含有樹 脂層の焼成処理を行った。得られた誘電体層は、高い透明性および高い表面平滑 十生を有していた。  The inorganic powder-containing resin layer was fired in the same manner as in Example 1 except that the temperature in the firing furnace was 520 ° C. The obtained dielectric layer had high transparency and high surface smoothness.
[0196] [実施例 5] [0196] [Example 5]
(1)ガラスペースト組成物(無機粉体含有組成物)の調製  (1) Preparation of glass paste composition (composition containing inorganic powder)
ガラス粉末(無機粉体)として、 PbO-B O— SiO系の混合物(軟化点 455°C、平 均粒径 3. 9 111)を用いた以外は、実施例 1と同様にして、組成物を調製した。この 組成物の粘度は 3Pa · sであった。  The composition was the same as in Example 1 except that a PbO—B 2 O—SiO-based mixture (softening point 455 ° C., average particle size 3.9 111) was used as the glass powder (inorganic powder). Was prepared. The viscosity of this composition was 3 Pa · s.
[0197] 実施例 4の(2) (4)と同様の操作を行ったところ、該無機粉体含有有機組成物の 転写フィルムは、ガラス基板に対して十分な転写性を示し、また取扱性においても良 好であった。得られた誘電体層は、高い透過率および高い表面平滑性を有していた [0197] When the same operation as (4) in Example 4 (2) was performed, the transfer film of the inorganic powder-containing organic composition showed sufficient transferability with respect to the glass substrate, and was easy to handle. It was also good. The obtained dielectric layer had high transmittance and high surface smoothness.
[0198] [実施例 6] [0198] [Example 6]
(1)ガラスペースト組成物(無機粉体含有組成物)の調製  (1) Preparation of glass paste composition (composition containing inorganic powder)
ガラス粉末(無機粉体)として、 PbO-B O - SiO系の混合物(軟化点 455°C、平 均粒径 2. 0 111)を用いた以外は、実施例 1と同様にして、組成物を調製した。この 組成物の粘度は 3Pa · sであった。  The composition was the same as in Example 1 except that a PbO—B 2 O—SiO-based mixture (softening point 455 ° C., average particle size 2. 0 111) was used as the glass powder (inorganic powder). Was prepared. The viscosity of this composition was 3 Pa · s.
[0199] 実施例 4の(2) (4)と同様の操作を行ったところ、該無機粉体含有有機組成物の 転写フィルムは、ガラス基板に対して十分な転写性を示し、また取扱性においても良 好であった。得られた誘電体層は、高い透過率および高い表面平滑性を有していた [0199] In the same manner as in Example 4 (2) (4), the transfer film of the inorganic powder-containing organic composition showed sufficient transferability to the glass substrate, and was easy to handle. It was also good. The obtained dielectric layer had high transmittance and high surface smoothness.
[0200] [実施例 7] [0200] [Example 7]
(1)ガラスペースト組成物(無機粉体含有組成物)の調製  (1) Preparation of glass paste composition (composition containing inorganic powder)
ガラス粉末(無機粉体 (A) )として、 PbO-B O - SiO系の混合物(軟化点 505°C 、平均粒径 2. 6 111)を用いた以外は、実施例 1と同様にして、組成物を調製した。こ の組成物の粘度は 3Pa' sであった。 As in Example 1, except that a PbO—B 2 O 3 —SiO-based mixture (softening point 505 ° C., average particle size 2.6 111) was used as the glass powder (inorganic powder (A)), A composition was prepared. This The viscosity of this composition was 3 Pa's.
[0201] 実施例 4の(2) (4)と同様の操作を行ったところ、該無機粉体含有有機組成物の 転写フィルムは、ガラス基板に対して十分な転写性を示し、また取扱性においても良 好であった。得られた誘電体層は、高い透過率および高い表面平滑性を有していた [0201] When the same operation as in Example 4 (2) (4) was performed, the transfer film of the organic composition containing inorganic powder showed sufficient transferability to the glass substrate, and was easy to handle. It was also good. The obtained dielectric layer had high transmittance and high surface smoothness.
[0202] [実施例 8] [0202] [Example 8]
(1)ガラスペースト組成物(無機粉体含有組成物)の調製  (1) Preparation of glass paste composition (composition containing inorganic powder)
ガラス粉末(無機粉体 (A) )として、 PbO-B O— SiO系の混合物(軟化点 410°C As a glass powder (inorganic powder (A)), a PbO-B 2 O—SiO-based mixture (softening point 410 ° C
、平均粒径 2. 6 111)を用いた以外は、実施例 1と同様にして、組成物を調製した。こ の組成物の粘度は 3Pa' sであった。 The composition was prepared in the same manner as in Example 1 except that the average particle size 2.6 111) was used. The viscosity of this composition was 3 Pa's.
[0203] 実施例 4の(2) (4)と同様の操作を行ったところ、該無機粉体含有有機組成物の 転写フィルムは、ガラス基板に対して十分な転写性を示し、また取扱性においても良 好であった。得られた誘電体層は、高い透過率および高い表面平滑性を有していた [0203] In the same manner as in Example 4 (2) (4), the transfer film of the inorganic powder-containing organic composition showed sufficient transferability to the glass substrate, and was easy to handle. It was also good. The obtained dielectric layer had high transmittance and high surface smoothness.
[0204] [比較例 6] [0204] [Comparative Example 6]
(1)ガラスペースト組成物(無機粉体含有組成物)の調製  (1) Preparation of glass paste composition (composition containing inorganic powder)
ガラス粉末(無機粉体 (A) )として、 PbO-B O - SiO系の混合物(軟化点 455°C 、平均粒径 2. 6 m) 100部、結着樹脂としてブチルメタタリレート /2—ェチルへ キシルメタタリレート共重合体(重量比: 50/50 Mw: 100, 000) 20部、可塑性付 与物質(C)としてビス(2-ェチルへキシル)ァゼレート 3部、および溶剤としてプロピレ ングリコールモノメチルエーテル 35部を分散機を用いて混練することにより、粘度が 3 Pa . sの組成物を調製した。  As glass powder (inorganic powder (A)), PbO-B 2 O-SiO series mixture (softening point 455 ° C, average particle size 2.6 m) 100 parts, binder resin with butyl metatalylate / 2 Ethyl hexyl metatalylate copolymer (weight ratio: 50/50 Mw: 100,000) 20 parts, plasticizer (C) 3 parts bis (2-ethylhexyl) azelate, and propylene solvent A composition having a viscosity of 3 Pa.s was prepared by kneading 35 parts of glycol monomethyl ether using a disperser.
[0205] 実施例 4の(2) (4)の操作を行ったところ、該無機粉体含有有機組成物の転写フ イルムから得られた誘電体層は、表面平滑性に乏しぐ透明性に劣るものであった。  [0205] When the operations of (2) and (4) of Example 4 were performed, the dielectric layer obtained from the transfer film of the organic composition containing inorganic powder had a transparency that was poor in surface smoothness. It was inferior.
[0206] [実施例 9]  [Example 9]
(1)無機粉体含有樹脂組成物の調製  (1) Preparation of resin composition containing inorganic powder
無機粉体 (A)として、銀粉末(平均粒径 2. 2 111、比表面積 0. 5cm2 /gおよびタ ップ密度 4· 6g/cm3 ) 100部、 Bi O -B O—SiO系ガラスフリット(平均粒径 3 m、不定形、軟化点 520°Cおよび熱膨張係数 ϋϋ = 87 Χ 10— 7/°C) 3部、重合体 (B —1)として樹脂(1) 10部、重合体(B— 2)としてメタクリル酸/コハク酸モノ(2—メタ クリロイ口キシェチル) /メタクリル酸 2—ヒドロキシプロピル/メタクリル酸 n—ブチル 共重合体(重量比 20/15/25/40および重量平均分子量 90, 000) 15部、可塑 性付与物質(C)としてジペンタエリスリトールへキサアタリレート 10部および溶剤とし てプロピレングリコールモノメチルエーテルアセテート 9部を分散機を用いて混練する ことにより、粘度が 3,400cpである本発明の組成物を調製した。 As the inorganic powder (A), silver powder (average particle diameter 2.2 111, specific surface area 0. 5 cm 2 / g and power strips density 4 · 6g / cm 3) 100 parts, Bi O -BO-SiO glass Frit (average particle size 3 m, amorphous, softening point 520 ° C and a thermal expansion coefficient ϋϋ = 87 Χ 10- 7 / ° C) 3 parts, 10 parts of the resin (1) as the polymer (B -1), the polymer (B- 2) Methacrylic acid / succinic acid mono (2-methacryloyl quichetil) / methacrylic acid 2-hydroxypropyl / n-butyl methacrylate copolymer (weight ratio 20/15/25/40 and weight average molecular weight 90, 000) 15 The present invention has a viscosity of 3,400 cp by kneading 10 parts of dipentaerythritol hexatalylate as plasticizing substance (C) and 9 parts of propylene glycol monomethyl ether acetate as solvent using a disperser. A composition was prepared.
(2)転写フィルムの製造  (2) Production of transfer film
上記(1)で調製した本発明の組成物を、あらかじめ離型処理したポリエチレンテレ フタレート(PET)よりなる支持フィルム(幅 400mm、長さ 30m、厚さ 38 μ m)上にブ レードコーターを用いて塗布し、形成された塗膜を 80°Cで 5分間乾燥することにより 溶剤を除去し、これにより、厚さ 12 πιの無機粉体含有樹脂層を支持フィルム上に 形成した。次いで、当該無機粉体含有樹脂層上に、あらかじめ離型処理した PETよ りなるカバーフィルム(幅 400mm、長さ 30m、厚さ 38 m)を貼り付けることにより、転 写フィルムを製造した。  Using a blade coater on a support film (width 400 mm, length 30 m, thickness 38 μm) made of polyethylene terephthalate (PET) that has been pre-released from the composition of the present invention prepared in (1) above. The solvent was removed by drying the formed coating film at 80 ° C. for 5 minutes, thereby forming an inorganic powder-containing resin layer having a thickness of 12 πι on the support film. Next, a transfer film was manufactured by pasting a cover film (width 400 mm, length 30 m, thickness 38 m) made of PET, which had been subjected to release treatment in advance, on the inorganic powder-containing resin layer.
