WO2008072525A1 - シャフト型リニアモータの位置決め装置 - Google Patents

シャフト型リニアモータの位置決め装置 Download PDF

Info

Publication number
WO2008072525A1
WO2008072525A1 PCT/JP2007/073509 JP2007073509W WO2008072525A1 WO 2008072525 A1 WO2008072525 A1 WO 2008072525A1 JP 2007073509 W JP2007073509 W JP 2007073509W WO 2008072525 A1 WO2008072525 A1 WO 2008072525A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
mover
shaft
linear motor
position detection
Prior art date
Application number
PCT/JP2007/073509
Other languages
English (en)
French (fr)
Inventor
Ryuichi Katsuhisa
Satoshi Masuda
Original Assignee
Nippon Pulse Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pulse Motor Co., Ltd. filed Critical Nippon Pulse Motor Co., Ltd.
Publication of WO2008072525A1 publication Critical patent/WO2008072525A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • H02P25/066Linear motors of the synchronous type of the stepping type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/006Controlling linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/2713Inner rotors the magnetisation axis of the magnets being axial, e.g. claw-pole type

Definitions

  • the present invention relates to a positioning device for a shaft type linear motor that linearly drives a mover along a shaft.
  • a shaft type linear motor has attracted attention as an electric actuator for linear drive.
  • This type of shaft-type linear motor includes a shaft in which a plurality of bar-shaped magnets are arranged in series, and a mover that is slidably fitted to the shaft, and is provided on the inner periphery of the mover.
  • the mover is linearly driven by the excitation of. According to such a configuration, since cogging has little speed variation, application in various fields is being studied.
  • a position detecting means for detecting the position of the mover is usually added separately (for example, refer to patent documents;! To 3).
  • a linear scale linear encoder
  • the linear scale is composed of a magnetic head (position information reading unit) provided on the mover and a magnetic scale (position information storage unit) arranged opposite to each other along the movement trajectory of the magnetic head. Therefore, since the position of the mover is detected by reading the magnetic scale on the magnetic scale with the magnetic head, the magnetic scale must be arranged in parallel over the entire length of the shaft. As a result, there has been a problem that the periphery of the shaft type linear motor becomes large and its use in fields where compactness is required is limited.
  • Patent Document 1 JP 2004-125699 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-129440
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-129441
  • the present invention was devised to eliminate the above-mentioned problems, and performs high-precision positioning using a linear scale, while limiting the detection interval to a magnetic scale.
  • the aim is to provide a shaft type linear motor positioning device that can be used.
  • a positioning apparatus for a shaft-type linear motor includes a shaft in which a plurality of bar magnets are arranged in series, and a mover that is slidably fitted on the shaft.
  • a shaft type linear motor positioning device that linearly drives the mover by exciting a coil provided on an inner periphery of the mover, and is partially set in a linear drive range of the mover
  • First position detecting means for detecting the position of the movable element in the detected section
  • first position detecting means for detecting the position of the movable element in the entire linear driving range or linear driving range excluding the detection section of the first position detecting means.
  • the first position detection means includes a position information reading unit provided in the mover, and a position information storage arranged in an opposing manner along a movement locus of the position information reading unit.
  • the position information reading unit reads position information in the position information storage unit to detect the position of the mover
  • the second position detection unit includes a magnetic sensor provided in the mover. The position of the mover is detected by detecting the magnetic flux of the shaft by the magnetic sensor.
  • the present invention is configured as described above, and performs highly accurate positioning using a linear scale. By limiting the detection section and reducing the installation range of the magnetic scale, In addition, it can be used in fields where compactness is required, and the force S can be used to detect the position of the mover even in the section where the magnetic scale is not installed.
  • FIG. 1 is a perspective view of a shaft type linear motor (a magnetic scale is omitted) according to an embodiment of the present invention. Shown in this figure As described above, the shaft-type linear motor 1 includes a shaft 2 in which a plurality of bar-shaped magnets 2a are arranged in series, and a mover 3 that is slidably fitted to the shaft 2 and includes an inner portion of the mover 3. The mover 3 is linearly driven by excitation of a coil (not shown) provided on the periphery.
  • a coil not shown
  • the positioning apparatus for the shaft type linear motor 1 includes a first position detecting means 4A for detecting the position of the mover 3 in a detection section partially set in the linear drive range of the mover 3, It is characterized in that it includes a linear drive range excluding the detection section of the position detection means 4A, or a second position detection means 4B that detects the position of the mover 3 in the entire linear drive range.
  • first position detection means 4A and the second position detection means 4B will be described.
  • the second position detection means 4B is configured to include a magnetic sensor (Hall element or the like) S provided on the mover 3, and the second position detection unit 4B includes Perform position detection. That is, according to the second position detecting means 4B, since the position of the mover 3 is detected using the magnetic flux change of the shaft 2 without providing a magnetic scale such as a linear scale, a shaft type having a position detecting function is provided.
  • the linear motor 1 can be made compact.
  • a method for detecting the position of the movable element 3 by the magnetic sensor S first, a method of obtaining a position (mechanical angle) by calculation from two-phase analog signals output from the two magnetic sensors S can be considered.
  • This method is based on the premise that the analog signals obtained from the two magnetic sensors S are sine waves orthogonal to each other. That is, when the magnetic flux distribution of the shaft 2 is not sinusoidal, an error occurs in the obtained position information.
  • the magnetic flux distribution contains many spatial harmonics that are difficult to say as sinusoidal. Therefore, it is difficult to completely remove the harmonic S and the force S, which can be considered to remove the spatial harmonics by smoothing the magnetic flux passing through the magnetic sensor S by moving the magnetic sensor S away from the shaft 2.
  • the output level of the magnetic sensor S decreases, there is a concern about the deterioration of the SN ratio and the influence of disturbance due to external magnetic flux.
  • FIG. 2 is a block diagram showing a detection concept of second position detection means applied to the positioning device for the shaft type linear motor according to the embodiment of the present invention.
  • the position detection method of the second position detection means 4B according to the embodiment of the present invention is the axis of the shaft 2.
  • a plurality of (for example, four) magnetic sensors S0 to S3 arranged at predetermined intervals in the direction are used, and the outputs of the respective magnetic sensors S0 to S3 are multiplied by a predetermined weighting coefficient and added. Get the phase analog signal.
  • the number of magnetic sensors S requires at least two forces that need to be selected appropriately according to the filtering characteristics to be obtained.
  • FIG. 3 is a graph showing an example of the magnetic flux density distribution of the shaft.
  • the magnetic flux density distribution in the vicinity of the surface of shaft 2 includes many spatial harmonics, which is not the case with sine waves.
  • the weighting factors to be multiplied by the magnetic sensors S0 to S6 are set as shown in Fig.4. If the interval between magnetic sensors S0 to S6 is 5 mm and the magnetic flux distribution period is 60 mm, it is assumed that sampling is performed at 12 times the magnetic flux period, and about 1.44 times higher harmonics than the magnetic flux period is passed. It can be said.
  • Figure 5 shows the two-phase signal obtained using this coefficient setting. As shown in this figure, it can be seen that the harmonics are greatly reduced and almost sinusoidal.
  • Fig. 6 shows the position error obtained by calculation from this two-phase signal.
  • FIG. 8 shows the magnetic flux distribution of the shaft 2 by arranging six magnetic sensors S0 to S5 at intervals of 5 mm. This is an analog two-phase output when a bandpass filter is configured to extract only the included third-order harmonic components.
  • the weighting factor was set as shown in FIG.
  • Figure 9 shows the error when performing position detection by calculation. In order to achieve higher resolution, fine adjustment such as correction is required.
  • the spatial harmonics on the surface of the shaft 2 can sufficiently detect the position using the fifth harmonic if the magnetic sensor S having a considerably large fifth harmonic is brought as close to the shaft 2 as possible. .
  • the number of magnetic sensors S becomes a large force S, and high accuracy can be obtained stably.
  • Fig. 11 shows the results of detecting the fifth harmonic using 10 magnetic sensors S at 3mm intervals. The weighting factor was set as shown in Fig. 10.
  • the distance between the magnetic sensors S is narrow, it is expected that it will be difficult to arrange the magnetic sensors S in a line. If the surface mount type chip type magnetic sensor has a small size, it is arranged in a line. Can do.
  • the magnetic sensors S may be arranged in a plurality of rows.
  • five magnetic sensors S may be arranged so as to face each other 180 ° across the shaft 2.
  • the magnetic sensors S in each row are arranged at an interval of 6 mm so that the substantial interval is 3 mm. Even with this arrangement, it is possible to obtain a fifth-order harmonic two-phase signal that can be used for position detection.
  • the movable element 3 can be shortened to 1/2, which is effective for downsizing.
  • the sensoring can be performed with respect to the value of the phase difference of the magnetic flux, and the detection accuracy can be improved.
  • FIG. 13 is a block diagram showing a shaft type linear motor positioning control system (second position detecting means) according to an embodiment of the present invention.
  • the positioning control system for positioning the shaft type linear motor 1 by the second position detecting means 4B includes a plurality of magnetic sensors S, a mixing unit 5, an A / D conversion unit 6, a digital signal processing unit 7 , A D / A converter 8, a current amplifier 9, and the like.
  • ten magnetic sensors S0 to S9 are arranged at intervals of 3 mm.
  • Hall elements are used as the magnetic sensors S0 to S9.
  • the output of each Hall element is detected by a differential amplifier.
  • the 10 analog signals obtained in this way are mixed by the mixing unit 5.
  • the mixing unit 5 obtains a two-phase analog signal by multiplying the outputs of the magnetic sensors S0 to S9 by a predetermined weight coefficient and adding them.
