WO2008069003A1 - 排ガス浄化用触媒及びその製造方法 - Google Patents

排ガス浄化用触媒及びその製造方法 Download PDF

Info

Publication number
WO2008069003A1
WO2008069003A1 PCT/JP2007/071989 JP2007071989W WO2008069003A1 WO 2008069003 A1 WO2008069003 A1 WO 2008069003A1 JP 2007071989 W JP2007071989 W JP 2007071989W WO 2008069003 A1 WO2008069003 A1 WO 2008069003A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
platinum
catalyst
particle size
colloid
Prior art date
Application number
PCT/JP2007/071989
Other languages
English (en)
French (fr)
Inventor
Hitoshi Kubo
Shunji Kikuhara
Ataru Daido
Original Assignee
Tanaka Kikinzoku Kogyo K. K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo K. K. filed Critical Tanaka Kikinzoku Kogyo K. K.
Priority to US12/162,159 priority Critical patent/US7781367B2/en
Priority to EP07831719.5A priority patent/EP2047902B1/en
Publication of WO2008069003A1 publication Critical patent/WO2008069003A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0211Impregnation using a colloidal suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/202Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/204Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/21Organic compounds not provided for in groups B01D2251/206 or B01D2251/208
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to an exhaust gas purifying catalyst and a method for producing the same, and more particularly to a catalyst for purifying nitrogen oxides contained in exhaust gas.
  • exhaust gas purification catalysts in which a catalyst component is supported on a honeycomb structure or a filter are widely used.
  • exhaust gas purification catalysts that oxidize nitrogen monoxide in nitrogen oxides to nitrogen dioxide are used, and nitrogen dioxide is reduced to nitrogen. It is known to play a role of oxidizing soot and the like in exhaust gas.
  • a catalyst component used for such an exhaust gas purifying catalyst a noble metal such as platinum, palladium, rhodium or an oxide thereof can be used, and platinum is used in particular.
  • An exhaust gas purifying catalyst whose catalyst component is platinum can be produced by a method in which a solution containing a platinum compound and a carrier are brought into contact with each other. Specifically, after bringing the solution containing platinum in excess and the carrier into contact with each other, drying and firing, the platinum is forcibly attached to the carrier, or the carrier contains platinum in excess of the saturated adsorption amount of the carrier. Platinum can be supported on the support by a method in which the support is impregnated into the solution and adsorbed until it reaches an equilibrium state.
  • Patent Document 1 as a catalyst for exhaust gas purification used to purify nitrogen oxides, chloroplatinic acid aqueous solution is impregnated with ⁇ -alumina, dried at 100 ° C for 12 hours, and calcined at 500 ° C. A method in which platinum is supported by this method is disclosed (Preparation Example 1 of Patent Document 1).
  • Patent Document 1 Japanese Patent No. 3791968
  • the catalyst for exhaust gas purification is strongly expected to improve the catalyst activity due to the recent high interest in environmental problems. For this reason, in conventional exhaust gas purifying catalysts, as a method for improving the catalytic activity, a method of heat-treating the catalyst immediately after supporting platinum at a high temperature and the amount of the catalyst component to be supported are reduced. Improvements have been made by increasing the method. However, even when such treatment is performed, there is a limit to the improvement of the catalyst activity.
  • the present invention relates to an exhaust gas purifying catalyst, and an object thereof is to provide a catalyst that is more excellent in catalytic activity than conventional ones, and particularly has high nitric oxide oxidizing power.
  • the present inventors have conducted intensive studies in order to improve the catalytic activity of the exhaust gas purifying catalyst.
  • a method of reducing the particle size of the catalyst component is known, whereas the present inventors
  • the catalyst component In order to sufficiently secure the catalytic activity of the exhaust gas purification catalyst, it was found that the catalyst component must have an average particle size of 80 nm or more. In addition, if the average particle size is 120 nm or less, the contact area with the exhaust gas can be secured to the minimum necessary. It has also been found that the smaller the particle size distribution, the more highly the catalyst capable of oxidizing nitrogen monoxide.
  • the present invention relates to an exhaust gas purifying catalyst in which a catalyst component is supported on a carrier.
  • the catalyst component has an average particle diameter of 80 nm to 120 nm, and a small particle diameter side force in a particle diameter distribution is integrated.