(3)無機粉体含有樹脂層の転写  (3) Transfer of resin layer containing inorganic powder
上記(2)により得られた転写フィルムからカバーフィルムを剥離した後、 21インチパ ネル用のガラス基板の表面に、無機粉体含有樹脂層の表面が当接されるように、当 該転写フィルム(支持フィルムと無機粉体含有樹脂層との積層体)を重ね合わせ、こ の転写フィルムを加熱ロールにより熱圧着した。ここで、圧着条件としては、加熱ロー ルの表面温度を 90°C、ロール圧を 2kg/cm2および加熱ロールの移動速度を 0. 6m /分とした。 After peeling the cover film from the transfer film obtained in the above (2), the transfer film (in which the surface of the inorganic powder-containing resin layer is brought into contact with the surface of the 21-inch panel glass substrate) A laminate of a support film and an inorganic powder-containing resin layer) was laminated, and this transfer film was thermocompression bonded with a heating roll. Here, as the pressure bonding conditions, the surface temperature of the heating roll was 90 ° C, the roll pressure was 2 kg / cm 2, and the moving speed of the heating roll was 0.6 m / min.
熱圧着処理の終了後、ガラス基板の表面に固定 (加熱接着)された無機粉体含有 樹脂層から支持フィルムを剥離除去し、当該無機粉体含有樹脂層の転写を完了した After the thermocompression treatment, the support film was peeled off from the inorganic powder-containing resin layer fixed (heat bonded) to the surface of the glass substrate, and the transfer of the inorganic powder-containing resin layer was completed.
Yes
(4)レジスト組成物の調製  (4) Preparation of resist composition
バインダー樹脂としてメタクリル酸ベンジル/メタクリル酸 = 75/25 (重量%)共重 合体(重量平均分子量 30, 000) 60部、多官能性モノマー(D—1)としてトリプロピレ ングリコールジアタリレート 40部、光重合開始剤(D— 2)として 2 ベンジル一 2 ジ メチルアミノー 1一(4 モルフォリノフエニル) ブタン 1 オン 20部および溶剤と してプロピレングリコールモノメチルエーテルアセテート 100部を混練りした後、カート リッジフィルター(2 μ m径)でフィルタリングすることにより、アルカリ現像型感放射線 性レジスト組成物(以下、「レジスト組成物」という。)を調製した。 Benzyl methacrylate / methacrylic acid = 75/25 (wt%) copolymer (weight average molecular weight 30,000) as binder resin 60 parts, tripropylene as multifunctional monomer (D-1) 40 parts of diglycol ditalylate, 20 parts of 2 benzyl-2-dimethylamino-1 (4 morpholinophenyl) butane as a photopolymerization initiator (D-2) and 100 parts of propylene glycol monomethyl ether acetate as a solvent After kneading, an alkali development type radiation sensitive resist composition (hereinafter referred to as “resist composition”) was prepared by filtering with a cartridge filter (2 μm diameter).
(5)レジストフイルムの製造  (5) Manufacture of resist film
上記(4)で調製したレジスト組成物を、あらかじめ離型処理したポリエチレンテレフ タレート(PET)よりなる支持フィルム(幅 400mm、長さ 30m、厚さ 38 μ m)上にブレ 一ドコーターを用いて塗布し、形成された塗膜を 80°Cで 5分間乾燥することにより溶 剤を除去し、これにより、厚さ 10 mのレジスト膜を支持フィルム上に形成した。次い で、当該レジスト膜上に、あらかじめ離型処理した PETよりなるカバーフィルム(幅 40 Omm、長さ 30m、厚さ 38 m)を貝占り付けることにより、レジストフイルムを製造した。  The resist composition prepared in (4) above was coated on a support film (width 400 mm, length 30 m, thickness 38 μm) made of polyethylene terephthalate (PET), which had been pre-released, using a blade coater. Then, the solvent was removed by drying the formed coating film at 80 ° C. for 5 minutes, thereby forming a resist film having a thickness of 10 m on the support film. Next, a resist film was manufactured by shelling a cover film (width 40 Omm, length 30 m, thickness 38 m) made of PET that had been subjected to mold release treatment on the resist film in advance.
(6)レジストフイノレムの転写  (6) Transfer of resist Finolem
上記(5)により得られたレジストフイルムからカバーフィルムを剥離した後、上記(3) で作成した 21インチガラス基板上に形成された無機粉体含有樹脂層上に、レジスト 膜の表面が当接されるようレジストフイルム(支持フィルムとレジスト膜)を重ね合わせ 、この転写フィルムを加熱ロールにより熱圧着した。ここで、圧着条件としては、加熱 ロールの表面温度を 90°C、ロール圧を 2kg/cm2および加熱ロールの移動速度を 0 . 6m/分とした。 After removing the cover film from the resist film obtained in (5) above, the surface of the resist film abuts on the inorganic powder-containing resin layer formed on the 21-inch glass substrate prepared in (3) above. The resist film (support film and resist film) was overlaid as described above, and this transfer film was thermocompression bonded with a heating roll. Here, as the pressure bonding conditions, the surface temperature of the heating roll was 90 ° C., the roll pressure was 2 kg / cm 2, and the moving speed of the heating roll was 0.6 m / min.
熱圧着処理の終了後、ガラス基板の表面に固定 (加熱接着)された無機粉体含有 樹脂層とレジスト膜の積層膜から支持フィルムを剥離除去し、該無機粉体含有樹脂 層の転写を完了した。  After completion of thermocompression treatment, the support film is peeled off from the laminated film of the inorganic powder-containing resin layer and resist film fixed (heat bonded) to the surface of the glass substrate, and the transfer of the inorganic powder-containing resin layer is completed. did.
(7)レジスト膜の露光工程  (7) Resist film exposure process
ガラス基板上に形成された無機粉体含有樹脂層とレジスト膜の積層膜に対して、ラ イン幅 100 μ mおよびスペース幅 400 μ mのストライプ状ネガ用露光用マスクを介し て、超高圧水銀灯により g線(436nm)、 h線(405nm)および i線(365nm)の混合光 を照射した。その際の露光量は、 365nmのセンサーで測定した照度換算で 200mJ (8)現像工程'エッチング工程 An ultra-high pressure mercury lamp is passed through a striped negative exposure mask with a line width of 100 μm and a space width of 400 μm against the laminated film of the inorganic powder-containing resin layer and resist film formed on the glass substrate. Were irradiated with mixed light of g-line (436 nm), h-line (405 nm) and i-line (365 nm). The exposure amount at that time is 200 mJ in terms of illuminance measured with a 365 nm sensor. (8) Development process' Etching process
露光処理されたレジスト膜に対して、液温 30°Cで、 0. 3質量%炭酸ナトリウム水溶 液を現像液とするシャワー法による現像処理をした後、連続して無機粉体含有樹脂 層のエッチング処理を 90秒間行った。次いで、超純水による水洗処理を行った。これ により、レジストパターンを形成し、その後、該レジストパターンに対応した無機粉体 含有樹脂パターンを形成した。得られた無機粉体含有樹脂パターンを光学顕微鏡に て観察したところ、レジスト未露光部の基板上に現像残渣は認められず、またパター ンの欠けも認められなかった。  The exposed resist film was developed by a shower method using a 0.3% by mass sodium carbonate aqueous solution as a developer at a liquid temperature of 30 ° C. The etching process was performed for 90 seconds. Subsequently, the water washing process by ultrapure water was performed. Thus, a resist pattern was formed, and then an inorganic powder-containing resin pattern corresponding to the resist pattern was formed. When the obtained inorganic powder-containing resin pattern was observed with an optical microscope, no development residue was observed on the substrate in the resist unexposed area, and no pattern chipping was observed.
(9)焼成工程  (9) Firing process
無機粉体含有樹脂パターンが形成されたガラス基板を焼成炉内で、 590°Cの温度 雰囲気下で 30分間にわたり焼成処理を行った。これによりガラス基板の表面にバタ ーン幅 100 μ mおよび厚み 6 H mの電極が形成されてなるパネル材料を得ることが できた。  The glass substrate on which the inorganic powder-containing resin pattern was formed was baked in a baking furnace for 30 minutes in a temperature atmosphere of 590 ° C. As a result, a panel material in which an electrode having a pattern width of 100 μm and a thickness of 6 Hm was formed on the surface of the glass substrate could be obtained.
[実施例 10]  [Example 10]
(1)無機粉体含有樹脂組成物の調製  (1) Preparation of resin composition containing inorganic powder
無機粉体(A)として、比表面積 0. 5m2/g、平均粒径 2· 3 mの Ag粉体 100部、 平均粒径 3 111の Bi O— B O— SiO系ガラスフリット(不定形、軟化点 520°C) 10 As inorganic powder (A), 100 parts of Ag powder having a specific surface area of 0.5 m 2 / g, average particle size of 2.3 m, and Bi O—BO—SiO glass frit with an average particle size of 3 111 (indeterminate, (Softening point 520 ° C) 10
2 3 2 3 2  2 3 2 3 2
部、重合体 (B— 1)として樹脂(1) 10部、重合体 (B— 2)として、メタクリル酸/コハク 酸モノ(2—メタクリロイ口キシェチル) /メタクリル酸 2—ヒドロキシプロピル/メタクリル 酸 n—ブチル共重合体(重量比 20/15/25/40および重量平均分子量 90, 000 ) 15部、分散剤としてォレイン酸 1部、可塑剤としてペンタエリスリトールトリアタリレート 10部、および溶剤としてプロピレングリコールモノメチルエーテル 100部をビーズミル で混練りした後、ステンレスメッシュ(400メッシュ、 38 m径)でフィルタリングすること により、無機粉体含有樹脂組成物(導電性ペースト組成物)を調製した。 Part, polymer (B-1) as resin (1) 10 parts, polymer (B-2) as methacrylic acid / succinic acid mono (2-methacryloyl quichetil) / methacrylic acid 2-hydroxypropyl / methacrylic acid n —Butyl copolymer (weight ratio 20/15/25/40 and weight average molecular weight 90,000) 15 parts, oleic acid 1 part as a dispersant, 10 parts of pentaerythritol tritalylate as a plasticizer, and propylene glycol as a solvent After kneading 100 parts of monomethyl ether with a bead mill, an inorganic powder-containing resin composition (conductive paste composition) was prepared by filtering with a stainless mesh (400 mesh, 38 m diameter).