  • the mixing unit 5 of the present embodiment can be realized with a force of 8 to 12 OP amplifiers composed of 24 OP amplifiers.
  • the A / D converter 6 inputs the fifth-order harmonic two-phase signal (5A, 5B) and the fundamental two-phase signal (1A, IB) into the digital signal processor 7 With D converter 6a
  • the digital signal processing unit 7 is, for example, a DSP (Digital Signal Processor), and includes a position estimating unit 11, an estimated position correcting unit 12, a motor driving unit 13, and the like.
  • the position estimation unit 11 calculates the phase angle ⁇ in the calculation block 11a from the five-phase harmonic two-phase signal (5A, 5B) captured by the A / D converter. Since fifth-order harmonics are detected, ⁇ changes by 2 ⁇ when moving by 1/5 of the actual magnetic flux period of 60mm, that is, by 12mm. This ⁇ is monitored by the orbital force counter block l ib and the number of revolutions N of the phase angle ⁇ is counted. Then, the estimated position is calculated by the estimated position acquisition block 11c using the phase angle ⁇ and the number of turns N.
  • DSP Digital Signal Processor
  • the estimated position correction unit 12 corrects the estimated position calculated by the position estimation unit 11. That is, the estimated position obtained by the position estimating unit 11 includes an error due to variations in magnet length and magnetic flux density, and therefore the estimated position is corrected using the correction data.
  • the correction data is created in advance by the correction data table block 12a. For example, the difference between the linear scale value and the estimated position is recorded at intervals of 0.1 mm, and the correction data table block 12a is estimated. An error value corresponding to the position is given. For example, for the error value at the estimated position of 5.2 3 mm, read the error values of 5.2 mm and 5.3 mm from the table, and linearly interpolate the two points to obtain an approximate value.
  • the motor drive unit 13 generates a coil current command from the two-phase signals (1A, IB) of the fundamental wave.
  • the phase of the two-phase signal (1A, IB) is adjusted so that the torque angle is appropriate.
  • the 1B phase is shifted by 30 ° to obtain a two-phase signal with a phase difference of 120 °.
  • a coil current value that provides a propulsive force proportional to the PID output is output.
  • the current amplifier unit 9 is configured using a power OP amplifier 9a.
  • the power supply to the shaft type linear motor 1 is supplied with a current proportional to the command signal by using the power OP amplifier 9a which is not the PWM method.
  • a PWM current amplifier can also be used.
  • the command signal for the current amplifier unit 9 is sent via the D / A conversion unit 8 including the D / A converter 8a.
  • FIG. 14 shows the position detection error when the correction is performed using the correction data table. As shown in this figure, if correction using the correction data table is not performed, an error of about ⁇ 0.6 mm is generated. For applications that do not require high accuracy, it can be used without correction.
  • FIG. 15 shows the position detection error after correction by the correction data table in which the difference between the linear scale value and the estimated position is recorded at intervals of 0.5 mm
  • FIG. 16 shows the difference between the linear scale value and the estimated position
  • 0.1 shows the position detection error after correction by the correction data table recorded at intervals of 2 mm
  • Fig. 17 shows the position after correction by the correction data table at which the difference between the linear scale value and the estimated position is recorded at intervals of 0.1 mm.
  • the detection error is shown.
  • the error after correction by the correction data table becomes smaller in accordance with the correction data interval, and in consideration of the increase in the number of 1S correction data, in the example of this embodiment, a 0.2 mm interval is balanced. Correction data is preferred.
  • the first position detecting means 4A includes a magnetic head T as a position information reading unit provided in the movable element 3, and position information arranged in an opposing manner along the movement locus of the magnetic head T.
  • Magnetic scale U as storage
  • the magnetic head T reads the magnetic scale (position information) of the magnetic scale U, and detects the position of the mover 3 by using a magnetic linear scale (position detection device).
  • the first position detection means 4A is a detection section partially set arbitrarily in the linear drive range of the mover 3 as described above (for example, A section and C section set as different detection stroke sections in FIG. 18, respectively). , E section) is configured to detect the position of the mover 3 only.
  • the position of the magnetic scale U can be reduced by performing position detection by the first position detecting means 4A only in the section where high-precision positioning is required, so the magnetic scale can be extended over the entire length of the shaft 2.
  • the periphery of the shaft type linear motor 1 can be made compact, and as a result, the use of the shaft type linear motor 1 can be promoted even in fields where compactness is required. .
  • the position of the mover 3 can be detected by the second position detecting means 4B.
  • the positioning operation by the first position detection means 4A (linear scale drive) and the positioning operation by the second position detection means 4B (sensorless drive) are performed by the magnetic head T of the first position detection means 4A being magnetic of the magnetic scale U.
  • a force that can be switched based on whether or not the scale is read! /.
  • the origin sensor V detects the origin detector W provided at the origin position of the magnetic scale U by a method different from that of the magnetic head T, and can be configured using, for example, a reflective optical sensor.
  • FIG. 19 a specific positioning control of the shaft type linear motor 1 using both the first position detecting means 4A (linear scale position detecting system) and the second position detecting means 4B (sensorless position detecting system) is shown in FIG.
  • the position information of the mover 3 by the first position detecting means 4A and the second position detecting means 4B is , Input to driver X (or controller).
  • the position information input from the first position detection means 4A to the driver X is precise position information in an arbitrary section, and also includes a detection signal of the origin sensor V.
  • the position information input from the second position detecting means 4B to the driver X is rough position information for all sections.
  • the driver X internally processes the position information input from the first position detecting means 4A and the second position detecting means 4B, and drives the shaft type linear motor 1 for positioning. Specifically, as shown in FIG. 20, first, it is determined whether or not the magnetic head of the first position detecting means 4A has detected the magnetic scale U (S1). Performs a positioning operation (linear scale driving) based on the position information of the first position detecting means 4A (S2). Even in the linear scale driving state, the position detecting operation by the second position detecting means 4B is continued. On the other hand, if the determination result in step S1 is NO, a positioning operation (sensorless drive) based on the position information of the second position detecting means 4B is performed (S3). In this state, the origin detection by the origin sensor V is judged (S4), and when the judgment results in SYES, the linear scale counter is reset (S5) and the process moves to linear scale drive (S2). .
  • the positioning device for the shaft type linear motor 1 has first position detecting means 4A composed of a linear scale, and accurately detects the position of the mover 3.
  • the position detection by the first position detection means 4A is performed in a detection section that is partially set to one or more arbitrary strokes (even if different strokes are acceptable) in the linear drive range of the mover 3. Therefore, the installation range of the magnetic scale U (position information storage unit) can be reduced. This makes it possible to make the periphery of the shaft-type linear motor 1 more compact than in the case where the magnetic scale U is arranged along the entire length of the shaft 2, and as a result, even in fields where compactness is required The use of the linear motor 1 can be promoted.
  • the position of the mover 3 can be detected by the second position detecting means 4B.
  • the second position detecting means 4B detects the position of the mover 3 by detecting the magnetic flux of the shaft 2, and detects the position even in the section where the magnetic scale U is installed! / ,! Can do.
  • the origin sensor V is provided in the magnetic head T and the origin position of the magnetic scale U is detected, so that the positioning operation can be switched reliably and quickly. It can be carried out.
  • FIG. 1 is a perspective view of a shaft type linear motor (a magnetic scale is omitted) according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a detection concept of second position detection means applied to the shaft type linear motor positioning device according to the embodiment of the present invention.
  • FIG. 3 is a graph showing an example of a magnetic flux density distribution of a shaft.
  • FIG. 4 is a table showing weighting factors for harmonic reduction.
  • FIG. 5 is a waveform diagram of a two-phase analog signal obtained by the weighting factor of FIG.
  • FIG. 6 is an explanatory diagram showing an error of an estimated position calculated from the two-phase analog signal of FIG.
  • FIG. 7 is a table showing weighting factors for third-order harmonic extraction.
  • FIG. 8 is a waveform diagram of a two-phase analog signal obtained by the weighting factor of FIG.
  • FIG. 9 is an explanatory diagram showing an error of an estimated position calculated from the two-phase analog signal of FIG.
  • FIG. 10 is a table showing weighting factors for fifth-order harmonic extraction.
  • FIG. 11 is a waveform diagram of a two-phase analog signal obtained by the weighting factor of FIG.
  • FIG. 12] (A) to (C) are perspective views showing examples of arrangement of magnetic sensors.
  • FIG. 13 is a block diagram showing a positioning control system (second position detecting means) for a shaft type linear motor according to an embodiment of the present invention.
  • FIG. 14 is an explanatory diagram showing the force to be corrected by the correction data table and the position detection error when it is applied in the positioning control system of FIG.
  • 15 is an explanatory view showing a position detection error after correction by a correction data table in which the difference between the linear scale value and the estimated position is recorded at intervals of 0.5 mm in the positioning control system of FIG.
  • FIG. 17 is an explanatory view showing a position detection error after correction by a correction data table in which the difference between the reliable scale value and the estimated position is recorded at intervals of 0.1 mm in the positioning control system of FIG.
  • FIG. 18 is an explanatory diagram of second position detecting means.
  • FIG. 19 is a block diagram of a positioning control system that uses both first position detection means and second position detection means.
  • FIG. 20 is a flowchart of a positioning control system that uses both the first position detecting means and the second position detecting means. Explanation of symbols

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Control Of Linear Motors (AREA)
  • Linear Motors (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

リニアスケールによる高精度な位置決めを行うものでありながら、その検出区間を限定して磁気スケールの設置範囲を小さくすることにより、コンパクト化が求められる分野でも利用することができるようになり、しかも、磁気スケールが設置されていない区間においても、可動子の位置検出を可能にする。可動子3の直線駆動範囲に部分的に設定された検出区間で位置検出を行う第一位置検出手段4Aと、直線駆動範囲全域で位置検出を行う第二位置検出手段4Bとを備え、第一位置検出手段4Aは、精密な位置検出が可能なリニアスケールで構成し、第二位置検出手段4Bは、可動子3に設けられる磁気センサSでシャフト2の磁束を検出することにより可動子3の位置検出を行うものとする。

Description

明 細 書
シャフト型リニアモータの位置決め装置
技術分野
[0001] 本発明は、可動子をシャフトに沿って直線的に駆動させるシャフト型リニアモータの 位置決め装置に関する。
背景技術
[0002] 近年、直線駆動する電気ァクチユエータとしてシャフト型リニアモータが注目されて いる。この種のシャフト型リニアモータは、複数の棒状磁石が直列状に配列されたシ ャフトと、該シャフトにスライド自在に外嵌する可動子とを備え、該可動子の内周部に 設けられるコイルの励磁により、可動子を直線的に駆動させる。このような構成によれ ば、コギングゃ速度ムラが少ないので、様々な分野での応用が検討されている。
[0003] シャフト型リニアモータを位置決め制御する場合は、通常、可動子の位置を検出す る位置検出手段が別途付加される(例えば、特許文献;!〜 3参照)。この種の位置検 出手段としては、リニアスケール (リニアエンコーダ)が一般的であり、精密な位置決め が可能になる。し力もながら、リニアスケールは、可動子に設けられる磁気ヘッド (位 置情報読み取り部)と、該磁気ヘッドの移動軌跡に沿って対向状に配置される磁気ス ケール (位置情報記憶部)とからなり、磁気ヘッドで磁気スケールの磁気目盛を読み 取ることにより可動子の位置を検出するので、シャフトの全長に亘つて磁気スケール を並設しなければならない。その結果、シャフト型リニアモータの周辺が大型化し、コ ンパクト化が求められる分野での利用が制限されるという問題があった。
特許文献 1 :特開 2004— 125699号公報
特許文献 2:特開 2004— 129440号公報
特許文献 3 :特開 2004— 129441号公報
発明の開示
発明が解決しょうとする課題
[0004] 本発明は、上記の如き問題点を一掃すべく創案されたものであって、リニアスケー ルによる高精度な位置決めを行うものでありながら、その検出区間を限定して磁気ス ケールの設置範囲を小さくすることにより、コンパクト化が求められる分野でも利用す ること力 Sできるようになり、しかも、磁気スケールが設置されていない区間においても、 可動子の位置検出を行うことができるシャフト型リニアモータの位置決め装置を提供 することを目白勺としている。
課題を解決するための手段
[0005] 上記課題を解決するために本発明のシャフト型リニアモータの位置決め装置は、複 数の棒状磁石が直列状に配列されたシャフトと、該シャフトにスライド自在に外嵌する 可動子とを備え、該可動子の内周部に設けられるコイルの励磁により、前記可動子を 直線的に駆動させるシャフト型リニアモータの位置決め装置であって、前記可動子の 直線駆動範囲に部分的に設定された検出区間で前記可動子の位置検出を行う第一 位置検出手段と、前記第一位置検出手段の検出区間を除く直線駆動範囲、又は直 線駆動範囲全域で前記可動子の位置検出を行う第二位置検出手段と、を備え、前 記第一位置検出手段は、前記可動子に設けられる位置情報読み取り部と、該位置 情報読み取り部の移動軌跡に沿って対向状に配置される位置情報記憶部とを有し、 前記位置情報読み取り部で前記位置情報記憶部の位置情報を読み取ることにより 前記可動子の位置検出を行い、前記第二位置検出手段は、前記可動子に設けられ る磁気センサを有し、該磁気センサで前記シャフトの磁束を検出することにより前記 可動子の位置検出を行うことを特徴とする。
発明の効果
[0006] 本発明は、上記のように構成したことにより、リニアスケールによる高精度な位置決 めを行うものでありながら、その検出区間を限定して磁気スケールの設置範囲を小さ くすることにより、コンパクト化が求められる分野でも利用することができるようになり、 しかも、磁気スケールが設置されていない区間においても、可動子の位置検出を行う こと力 Sでさる。
発明を実施するための最良の形態
[0007] 以下、本発明の実施の形態を好適な実施の形態として例示するシャフト型リニアモ ータの位置決め装置を図面に基づいて詳細に説明する。図 1は、本発明の実施形態 に係るシャフト型リニアモータ(磁気スケールは省略)の斜視図である。この図に示す ように、シャフト型リニアモータ 1は、複数の棒状磁石 2aが直列状に配列されたシャフ ト 2と、該シャフト 2にスライド自在に外嵌する可動子 3とを備え、該可動子 3の内周部 に設けられるコイル(図示せず)の励磁により、可動子 3を直線的に駆動させる。
[0008] このようなシャフト型リニアモータ 1を位置決め制御する場合は、可動子 3の位置を 検出する位置検出手段が付加される。本発明に係るシャフト型リニアモータ 1の位置 決め装置は、可動子 3の直線駆動範囲に部分的に設定された検出区間で可動子 3 の位置検出を行う第一位置検出手段 4Aと、第一位置検出手段 4Aの検出区間を除 く直線駆動範囲、又は直線駆動範囲全域で可動子 3の位置検出を行う第二位置検 出手段 4Bとを備える点に特徴がある。以下、第一位置検出手段 4A及び第二位置検 出手段 4Bについて説明する。
[0009] 第二位置検出手段 4Bは、可動子 3に設けられる磁気センサ (ホール素子等) Sを備 えて構成され、該磁気センサ Sが検出するシャフト 2の磁束変化に基づいて可動子 3 の位置検出を行う。すなわち、この第二位置検出手段 4Bによれば、リニアスケール のように磁気スケールを設けることなぐシャフト 2の磁束変化を利用して可動子 3の 位置を検出するので、位置検出機能を備えるシャフト型リニアモータ 1のコンパクト化 が図れる。
[0010] 磁気センサ Sによる可動子 3の位置検出方式としては、まず、二つの磁気センサ S が出力する二相のアナログ信号からの演算で位置 (機械角)を得る方式が考えられる 。この方式は、二つの磁気センサ Sから得られるアナログ信号が互に直交する正弦波 であること力 S前提となる。つまり、シャフト 2の磁束分布が正弦波状でない場合は、得 られる位置情報に誤差が生じる。実際のシャフト 2では、磁束分布が正弦波状とは言 い難ぐ多くの空間高調波を含んでいる。そこで、磁気センサ Sをシャフト 2から遠ざけ ることにより、磁気センサ Sを貫く磁束を平滑化して空間高調波を除去することが考え られる力 S、高調波の完全な除去は難しい。しかも、磁気センサ Sの出力レベルが低下 するので、 SN比の悪化や外部磁束による外乱の影響が懸念される。
[0011] 図 2は、本発明の実施形態に係るシャフト型リニアモータの位置決め装置に適用さ れる第二位置検出手段の検出概念を示すブロック図である。この図に示すように、本 発明の実施形態に係る第二位置検出手段 4Bの位置検出方式は、シャフト 2の軸線 方向に所定の間隔を存して配列される複数 (例えば 4つ)の磁気センサ S0〜S3を用 い、各磁気センサ S0〜S3の出力にそれぞれ所定の重み係数を乗じて加算すること により二相のアナログ信号を得る。磁気センサ Sの個数は、得ようとするフィルタリング 特性によって適切に選ぶ必要がある力 少なくとも 2つは必要となる。実用にあたって は、磁気センサ Sを多数使うことによるコスト上昇や磁気センサ Sの検出感度のバラッ キ等の解決すべき問題があるものの、個数の選択によってフィルタリング特性を容易 に決定できるという利点がある。尚、シャフトのマグネット部より、正弦波に近い波形を 取り出すことができれば、磁気センサ(例えば、 S0〜S3)が出力するアナログ信号を 直接位置検出に利用することも可能である。
[0012] 重み係数演算及び加算演算をオペアンプ回路で行った場合、きわめて簡単な回 路構成で二相のアナログ信号 (A相、 B相の直交信号)が得られる。この場合、得られ た二相信号をコントローラに入力すればよいので、コントローラの A/D入力は従来と 同様に二つでよぐ既存のコントローラをそのまま利用することが可能となる。一方、 重み係数演算及び加算演算をコントローラのマイコン内部で行う場合は、磁気センサ Sの数だけ A/D入力が必要となる力 S、磁気センサ Sの感度のバラツキ等をソフト的な 処理で吸収できるという利点がある。また、重み係数を必要に応じてマイコン内部で 変ィ匕させることあ可倉 となる。
[0013] 図 3は、シャフトの磁束密度分布例を示すグラフ図である。この図に示すように、シ ャフト 2の表面近傍における磁束密度分布は、正弦波ではなぐ多くの空間高調波を 含んでいる。ここで、磁気センサ Sを 7個用い、それらを 5mm間隔で配置した構成に ついて考えてみる。各磁気センサ S0〜S6に乗じる重み係数は、図 4に示すように設 定する。磁気センサ S0〜S6の間隔が 5mm、磁束分布の周期が 60mmとした場合、 磁束の周期の 12倍でサンプリングしていると考えれば、磁束周期の約 1. 44倍調波 以下を通過させる設定といえる。この係数設定を用いて得られた二相信号を図 5に示 す。この図に示すように、高調波は大幅に低減され、ほぼ正弦波状になっていること がわかる。また、図 6は、この二相信号からの演算で求めた位置の誤差を示している
[0014] 図 8は、磁気センサ S0〜S5を 5mm間隔で 6個配置して、シャフト 2の磁束分布に 含まれる 3次高調波の成分のみを取り出すように帯域通過フィルタを構成したときの アナログ二相出力である。なお、重み係数は、図 7に示すように設定した。ここでは、 3次高調波を利用しているため、 0. 1mmの分解能を必要とした場合、演算では 1. 8 degの分解能が要求される力 S、基本波を利用する方式に比べれば高精度化が容易 になる。図 9は、演算により位置検出を行った際の誤差を示している。更なる高分解 能を目標とする場合には、補正等の微調整が必要となる。
[0015] シャフト 2の表面における空間高調波は、 5次調波もかなり大きぐ磁気センサ Sを可 及的にシャフト 2に近づければ、 5次調波を利用した位置検出も十分可能である。こ の場合、磁気センサ Sの個数は多数となる力 S、安定して高精度が得られる。図 11は、 磁気センサ Sを 3mm間隔で 10個使用して 5次調波を検出した結果を示している。な お、重み係数は、図 10に示すように設定した。ここでは、磁気センサ Sの間隔が狭い ので、磁気センサ Sを一列に並べることが困難になることが予想される力 サイズが小 さい表面実装タイプのチップ型磁気センサであれば、一列に並べることができる。
[0016] また、図 12の (A)〜(C)に示すように、磁気センサ Sを複数列に分けて配置しても よい。例えば、図 12の(A)に示すように、シャフト 2を挟んで 180°対向するように磁気 センサ Sを 5個ずつ配置してもよい。この場合、各列の磁気センサ Sは、実質的な間 隔が 3mmとなるように 6mm間隔で配置する。このような配置にしても、位置検出に利 用可能な 5次調波の二相信号が得られる。また、磁気センサ Sの各列を対称 (正対面 )に配設し、或いは位置ズレさせて配設することにより、例えば 10個の磁気センサ Sを 一列に並べる場合に比し、可動子 3の長さを 1/2に短くでき、コンパクト化に有効で ある。また、各列を位置ズレさせて配設した場合、磁束の位相差の値に対してセンサ リングが行え、検知精度ゃ検知効率を高めることができる。
[0017] つぎに、第二位置検出手段 4Bによる位置決め制御について、図 13を参照して説 明する。図 13は、本発明の実施形態に係るシャフト型リニアモータの位置決め制御 システム(第二位置検出手段)を示すブロック図である。この図に示すように、第二位 置検出手段 4Bによりシャフト型リニアモータ 1を位置決めする位置決め制御システム は、複数の磁気センサ S、ミキシング部 5、 A/D変換部 6、デジタル信号処理部 7、 D /A変換部 8、電流アンプ部 9等を備えて構成することができる。 [0018] 本実施形態では、磁気センサ S0〜S9を 3mm間隔で 10個配置している。磁気セン サ S0〜S9としては、例えばホール素子が使用される。各ホール素子の出力は、それ ぞれ差動アンプで検出している。このようにして得られた 10本のアナログ信号は、ミキ シング部 5でミキシングされる。
[0019] ミキシング部 5は、前述したように、磁気センサ S0〜S9の出力にそれぞれ所定の重 み係数を乗じて加算することにより二相のアナログ信号を得る。例えば、本実施形態 のミキシング部 5は、 24個の OPアンプで構成される力 8〜12個の OPアンプでも実 現可能と思われる。
[0020] A/D変換部 6は、 5次調波の二相信号(5A、 5B)と、基本波の二相信号(1A、 IB )をデジタル信号処理部 7に取り込むために、 A/D変換器 6aを備えて構成されてい
[0021] デジタル信号処理部 7は、例えば、 DSP (Digital Signal Processor)であり、その内 部には、位置推定部 11、推定位置補正部 12、モータ駆動部 13等が構成される。位 置推定部 11は、 A/D変換器で取り込まれた 5次調波の二相信号(5A、 5B)から演 算ブロック 11aで位相角 Θを演算する。 5次調波を検出しているので、実際の磁束周 期 60mmの 1/5、すなわち 12mm移動すると、 Θが 2 π変化する。この Θを周回力 ゥンタブロック l ibで監視し、位相角 Θの周回数 Nをカウントする。そして、位相角 Θ 及び周回数 Nを用いて推定位置取得ブロック 11cで推定位置を演算する。
[0022] 推定位置補正部 12は、位置推定部 11が演算した推定位置の補正を行う。すなわ ち、位置推定部 11で得られた推定位置には、磁石長や磁束密度のバラツキに起因 する誤差が含まれているので、補正データを用いて推定位置の補正を行う。補正デ ータは、補正データテーブルブロック 12aにより予め作成されたものであり、例えば、 リニアスケール値と推定位置の差を 0. 1mm間隔で記録したものであり、補正データ テーブルブロック 12aは、推定位置に応じた誤差値を与える。例えば、推定位置 5. 2 3mmの誤差値は、 5. 2mmと 5. 3mmの誤差値をテーブルから読み、その 2点を直 線補間して近似値を得る。そして、推定位置から補正データを減じて補正済み推定 位置が得られ、この補正済み推定位置をモータ駆動部 13に入力して PID制御が実 fiされる。 [0023] モータ駆動部 13は、コイル電流指令を基本波の二相信号(1A、 IB)から生成して いる。位相シフトブロック 13aでは、二相信号(1A、 IB)の位相を調整し、トルク角が 適切になるようにしている。位相を調整した後、 1B相のみ 30°シフトして 120°の位相 差を持つ二相信号を得ている。この二相信号に PIDブロック 13bの出力値を掛けるこ とで PID出力に比例した推進力が得られるコイル電流値が出力される。なお、電流ァ ンプ部 9は、パワー OPアンプ 9aを用いて構成される。つまり、シャフト型リニアモータ 1への電力供給は PWM方式ではなぐパワー OPアンプ 9aを用いて、指令信号に比 例した電流を供給するようにしている。勿論、 PWM方式の電流アンプも利用可能で ある。この電流アンプ部 9に対する指令信号は、 D/A変換器 8aを備える D/A変換 部 8を介して行われる。
[0024] つぎに、本発明の実施形態に係る第二位置検出手段 4Bの検出精度について、図
14〜図 17を参照して説明する。図 14は、補正データテーブルによる補正を行わな 力、つた場合の位置検出誤差を示している。この図に示すように、補正データテーブル による補正を行わなかった場合、 ± 0. 6mm程度の誤差が生じている力 高精度を 要求しない用途では、補正なしでも使用可能と考えられる。
[0025] 図 15は、リニアスケール値と推定位置の差を 0. 5mm間隔で記録した補正データ テーブルによる補正後の位置検出誤差を示し、図 16は、リニアスケール値と推定位 置の差を 0. 2mm間隔で記録した補正データテーブルによる補正後の位置検出誤 差を示し、図 17は、リニアスケール値と推定位置の差を 0. 1mm間隔で記録した補 正データテーブルによる補正後の位置検出誤差を示している。これらの図に示すよう に、補正データテーブルによる補正後の誤差は、補正データ間隔に応じて小さくなる 1S 補正データ数の増加を考慮すると、本実施形態の例ではバランス的に 0. 2mm 間隔の補正データが好ましい。
[0026] つぎに、第一位置検出手段 4Aについて、図 18を参照して説明する。図 18は、本 発明の実施形態に係るシャフト型リニアモータの位置決め装置に適用される第一位 置検出手段の構成を示す説明図である。この図に示すように、第一位置検出手段 4 Aは、可動子 3に設けられる位置情報読み取り部としての磁気ヘッド Tと、磁気ヘッド Tの移動軌跡に沿って対向状に配置される位置情報記憶部としての磁気スケール U とを有し、磁気ヘッド Tで磁気スケール Uの磁気目盛 (位置情報)を読み取ることによ り可動子 3の位置検出を行う磁気方式のリニアスケール (位置検出装置)である力 S、そ の他、発光源の半導体レーザ,受光部のフォトディテクタに,回折格子であるホロダラ ムスケール(ホログラム格子)を組み合わせたレーザ式のもの、基本的にロータリーェ ンコンーダと同じ動作原理による方式で電気信号をカウンタで計数し変位量を測定 する光電方式のもの等を用いても良い。つまり、第一位置検出手段 4Aは、前述のよ うに可動子 3の直線駆動範囲に部分的に任意設定された検出区間(例えば、図 18の 夫々異なる検出ストローク区間として設定した A区間、 C区間、 E区間)でのみ可動子 3の位置検出を行うよう構成したものとになっている。すなわち、高精度な位置決めが 要求される区間でのみ第一位置検出手段 4Aによる位置検出を行うことにより、磁気 スケール Uの設置範囲を小さくすることができるので、シャフト 2の全長に亘つて磁気 スケール Uを並設する場合に比べ、シャフト型リニアモータ 1の周辺をコンパクト化す ることが可能になり、その結果、コンパクト化が求められる分野でもシャフト型リニアモ ータ 1の利用を促進することができる。
[0027] 磁気スケール Uが設置されていない区間(例えば、図 18の B区間、 D区間)におい ては、第二位置検出手段 4Bで可動子 3の位置検出を行うことができる。第一位置検 出手段 4Aによる位置決め動作 (リニアスケール駆動)と、第二位置検出手段 4Bによ る位置決め動作 (センサレス駆動)は、第一位置検出手段 4Aの磁気ヘッド Tが磁気 スケール Uの磁気目盛を読み取って!/、るか否かに基づ!/、て切換えることが可能であ る力 位置決め動作の切換え(リニアスケール用カウンタのリセット処理等)を確実か つ迅速に行うには、磁気ヘッド Tに原点センサ Vを設け、磁気スケール Uの原点位置 を検出することが好ましい。原点センサ Vは、磁気スケール Uの原点位置に設けられ る原点検出子 Wを磁気ヘッド Tとは異なる方式で検出するものであり、例えば、反射 式の光学センサを用いて構成することができる。
[0028] 次に、第一位置検出手段 4A (リニアスケール位置検出システム)及び第二位置検 出手段 4B (センサレス位置検出システム)を併用したシャフト型リニアモータ 1の具体 的な位置決め制御について、図 19及び図 20を参照して説明する。図 19に示すよう に、第一位置検出手段 4A及び第二位置検出手段 4Bによる可動子 3の位置情報は 、ドライバ X(又はコントローラ)に入力される。第一位置検出手段 4Aからドライバ Xに 入力される位置情報は、任意区間の精密位置情報であり、また、原点センサ Vの検 出信号も含まれる。一方、第二位置検出手段 4Bからドライバ Xに入力される位置情 報は、全区間の粗雑位置情報である。
[0029] ドライバ Xは、第一位置検出手段 4A及び第二位置検出手段 4Bから入力した位置 情報を内部でソフトウェア的に処理し、シャフト型リニアモータ 1を位置決め駆動させ る。具体的には、図 20に示すように、まず、第一位置検出手段 4Aの磁気ヘッド丁が 磁気スケール Uを検出しているか否かを判断し(S 1)、この判断結果力 SYESの場合 は、第一位置検出手段 4Aの位置情報に基づいた位置決め動作 (リニアスケール駆 動)を行う(S2)。また、リニアスケール駆動状態であっても、第二位置検出手段 4Bに よる位置検出動作は続行される。一方、上記ステップ S1の判断結果が NOの場合は 、第二位置検出手段 4Bの位置情報に基づいた位置決め動作 (センサレス駆動)を 行う(S3)。この状態では、原点センサ Vによる原点検出を判断しており(S4)、この判 断結果力 SYESになったら、リニアスケール用カウンタをリセットし(S5)、リニアスケー ル駆動(S 2)に移行する。
[0030] 叙述の如く構成された本発明の実施の形態において、シャフト型リニアモータ 1の 位置決め装置は、リニアスケールからなる第一位置検出手段 4Aを有し、可動子 3の 位置を精密に検出するのである力 第一位置検出手段 4Aによる位置検出は、可動 子 3の直線駆動範囲に部分的に 1又は複数の任意ストローク(異なるストロークであつ ても良レ、)に設定された検出区間でのみ行うようになってレ、るので、磁気スケール U ( 位置情報記憶部)の設置範囲を小さくすることができる。これにより、シャフト 2の全長 に亘つて磁気スケール Uを並設する場合に比べ、シャフト型リニアモータ 1の周辺を コンパクト化することが可能になり、その結果、コンパクト化が求められる分野でもシャ フト型リニアモータ 1の利用を促進することができる。
[0031] また、磁気スケール Uが設置されていない区間においては、第二位置検出手段 4B で可動子 3の位置検出を行うことができる。すなわち、第二位置検出手段 4Bは、シャ フト 2の磁束検出により可動子 3の位置を検出するものであり、磁気スケール Uが設置 されて!/、な!/、区間でも位置検出を行うことができる。 [0032] そして、第一位置検出手段 4Aによる位置決め動作と、第二位置検出手段 4Bによ る位置決め動作は、第一位置検出手段 4Aの磁気ヘッド Tが磁気スケール Uの磁気 目盛を読み取っているか否かに基づいて切換えることが可能である力 本実施形態 では、磁気ヘッド Tに原点センサ Vを設け、磁気スケール Uの原点位置を検出するよ うにしたので、位置決め動作の切換えを確実かつ迅速に行うことができる。
図面の簡単な説明
[0033] [図 1]本発明の実施形態に係るシャフト型リニアモータ (磁気スケールは省略)の斜視 図である。
[図 2]本発明の実施形態に係るシャフト型リニアモータの位置決め装置に適用される 第二位置検出手段の検出概念を示すブロック図である。
[図 3]シャフトの磁束密度分布例を示すグラフ図である。
[図 4]高調波低減のための重み係数を示す表図である。
[図 5]図 4の重み係数により得られた二相アナログ信号の波形図である。
[図 6]図 5の二相アナログ信号から演算した推定位置の誤差を示す説明図である。
[図 7]3次調波抽出のための重み係数を示す表図である。
[図 8]図 7の重み係数により得られた二相アナログ信号の波形図である。
[図 9]図 8の二相アナログ信号から演算した推定位置の誤差を示す説明図である。
[図 10]5次調波抽出のための重み係数を示す表図である。
[図 11]図 10の重み係数により得られた二相アナログ信号の波形図である。
[図 12] (A)〜(C)は磁気センサの配置例を示す斜視図である。
[図 13]本発明の実施形態に係るシャフト型リニアモータの位置決め制御システム(第 二位置検出手段)を示すブロック図である。
[図 14]図 13の位置決め制御システムにおいて、補正データテーブルによる補正を行 わな力、つた場合の位置検出誤差を示す説明図である。
[図 15]図 13の位置決め制御システムにおいて、リニアスケール値と推定位置の差を 0. 5mm間隔で記録した補正データテーブルによる補正後の位置検出誤差を示す 説明図である。
[図 16]図 13の位置決め制御システムにおいて、リニアスケール値と推定位置の差を 0. 2mm間隔で記録した補正データテーブルによる補正後の位置検出誤差を示す 説明図である。
園 17]図 13の位置決め制御システムにおいて、リユアスケール値と推定位置の差を 0. 1mm間隔で記録した補正データテーブルによる補正後の位置検出誤差を示す 説明図である。
[図 18]第二位置検出手段の説明図である。
[図 19]第一位置検出手段及び第二位置検出手段を併用する位置決め制御システム のブロック図である。
園 20]第一位置検出手段及び第二位置検出手段を併用する位置決め制御システム のフローチャートである。 符号の説明
1 シャフト型リニアモータ
2 シャフト
2a 棒状磁石
3 可動子
4A 第一位置検出手段
4B 第二位置検出手段
5 ミキシング部
6 A/D変換部
6a AZD変換器
7 デジタル信号処理部
8 D/A変換部
8a D/A変換器
9 電流アンプ部
9a パワー〇Pアンプ
11 位置推定部
11a 演算ブロック
l ib 周回カウンタプ'ロック l ie 推定位置取得ブロック l id オフセットブロック
12 推定位置補正部
12a 補正データテープノレブ
13 モータ駆動部
13a 位相シフトブロック
13b PIDブロック
14 カウンタプ'ロック
S 磁気センサ
T ¼へッ1" u 磁気スケーノレ
V 原点センサ w 原点検出子
X ドライバ

Claims

請求の範囲
[1] 複数の棒状磁石が直列状に配列されたシャフトと、該シャフトにスライド自在に外嵌 する可動子とを備え、該可動子の内周部に設けられるコイルの励磁により、前記可動 子を直線的に駆動させるシャフト型リニアモータの位置決め装置であって、
前記可動子の直線駆動範囲に部分的に設定された検出区間で前記可動子の位 置検出を行う第一位置検出手段と、
前記第一位置検出手段の検出区間を除く直線駆動範囲、又は直線駆動範囲全域 で前記可動子の位置検出を行う第二位置検出手段と、を備え、
前記第一位置検出手段は、前記可動子に設けられる位置情報読み取り部と、該位 置情報読み取り部の移動軌跡に沿って対向状に配置される位置情報記憶部とを有 し、前記位置情報読み取り部で前記位置情報記憶部の位置情報を読み取ることによ り前記可動子の位置検出を行レ \
前記第二位置検出手段は、前記可動子に設けられる磁気センサを有し、該磁気セ ンサで前記シャフトの磁束を検出することにより前記可動子の位置検出を行う ことを特徴とするシャフト型リニアモータの位置決め装置。
[2] 前記位置情報読み取り部は、前記位置情報記憶部の原点位置を検出する原点セ ンサを備えている、請求項 1記載のシャフト型リニアモータの位置決め装置。
[3] 前記第一位置検出手段は、リニアスケールである、請求項 1記載のシャフト型リニア モータの位置決め装置。
[4] 前記リニアスケールは、磁気方式、レーザ式、光電方式、から選択される、請求項 3 記載のシャフト型リニアモータの位置決め装置。
[5] 前記リニアスケールは磁気方式であり、前記位置情報読み取り部は磁気ヘッド、前 記位置情報記憶部は磁気スケールである、請求項 1記載のシャフト型リニアモータの 位置決め装置。
[6] 前記磁気ヘッドは、前記磁気スケールの原点位置を検出する原点センサを備えて いる、請求項 5記載のシャフト型リニアモータの位置決め装置。
[7] 前記第二位置検出手段において、前記シャフトの軸線方向に間隔を存して複数の 磁気センサが配列されて!/、る、請求項 1記載のシャフト型リニアモータの位置決め装 置。
[8] 前記シャフトの軸線方向に複数の磁気センサ列が配置されている、請求項 7記載の シャフト型リニアモータの位置決め装置。
[9] 前記第二位置検出手段において、複数の磁気センサの出力から得られた二相の アナログ信号を用いて位置検出を行う、請求項 1記載のシャフト型リニアモータの位 置決め装置。
[10] 前記第一位置検出手段は、前記検出区間で前記可動子の精密位置情報を取得し 前記第二位置検出手段は、前記検出区間を除く直線駆動範囲、又は直線駆動範 囲全域で前記可動子の粗雑位置情報を取得する、
請求項 1記載のシャフト型リニアモータの位置決め装置。
PCT/JP2007/073509 2006-12-12 2007-12-05 シャフト型リニアモータの位置決め装置 WO2008072525A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006334235A JP2008148484A (ja) 2006-12-12 2006-12-12 シャフト型リニアモータの位置決め装置
JP2006-334235 2006-12-12

Publications (1)

Publication Number Publication Date
WO2008072525A1 true WO2008072525A1 (ja) 2008-06-19

Family

ID=39511546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073509 WO2008072525A1 (ja) 2006-12-12 2007-12-05 シャフト型リニアモータの位置決め装置

Country Status (2)

Country Link
JP (1) JP2008148484A (ja)
WO (1) WO2008072525A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2224581A3 (en) * 2009-02-27 2012-11-21 Societa' Industriale Motori Elettrici S.I.M.E.L. S.p.A. Tubular motor
EP2779388A4 (en) * 2011-11-04 2016-11-02 Yamaha Motor Co Ltd LINEAR MOTOR AND LINEAR CONVEYOR
EP3706297A1 (de) * 2019-03-07 2020-09-09 B&R Industrial Automation GmbH Verfahren zum steuern eines langstatorlinearmotors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5443718B2 (ja) * 2008-08-28 2014-03-19 Thk株式会社 リニアモータシステム及び制御装置
JP5648722B1 (ja) * 2013-08-02 2015-01-07 株式会社安川電機 リニアモータシステム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159581U (ja) * 1988-04-26 1989-11-06
JP2002159166A (ja) * 2000-11-17 2002-05-31 Yaskawa Electric Corp リニアモータ用ポールセンサ
JP2004056892A (ja) * 2002-07-18 2004-02-19 Yaskawa Electric Corp リニアモータ装置
WO2005124979A1 (ja) * 2004-06-21 2005-12-29 Konica Minolta Medical & Graphic, Inc. リニアモータ及びリニアモータの製造方法
JP2006262639A (ja) * 2005-03-17 2006-09-28 Tietech Co Ltd リニアモータの位置決め装置及びリニアモータの位置決め方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3757764B2 (ja) * 2000-06-16 2006-03-22 松下電工株式会社 扉開閉装置
JP2004023936A (ja) * 2002-06-19 2004-01-22 Yaskawa Electric Corp リニアモータの位置決め装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159581U (ja) * 1988-04-26 1989-11-06
JP2002159166A (ja) * 2000-11-17 2002-05-31 Yaskawa Electric Corp リニアモータ用ポールセンサ
JP2004056892A (ja) * 2002-07-18 2004-02-19 Yaskawa Electric Corp リニアモータ装置
WO2005124979A1 (ja) * 2004-06-21 2005-12-29 Konica Minolta Medical & Graphic, Inc. リニアモータ及びリニアモータの製造方法
JP2006262639A (ja) * 2005-03-17 2006-09-28 Tietech Co Ltd リニアモータの位置決め装置及びリニアモータの位置決め方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2224581A3 (en) * 2009-02-27 2012-11-21 Societa' Industriale Motori Elettrici S.I.M.E.L. S.p.A. Tubular motor
EP2779388A4 (en) * 2011-11-04 2016-11-02 Yamaha Motor Co Ltd LINEAR MOTOR AND LINEAR CONVEYOR
US9525331B2 (en) 2011-11-04 2016-12-20 Yamaha Hatsudoki Kabushiki Kaisha Linear motor and linear conveyance device
EP3706297A1 (de) * 2019-03-07 2020-09-09 B&R Industrial Automation GmbH Verfahren zum steuern eines langstatorlinearmotors
CN111669098A (zh) * 2019-03-07 2020-09-15 B和R工业自动化有限公司 用于控制长定子直线电机的方法
US11245348B2 (en) 2019-03-07 2022-02-08 B&R Industrial Automation GmbH Method for controlling a long-stator linear motor
CN111669098B (zh) * 2019-03-07 2023-11-07 B和R工业自动化有限公司 用于控制长定子直线电机的方法

Also Published As

Publication number Publication date
JP2008148484A (ja) 2008-06-26

Similar Documents

Publication Publication Date Title
US7508154B1 (en) Integrated motor and resolver including absolute position capability
EP2938971B1 (en) Integrated multi-turn absolute position sensor for high pole count motors
TWI579533B (zh) Absolute encoder devices and motors
EP2932286B1 (en) Circuits and methods for processing signals generated by a circular vertical hall (cvh) sensing element in the presence of a multi-pole magnet
US7583080B2 (en) Rotation angle detection device and rotation angle correction method
JP5072060B2 (ja) シャフト型リニアモータの位置検出装置
WO2007105366A1 (ja) 回転角度検出装置および回転検出装置付き軸受
WO2008072525A1 (ja) シャフト型リニアモータの位置決め装置
JPH1151693A (ja) リニアエンコーダ装置
JP5558670B2 (ja) モータの駆動制御装置及びその制御方法、撮像装置
JP2004056892A (ja) リニアモータ装置
JPH1146498A (ja) ステッピングモータ駆動装置及びステッピングモータ
TW201025800A (en) Dispersed linear motors and driving system for dispersed linear motors
US10389283B2 (en) Motor drive apparatus for driving stepping motor and control method therefor
Wegener et al. Low cost position sensor for permanent magnet linear drive
JP5529637B2 (ja) リニアモータの位置検出システム
JP2010060478A (ja) 直動回転モータの位置検出装置および直動回転モータ
JP5464793B2 (ja) モータ駆動装置
JP5435748B2 (ja) 位置検出装置
JP2007256034A (ja) 回転角度検出装置および検出装置付き軸受
JP2006033903A (ja) モータ制御装置
JP5679575B2 (ja) 位置検出装置
JP2003289692A (ja) モータ
JPWO2008117345A1 (ja) リニアモータ及びその制御方法
JP2008003041A (ja) 位置検出方法及び撮像装置

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850133

Country of ref document: EP

Kind code of ref document: A1