  • the present invention relates to an exhaust gas purifying catalyst, characterized in that 20 90 is a platinum colloid of 200 nm or less.
  • the average particle size of the catalyst component is 90-; UOnm is preferred D force ⁇ Onm or more, D
  • the particle size distribution of the catalyst particles is relatively small, but the average particle size is 1 to 5 nm. It was moderately small.
  • This catalyst had an average particle size of about 40 nm even when particles were grown by high-temperature firing at 800 ° C or higher.
  • a catalyst containing platinum in an excessive amount of platinum is used to force the platinum to adhere to the carrier.
  • the exhaust gas purifying catalyst of the present invention has an average particle size of 80 nm to 120 nm, A platinum colloid with a D force of S50 nm or more and a D force of 3 ⁇ 400 nm or less supported on a carrier.
  • the particle size is large and the variation in particle size distribution is small. And it was found that the exhaust gas purifying catalyst of the present invention can obtain higher catalytic activity than the conventional exhaust gas purifying catalyst, particularly with respect to the oxidizing power of nitric oxide.
  • D and D are cumulative distributions from the small particle size side in the particle size distribution based on the number of particles.
  • the supported amount of the catalyst component described above is a ratio of 0.5 to 5 g / L in terms of Pt mass with respect to the support. If it is within this range, it is possible to use a hornworm medium for exhaust gas purification having sufficiently high catalytic activity.
  • the carrier in the present invention it is preferable that at least a part of the surface in contact with the catalyst component is an oxide. This is to ensure a sufficient surface area for contacting the exhaust gas with the catalyst component.
  • a ceramic honeycomb or metal honeycomb structure or a filter can be used as the carrier.
  • the ceramic honeycomb cordierite, or one using carbonized carbide (SiC) can be used.
  • the carrier may be one in which at least a part of the above-described structure or filter is wash-coated.
  • Wash coating is the coating of an oxide ceramic with a large surface area, and it is possible to use oxide ceramics such as alumina, silica, titania, and zirconia. Wash coating can sufficiently increase the surface area of the support S, and the exhaust gas and the catalyst component can be sufficiently brought into contact with each other.
  • the wash coat is preferably applied to the structure or filter by lg / L to 200 g / L. This is because, within this range, a sufficient surface area can be secured without causing excessive pressure loss of the structure or filter.
  • the exhaust gas purifying catalyst of the present invention described above includes a step of reducing a platinum salt solution with a reducing agent to form a nuclear colloid, and a step of growing a nuclear colloid with a reducing agent to form a platinum colloid. And the step of bringing the platinum colloid into contact with the support, the reduction in the step of forming the nuclear colloid can be carried out at a pH of! -7.
  • the step of forming the nuclear colloid and the step of growing the nuclear colloid are carried out in stages, whereby the average particle size is reduced. It is possible to form a platinum colloid with a small variation in particle size distribution.
  • a catalyst with improved catalytic performance for purifying exhaust gas can be obtained by contacting a platinum colloid having a adjusted particle size and particle size distribution with a carrier.
  • the reduction in the step of forming the nuclear colloid is performed at pH:! -7, and the pH is preferably 3-4, more preferably 3 or more. If the pH is low, the colloidal platinum becomes particulate, and if the pH is high, platinum tends to aggregate and may cause precipitation.
  • Platinum salts used to form platinum colloids include platinum chloride, diplatinum chloride, dinitroamine platinum, platinum oxide, ethanolamine platinum, acetylethylacetonate platinum, hexammine platinum chloride, tetraammine platinum chloride. Etc. can be used.
  • a reducing agent in the process of forming the nuclear colloid and the process of growing the nuclear colloid in addition to sodium borohydride, ammonia, hydrazine compounds, etc., alcohol, hydrogen gas, carbon monoxide gas, saccharides, fats, etc.
  • sodium borohydride In the step of forming the nuclear colloid, it is preferable to add a surfactant as a protective agent.
  • polybulurpyrrolidone PVP
  • polyacrylic acid PAA
  • polyethyleneimine PEI
  • polyethylene glycol PEG
  • the molecular weight of the surfactant is The thing of 300-50000 is preferable and it is more preferable in it being 1000-30000.