(2)レジスト組成物の調製  (2) Preparation of resist composition
バインダー樹脂としてメタクリル酸ベンジル/メタクリル酸 = 75/25 (重量%)共重 合体(重量平均分子量 30, 000) 60部、多官能性モノマー(D— 1)としてトリメチロー ルプロパントリアタリレート 40部、光重合開始剤(D— 2)として 2, 2,一ビス一 2—クロ 口フエ二 4, 4 5, 5 テトラフエ二ルビイミダゾール(化合物(i) ) 6部、 4, 4 ビス(ジェチルァミノ)ベンゾフエノン(化合物(ii) ) 3部、 2—メルカプトべンゾチアゾー ル(化合物(iii) ) l . 5部、光増感剤として 3, 3'—カルボニルビス(7—ジェチルァミノ )クマリン 0· 5部および溶剤としてプロピレングリコールモノメチルエーテルアセテート 100部を混練りした後、カートリッジフィルター(2 ,1 m径)でフィルタリングすることによ り、アルカリ現像型感放射線性レジスト組成物(以下、「レジスト組成物」という。)を調 し Benzyl methacrylate / methacrylic acid = 75/25 (wt%) copolymer (weight average molecular weight 30, 000) 60 parts as binder resin, trimethylolpropane tritalylate 40 parts as multifunctional monomer (D-1), Photopolymerization initiator (D-2) 2, 2, 1-bis 2-chloro Phenyl 4,4 5,5 Tetraphenylbiimidazole (compound (i)) 6 parts, 4, 4 Bis (jetylamino) benzophenone (compound (ii)) 3 parts, 2-mercaptobenzozothiazole (compound (iii) ) l. 5 parts, 3,3'-carbonylbis (7-jetylamino) coumarin as a photosensitizer, 0.55 parts, and 100 parts of propylene glycol monomethyl ether acetate as a solvent were kneaded, and then a cartridge filter (2, 1 m diameter) to prepare an alkali-developable radiation-sensitive resist composition (hereinafter referred to as “resist composition”).
(3)転写フィルムの作製  (3) Preparation of transfer film
下記 (ィ) (ハ)の操作により、レジスト膜および無機粉体含有樹脂層をこの順に積 層してなる積層膜が支持フィルム上に形成されてなる本発明の電極形成用転写フィ ルムを作製した。  The electrode film-forming transfer film of the present invention in which a laminated film obtained by laminating a resist film and an inorganic powder-containing resin layer in this order is formed on a support film by the operations (i) and (c) below. did.
(ィ) (2)で調製したレジスト組成物を膜厚 38 mの PETフィルムよりなる支持フィル ム(I)上にブレード ターを用いて塗布し、塗膜を 100°Cで 3分間乾燥して溶剤を 除去し、厚さ 8 a mのレジスト膜を支持フィルム上に形成した。  (Ii) Apply the resist composition prepared in (2) onto a support film (I) consisting of a PET film with a thickness of 38 m using a blade cutter, and dry the coating at 100 ° C for 3 minutes. The solvent was removed, and a resist film having a thickness of 8 am was formed on the support film.
(口)(1)で調製した無機粉体含有樹脂組成物を膜厚 38 ,i mの PETフィルムよりなる 支持フィルム(Π)上にブレード ターを用いて塗布し、塗膜を 100°Cで 5分間乾燥 して溶剤を除去し、厚さ 12 mの無機粉体含有樹脂層を支持フィルム上に形成した  (Mouth) The inorganic powder-containing resin composition prepared in (1) was applied onto a support film (Π) made of PET film with a film thickness of 38, im using a blade turret. The solvent was removed by drying for minutes, and a 12 m thick resin layer containing inorganic powder was formed on the support film.
(ハ)(ィ)および (口)で作製したレジスト膜と、無機粉体含有樹脂層との表面が当接さ れるよう転写フィルムを重ね合わせ、加熱ローラで熱圧着した。ここで、圧着条件とし ては、加熱ローラの表面温度を 90°C、ロール圧を 2. 5kg/cm、加熱ローラの移動 速度を 0. 5m/分とした。これにより、レジスト膜および無機粉体含有樹脂層を有す る積層膜が支持フィルム間に形成されてなる転写フィルムを作製した。 (C) The transfer film was overlaid so that the surfaces of the resist film prepared in (i) and (mouth) and the inorganic powder-containing resin layer were in contact with each other, and thermocompression bonded with a heating roller. Here, the pressing conditions were such that the surface temperature of the heating roller was 90 ° C, the roll pressure was 2.5 kg / cm, and the moving speed of the heating roller was 0.5 m / min. As a result, a transfer film was produced in which a laminated film having a resist film and an inorganic powder-containing resin layer was formed between support films.
(4)積層膜の転写工程  (4) Transfer process of laminated film
ガラス基板の表面に、(3)で作製した転写フィルムの無機粉体含有樹脂層の表面 が当接されるよう転写フィルムを重ね合わせ、この転写フィルムを加熱ローラに熱圧 着した。ここで、圧着条件としては、加熱ローラの表面温度を 90°C、ロール圧を 2. 5k g/cm、加熱ローラの移動速度を 0. 5m/分とした。これにより、ガラス基板の表面 に転写フィルムが転写されて密着した状態となった。 The transfer film was superposed on the surface of the glass substrate so that the surface of the inorganic powder-containing resin layer of the transfer film prepared in (3) was in contact, and this transfer film was hot-pressed on a heating roller. Here, the pressing conditions were such that the surface temperature of the heating roller was 90 ° C, the roll pressure was 2.5 kg / cm, and the moving speed of the heating roller was 0.5 m / min. Thereby, the surface of the glass substrate The transfer film was transferred to and became in close contact.
(5)レジスト膜の露光工程 ·現像工程  (5) Resist film exposure processDevelopment process
上記 (4)においてガラス基板上に形成された積層膜中のレジスト膜に対して、支持 フィルム上よりパターンを形成する部分に波長 405nmのレーザー光を照射した。そ の際、レーザー光の照射エネルギー量は lOmj/cm2とした。照射後、レジスト膜上 の支持フィルムを剥離し、次いで、露光処理されたレジスト膜に対して、 0. 3質量% の炭酸ナトリウム水溶液(30°C)を現像液とするシャワー法によるレジスト膜の現像処 理を 120秒間行った。 In the above (4), the resist film in the laminated film formed on the glass substrate was irradiated with a laser beam having a wavelength of 405 nm from the support film to the portion where the pattern was to be formed. At that time, the amount of laser beam irradiation energy was set to lOmj / cm 2 . After the irradiation, the support film on the resist film is peeled off, and then the resist film by a shower method using a 0.3% by mass sodium carbonate aqueous solution (30 ° C.) as a developing solution is applied to the exposed resist film. The development process was performed for 120 seconds.
[0210] これにより、紫外線が照射されていない未硬化のレジストを除去し、レジストパター ンを形成した。レジストパターンは、パターン形状が均一で、パターンエッジの直線性 に優れた形状が良好なものであった。  [0210] Thus, the uncured resist that was not irradiated with ultraviolet rays was removed, and a resist pattern was formed. The resist pattern had a uniform pattern shape and a good shape with excellent pattern edge linearity.
(6)無機粉体含有樹脂層のエッチング工程  (6) Etching process of inorganic powder-containing resin layer
上記の工程に連続して、 0. 3質量%の炭酸ナトリウム水溶液(30°C)をエッチング 液とするシャワー法による無機粉体含有樹脂層のエッチング処理を 60秒間行った。  The inorganic powder-containing resin layer was etched for 60 seconds by a shower method using a 0.3% by mass sodium carbonate aqueous solution (30 ° C.) as an etching solution, following the above steps.
[0211] 次いで、超純水による水洗処理および乾燥処理を行った。これにより、無機粉体含 有樹脂層パターンを形成した。 [0211] Next, washing with ultrapure water and drying were performed. Thereby, an inorganic powder-containing resin layer pattern was formed.
(7)パターンの焼成工程  (7) Pattern firing process
無機粉体含有樹脂層のパターンが形成されたガラス基板を焼成炉内の大気雰囲 気下、 560°Cで 10分間にわたり焼成処理を行った。これにより、ガラス基板の表面に 膜厚 4 μ mの電極パターンが形成された。  The glass substrate on which the pattern of the inorganic powder-containing resin layer was formed was baked at 560 ° C. for 10 minutes in the atmosphere in the baking furnace. As a result, an electrode pattern with a thickness of 4 μm was formed on the surface of the glass substrate.
(8)パターンの評価  (8) Pattern evaluation
得られた電極パターンは、亀裂や欠けがなぐ形状に優れたものであった。  The obtained electrode pattern had an excellent shape free from cracks and chips.