  • FIG. 1 SEM observation photograph of exhaust gas purifying catalyst according to Example 1.
  • FIG. 4 SEM observation photograph of exhaust gas purifying catalyst according to Comparative Example 4.
  • FIG. 5 Oxidation conversion rate of nitrogen oxides of exhaust gas purifying catalysts according to examples and comparative examples. BEST MODE FOR CARRYING OUT THE INVENTION
  • 3 ⁇ 4M l dinitroammine Pt aqueous solution with a Pt content of 8 wt% 77.2 g, 500 g of water and 13 g of polyethylene glycol with a molecular weight of 1 000 were added and stirred, and then the reducing agent 98% hydrazine monohydrate aqueous solution 4g was added and reduced to form a nuclear colloid.
  • This nuclear colloid 250 ml of a 2% hydrazine monohydrate aqueous solution as a reducing agent was added at a rate of 5 ml / min, and a nuclear colloid was grown at room temperature for 4 hours with stirring to form a platinum colloid solution.
  • the carrier is a cordierite (ceramic) nodule with a diameter of 7.5 inches, a length of 8 inches, and a capacity of 5-79 L. Washed with ⁇ -alumina on a cam, dried at 120 ° C, and then dried at 500 ° C. And ⁇ -alumina adhered to the honeycomb at 100 g / L for 2 hours.
  • the support was impregnated with the colloidal platinum solution obtained by the above method, dried at 120 ° C overnight, and further calcined at 500 ° C for 2 hours, so that the supported amount of the catalyst component was Pt mass relative to the support.
  • the exhaust gas purifying catalyst (A-1) is lg / L.
  • Example 2 A platinum colloid solution was prepared using 3.5 g of polyethylene glycol having a molecular weight of 4000, and 10 g / L of ⁇ -alumina was adhered to the support on the honeycomb. In the same manner as in Example 1, an exhaust gas-purifying catalyst (A-2) having a catalyst component loading of Pg mass to the support in lg / L was produced.
  • A-2 an exhaust gas-purifying catalyst having a catalyst component loading of Pg mass to the support in lg / L was produced.
  • ⁇ l A platinum solution in which 500 g of water was added to 38.6 g of platinum chloride aqueous solution having a Pt content of 15 wt% was impregnated in the same support as in Example 1, dried at 120 ° C. overnight, and then 500 ° C. The catalyst was calcined for 2 hours to obtain an exhaust gas purification catalyst (B-1) having a catalyst component loading of Pt mass to the support in lg / L.
  • Comparative Example 2 The catalyst obtained in Comparative Example 1 was further calcined at 900 ° C for 2 hours, and the catalyst component loading amount was Pt mass with respect to the carrier, and the catalyst for exhaust gas purification (B— 2).
  • a solution obtained by adding 77.2 g of a dinitroammine platinum aqueous solution with a platinum content of 8 wt% and 20 kg of water was impregnated with the same carrier as in Example 1, and stirred for 10 hours at a rotational speed of 250 rpm. Ions were adsorbed on ⁇ -alumina. Thereafter, it was dried at 120 ° C. and calcined at 500 ° C. for 2 hours to obtain an exhaust gas-purifying catalyst (C 1) having a catalyst component loading of Pt mass to the support in lg / L.
  • Comparative Example 4 The catalyst of Comparative Example 1 was further calcined at 900 ° C for 2 hours to obtain an exhaust gas purification catalyst (C 2) in which the supported amount of the catalyst component was lg / L in terms of Pt mass relative to the support. .
  • the conversion rate of oxidizing nitric oxide in exhaust gas to nitrogen dioxide was measured using a diesel engine bench tester.
  • the gas string at the time of measurement is NO 1000ppm, O 10vol%, H O 6vol%, the balance is N, and the space velocity is
  • the exhaust gas purifying catalysts of Example 1 and Example 2 have platinum particles having an average particle size in the range of 8 Onm to 120 nm, D force S50 nm or more, and D force 3 ⁇ 400 nm or less. It was. This
  • Comparative Example 2 has a large average particle size but a large difference between D and D.
  • Comparative Example 4 was a small one having an average particle size of less than 80 nm.
  • the conversion rate for C was close to 80%.
  • Comparative Example 4 (C-2) Even in Comparative Example 4 (C-2), the conversion rate at a catalyst temperature of 300 ° C was lower than 60%.
  • the exhaust gas purifying catalyst according to the present invention has a high catalytic activity for exhaust gas purification, and particularly has high oxidizing power of nitric oxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 本発明は、排ガス浄化用触媒に関し、従来よりも触媒活性に優れ、特に一酸化窒素酸化力の高い触媒を提供することを目的とする。  本発明は、触媒成分が担体に担持されている排ガス浄化用触媒において、前記触媒成分は、平均粒径が80~120nmであり、粒子径分布における小粒径側からの積算分布20%の粒径D20が50nm以上で、且つ、積算分布90%の粒径D90が200nm以下の白金コロイドであることを特徴とする排ガス浄化用触媒に関する。本発明に係る排ガス浄化用触媒は、排ガス浄化の触媒活性が高く、特に一酸化窒素の酸化力の高いものである。

Description

明 細 書
排ガス浄化用触媒及びその製造方法
技術分野
[0001] 本発明は、排ガス浄化用触媒及びその製造方法に関し、特に排ガス中に含まれる 窒素酸化物を浄化する触媒に関する。
背景技術
[0002] ディーゼルエンジンやガソリンエンジン等の排ガス浄化には、触媒成分がハニカム 構造体やフィルタ一等に担持されている排ガス浄化用触媒が広く用いられている。例 えば、排ガス中に窒素酸化物が含まれる場合には、窒素酸化物中の一酸化窒素を 二酸化窒素へと酸化する排ガス浄化用触媒が用いられており、二酸化窒素は、窒素 に還元される際に排ガス中の煤等を酸化する役割を担うことが知られている。このよう な排ガス浄化用触媒に用いる触媒成分としては、白金、パラジウム、ロジウム等の貴 金属又はこれらの酸化物等を使用することができ、特に白金が多く用いられて!/、る。
[0003] 触媒成分が白金である排ガス浄化用触媒は、白金化合物を含む溶液と担体とを接 触させる方法により製造すること力 Sできる。具体的には、白金を過剰に含む溶液と担 体とを接触させた後、乾燥、焼成して、強制的に白金を担体に付着させる方法や、担 体の飽和吸着量以上の白金を含む溶液に担体を含浸し、平衡状態となるまで吸着さ せる方法により、白金を担体に担持させることができる。
[0004] 特許文献 1には、窒素酸化物の浄化に用いる排ガス浄化用触媒として、塩化白金 酸水溶液に γ -アルミナを含浸させた後、 100°Cで 12時間乾燥させ、 500°Cで焼成 する方法により白金を担持させたものが開示されている(特許文献 1の調製例 1)。
[0005] 特許文献 1 :特許第 3791968号明細書
発明の開示
発明が解決しょうとする課題
[0006] 排ガス浄化用触媒は、最近の環境問題への高い関心から、触媒活性の向上が強く 期待されている。このため、従来の排ガス浄化用触媒では、触媒活性向上の手法と して、白金担持直後の触媒を高温で熱処理する方法や、担持する触媒成分の量を 増加させる方法等による改良が行われてきた。し力、しながら、このような処理を行った 場合であっても、触媒活性の向上には限界があった。
[0007] そこで、本発明は、排ガス浄化用触媒に関し、従来よりも触媒活性に優れ、特に一 酸化窒素酸化力の高い触媒を提供することを目的とする。
課題を解決するための手段
[0008] 上記課題を解決するため、本発明者等は、排ガス浄化用触媒の触媒活性を向上さ せるために鋭意検討を行った。そして、一般には、触媒成分の比表面積を増大させ、 触媒の反応面積を大きく確保するために、触媒成分の粒径を小さくする方法等が知 られているのに対し、本発明者等は、排ガス浄化用触媒の触媒活性を充分に確保す るためには、触媒成分が平均粒径で 80nm以上の大きさを有する必要のあることを見 出した。また、平均粒径は 120nm以下であると、排ガスとの接触面積を必要最小限 に確保できることが分力、つた。また、粒子径分布のバラつきが少ないほど、一酸化窒 素を酸化する能力が、特に高い触媒となることも見出した。
[0009] すなわち本発明は、触媒成分が担体に担持されている排ガス浄化用触媒において 、触媒成分は、平均粒径が 80nm〜120nmであり、粒子径分布における小粒径側 力、らの積算分布 20%の粒径 D 力 ¾0nm以上で、且つ、積算分布 90%の粒径 D
20 90 が 200nm以下の白金コロイドであることを特徴とする排ガス浄化用触媒に関する。触 媒成分の平均粒径は、 90〜; UOnmであることが好ましぐ D 力 ^Onm以上、 D
20 90
140nm以下であることが好まし!/、。
[0010] 従来の排ガス浄化用触媒では、触媒成分の平均粒径を大きな触媒とすることが困 難であり、また、粒子径分布にバラつきが生じ易いものであった。例えば、白金を含 む溶液に担体を含浸し、白金を平衡状態となるまで吸着させて得られた触媒では、 触媒粒子の粒子径分布のバラつきは比較的少ないものの、平均粒径が l〜5nm程 度と小さいものであった。この触媒は、 800°C以上で高温焼成して粒子を成長させた 場合でも、平均粒径 40nm程度のものであった。また、白金を過剰に含む溶液を用 V、て担体上に強制的に白金を付着させた触媒は、平均粒径が数十 nm〜数百 nmの 比較的大きなものではあるものの、粒子径分布にバラつきが多いものであった。
[0011] これに対し、本発明の排ガス浄化用触媒は、平均粒径が 80nm〜120nmであり、 D 力 S50nm以上、 D 力 ¾00nm以下の白金コロイドを担体に担持させたものであり
20 90