[0212] [実施例 11] [0212] [Example 11]
(1)無機粉体含有樹脂組成物の調製  (1) Preparation of resin composition containing inorganic powder
無機粉体(A)として、比表面積 0. 5m2/g、平均粒径 2· 3 mの Ag粉体 100部、 平均粒径 3 111の Bi O— B O— SiO系ガラスフリット(不定形、軟化点 520°C) 10 As inorganic powder (A), 100 parts of Ag powder having a specific surface area of 0.5 m 2 / g, average particle size of 2.3 m, and Bi O—BO—SiO glass frit with an average particle size of 3 111 (indeterminate, (Softening point 520 ° C) 10
2 3 2 3 2  2 3 2 3 2
部、重合体 (B— 1)として樹脂(1) 10部、重合体 (B— 2)としてべンジルメタタリレート /メタクリル酸 /2—ヒドロキシプロピルメタタリレート = 60/20/20 (質量%)共重合 体(Mw= 50, 000) 200部、光重合性モノマー(D—l )としてトリメチロールプロパン トリアタリレート 200部、光重合開始剤(D— 2)として 2—ベンジル一 2—ジメチルァミノ —1— (4—モルフォリノフエニル)一ブタン一 1—オン 5部、シランカップリング剤として 3—メタクリロキシプロピルメトキシシラン 1部、分散剤としてォレイン酸 1部、および溶 剤としてプロピレングリコールモノメチルエーテル 200部をビーズミルで混練りした後 、ステンレスメッシュ(500メッシュ、 25 m径)でフィルタリングすることにより、無機粉 体含有樹脂組成物 (I)を調整した。 Part, polymer (B-1) as resin (1) 10 parts, polymer (B-2) as benzyl metatalylate / methacrylic acid / 2-hydroxypropyl metatalylate = 60/20/20 (mass) %) Copolymerization (Mw = 50, 000) 200 parts, photopolymerizable monomer (D-l) as trimethylolpropane tritalylate 200 parts, photopolymerization initiator (D-2) as 2-benzyl-1-dimethylamino-1 5 parts of (4-morpholinophenyl) 1-butane 1-one, 1 part of 3-methacryloxypropylmethoxysilane as a silane coupling agent, 1 part of oleic acid as a dispersant, and 200 parts of propylene glycol monomethyl ether as a solvent After kneading with a bead mill, the inorganic powder-containing resin composition (I) was prepared by filtering with a stainless mesh (500 mesh, 25 m diameter).
(2)転写フィルムの作製  (2) Preparation of transfer film
上記(1 )で調製した無機粉体含有樹脂組成物 (I)を、あらかじめ離型処理した膜厚 38 H mの PETフィルムよりなる支持フィルム上にブレードコーターを用いて塗布し、 塗膜を 100°Cで 3分間乾燥して溶剤を除去し、厚さ 7 μ mの無機粉体含有樹脂層を 支持フィルム上に形成した、本発明の転写フィルムを作製した。  The inorganic powder-containing resin composition (I) prepared in (1) above was applied onto a support film made of a PET film having a film thickness of 38 Hm, which had been subjected to a release treatment in advance, using a blade coater. The transfer film of the present invention was produced by drying at 3 ° C. for 3 minutes to remove the solvent and forming a 7 μm-thick inorganic powder-containing resin layer on the support film.
(3)転写フィルムの転写工程  (3) Transfer film transfer process
上記(2)で作製した転写フィルムを用い、ガラス基板の表面に、無機粉体含有樹脂 層の表面が当接されるよう当該転写フィルムを重ね合わせ加熱ローラで熱圧着した。 ここで、圧着条件としては、加熱ローラの表面温度を 100°C、ロール圧を 2. 5kg/c m、加熱ローラの移動速度を 0. 5m/分とした。これにより、ガラス基板の表面に転写 フィルムが転写されて密着した状態となった。  Using the transfer film produced in (2) above, the transfer film was superposed and thermocompression bonded with a heating roller so that the surface of the inorganic powder-containing resin layer was brought into contact with the surface of the glass substrate. Here, as the pressure bonding conditions, the surface temperature of the heating roller was 100 ° C, the roll pressure was 2.5 kg / cm, and the moving speed of the heating roller was 0.5 m / min. As a result, the transfer film was transferred to and adhered to the surface of the glass substrate.
(4)無機粉体含有樹脂層の露光工程 ·現像工程  (4) Inorganic powder-containing resin layer exposure processDevelopment process
ガラス基板上に形成された無機粉体含有樹脂層に対して、露光用マスク(5cm X 5 cm)を介して、支持フィルム上より超高圧水銀灯により、 i線 (波長 365nmの紫外線) を照射し、無機粉体含有樹脂層にパターンの潜像を形成した。ここに、照射量は 20 Omj/cm2とした。露光後、支持フィルムを剥離除去し、次いで、液温 30°Cの 0. 3質 量%炭酸ナトリウム水溶液を現像液とするシャワー法により現像処理を 30秒間行い、 続いて、超純水を用いて水洗を行った。 The resin layer containing inorganic powder formed on the glass substrate is irradiated with i-rays (ultraviolet light with a wavelength of 365 nm) from the support film with an ultrahigh pressure mercury lamp through an exposure mask (5 cm x 5 cm). Then, a latent image of the pattern was formed on the inorganic powder-containing resin layer. Here, the dose was 20 Omj / cm 2 . After exposure, the support film is peeled off and then developed for 30 seconds by a shower method using a 0.3 mass% sodium carbonate aqueous solution at a liquid temperature of 30 ° C. as a developer, followed by using ultrapure water. And washed with water.
これにより、紫外線が照射されていない部分の無機粉体含有樹脂を除去し、無機 粉体含有樹脂パターンを形成した。  As a result, the inorganic powder-containing resin in the portion not irradiated with ultraviolet rays was removed, and an inorganic powder-containing resin pattern was formed.
(5)焼成工程 無機粉体含有樹脂パターンが形成されたガラス基板を 580°Cの温度雰囲気下で 3 0分間焼成処理した。これにより、ガラス基板の表面に厚み 4 mの電極パターンが 形成された。得られた電極パターンは、亀裂や欠けがなぐ形状に優れたものであつ た。 (5) Firing process The glass substrate on which the inorganic powder-containing resin pattern was formed was baked for 30 minutes in a temperature atmosphere of 580 ° C. As a result, an electrode pattern having a thickness of 4 m was formed on the surface of the glass substrate. The obtained electrode pattern had an excellent shape with no cracks or chips.
[実施例 12]  [Example 12]
(1)無機粉体含有樹脂組成物の調製  (1) Preparation of resin composition containing inorganic powder
ガラス粉末(無機粉体 (A) )として PbO— B O — SiO — CaO系ガラス(熱軟化点  PbO-BO-SiO-CaO glass (thermal softening point) as glass powder (inorganic powder (A))
2 3 2  2 3 2
530。Cおよび平均粒径 1. 6 ) 80部、フイラ一として ZnO (平均粒径 1. 0 111) 20 部と、重合体 (B—1)として樹脂(1) 10部、重合体 (B— 2)としてブチルメタタリレート /2—ェチルへキシルメタタリレート/ヒドロキシプロピルメタタリレート共重合体(重量 比: 30/60/10および Mw: 100, 000) 20部、可塑性付与物質(C)としてジー2— ェチルへキシルァゼレート 6部および溶剤としてプロピレングリコールモノメチルエー テル 50部とを混練することにより、ペースト状の無機粒子含有樹脂組成物を調製した 530. C and average particle size 1.6) 80 parts, filler ZnO (average particle size 1. 0 111) 20 parts, polymer (B-1) 10 parts resin (1), polymer (B-2 ) As butyl metatalylate / 2-ethylhexyl metatalylate / hydroxypropyl metatalylate copolymer (weight ratio: 30/60/10 and Mw: 100,000) 20 parts, as plasticizer (C) A paste-like inorganic particle-containing resin composition was prepared by kneading 6 parts of 2-ethylhexylazelate and 50 parts of propylene glycol monomethyl ether as a solvent.
Yes
(2)転写フィルムの製造  (2) Production of transfer film
(1)で調製した組成物を、あらかじめ離型処理したポリエチレンテレフタレート(PE T)フィルムよりなる支持フィルム(幅 200mm、長さ 30m、厚さ 38 μ m)上にロールコ ータにより塗布して塗膜を形成した。形成された塗膜を 100°Cで 10分間乾燥すること により溶剤を除去し、これにより、厚さ 260 mの無機粒子含有樹脂層が支持フィノレ ム上に形成されてなる転写フィルムを作製した。  The composition prepared in (1) is applied onto a support film (width 200 mm, length 30 m, thickness 38 μm) made of a polyethylene terephthalate (PET) film, which has been subjected to release treatment in advance, using a roll coater. A film was formed. The formed coating film was dried at 100 ° C. for 10 minutes to remove the solvent, thereby producing a transfer film in which an inorganic particle-containing resin layer having a thickness of 260 m was formed on the supporting fin.
(3)無機粉体含有樹脂組成物の転写  (3) Transfer of inorganic powder-containing resin composition
プラズマを発生させるための電極(100 m幅)が配列されてなる 6インチパネル用 のガラス基板の表面に、この転写フィルムを加熱ローラにより熱圧着した。ここで、圧 着条件としては、加熱ローラの表面温度を 100°C、ロール圧を 4kg/cmおよび加熱 ローラの移動速度を 0. 5m/分とした。熱圧着処理の終了後、無機粒子含有樹脂層 (1)から支持フィルムを剥離除去した。これにより、ガラス基板の表面に無機粒子含 有樹脂層(1)が積層された後、転写されて密着した状態となった。この無機粒子含有 樹脂層(1)の積層膜について膜厚を測定したところ、 260 m± 2 mの範囲にあつ た。 The transfer film was thermocompression bonded to the surface of a glass substrate for a 6-inch panel in which electrodes (100 m wide) for generating plasma were arranged by a heating roller. Here, the pressing conditions were such that the surface temperature of the heating roller was 100 ° C, the roll pressure was 4 kg / cm, and the moving speed of the heating roller was 0.5 m / min. After completion of the thermocompression treatment, the support film was peeled off from the inorganic particle-containing resin layer (1). As a result, after the inorganic particle-containing resin layer (1) was laminated on the surface of the glass substrate, it was transferred and brought into close contact. When the film thickness of the laminated film of the inorganic particle-containing resin layer (1) was measured, it was in the range of 260 m ± 2 m. It was.
(4)無機粉体含有樹脂組成物の焼成過程  (4) Firing process of resin composition containing inorganic powder
無機粒子含有樹脂層が形成されたガラス基板を 560°Cの温度雰囲気下で、 15分 間にわたり焼成処理を行った。これにより、ガラス基板上にガラス焼結体が形成され た。  The glass substrate on which the inorganic particle-containing resin layer was formed was baked for 15 minutes in a temperature atmosphere of 560 ° C. As a result, a glass sintered body was formed on the glass substrate.