、従来に比べて、粒径が大きぐかつ粒子径分布のバラつきも少ないものである。そし て、本発明の排ガス浄化用触媒であれば、特に一酸化窒素の酸化力に関し、従来 の排ガス浄化用触媒よりも高い触媒活性を得られることが分かった。尚、本発明にお ける D 及び D は、粒子数基準の粒子径分布における小粒径側からの累積分布を
20 90
示すものである。
[0012] 上記した触媒成分の担持量は、担体に対する Pt質量で 0. 5〜5g/Lの割合であ ることが好ましい。この範囲内であれば、充分に高い触媒活性を有する排ガス浄化用 角虫媒とすること力でさる。
[0013] また、本発明における担体は、触媒成分が接触する表面の少なくとも一部が酸化 物であることが好ましい。排ガスと触媒成分とを接触させるための充分な表面積を確 保するためである。具体的には、担体として、セラミックハニカム又はメタルハニカムの 構造体、若しくはフィルターを用いること力できる。尚、セラミックハニカムとしては、コ ージエライトや、炭化ケィ素(SiC)を用いたもの等が使用できる。
[0014] 担体は、上記した構造体又はフィルターの少なくとも一部がゥォッシュコートされたも のとしても良い。ゥォッシュコートとは、表面積の大きな酸化物系セラミックをコーティ ングすることであり、酸化物系セラミックであるアルミナ、シリカ、チタニア、ジルコユア 等を用いること力 Sできる。ゥォッシュコートを行えば、担体の表面積を充分に大きくす ること力 Sでき、排ガスと触媒成分とを充分に接触させることができる。ゥォッシュコート は、構造体又はフィルターに対して lg/L〜200g/Lコーティングすることが好まし い。この範囲内であれば、構造体又はフィルターの圧力損失を過大とすることなぐ 充分な表面積を確保できるからである。
[0015] 以上で説明した本発明の排ガス浄化用触媒は、白金塩溶液を還元剤により還元し て核コロイドを形成する工程と、還元剤により核コロイドを成長させて白金コロイドを形 成する工程と、白金コロイドを担体に接触させる工程と、を含む方法において、核コロ イドを形成する工程における還元を、 pH;!〜 7で行うことにより製造することができる。
[0016] 本発明の製造方法では、白金コロイドを形成するための還元として、核コロイドを形 成する工程と、核コロイドを成長させる工程と、を段階的に行うことにより、平均粒径が 大きぐ粒子径分布のバラつきが少ない白金コロイドを形成することができる。粒径及 び粒子径分布が調製された白金コロイドを担体に接触させることにより、排ガスを浄 化する触媒性能を向上させた触媒を得ることができる。ここで、核コロイドを形成する 工程における還元は、 pH;!〜 7で行うものであり、 pHは 3以上が好ましぐ pH3〜4で あるとより好ましい。 pHが低い場合には、白金コロイドが粒子状になりに《、 pHが高 いと白金が凝集しやすくなり、沈殿を生じる場合がある。
[0017] 白金コロイドの形成に用いる白金塩としては、塩化白金、塩化第二白金、ジニトロア ンミン白金、酸化白金、エタノールァミン白金、ァセチルァセトナト白金、へキサアンミ ン白金クロライド、テトラアンミン白金クロライド等を使用できる。また、核コロイドを形成 する工程や、核コロイドを成長させる工程における還元剤としては、水素化ホウ素ナト リウム、アンモニア、ヒドラジン化合物等の他、アルコール、水素ガスや一酸化炭素ガ ス、糖類や脂肪類、超音波の還元作用等を使用できるが、特に水素化ホウ素ナトリウ ムを用いることが好ましい。また、核コロイドを形成する工程においては、保護剤とし て界面活性剤を添加することが好ましい。尚、界面活性剤としては、ポリビュルピロリ ドン(PVP)、ポリアクリル酸(PAA)、ポリエチレンィミン(PEI)、ポリエチレングリコー ノレ(PEG)等を使用することができ、界面活性剤の分子量は 300〜50000のものが 好ましく、 1000〜30000であるとより好ましい。
図面の簡単な説明
[0018] [図 1]実施例 1に係る排ガス浄化用触媒の SEM観察写真
[図 2]比較例 2に係る排ガス浄化用触媒の SEM観察写真
[図 3]比較例 3に係る排ガス浄化用触媒の TEM観察写真
[図 4]比較例 4に係る排ガス浄化用触媒の SEM観察写真
[図 5]実施例及び比較例に係る排ガス浄化用触媒の窒素酸化物の酸化転化率 発明を実施するための最良の形態
[0019] 以下、本発明における最良の実施形態について説明する。
[0020] ¾M l: Pt含有率 8wt%のジニトロアンミン Pt水溶液 77. 2gに、水 500gと分子量 1 000のポリエチレングリコールを 13g加え、撹拌した後、還元剤である 98%ヒドラジン 一水和物水溶液を 4g加えて還元処理を行い、核コロイドを形成した。この核コロイド に、還元剤である 2%ヒドラジン一水和物水溶液 250mlを 5ml/minの速度で添加し 、撹拌しながら室温で 4時間核コロイドを成長させ、白金コロイド溶液を形成した。