(5)レジストパターンの形成工程  (5) Resist pattern formation process
ガラス焼結体の表面に、レジスト膜の表面が当接されるよう転写フィルムを重ね合わ せ、この転写フィルムを加熱ローラにより上記と同一の圧着条件により熱圧着した。熱 圧着処理の終了後、レジスト膜から支持フィルムを剥離除去した。これにより、ガラス 焼結体の表面にレジスト膜が転写されて密着した状態となった。ガラス焼結体の表面 に転写されたレジスト膜について膜厚を測定したところ、 20 m± 1 mの範囲にあ つた。  A transfer film was superimposed on the surface of the glass sintered body so that the surface of the resist film was in contact with this, and this transfer film was thermocompression bonded with a heating roller under the same pressure bonding conditions as described above. After completion of the thermocompression treatment, the support film was peeled off from the resist film. As a result, the resist film was transferred and adhered to the surface of the glass sintered body. When the film thickness of the resist film transferred to the surface of the sintered glass was measured, it was in the range of 20 m ± 1 m.
[0215] ガラス焼結体上に形成されたレジスト膜に対して、露光用マスク(100 H m幅のスト ライプパターン)を介して、超高圧水銀灯により、 i線 (波長 365nmの紫外線)を照射 した。ここに、照射量は 400mj/cm2とした。露光処理されたレジスト膜に対して、 0. 3重量%の炭酸ナトリウム水溶液(30°C)を現像液とするシャワー法による現像処理を 30秒間かけて行った。次いで、超純水による水洗処理を行い、これにより、紫外線が 照射されてレ、な!/、未硬化のレジストを除去し、レジストパターンを形成した。 [0215] The resist film formed on the glass sintered body is irradiated with i-rays (ultraviolet light with a wavelength of 365 nm) with an ultrahigh pressure mercury lamp through an exposure mask (100 Hm stripe pattern). did. Here, the irradiation dose was 400 mj / cm 2 . The exposed resist film was developed for 30 seconds by a shower method using a 0.3 wt% aqueous sodium carbonate solution (30 ° C.) as a developer. Subsequently, a water washing treatment with ultrapure water was performed, whereby ultraviolet rays were irradiated to remove the resist and the uncured resist, and a resist pattern was formed.
(6)無機粒子含有樹脂層のエッチング工程  (6) Etching process of inorganic particle-containing resin layer
上記の工程に連続して、 1重量%の硝酸水溶液 (40°C)をエッチング液とするシャヮ 一法によるエッチング処理を 10分間かけて行った。次いで、超純水による水洗処理 および乾燥処理を行った。これにより、材料層残留部と、材料層除去部とから構成さ れる隔壁パターンを形成した。最後に、炭酸ナトリウム 1 % (30°C)を剥離液としてシャ ヮ一法によるレジスト剥離処理を 60秒間かけて行った。次いで、超純水による水洗処 理を行い、これにより、隔壁パターンを形成した。  Continuing with the above steps, an etching process was performed for 10 minutes by the shattering method using a 1 wt% nitric acid aqueous solution (40 ° C.) as an etching solution. Next, washing with ultrapure water and drying were performed. As a result, a partition wall pattern composed of the material layer remaining portion and the material layer removal portion was formed. Finally, a resist stripping process was performed for 60 seconds using the sodium carbonate method using sodium carbonate 1% (30 ° C) as a stripping solution. Subsequently, the water washing process by ultrapure water was performed and the partition pattern was formed by this.
[0216] <合成例 7〜; 13〉 [0216] <Synthesis Examples 7 and 13; 13>
合成例 1において、モノマーを表 3に示す量で用いた以外は、合成例 1と同様にし て、樹脂(7)〜(; 13)を合成した。 [0217] <合成例 14〉 Resins (7) to (; 13) were synthesized in the same manner as in Synthesis Example 1 except that the monomers were used in the amounts shown in Table 3 in Synthesis Example 1. [0217] <Synthesis Example 14>
PEGMA20部、 EHA40部、 ST40部および N, N,一ァゾビスイソブチロニトリル 1 . 5部を、攪拌機付きオートクレープに仕込み、窒素雰囲気下において室温で均一に なるまで攪拌した。攪拌後、 90°Cで 3時間重合させ、さらに N, N'—ァゾビスイソプチ ロニトリル 0. 5部を加えて 1時間重合し、 100°Cで 1時間重合反応を継続させた後、 室温まで冷却してポリマー溶液を得た。得られたポリマー溶液は、重合率が 96%で あり、このポリマー溶液から析出した樹脂(14)の Mwは 10,000であった。結果を表 2 に示す。  20 parts of PEGMA, 40 parts of EHA, 40 parts of ST and 1.5 parts of N, N, monoazobisisobutyronitrile were charged into an autoclave equipped with a stirrer and stirred at room temperature in a nitrogen atmosphere until uniform. After stirring, polymerize at 90 ° C for 3 hours, further add 0.5 part of N, N'-azobisisobutyronitrile, polymerize for 1 hour, continue the polymerization reaction at 100 ° C for 1 hour, and then cool to room temperature. Thus, a polymer solution was obtained. The obtained polymer solution had a polymerization rate of 96%, and the Mw of the resin (14) precipitated from this polymer solution was 10,000. The results are shown in Table 2.
[0218] <合成例 15〉  [0218] <Synthesis Example 15>
PEGMA20咅「 EHA40部、 3丁40咅「および N, N,一ァゾビスイソブチロニトリル 0 . 5部を、攪袢機付きオートクレープに仕込み、窒素雰囲気下において室温で均一に なるまで攪拌した。攪拌後、 75°Cで 4時間重合させ、さらに N, N'—ァゾビスイソプチ ロニトリル 0. 25部を加えて 2時間重合し、 100°Cで 1時間重合反応を継続させた後、 室温まで冷却してポリマー溶液を得た。得られたポリマー溶液は、重合率が 98 %で あり、このポリマー溶液から析出した樹脂(15)の Mwは 50,000であった。結果を表 2 に示す。  Charge 20 parts of PEGMA “EHA 40 parts, 3 c. 40 parts” and 0.5 parts of N, N, 1-azobisisobutyronitrile into an autoclave with a stirrer, and stir until uniform at room temperature in a nitrogen atmosphere. After stirring, polymerize at 75 ° C for 4 hours, further add 0.25 part of N, N'-azobisisobutyronitrile for 2 hours, continue polymerization at 100 ° C for 1 hour, and then reach room temperature. The polymer solution was cooled to a polymerization rate of 98%, and the Mw of the resin (15) deposited from this polymer solution was 50,000, and the results are shown in Table 2.
[0219] [表 2]  [0219] [Table 2]
【表 2】 [Table 2]
Figure imgf000052_0001
Figure imgf000052_0001
[0220] [実施例 13] [0220] [Example 13]
(1)ガラスペースト組成物(無機粉体含有樹脂組成物)の調製 ガラス粉末(無機粉体)(A)として、酸化鉛 70重量%、酸化ホウ素 10重量%および 酸化ケィ素 20重量%の組成を有する PbO— B O SiO系の混合物(軟化点 500 °C) 100部、重合体 (B— 1)として、樹脂(1) 10部、重合体 (B— 2)として、ブチルメタ タリレート /2—ェチルへキシルメタタリレート /2—ヒドロキシプロピルメタタリレート共 重合体(重量比: 30/60/10および Mw: 100, 000) 20部、可塑性付与物質(C) として、ビス(2-ェチルへキシル)ァゼレート(以下、「DOAz」ともいう。)3部および溶 剤として、プロピレングリコールモノメチルエーテル(以下、「PGME」ともいう。)35部 を分散機を用いて混練することにより、粘度が 3Pa ' sの組成物を調製した。 (1) Preparation of glass paste composition (resin composition containing inorganic powder) As a glass powder (inorganic powder) (A), a PbO—BO SiO-based mixture (softening point 500 ° C) 100 parts having a composition of 70% by weight of lead oxide, 10% by weight of boron oxide and 20% by weight of silicon oxide Polymer (B-1) as resin (1) 10 parts, Polymer (B-2) as butyl methacrylate / 2-ethylhexyl methacrylate / 2-hydroxypropyl methacrylate copolymer (weight) Ratio: 30/60/10 and Mw: 100,000) 20 parts, as plasticizer (C), 3 parts of bis (2-ethylhexyl) azelate (hereinafter also referred to as “DOAz”) and as solvent A composition having a viscosity of 3 Pa ′s was prepared by kneading 35 parts of propylene glycol monomethyl ether (hereinafter also referred to as “PGME”) using a disperser.
(2)転写フィルムの製造および評価(可撓性および取扱性)  (2) Production and evaluation of transfer film (flexibility and handling)
上記(1)で調製した組成物を、あらかじめ離型処理したポリエチレンテレフタレート( PET)よりなる支持フィルム(幅 400mm、長さ 30m、厚さ 38 μ m)上にブレードコータ 一を用いて塗布し、形成された塗膜を 100°Cで 5分間乾燥して溶剤を除去することに より、厚さ 50 ^ 111の無機粉体含有樹脂層を支持フィルム上に形成した。次いで、前 記無機粉体含有樹脂層上に、あらかじめ離型処理した PETよりなるカバーフィルム( 幅 400mm、長さ 30m、厚さ 25〃 m)を貝占り付けることにより、図 2に示したような構成 を有する本発明の転写フィルムを製造した。  Apply the composition prepared in (1) above onto a support film (width 400 mm, length 30 m, thickness 38 μm) made of polyethylene terephthalate (PET), which has been subjected to release treatment in advance, using a blade coater. The formed coating film was dried at 100 ° C. for 5 minutes to remove the solvent, thereby forming an inorganic powder-containing resin layer having a thickness of 50 ^ 111 on the support film. Next, a cover film (width 400 mm, length 30 m, thickness 25 mm) made of PET that had been subjected to release treatment in advance was placed on the inorganic powder-containing resin layer, as shown in FIG. A transfer film of the present invention having such a structure was produced.
[0221] 得られた転写フィルムは柔軟性を有しており、ロール状に巻き取る操作を容易に行 うこと力 Sできた。また、この転写フィルムを折り曲げても、無機粉体含有樹脂層の表面 にひび割れ (屈曲亀裂)が生じることはなぐ該樹脂層は優れた可撓性を有するもの であった。 [0221] The obtained transfer film was flexible and could easily be wound into a roll. Further, even when this transfer film was bent, the resin layer had excellent flexibility without causing cracks (bending cracks) on the surface of the inorganic powder-containing resin layer.