[0021] 担体には、直径 7· 5inch、長さ 8inch、容量 5· 79Lのコージエライト(セラミック)ノヽ 二カムに γ -アルミナをゥォッシュコートし、 120°Cでー晚乾燥させた後、 500°Cで 2時 間焼成して、 γ -アルミナをハニカムに対して 100g/L付着させたものを用いた。担 体をは、上記方法により得られた白金コロイド溶液に含浸した後、 120°Cで一晩乾燥 させ、さらに、 500°Cで 2時間焼成して、触媒成分の担持量が担体に対する Pt質量 で lg/Lである排ガス浄化用触媒 (A— 1)とした。
[0022] 実施例 2 :ポリエチレングリコール して、分子量 4000のものを 3. 5g用いて白金コロ イド溶液を調製し、担体には γ -アルミナをハニカムに対して 10g/L付着させた以外 は、実施例 1と同様の方法により、触媒成分の担持量が担体に対する Pt質量で lg/ Lの排ガス浄化用触媒 (A— 2)を作製した。
[0023] ^ l: Pt含有量 15wt%の塩化白金水溶液 38. 6gに水 500gを加えた白金溶液 を、実施例 1と同様の担体に含浸させ、 120°Cで一晩乾燥後、 500°Cで 2時間焼成し て、触媒成分の担持量が担体に対する Pt質量で lg/Lの排ガス浄化用触媒 (B— 1 )とした。
[0024] 比較例 2:比較例 1で得られた触媒を、さらに 900°Cで 2時間焼成して、触媒成分の 担持量が担体に対する Pt質量で lg/Lの排ガス浄化用触媒 (B— 2)とした。
[0025] 比 白金含有量 8wt%のジニトロアンミン白金水溶液 77. 2gと、水 20kgを加え た溶液に、実施例 1と同様の担体を含浸し、回転数 250rpmで 10時間撹拌して、白 金イオンを γ -アルミナに吸着させた。その後、 120°Cでー晚乾燥させ、 500°Cで 2時 間焼成して、触媒成分の担持量が担体に対する Pt質量で lg/Lの排ガス浄化用触 媒 (C 1)とした。
[0026] 比較例 4:比較例 1の触媒を、さらに 900°Cで 2時間焼成し、触媒成分の担持量が担 体に対する Pt質量で lg/Lの排ガス浄化用触媒 (C 2)とした。
[0027] [粒子径の測定]
実施例及び比較例の各排ガス浄化用触媒につ!/、て、 SEM写真による観察を行!/、 、 500個前後の白金粒子について、粒子数基準の粒子径分布を測定した。また、比 較例 3については、 TEM写真による観察を行った。 SEM写真又は TEM写真の結 果を図 1〜図 4に示し、粒子径分布から算出した平均粒径、 D 、 D の結果を表 1に
20 90
示す。
[0028] [窒素酸化物の酸化転化率]
実施例及び比較例の各触媒につ!/、て、ディーゼルエンジンベンチ試験機を用いて、 排ガス中の一酸化窒素を二酸化窒素へ酸化する転化率を測定した。測定時のガス 糸且成は、 NO 1000ppm、 O 10vol%、 H O 6vol%、残部を Nとし、空間速度は
2 2 2
35000h— 1とした。また、反応温度は、 150、 200、 250、 300、 350、 400、 450。Cに おいて、転化率を測定した。結果を図 5に示す。
[0029] [表 1]
Figure imgf000008_0001
[0030] 表 1より、実施例 1及び実施例 2の排ガス浄化用触媒は、白金粒子の平均粒径が 8 Onm〜; 120nmの範囲内であり、 D 力 S50nm以上、 D 力 ¾00nm以下であった。こ
20 90
れに対し、比較例 2は、平均粒径は大きいものの、 D と D との差が大きぐ粒子径
20 90
分布にバラつきがあるものであった。また、比較例 4は、平均粒径 80nm未満の小さ いものであった。
[0031] 図 5より、白金コロイドを担体に担持した実施例 1 (A—1)及び実施例 2 (A— 2)は、 いずれの温度においても転化率が比較例より高ぐ触媒温度 300°Cにおける転化率 は 80%近くとなった。一方、比較例 1 (B— 1)、比較例 3 (C— 1)は、実施例と比較し て一酸化窒素を酸化する転化率が低ぐ高温における焼成を行った比較例 2 (B— 2 )、比較例 4 (C— 2)であっても、触媒温度 300°Cにおける転化率は 60%より低いも のであった。
産業上の利用可能性 以上で説明したように、本発明に係る排ガス浄化用触媒は、排ガス浄化の触媒活 性が高ぐ特に一酸化窒素の酸化力の高いものである。

Claims

請求の範囲
[1] 触媒成分が担体に担持されてレ、る排ガス浄化用触媒にぉレ、て、
前記触媒成分は、平均粒径が 80〜120nmであり、粒子径分布における小粒径側か らの積算分布 20%の粒径 D 力 ¾0nm以上で、且つ、積算分布 90%の粒径 D 2
20 90
OOnm以下の白金コロイドであることを特徴とする排ガス浄化用触媒。
[2] 触媒成分の担持量は、担体に対する Pt質量で 0. 5〜5g/Lの割合である請求項 1 に記載の排ガス浄化用触媒。
[3] 担体は、触媒成分が接触する表面の少なくとも一部が酸化物である請求項 1又は請 求項 2に記載の排ガス浄化用触媒。
[4] 担体は、セラミックハニカム又はメタルハニカムの構造体、若しくはフィルターであるか
、該構造体又はフィルターの少なくとも一部がゥォッシュコートされたものである請求 項 1〜3のいずれかに記載の排ガス浄化用触媒。
[5] 請求項 1〜4のいずれかに記載の排ガス浄化用触媒の製造方法であって、
白金塩溶液を還元剤により還元して核コロイドを形成する工程と、還元剤により核コロ イドを成長させて白金コロイドを形成する工程と、白金コロイドを担体に接触させるェ 程と、を含み、
前記核コロイドを形成する工程は、 pH;!〜 7で白金塩溶液を還元する排ガス浄化 用触媒の製造方法。
PCT/JP2007/071989 2006-12-05 2007-11-13 排ガス浄化用触媒及びその製造方法 WO2008069003A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/162,159 US7781367B2 (en) 2006-12-05 2007-11-13 Exhaust gas cleaning catalyst and process for producing the same
EP07831719.5A EP2047902B1 (en) 2006-12-05 2007-11-13 Exhaust gas purification catalyst and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-327782 2006-12-05
JP2006327782A JP4412615B2 (ja) 2006-12-05 2006-12-05 排ガス浄化用触媒及びその製造方法

Publications (1)

Publication Number Publication Date
WO2008069003A1 true WO2008069003A1 (ja) 2008-06-12

Family

ID=39491908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071989 WO2008069003A1 (ja) 2006-12-05 2007-11-13 排ガス浄化用触媒及びその製造方法

Country Status (5)