[0222] また、この転写フィルムからカバーフィルムを剥離し、無機粉体含有樹脂層の表面 がガラス基板の表面に当接されるように、該転写フィルムを加圧することなく重ね合わ せた後、該転写フィルムをガラス基板の表面から剥がしてみた。その結果、前記樹脂 層は、ガラス基板に対して適度な粘着性を示しており、しかも、該樹脂層が凝集破壊 を起こすことなく転写フィルムを剥がすことができ、転写フィルムとしての取扱性 (ノ、ン ドリング†生)は良好なものであった。  [0222] Further, after peeling the cover film from the transfer film and superimposing the transfer film without applying pressure so that the surface of the inorganic powder-containing resin layer is in contact with the surface of the glass substrate, The transfer film was peeled off from the surface of the glass substrate. As a result, the resin layer exhibits moderate adhesiveness to the glass substrate, and the transfer film can be peeled off without causing cohesive failure of the resin layer. ), And the result was good.
(3)無機粉体含有樹脂層の転写  (3) Transfer of resin layer containing inorganic powder
上記(2)により得られた転写フィルムからカバーフィルムを剥離した後、 20インチパ ネル用のガラス基板の表面 (バス電極の固定面)に、無機粉体含有樹脂層の表面が 当接されるように該転写フィルムを重ね合わせ、この転写フィルムを加熱ロールにより 熱圧着した。圧着条件としては、加熱ロールの表面温度を 110°C、ロール圧を 3kg/ cm2および加熱ロールの移動速度を lm/分とした。 After peeling the cover film from the transfer film obtained in (2) above, The transfer film was superposed on the surface of the glass substrate for the panel (fixing surface of the bus electrode) so that the surface of the resin layer containing the inorganic powder was in contact, and this transfer film was thermocompression bonded with a heating roll. As the pressure bonding conditions, the surface temperature of the heating roll was 110 ° C., the roll pressure was 3 kg / cm 2, and the moving speed of the heating roll was lm / min.
[0223] 熱圧着処理の終了後、ガラス基板の表面に固定 (加熱接着)された無機粉体含有 樹脂層から支持フィルムを剥離除去し、該樹脂層の転写を完了した。 [0223] After completion of the thermocompression treatment, the support film was peeled and removed from the inorganic powder-containing resin layer fixed (heat bonded) to the surface of the glass substrate to complete the transfer of the resin layer.
[0224] この転写工程において、支持フィルムを剥離するときに、無機粉体含有樹脂層が凝 集破壊を起こすようなことはなぐ該樹脂層は十分大きな膜強度を有するものであつ た。さらに、転写された無機粉体含有樹脂層は、ガラス基板の表面に対して良好な 接着性を有するものであった。 [0224] In this transfer step, when the support film was peeled off, the inorganic powder-containing resin layer did not cause agglomeration failure, and the resin layer had a sufficiently large film strength. Furthermore, the transferred inorganic powder-containing resin layer had good adhesion to the surface of the glass substrate.
(4)無機粉体含有樹脂層の焼成工程  (4) Inorganic powder-containing resin layer firing step
上記のように、ガラス基板の表面に固定 (加熱接着)された無機粉体含有樹脂を焼 成炉内で 590°Cの温度雰囲気下で 20分間にわたり焼成処理を行った。これにより、 ガラス基板の表面に厚み 40 a mの誘電体が形成されてなるパネル材料を得ることが できた。  As described above, the inorganic powder-containing resin fixed (heat-bonded) to the surface of the glass substrate was baked for 20 minutes in a baking furnace in a temperature atmosphere of 590 ° C. As a result, it was possible to obtain a panel material in which a dielectric having a thickness of 40 am was formed on the surface of the glass substrate.
[0225] [実施例 14〜24] [Examples 14 to 24]
実施例 13において、重合体 (B— 1)を表 2に示す樹脂および量で用いた以外は実 施例 13と同様に組成物を調製し、転写フィルムおよびパネル材料を作製した。  In Example 13, a composition was prepared in the same manner as in Example 13 except that the polymer (B-1) was used in the amount and amount of resin shown in Table 2, and a transfer film and a panel material were produced.
[0226] [比較例 7] [0226] [Comparative Example 7]
実施例 13において、重合体 (B— 1)を用いな力、つた以外は実施例 13と同様にして In Example 13, the same force as in Example 13 was used, except that the polymer (B-1) was not used.
、無機粉体含有樹脂組成物を調製し、転写フィルムの作製、焼成および評価を行つ た。 Then, an inorganic powder-containing resin composition was prepared, and a transfer film was produced, baked and evaluated.
[0227] [比較例 8]  [0227] [Comparative Example 8]
ポリエチレングリコールメタタリレート 20部、 2—ェチルへキシルアタリレート 40部、ス チレン 40部および N, N,—ァゾビスイソブチロニトリル 0. 40部を、攪拌機付きオート クレープに仕込み、窒素雰囲気下において室温で均一になるまで攪拌した。攪拌後 、 75°Cで 5時間重合させ、さらに N, N'—ァゾビスイソブチロニトリル 0. 25部を加え て 3時間重合し、 100°Cで 1時間重合反応を継続させた後、室温まで冷却してポリマ 一溶液を得た。得られたポリマー溶液は、重合率が 98%であり、このポリマー溶液か ら析出した共重合体(以下、「樹脂(16)」という。)の Mwは 70,000であった。 Charge 20 parts of polyethylene glycol methacrylate, 40 parts of 2-ethylhexyl acrylate, 40 parts of styrene, and 0.40 part of N, N, -azobisisobutyronitrile into an autoclave with a stirrer, and a nitrogen atmosphere. Under stirring at room temperature until homogeneous. After stirring, polymerize at 75 ° C for 5 hours, further add 0.25 part of N, N'-azobisisobutyronitrile, polymerize for 3 hours, and continue the polymerization reaction at 100 ° C for 1 hour. Cool to room temperature, polymer One solution was obtained. The resulting polymer solution had a polymerization rate of 98%, and the Mw of the copolymer precipitated from this polymer solution (hereinafter referred to as “resin (16)”) was 70,000.
[0228] 実施例 13にお!/、て、重合体 (B— 1)として、樹脂(1)に替えて、樹脂(16)を用いた 以外は実施例 13と同様にして、無機粉体含有樹脂組成物を調製し、転写フィルムの 作製、焼成および評価を行った。  [0228] Inorganic powders were obtained in the same manner as in Example 13, except that the polymer (B-1) was replaced with the resin (16) instead of the resin (1). A contained resin composition was prepared, and a transfer film was prepared, baked and evaluated.
[0229] [比較例 9]  [0229] [Comparative Example 9]
実施例 13において、重合体 (B— 1)として、樹脂(1)に替えて、樹脂(2)を用いた 以外は実施例 13と同様にして、無機粉体含有樹脂組成物を調製し、転写フィルムの 作製、焼成および評価を行った。  In Example 13, an inorganic powder-containing resin composition was prepared in the same manner as in Example 13 except that the resin (2) was used instead of the resin (1) as the polymer (B-1). The transfer film was prepared, baked and evaluated.
[0230] [比較例 10]  [0230] [Comparative Example 10]
ポリエチレングリコールメタタリレート 40部、 2—ェチルへキシルアタリレート 40部、ス チレン 20部および N, N,—ァゾビスイソブチロニトリル 0. 20部を、攪拌機付きオート クレープに仕込み、窒素雰囲気下において室温で均一になるまで攪拌した。攪拌後 、 75°Cで 8時間重合させ、さらに N, N'—ァゾビスイソブチロニトリル 0. 25部を加え て 3時間重合し、 100°Cで 1時間重合反応を継続させた後、室温まで冷却してポリマ 一溶液を得た。得られたポリマー溶液は、重合率が 98%であり、このポリマー溶液か ら析出した共重合体(以下、「樹脂(17)」という。)の Mwは 200,000であった。  Charge 40 parts of polyethylene glycol methacrylate, 40 parts of 2-ethylhexyl acrylate, 20 parts of styrene, and 0.20 part of N, N, -azobisisobutyronitrile into an autoclave with a stirrer, and a nitrogen atmosphere. Under stirring at room temperature until homogeneous. After stirring, polymerize at 75 ° C for 8 hours, further add 0.25 part of N, N'-azobisisobutyronitrile, polymerize for 3 hours, and continue the polymerization reaction at 100 ° C for 1 hour. Then, it was cooled to room temperature to obtain a polymer solution. The obtained polymer solution had a polymerization rate of 98%, and the Mw of the copolymer precipitated from this polymer solution (hereinafter referred to as “resin (17)”) was 200,000.
[0231] 実施例 13において、重合体 (B— 1)として、樹脂(1)に替えて、樹脂(17)を用いた 以外は実施例 13と同様にして、無機粉体含有樹脂組成物を調製し、転写フィルムの 作製、焼成および評価を行った。  [0231] In Example 13, an inorganic powder-containing resin composition was prepared in the same manner as in Example 13, except that the resin (17) was used instead of the resin (1) as the polymer (B-1). The transfer film was prepared, fired and evaluated.
[0232] [比較例 11]  [0232] [Comparative Example 11]
実施例 13において、重合体 (B— 1)として、樹脂(1)を 0. 005重量部用いた以外 は実施例 13と同様にして、無機粉体含有樹脂組成物を調製し、転写フィルムの作製 、焼成および評価を行った。  In Example 13, an inorganic powder-containing resin composition was prepared in the same manner as in Example 13 except that 0.005 part by weight of the resin (1) was used as the polymer (B-1). Fabrication, firing and evaluation were performed.
[0233] [比較例 12]  [0233] [Comparative Example 12]
実施例 13において、重合体 (B— 1)として、樹脂(1)を 100重量部用いた以外は実 施例 13と同様にして、無機粉体含有樹脂組成物を調製し、転写フィルムの作製、焼 成および評価を行った。 [0234] <転写フィルムの評価方法〉 In Example 13, an inorganic powder-containing resin composition was prepared in the same manner as in Example 13 except that 100 parts by weight of the resin (1) was used as the polymer (B-1), and a transfer film was produced. Calcination and evaluation were performed. [0234] <Evaluation method of transfer film>
本発明の転写フィルムの評価方法を以下に示す。  The method for evaluating the transfer film of the present invention is shown below.
(1)可撓性  (1) Flexibility
転写フィルムを折り曲げた際に、無機粉体含有樹脂層の表面に、ひび割れ (屈曲 亀裂)が生じなかったものを〇とし、ひび割れが生じたものを Xとした。  When the transfer film was folded, the surface of the inorganic powder-containing resin layer that did not have cracks (bending cracks) was marked with ◯, and that with cracks was marked with X.
(2)保存安定性  (2) Storage stability
フィルム塗工前のペーストを 5°Cにて保管し、 30日以上経過しても相分離しなかつ たものを〇、 10日以上 30日未満で相分離したものを△、 10日未満で相分離したも のを Xとした。  The paste before film coating is stored at 5 ° C, and the phase that has not been phase-separated after 30 days or more is △, the phase that has been phase-separated for 10 days or more but less than 30 days is △, the phase is less than 10 days The separated one was designated as X.
(3)透明性  (3) Transparency
焼成後のパネルにっレ、て形成された誘電体層の直線透過率(測定波長 550nm) を分光光度計 (UV— 2450 : (株)島津製作所製)により測定した。透過率が 70%以 上であったものを〇、透過率が 65%を超えて 70%未満であったものを△、透過率が 65%未満であったものを Xとした。  The linear transmittance (measurement wavelength: 550 nm) of the dielectric layer formed on the fired panel was measured with a spectrophotometer (UV-2450: manufactured by Shimadzu Corporation). The case where the transmittance was 70% or more was rated as ◯, the transmittance exceeding 65% and less than 70% as Δ, and the transmittance as less than 65% as X.
(4)透明性 (安定性)  (4) Transparency (stability)
10枚のパネルを焼成し、上記直線透過率の最大値と最小値との差力 2%未満の ものを〇、 2%を超えて 10%未満のものを△、 10%以上のものを Xとした。  10 panels are fired, the difference between the maximum and minimum values of the above linear transmittance is less than 2% ○, more than 2% and less than 10% △, more than 10% X It was.
(5)表面平滑性  (5) Surface smoothness
非接触三次元形状測定装置 (型番: NH— 3 三鷹光器 (株) )を用いて測定範囲 5 00 m X 500 m、測定ピッチ 10 μ mの条件で測定し、 10点平均粗さ(Rz)を表面 粗度とした。表面粗度は、以下の評価基準に基づいて行った。  Using a non-contact three-dimensional shape measuring device (model number: NH-3 Mitaka Kogyo Co., Ltd.), the measurement range is 500 m X 500 m, the measurement pitch is 10 μm, and the 10-point average roughness (Rz ) Is the surface roughness. The surface roughness was performed based on the following evaluation criteria.
0 : 0. Ol m未満  0: Less than 0. Ol m
Δ : 0. Ol ^u m以上 0· l ^u m未満  Δ: 0. Ol ^ u m or more, less than 0 l ^ u m
X: 0. 1 μ m以上  X: 0.1 μm or more
実施例 13〜 24および比較例 7〜; 12の結果を表 3〜 4に示す。  Tables 3 to 4 show the results of Examples 13 to 24 and Comparative Examples 7 to 12;
[0235] [表 3] 【表 3】 [0235] [Table 3] [Table 3]
Figure imgf000057_0001
Figure imgf000057_0001
D0362 【表 4】 D0362 [Table 4]
Figure imgf000059_0001
Figure imgf000059_0001

Claims

請求の範囲 The scope of the claims
[1] 無機粉体 (A)および結着樹脂 (B)を含有し、  [1] contains an inorganic powder (A) and a binder resin (B),
該結着樹脂(B)が、ポリオキシアルキレン部位を有する重量平均分子量 10, 000〜 50, 000の(メタ)アクリル系重合体(B—1)を含み、  The binder resin (B) includes a (meth) acrylic polymer (B-1) having a weight average molecular weight of 10,000 to 50,000 having a polyoxyalkylene moiety,
かつ該重合体(B—1)を該無機粉体 (A) 100重量部に対して 0. 0;!〜 50重量部含 有することを特徴とする無機粉体含有樹脂組成物。  And an inorganic powder-containing resin composition comprising 0.0;! To 50 parts by weight of the polymer (B-1) with respect to 100 parts by weight of the inorganic powder (A).
[2] 前記重合体 (B— 1)が、 [2] The polymer (B-1) is
ポリオキシアルキレン部位を有する (メタ)アタリレート化合物に由来する構成単位 5 〜30重量%と、  5 to 30% by weight of a structural unit derived from a (meth) acrylate compound having a polyoxyalkylene moiety;
ポリオキシアルキレン部位を有しな!/、 (メタ)アタリレート化合物に由来する構成単位 30〜50重量%と、  No polyoxyalkylene moiety! /, 30-50% by weight of a structural unit derived from a (meth) acrylate compound,
芳香族ビュル化合物に由来する構成単位 30〜 50重量%と  30-50% by weight of structural units derived from aromatic bur compound
を含有することを特徴とする請求項 1に記載の無機粉体含有樹脂組成物。  The inorganic powder-containing resin composition according to claim 1, comprising:
[3] 前記重合体(B— 1)が、ポリエチレングリコールモノ (メタ)アタリレート、ェトキシジェ チレングリコール(メタ)アタリレート、メトキシポリエチレングリコール(メタ)アタリレート、 フエノキシポリエチレングリコール(メタ)アタリレート、ノユルフェノキシポリエチレングリ コール(メタ)アタリレート、ポリプロピレングリコールモノ(メタ)アタリレート、メトキシポリ プロピレングリコール(メタ)アタリレート、エトキシポリプロピレングリコール(メタ)アタリ レートおよびノユルフェノキシポリプロピレングリコール(メタ)アタリレートから選ばれる 少なくとも 1種の (メタ)アタリレート化合物に由来の構成単位を有することを特徴とす る請求項 1または 2に記載の無機粉体含有樹脂組成物。  [3] The polymer (B-1) is a polyethylene glycol mono (meth) acrylate, ethoxyethylene glycol (meth) acrylate, methoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate. , Nourphenoxypolyethylene glycol (meth) acrylate, polypropylene glycol mono (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, ethoxy polypropylene glycol (meth) acrylate and noeur phenoxy polypropylene glycol (meth) acrylate 3. The inorganic powder-containing resin composition according to claim 1, comprising a structural unit derived from at least one (meth) acrylate compound selected from the group consisting of:
[4] 可塑性付与物質(C)をさらに含有することを特徴とする請求項 1〜3のいずれかに 記載の無機粉体含有樹脂組成物。  [4] The inorganic powder-containing resin composition according to any one of claims 1 to 3, further comprising a plasticity-imparting substance (C).
[5] (D)感光性成分として、(D— 1)多官能性 (メタ)アタリレートおよび (D— 2)放射線 重合開始剤をさらに含有することを特徴とする請求項 1〜4のいずれかに記載の無機 粉体含有樹脂組成物。  5. The composition according to any one of claims 1 to 4, further comprising (D-1) a polyfunctional (meth) acrylate and (D-2) a radiation polymerization initiator as the photosensitive component (D). An inorganic powder-containing resin composition according to claim 1.
[6] 支持フィルム上に、請求項;!〜 5のいずれかに記載の無機粉体含有樹脂組成物か ら得られる無機粉体含有樹脂層を有することを特徴とする転写フィルム。 [6] A transfer film comprising an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition according to any one of claims;! To 5 on a support film.
[7] 支持フィルム上に、レジスト層と、請求項;!〜 5のいずれかに記載の無機粉体含有 樹脂組成物から得られる無機粉体含有樹脂層とを含む積層体を有することを特徴と する転写フィルム。 [7] A laminate comprising a resist layer and an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition according to any one of claims;! To 5 on a support film. Transfer film.
[8] 支持フィルム上に形成された、請求項;!〜 5のいずれかに記載の無機粉体含有樹 脂組成物から得られる無機粉体含有樹脂層を基板上に転写する工程と、  [8] A step of transferring an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition according to any one of claims;! To 5 formed on a support film onto a substrate;
該無機粉体含有樹脂層を焼成処理する工程と  Baking the inorganic powder-containing resin layer;
を含むことを特徴とするフラットパネルディスプレイ部材の製造方法。  The manufacturing method of the flat panel display member characterized by including.
[9] 支持フィルム上に形成された、請求項;!〜 5のいずれかに記載の無機粉体含有樹 脂組成物から得られる無機粉体含有樹脂層を基板上に転写する工程と、 [9] A step of transferring an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition according to any one of claims 5 to 6 onto a substrate, formed on a support film;
該無機粉体含有樹脂層上にレジスト層を形成する工程と、  Forming a resist layer on the inorganic powder-containing resin layer;
該レジスト層を露光処理してレジストバターンの潜像を形成する工程と、 該レジスト層を現像処理してレジストパターンを顕在化させる工程と、  A step of exposing the resist layer to form a latent image of a resist pattern; a step of developing the resist layer to reveal a resist pattern;
該無機粉体含有樹脂層をエッチング処理して該レジストパターンに対応するパター ンを形成する工程と、  Etching the inorganic powder-containing resin layer to form a pattern corresponding to the resist pattern;
該パターンを焼成処理する工程と  A step of firing the pattern;
を含むことを特徴とするフラットパネルディスプレイ部材の製造方法。  The manufacturing method of the flat panel display member characterized by including.
[10] 支持フィルム上に形成された、レジスト層と、請求項 1〜5のいずれかに記載の無機 粉体含有樹脂組成物から得られる無機粉体含有樹脂層との積層体を基板上に転写 する工程と、 [10] A laminate of a resist layer formed on a support film and an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition according to any one of claims 1 to 5 on a substrate A transfer process;
該積層体を構成するレジスト層を露光処理してレジストパターンの潜像を形成する 工程と、  A step of exposing a resist layer constituting the laminate to form a latent image of a resist pattern; and
該レジスト層を現像処理してレジストパターンを顕在化させる工程と、  Developing the resist layer to reveal the resist pattern; and
該無機粉体含有樹脂層をエッチング処理してレジストパターンに対応するパターン を形成する工程と、  Etching the inorganic powder-containing resin layer to form a pattern corresponding to the resist pattern;
該パターンを焼成処理する工程と  A step of firing the pattern;
を含むことを特徴とするフラットパネルディスプレイ部材の製造方法。  The manufacturing method of the flat panel display member characterized by including.
[11] 支持フィルム上に形成された、請求項 5に記載の無機粉体含有樹脂組成物から得 られる無機粉体含有樹脂層を基板上に転写する工程と、 該無機粉体含有樹脂層を露光処理してパターンの潜像を形成する工程と、 該無機粉体含有樹脂層を現像処理してパターンを形成する工程と、 [11] A step of transferring an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition according to claim 5 formed on a support film onto a substrate; A step of exposing the inorganic powder-containing resin layer to form a latent image of a pattern; a step of developing the inorganic powder-containing resin layer to form a pattern;
該パターンを焼成処理する工程と  A step of firing the pattern;
を含むことを特徴とするフラットパネルディスプレイ部材の製造方法。  The manufacturing method of the flat panel display member characterized by including.
[12] 支持フィルム上に形成された、請求項;!〜 5のいずれかに記載の無機粉体含有樹 脂組成物から得られる無機粉体含有樹脂層を基板上に転写する工程と、 [12] A step of transferring an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition according to any one of claims;! To 5 formed on a support film onto a substrate;
該無機粉体含有樹脂層を焼成して無機膜を形成する工程と、  Baking the inorganic powder-containing resin layer to form an inorganic film;
該無機膜上にレジストパターンを形成する工程と、  Forming a resist pattern on the inorganic film;
無機膜をエッチング処理してレジストパターンに対応する無機パターンを形成する 工程と  Etching the inorganic film to form an inorganic pattern corresponding to the resist pattern; and
を含むことを特徴とするフラットパネルディスプレイ部材の製造方法。  The manufacturing method of the flat panel display member characterized by including.
[13] 前記フラットパネルディスプレイ部材が、誘電体層、隔壁、電極、抵抗体、蛍光体、 カラーフィルターおよびブラックマトリックスから選ばれることを特徴とする請求項 1;!〜 15のいずれかに記載のフラットパネルディスプレイ部材の製造方法。 [13] The flat panel display member is selected from a dielectric layer, a partition, an electrode, a resistor, a phosphor, a color filter, and a black matrix. Manufacturing method of flat panel display member.
[14] 請求項;!〜 4のいずれかに記載の無機粉体含有樹脂組成物から得られる無機粉体 含有樹脂層を基板上に形成し、該無機粉体含有樹脂層を焼成することにより該基板 上に誘電体層を形成する工程を含むことを特徴とするフラットパネルディスプレイ部 材の製造方法。 [14] Claim: By forming an inorganic powder-containing resin layer obtained from the inorganic powder-containing resin composition according to any one of claims 4 to 4 on a substrate, and firing the inorganic powder-containing resin layer A method for producing a flat panel display member, comprising a step of forming a dielectric layer on the substrate.
[15] 前記無機粉体含有樹脂層が、請求項 6に記載の転写フィルムを用いて基板上に転 写形成されたものであることを特徴とする請求項 14に記載のフラットパネルディスプ レイ部材の製造方法。  [15] The flat panel display member according to claim 14, wherein the inorganic powder-containing resin layer is formed by transfer on the substrate using the transfer film according to claim 6. Manufacturing method.
[16] 基板上に導電性粉末含有樹脂組成物を含むパターンを形成する工程と、該パター ン上に請求項 5に記載の転写フィルムを構成する無機粉体含有樹脂組成層を転写 して前記基板上に積層膜を形成する工程と、該積層膜を焼成する工程とを含むこと を特徴とするフラットパネルディスプレイ部材の製造方法。  [16] A step of forming a pattern including a conductive powder-containing resin composition on a substrate, and an inorganic powder-containing resin composition layer constituting the transfer film according to claim 5 is transferred onto the pattern to transfer the pattern. A method for producing a flat panel display member, comprising: a step of forming a laminated film on a substrate; and a step of firing the laminated film.
PCT/JP2007/073719 2006-12-07 2007-12-07 Inorganic-particle-containing resin composition, transfer film, and process for producing flat panel display member WO2008072582A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006331086 2006-12-07
JP2006-331086 2006-12-07
JP2007-042500 2007-02-22
JP2007042500A JP2008201996A (en) 2007-02-22 2007-02-22 Inorganic particle-containing resin composition, transfer film, and method for manufacturing flat panel display
JP2007091423 2007-03-30
JP2007-091423 2007-03-30

Publications (1)

Publication Number Publication Date
WO2008072582A1 true WO2008072582A1 (en) 2008-06-19

Family

ID=39511602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073719 WO2008072582A1 (en) 2006-12-07 2007-12-07 Inorganic-particle-containing resin composition, transfer film, and process for producing flat panel display member

Country Status (1)

Country Link
WO (1) WO2008072582A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227514A (en) * 2012-03-29 2013-11-07 Nippon Carbide Ind Co Inc Resin composition for paste, paste composition and method for producing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339085A (en) * 1995-06-09 1996-12-24 Nippon Oil & Fats Co Ltd Resin composition curable with active energy beam
JP2004011850A (en) * 2002-06-10 2004-01-15 Fuji Heavy Ind Ltd Bearing structure of crank shaft
JP2005070152A (en) * 2003-08-28 2005-03-17 Fujifilm Arch Co Ltd Photosetting colored resin composition, color filter and method for manufacturing the same
WO2005124458A1 (en) * 2004-06-21 2005-12-29 Jsr Corporation Inorganic powder-containing resin composition, transfer film and method for producing member for plasma display panel
JP2006286429A (en) * 2005-04-01 2006-10-19 Jsr Corp Transfer film and method for manufacturing plasma display panel
WO2006113412A2 (en) * 2005-04-15 2006-10-26 3M Innovative Properties Company Flexible mold comprising cured polymerizable resin composition
JP2007181977A (en) * 2006-01-06 2007-07-19 Jsr Corp Transfer film and method for manufacturing display panel member
JP2007226018A (en) * 2006-02-24 2007-09-06 Jsr Corp Inorganic particle-containing resin composition, transfer film and method for producing member for display panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339085A (en) * 1995-06-09 1996-12-24 Nippon Oil & Fats Co Ltd Resin composition curable with active energy beam
JP2004011850A (en) * 2002-06-10 2004-01-15 Fuji Heavy Ind Ltd Bearing structure of crank shaft
JP2005070152A (en) * 2003-08-28 2005-03-17 Fujifilm Arch Co Ltd Photosetting colored resin composition, color filter and method for manufacturing the same
WO2005124458A1 (en) * 2004-06-21 2005-12-29 Jsr Corporation Inorganic powder-containing resin composition, transfer film and method for producing member for plasma display panel
JP2006286429A (en) * 2005-04-01 2006-10-19 Jsr Corp Transfer film and method for manufacturing plasma display panel
WO2006113412A2 (en) * 2005-04-15 2006-10-26 3M Innovative Properties Company Flexible mold comprising cured polymerizable resin composition
JP2007181977A (en) * 2006-01-06 2007-07-19 Jsr Corp Transfer film and method for manufacturing display panel member
JP2007226018A (en) * 2006-02-24 2007-09-06 Jsr Corp Inorganic particle-containing resin composition, transfer film and method for producing member for display panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227514A (en) * 2012-03-29 2013-11-07 Nippon Carbide Ind Co Inc Resin composition for paste, paste composition and method for producing the same

Similar Documents

Publication Publication Date Title
WO2008023712A1 (en) Photosensitive resin composition, photosensitive film, and method for formation of pattern
JP2007047610A (en) Photosensitive resin composition for forming functional pattern, and functional pattern forming method
TW200407669A (en) Photosensitive curable paste composition and sintered article pattern using the same
JP2006268027A (en) Method for manufacturing plasma display panel and transfer film
JP2009245704A (en) Photosensitive conductive paste composition, electrode circuit, and plasma display panel
WO2008035785A1 (en) Inorganic-particle-containing resin composition, transfer film, and process for producing member for display panel
TW200402754A (en) Conductive paste composition, transcription film to form electrode and electrode for plasma display panel
JPWO2008096782A1 (en) Photosensitive resin composition, transfer film, and pattern forming method
JP2006219660A (en) Inorganic powder-containing resin composition, transfer film, and method for producing plasma display panel
JP2006228506A (en) Manufacturing method of resin composition containing inorganic powder, transfer film, and plasma display panel
JP2007056117A (en) Resin composition comprising inorganic particle, transfer film and method for producing plasma display panel
JP2007246568A (en) Resin composition containing inorganic particle, transfer film and method for producing member for displaying panel
JP3838724B2 (en) Photosensitive resin composition and use thereof
WO2008072582A1 (en) Inorganic-particle-containing resin composition, transfer film, and process for producing flat panel display member
JP2008274221A (en) Inorganic powder-containing resin composition, transfer film and method for producing flat panel display
WO2005085360A1 (en) Composition containing inorganic powder, transfer film, and method of forming inorganic sinter
JP4597830B2 (en) Photosensitive resin composition for forming functional pattern and method for forming functional pattern
JP4639770B2 (en) Inorganic powder-containing resin composition, transfer film, and method for producing plasma display panel
JP2007009190A (en) Resin composition containing inorganic powder, transfer film and manufacturing process of plasma display panel
JP4337535B2 (en) Patterned glass layer forming glass paste, patterned glass layer forming photosensitive film, and method for producing display panel member using the same
JP2006045324A (en) Inorganic powder-including resin composition and method for producing transfer film and plasma display panel
JP4178771B2 (en) Plasma display panel manufacturing method and transfer film
JP2008124030A (en) Conductive paste composition, transfer film and plasma display panel
JP2006070226A (en) Inorganic powder-containing resin composition, transfer film and method for producing plasma display panel
TWI300234B (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850297

Country of ref document: EP

Kind code of ref document: A1