Country Link
US (1) US7781367B2 (ja)
EP (1) EP2047902B1 (ja)
JP (1) JP4412615B2 (ja)
KR (1) KR100965738B1 (ja)
WO (1) WO2008069003A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033353A1 (en) 2009-08-05 2011-02-10 Basf Corporation Preparation of Diesel Oxidation Catalyst Via Deposition of Colloidal Nanoparticles
KR20170110100A (ko) * 2015-01-29 2017-10-10 바스프 코포레이션 자동차 배출 처리를 위한 로듐-함유 촉매
JP2018510053A (ja) * 2015-01-29 2018-04-12 ビーエーエスエフ コーポレーション 自動車排ガス処理用白金族金属(pgm)触媒
EP3782727A1 (de) 2019-08-20 2021-02-24 Umicore Ag & Co. Kg Katalysator zur reduzierung von ammoniak-emissionen
JP6921261B1 (ja) * 2020-03-26 2021-08-18 株式会社キャタラー 排ガス浄化触媒装置
EP3957386A1 (de) * 2020-08-18 2022-02-23 UMICORE AG & Co. KG Katalysator zur reduzierung von ammoniak-emmisionen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015096A (ja) * 1998-07-03 2000-01-18 Toyota Central Res & Dev Lab Inc 触媒の製造方法
JP2005169280A (ja) * 2003-12-11 2005-06-30 Toyota Motor Corp 排ガス浄化用触媒
JP2005296733A (ja) * 2004-04-07 2005-10-27 Toyota Central Res & Dev Lab Inc 触媒の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791968B2 (ja) 1996-06-06 2006-06-28 財団法人石油産業活性化センター 窒素酸化物の接触還元方法
JP4865250B2 (ja) * 2005-04-15 2012-02-01 三菱重工業株式会社 排ガス処理用触媒の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015096A (ja) * 1998-07-03 2000-01-18 Toyota Central Res & Dev Lab Inc 触媒の製造方法
JP2005169280A (ja) * 2003-12-11 2005-06-30 Toyota Motor Corp 排ガス浄化用触媒
JP2005296733A (ja) * 2004-04-07 2005-10-27 Toyota Central Res & Dev Lab Inc 触媒の製造方法

Also Published As

Publication number Publication date
US20090011177A1 (en) 2009-01-08
US7781367B2 (en) 2010-08-24
EP2047902A4 (en) 2012-06-06
EP2047902B1 (en) 2017-04-19
JP2008136979A (ja) 2008-06-19
KR100965738B1 (ko) 2010-06-24
KR20080096531A (ko) 2008-10-30
JP4412615B2 (ja) 2010-02-10
EP2047902A1 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
JP4199691B2 (ja) 触媒
KR101430606B1 (ko) 배기 가스 정화 촉매 및 그 제조 방법
KR102076112B1 (ko) 콜로이드 나노입자의 침착을 통한 디젤 산화 촉매의 제조
JP5092281B2 (ja) 排ガス浄化装置
WO2010023919A1 (ja) 排気ガス浄化用触媒及びこれを用いた排気ガス浄化方法
JP2014524352A5 (ja)
JPH0838897A (ja) 排気ガス浄化用触媒の製造方法
WO2008069003A1 (ja) 排ガス浄化用触媒及びその製造方法
JP2021507804A (ja) 排気ガス浄化触媒
JP6598972B2 (ja) 排ガス浄化触媒及びその製造方法
JP2015073936A (ja) 触媒の製造方法
JP5351512B2 (ja) 触媒及び排ガス浄化方法
JP2015199066A (ja) 内燃機関の排ガス浄化装置及びその製造方法、並びに排ガス浄化装置作製用塗料
WO2011052676A1 (ja) 内燃機関の排気浄化装置
JP5920046B2 (ja) 排気浄化触媒、排気浄化触媒の製造方法及び内燃機関の排気浄化装置
JP2010099557A (ja) 金属触媒担持粒子とその製造方法及び金属触媒担持粒子分散液並びに触媒
JP4661690B2 (ja) ディーゼル排ガス浄化用構造体、それを用いた排ガス浄化方法
CN115413248B (zh) 排气净化催化剂装置
JP7099304B2 (ja) 排ガス浄化用触媒
RU2790008C2 (ru) Катализатор для очистки выхлопного газа
JP3861823B2 (ja) 排ガス浄化用触媒
JP2009142738A (ja) 排ガス浄化フィルタ
JP3766984B2 (ja) 排気ガス浄化用触媒およびその製造方法
JP2001058131A (ja) 排ガス浄化用触媒
JP3695654B2 (ja) 排気ガス浄化用触媒の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12162159

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087018992

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831719

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2007831719

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007831719

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE