WO2008052482A1 - Structure de surface de route en béton poreux réalisée à partir de ciment polymériquement modifié et son procédé de fabrication - Google Patents

Structure de surface de route en béton poreux réalisée à partir de ciment polymériquement modifié et son procédé de fabrication Download PDF

Info

Publication number
WO2008052482A1
WO2008052482A1 PCT/CN2007/070996 CN2007070996W WO2008052482A1 WO 2008052482 A1 WO2008052482 A1 WO 2008052482A1 CN 2007070996 W CN2007070996 W CN 2007070996W WO 2008052482 A1 WO2008052482 A1 WO 2008052482A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer modified
polymer
modified cement
layer
cement
Prior art date
Application number
PCT/CN2007/070996
Other languages
English (en)
French (fr)
Inventor
Zhijian Yi
Original Assignee
Zhijian Yi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhijian Yi filed Critical Zhijian Yi
Priority to EP07817187.3A priority Critical patent/EP2083121B1/en
Publication of WO2008052482A1 publication Critical patent/WO2008052482A1/zh
Priority to US12/430,714 priority patent/US8470437B2/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/22Gutters; Kerbs ; Surface drainage of streets, roads or like traffic areas
    • E01C11/224Surface drainage of streets
    • E01C11/225Paving specially adapted for through-the-surfacing drainage, e.g. perforated, porous; Preformed paving elements comprising, or adapted to form, passageways for carrying off drainage
    • E01C11/226Coherent pavings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/10Coherent pavings made in situ made of road-metal and binders of road-metal and cement or like binders
    • E01C7/14Concrete paving
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00413Materials having an inhomogeneous concentration of ingredients or irregular properties in different layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/30Flood prevention; Flood or storm water management, e.g. using flood barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/249968Of hydraulic-setting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition

Definitions

  • the invention relates to a pavement engineering such as road engineering and a construction method thereof, in particular to a polymer modified cement pore concrete pavement structure and a construction method. Background technique
  • cement concrete is a well-known building material that is widely used.
  • cement concrete materials have their own insurmountable weaknesses: large shrinkage at the initial stage of solidification, easy initial cracks in the interior; poor adaptability to deformation, easy to crack, so people have been working on the modification of cement concrete for a long time.
  • Polymer-modified cement concrete has emerged, making concrete a new stage of development.
  • Polymer-modified cement concrete is modified with a polymer or polymer emulsion, and cement slurry or polymer emulsion modified cement slurry is used as an adhesive material to bond gravel and sand.
  • the polymer modified cement concrete has a large improvement in compression, tensile and impact strength, high corrosion resistance, and remarkable characteristics of strong adaptability to deformation, and thus has been widely used.
  • polymer modified cement concrete is mainly used as concrete repairing materials, decorative materials and floor covering materials for houses, and it is also used sporadically in structural engineering, pavement and bridge deck.
  • polymer modified cement concrete is required to be larger
  • the fluidity, the slump is generally 3 - 5cm
  • the vibrating and compacting after pouring the general paving thickness is 2-4cm
  • this construction method is used for paving the floor of the house
  • II when the aggregate size is larger Hour, also requires polymer modified cement concrete (also known as polymer cement mortar)
  • the liquidity is applied in a layered manner to the surface of the structure in a manner similar to a brush coating.
  • the thickness is generally 0.5 to 2 cm.
  • the construction method is used for repairing, decorating, and the like.
  • the current polymer modified cement concrete material has a large amount of polymer material per unit volume of polymer modified cement concrete, and the cost is expensive.
  • the layered painting process has a small thickness (not more than 1 cm) at a time, so The second construction process can not be used for road pavements with a large area and a certain thickness requirement (generally above 4cm).
  • cement concrete pavement is often referred to as a rigid pavement
  • asphalt pavement is often referred to as a flexible pavement.
  • the cement concrete pavement surface layer has high rigidity and high strength.
  • the elastic modulus and strength of the concrete slab are far greater than the elastic modulus and strength of the base layer and the soil foundation.
  • the pavement has "rigidity"; the elastic modulus of the asphalt pavement surface layer is different from the base layer.
  • the asphalt concrete surface layer has good deformation ability, can adapt to the deformation of the base layer and soil foundation, and the road surface has "flexibility”.
  • the cement concrete pavement includes road surfaces composed of ordinary cement concrete, reinforced concrete, continuous reinforced concrete, prestressed concrete, fabricated concrete, steel fiber concrete and other surface layers and base layers. At present, the most widely used is the ordinary cement concrete pavement poured in place.
  • the cement concrete pavement has the advantages of convenient material selection, simple construction, high pavement strength, good stability and good durability, but the driving comfort is poor, the surface layer and the base layer have poor coordination ability, joints, easy damage, difficult to repair, etc. Disadvantages.
  • the thickness of the surface layer of cement concrete pavement is relatively large, generally above 20cm.
  • Asphalt pavement is made of asphalt material as bonding material such as bonded stone and other mineral materials.
  • the pavement structure composed of the base layer can be composed of single layer, double layer or three layers.
  • the composition of each layer should be designed. It is determined according to factors such as layer thickness and stratification, climatic conditions such as temperature and rainfall, and traffic volume.
  • Asphalt pavement has the advantages of smooth surface, no seams, comfortable driving, wear resistance, low vibration, low noise, easy maintenance and repair, etc.
  • asphalt pavement construction requires high, pavement water stability, temperature stability and chemical aging resistance are poor.
  • the road surface strength is not high, and it is easy to cause damage such as rutting, loose peeling, and reflection cracks.
  • the surface layer thickness of asphalt pavement is thinner than cement concrete pavement, generally the most The small thickness is 2cm and the maximum thickness is 18cm.
  • the asphalt material has low strength, aging property, and poor temperature change, it often causes defects such as rutting, aging cracking, and temperature cracking.
  • the object of the present invention is to provide a polymer modified cement pore concrete pavement structure formed by polymer modified cement pore concrete material with simple structure and convenient construction, and the invention also provides a polymer modified cement pore concrete pavement. Construction method.
  • the present invention provides a polymer modified cement pore concrete pavement structure, characterized in that the pavement structure comprises a bottom layer, a bonding layer, a polymer modified cement pore concrete layer, and a surface treatment layer.
  • a bonding layer is disposed on the surface of the bottom layer, and a polymer modified cement pore concrete layer is laid on the bonding layer, and the pores in the polymer modified cement pore concrete layer are substantially uniformly distributed, the polymer
  • the modified cement porous concrete layer has a surface treatment layer.
  • the invention modifies the inorganic cement slurry in the cement concrete through the polymer or the polymer emulsion to make it organic, and enhances the deformation ability of the concrete.
  • the polymer cement has excellent bonding ability, and the bonding single Gradation or bonding intermittent grade with gravel, on this basis, a new type of pavement structure-polymer modified cement pore concrete pavement structure can be obtained.
  • the pavement structure of the present invention also has a water permeable and noise reducing function, and at the same time, since pores are formed in the pavement structure of the present invention, materials such as polymers and cements used can be saved, and it will be known from the following description.
  • the construction of the pavement structure of the present invention will be simpler and, therefore, the construction cost can be reduced in many ways.
  • the surface layer can improve the wear resistance and slip resistance of the road surface.
  • the present invention can employ a crushed stone having a particle diameter of 2. 5 mm or more.
  • the polymer modified cement pore concrete layer of the present invention has a porosity of from 3 to 30%.
  • the polymer modified cement pore concrete layer of the present invention has a porosity of from 10 to 30%.
  • the polymer used in the polymer-modified cement pore concrete layer, the bonding layer and the surface treatment layer of the pavement structure of the present invention may be one or more of a resin polymer or a rubber polymer.
  • the polymer used in the polymer modified cement pore concrete layer, the bonding layer and the surface treatment layer of the pavement structure of the present invention may be a polymer emulsion such as a styrene-butadiene rubber emulsion or chlorine.
  • a polymer emulsion such as a styrene-butadiene rubber emulsion or chlorine.
  • a butyl rubber emulsion an acrylic emulsion, an acrylate emulsion, a styrene-acrylic emulsion, a VAE emulsion, and the like.
  • the underlayer of the present invention may be a cement stabilizing base layer.
  • the cement stabilized base layer acts as a foundation to withstand and disperse the loads transmitted by the surface layer.
  • the cement stabilized base layer may be a cement stabilized macadam base layer or a cement stabilized gravel base layer.
  • the formed cement concrete pavement or the asphalt concrete pavement can also be used as the bottom layer of the present invention.
  • the present invention also provides a polymer modified cement pore concrete pavement structure construction method, which comprises uniformly mixing, spraying or painting a polymer on a clean underlying surface by mechanical or artificial means.
  • Modified cement mortar or polymer modified cement slurry to form a bonding layer the bonding layer should be completed within 72 hours before paving the polymer modified cement pore concrete layer; uniformly stirring the polymer modified cement with stirring equipment Pore concrete, using paver or artificial paving polymer modified cement pore concrete, using pavers or artificially to achieve leveling and compaction of polymer modified cement pore concrete, forming pores with pores Uniformly distributed polymer modified cement pore concrete layer; polymer modified cement pore concrete layer is covered by film covering, curing period is 1.7 days; after curing, on the surface of polymer modified cement pore concrete layer Mixing, spraying or painting polymer modified cement sand by manual or mechanical means A slurry or polymer modified cement slurry to form a surface treatment layer.
  • the pavement structure of the present invention and the corresponding construction method can be further optimized by the optimization of the respective ratios of the pavement structure, the control of the size of the porosity, and the selection of the particle size of the gravel.
  • the polymer modified cement pore concrete used in the present invention is substantially different from the current polymer modified cement concrete, and the specific performance is as follows:
  • the polymer modified cement pore concrete of the present invention is mixed with the current polymer modified cement Compared with the concrete, the mix design theory is different: when the polymer modified cement pore concrete mix design of the present invention is designed, the graded or single grade is used to make the polymer modified cement concrete rich in pores, wherein The amount of polymer added is greatly reduced; at the same time, the polymer modified cement pore concrete of the present invention must be sufficiently dry and hard to be paved or manually leveled and vibrated.
  • the current polymer modified cement concrete must have a certain fluidity, a large amount of polymer, and a dense structure.
  • the strength forming mechanism of the polymer modified cement pore concrete of the present invention is different from the current polymer modified cement concrete strength forming mechanism:
  • the strength of the polymer modified cement pore concrete of the present invention is determined by the polymer modified cement The bond strength of the slurry and the frictional resistance between the aggregates;
  • the strength of the current polymer-modified cement concrete mainly comes from the bonding strength of the polymer cement slurry, and the frictional resistance between the aggregates is very weak (caused by the dense structure).
  • the construction process is obviously different.
  • the polymer modified cement concrete of the present invention is mainly constructed by a self-leveling and self-vibrating process of a paver, and does not need to be crushed by a roller after paving, nor does it require vibrator vibration to make the structure dense.
  • the current polymer modified cement concrete is often constructed by vibrating process during construction; when the painting process is used, the thickness of one construction is small, and it is difficult to adapt to large-scale construction of road surfaces.
  • the polymer modified cement pore concrete pavement structure adopted by the invention has an essential difference from the current common cement concrete pavement structure, the compacted cement concrete pavement structure, the polymer modified cement concrete pavement and the asphalt pavement structure, and the specific performance is as follows:
  • the strength theory is different: the ordinary cement concrete pavement structure mainly relies on the cement stone bonded aggregate forming strength after solidification of the cement slurry; and the polymer modified cement pore concrete pavement structure of the present invention is bonded by the solidified polymer cement slurry.
  • the frictional resistance between the aggregate and the aggregate forms strength.
  • the binder of the ordinary cement concrete pavement structure is an inorganic material; and the polymer modified cement pore concrete pavement structure of the present invention contains a certain amount of polymerization. Material, organicizing the concrete.
  • the construction process is different: the ordinary cement concrete pavement structure adopts the vibrating process to make the concrete compact; and the polymer modified cement pore concrete pavement structure of the present invention utilizes a paver or artificially to compact the concrete.
  • the design theory is different: the design of the ordinary cement concrete pavement structure adopts the bending stress of the bottom of the board as the index control design; while the polymer modified cement pore concrete pavement structure has the deformation ability enhanced by the addition of the polymer, and the use of the bonding layer makes the structure
  • the force has undergone a fundamental change, so the deformation index is used to control the design, and the design is no longer controlled by the strength index.
  • the material properties are different: the cement material of the current milled cement concrete pavement structure is an inorganic material; and the material of the polymer modified cement pore concrete pavement structure of the present invention is organicized.
  • the internal structure of the material is different: the current internal structure of the roller compacted cement concrete is still a dense structure, and the polymer modified cement pore concrete of the present invention is rich in pores due to the intermittent grading or single grading of the coarse aggregate. It has water permeability and noise reduction.
  • the current roller compacted cement concrete pavement structure is a rigid pavement structure with small deformation ability, poor adaptability and poor crack resistance.
  • the polymer modified cement pore concrete pavement structure of the present invention has large deformation capacity and deformation adaptation. Strong, good crack resistance.
  • the design theory is different: The current cement concrete pavement structure design still adopts the design theory of ordinary cement concrete pavement; however, the polymer modified cement pore concrete pavement structure applied by the present invention is designed by using deformation indexes.
  • the current polymer modified cement concrete pavement is generally constructed by vibrating process and painting process.
  • the thickness of one forming is small.
  • the vibrating process is adopted, the shrinkage joint must be preset, and the pavement is discontinuous.
  • the painting process need to brush a plurality of times to reach a larger thickness; and the polymer modified cement pore concrete pavement structure of the present invention uses a paver or artificial Flat, tapping, no need to crush, easy for large-scale construction, fast construction.
  • the current polymer modified cement concrete pavement has a large shrinkage and is easy to crack;
  • the polymer modified cement pore concrete pavement structure contains a certain amount of polymer and is rich in pores, and the shrinkage is large after leveling and tapping. Falling, the road has good crack resistance.
  • the current asphalt pavement adopts asphalt as the bonding material
  • the polymer modified cement pore concrete pavement structure applied by the present invention uses the synthetic polymer material modified cement as the bonding material.
  • the mixed polymer and cement form a higher strength, better adhesion, thermal stability, water stability, aging resistance Good durability.
  • the deformability of the polymer modified cement slurry can be adjusted by the type and dosage of the polymer, so that the modified polymer modified cement concrete exhibits a rigid property or a flexible property.
  • the polymer modified cement pore concrete pavement structure of the present invention is a brand new pavement structure different from the existing pavement structures.
  • the pavement has both high strength of cement concrete pavement and high flexibility of asphalt pavement. It has both the stability of inorganic materials and the bonding ability of organic materials.
  • the pavement has the advantages of cement concrete pavement and asphalt pavement. short.
  • the polymer modified cement concrete pavement structure of the invention can greatly reduce the thickness of the pavement surface layer under the premise of ensuring excellent road use, and brings significant economy; the polymer modified cement concrete pavement is convenient to take materials, and the construction is simple and quick.
  • Figure 1 is a schematic cross-sectional view of the present invention
  • 1 is the surface treatment layer
  • 2 is the polymer modified cement pore concrete layer
  • 3 is the bonding Layer
  • 4 is the bottom layer specific implementation
  • the figure shows a schematic structural view of an embodiment of the present invention.
  • the structure is: the bottom layer 4, the bonding layer 3, the polymer modified cement pore concrete layer 2, the surface treatment layer 1, the surface of the bottom layer 4 is provided with a bonding layer 3, and the polymer layer is laminated on the bonding layer 3.
  • Cement porous concrete layer 2 polymer modified cement porous concrete layer 2 has a surface treatment layer 1.
  • a polymer modified cement pore concrete pavement structure of the present invention is formed.
  • the resulting pavement structure has a porosity of about 18%.
  • the soil base at the bottom of the test tank is one meter thick, and the base layer is cement stabilized graded gravel, base layer and The soil foundation is compacted with a roller, which is exactly the same as the roadbed and base of the actual road.
  • the polymer modified cement pore concrete pavement test plate has a size of 800 mm X 450 mm X 40 mm.
  • the first test plate was formulated as: Cement: Crushed stone: Polymer: Water 200: 1200: 30: 30, wherein the second test plate was formulated with cement: Crushed stone: Polymer 200: 1200: 60 . Due to the small size of the plates, the particle size of the two test plates is less than 5 mm. Two plates were prepared for each formulation, and a total of 4 polymer modified cement pore concrete pavement test plates were produced.
  • the ordinary concrete slab is poured, vibrated and smeared, and the surface is smoothed, it is cured according to the curing standard; and the polymer modified cement pore concrete pavement plate is vibrated and leveled by the surface vibrating plate, and the curing method of the covering film is used for curing.
  • the plates were loaded. The load is loaded in the middle of the plate using a rigid beam with a bottom dimension of 450 mm X 100 mm.
  • the strain gauge was used to observe the strain at the bottom of the plate during the loading process. Two ordinary concrete slabs were loaded separately. When the load reached 3 tons (that is, the average load of the two test plates), the road panel cracked, and for the polymer modified pore cement concrete pavement test board, when the load reached 30 tons. The road panel has no cracking. The results of strain monitoring are consistent with the experimental observations.
  • the polymer modified cement pore concrete pavement test plate of the present invention has stable properties and remarkable bearing capacity, and is a pavement structure with excellent mechanical properties.

Description

聚合物改性水泥孔隙混凝土路面结构及施工方法
技术领域
本发明涉及道路工程等铺面工程及其施工方法, 尤其是聚合物改性水 泥孔隙混凝土路面结构及施工方法。 背景技术
1.水泥混凝土和现行的聚合物改性水泥混凝土
水泥混凝土材料是一种家喻户晓的建筑材料, 其应用广泛。 然而水泥 混凝土材料有其自身不可克服的弱点: 凝固初期收缩量大, 内部易产生初 始缺陷; 适应变形能力差, 易开裂, 因此长期以来人们一直致力于水泥混 凝土改性的研究。
近年来, 出现了聚合物改性水泥混凝土, 使混凝土这种材料走上了一 个新的发展阶段。 聚合物改性水泥混凝土以聚合物或者聚合物乳液改性水 泥, 并以聚合物水泥浆或者聚合物乳液改性水泥浆作为胶粘材料, 粘结碎 石和砂。 聚合物改性水泥混凝土的抗压、 抗拉、 抗冲击强度均有大幅度提 高, 具有高抗腐蚀的特点, 而且具有变形能力适应性强的显著特点, 因而 得到了较为广泛的应用。
目前聚合物改性水泥混凝土主要用作混凝土修补材料、 装饰材料和房 屋地面铺筑材料, 在结构工程、 路面和桥面中也有零星的运用。 例如, 目 前的聚合物改性水泥混凝土的施工工艺有两种: I、 当其中的集料粒径较大 时, 采用和普通水泥混凝土施工相同的工艺: 要求聚合物改性水泥混凝土 有较大的流动性, 塌落度一般在 3— 5cm, 浇注后振捣密实, 一般铺筑厚度 为 2— 4cm, 这种施工方式用于房屋地面的铺筑, II、 当其中集料的粒径较 小时, 同样要求聚合物改性水泥混凝土 (也称作聚合物水泥砂浆) 具有较 大的流动性, 采用类似于刷涂料的方式, 分层涂刷到结构物表面, 一般厚 度为 0. 5— 2cm, 一般该施工方式用于修补、 装饰等。
现行的聚合物改性水泥混凝土材料的单位体积聚合物改性水泥混凝土 中聚合物材料用量较大、 造价昂贵, 另外, 分层涂刷的工艺一次形成的厚 度较小 (不大于 lcm), 因此第二种施工工艺一般不能用于大面积、 且具有 一定厚度要求的道路路面 (一般均在 4cm以上) 铺设。
2、 路面工程等其它铺面工程
高等级公路的路面结构类型主要有两种, 即水泥混凝土路面和沥青混 凝土路面。 水泥混凝土路面通常称为刚性路面, 沥青路面通常称为柔性路 面。 水泥混凝土路面面层刚度大, 强度高, 混凝土板的弹性模量和强度远 远大于基层和土基的弹性模量和强度, 路面具有 "刚性"; 沥青路面面层的 弹性模量与基层相差不大, 沥青混凝土面层变形能力好, 能适应基层和土 基的变形, 路面具有 "柔性"。
水泥混凝土路面包括普通水泥混凝土、 钢筋混凝土、 连续配筋混凝土、 预应力混凝土、 装配式混凝土、 钢纤维混凝土等面层板和基层所组成的路 面。 目前采用最广泛的是就地浇筑的普通水泥混凝土路面。 水泥混凝土路 面具有取材方便, 施工简单、 路面强度高、 稳定性好、 耐久性好等优点, 但行车舒适性较差、 面层与基层变形协调能力差、 有接缝、 容易破坏、 难 于修复等缺点。 水泥混凝土路面面层厚度较大, 一般均在 20cm以上。
沥青路面是用沥青材料作结合料粘结石子等矿物料修筑面层, 与基层 所组成的路面结构, 其面层可由单层、 双层或三层混合料组成, 各层混凝 土的组成设计应根据其层厚和层位、 气温和降雨量等气候条件、 交通量等 因素确定。 沥青路面具有表面平整、 无接缝、 行车舒适、 耐磨、 振动小、 噪声低、 养护维修简便等优点, 但沥青路面施工要求高, 路面水稳定性、 温度稳定性、 耐化学老化性较差, 路面强度不高, 容易产生车辙、 松散剥 落、 反射裂缝等破坏。 沥青路面的面层厚度较水泥混凝土路面薄, 一般最 小厚度为 2cm, 最大厚度为 18cm。
3、 存在的问题
常规的聚合物水泥混凝土路面、 水泥混凝土路面、 碾压水泥混凝土路 面均采用密实结构的混凝土材料, 施工中对路面的质量控制也要求结构密 实。
对于常规的沥青路面, 也采用密实结构, 由于沥青材料的强度低, 老 化性、 温变性差, 因此常导致车辙、 老化开裂、 温度开裂等病害。
对于现在刚出现不久的沥青开级配磨耗层 (Open Grade Friction Concrete), 内部含有孔隙, 因此具有透水、 降噪功能, 但是由于其结合料 仍为沥青材料, 因此, 0GFC的强度远远小于密实型沥青混凝土的强度, 在 路面中使用时更易发生结构破坏, 故尚未能在重型交通道路中应用。 发明内容
本发明的目的是提供一种结构简单, 且施工方便, 以聚合物改性水泥 孔隙混凝土材料形成的聚合物改性水泥孔隙混凝土路面结构, 本发明还提 供了形成聚合物改性水泥孔隙混凝土路面的施工方法。
根据本发明的目的, 本发明提供了一种聚合物改性水泥孔隙混凝土路 面结构, 其特征是, 该路面结构包括有底层、 粘结层、 聚合物改性水泥孔 隙混凝土层、 表面处理层, 其中, 在底层表面设有粘结层, 在粘结层上铺 筑有聚合物改性水泥孔隙混凝土层, 所述的聚合物改性水泥孔隙混凝土层 中的孔隙呈大致均匀的分布, 聚合物改性水泥孔隙混凝土层上有表面处理 层。
本发明将水泥混凝土中的无机胶结料水泥浆通过聚合物或者聚合物乳 液进行改性, 使之有机化, 增强混凝土的变形能力, 另一方面利用聚合物 水泥优良的粘结能力, 粘结单级配或者粘结间断级配碎石, 在此基础上便 可以得到一种新型的路面结构——聚合物改性水泥孔隙混凝土路面结构。 此外, 本发明的路面结构还具有透水和降噪功能, 同时, 由于在本发 明的路面结构中形成孔隙, 因此, 能够节约所用的聚合物及水泥等材料, 另外从以下描述将可获知, 相应本发明的路面结构的施工将更加简便, 因 此, 可以从多方面降低建造成本。
本发明中, 聚合物改性水泥孔隙混凝土层可由间断级配或者单一级配 碎石、 砂、 水泥、 聚合物、 水组成, 经拌合后互相粘结, 其可按重量配比 为——水泥: 碎石: 砂: 聚合物: 水 = 150〜400: 1200〜2200: 0〜500: 30〜200: 0〜120。 由于采用了间断级配或者单一级配碎石, 形成的聚合物 改性水泥孔隙混凝土层含有相对较大的孔隙, 可使路面具有更好的透水、 降噪功能。
本发明的粘结层可为聚合物改性水泥砂浆或聚合物改性水泥浆, 其可 按重量配比为——聚合物: 水: 水泥: 砂 = 1 : 0〜5: 1〜15: 0〜5。 其作 用是将聚合物改性水泥孔隙混凝土层和底层牢固粘结。
对于本发明的表面处理层, 可为聚合物改性水泥砂浆或聚合物改性水 泥浆, 其可按重量配比为——聚合物: 水: 水泥: 砂 = 1 : 0〜4: 0〜12: 0〜 10。 表面层能提高路面的耐磨性、 抗滑性。
通过其中各成分的配比的改变, 可以根据需要, 设计相对硬性的或相 对柔性的等各种要求的路面。
本发明可采用粒径大于等于 2. 5mm的碎石。
有利的是, 本发明的聚合物改性水泥孔隙混凝土层的孔隙率为 3— 30%。 优选地,本发明的聚合物改性水泥孔隙混凝土层的孔隙率为 10— 30 %。 本发明的路面结构的聚合物改性水泥孔隙混凝土层、 粘结层及表面处 理层所采用的聚合物可以是树脂类聚合物或者橡胶类聚合物中的一种或多 种。
更具体地, 本发明的路面结构的聚合物改性水泥孔隙混凝土层、 粘结 层及表面处理层所采用的聚合物可以是聚合物乳液, 如丁苯橡胶乳液、 氯 丁橡胶乳液、 丙烯酸乳液、 丙烯酸脂乳液、 苯丙乳液、 VAE乳液等的一种或 多种。
作为基层, 本发明的底层可为水泥稳定类基层。 水泥稳定类基层起基 础作用, 承受、 并分散面层传递下来的荷载。 水泥稳定类基层可以为水泥 稳定碎石基层、 水泥稳定砂砾基层。 此外, 已形成的水泥混凝土路面或沥 青混凝土路面也均可作为本发明的底层。
根据本发明目的, 本发明还提供了一种聚合物改性水泥孔隙混凝土路 面结构施工方法, 该方法包括, 在干净的底层的表面, 采用机械或者人工 的方法均匀拌和、 喷洒或者涂刷聚合物改性水泥砂浆或聚合物改性水泥浆, 以形成粘结层, 粘结层应在铺筑聚合物改性水泥孔隙混凝土层前 72个小时 内完成; 采用搅拌设备均匀搅拌聚合物改性水泥孔隙混凝土, 采用摊铺机 或人工摊铺聚合物改性水泥孔隙混凝土, 利用摊铺机或者人工实现对聚合 物改性水泥孔隙混凝土的整平、 压实, 形成带有孔隙的且孔隙为大致均匀 分布的聚合物改性水泥孔隙混凝土层; 聚合物改性水泥孔隙混凝土层采用 薄膜覆盖养护, 养护期 1一 7天; 养护结束后, 在聚合物改性水泥孔隙混凝 土层的表面上, 采用人工或者机械的方法均匀拌和、 喷洒或者涂刷聚合物 改性水泥砂浆或聚合物改性水泥浆, 形成表面处理层。
由此可见, 本发明的相应的施工方法具有简便、 快捷的优点。
进一步地, 通过上述路面结构所述各配比的优化、 孔隙率的大小的控 制, 碎石粒径的选择, 可以进一步优化所形成的本发明的路面结构及相应 的施工方法。
本发明的路面结构及施工方法的进一步的特性和优点, 可以从以下的 对比分析中获知。
本发明采用的聚合物改性水泥孔隙混凝土, 与现行的聚合物改性水泥 混凝土有着本质的差别, 具体表现为:
( 1 )本发明的聚合物改性水泥孔隙混凝土与现行的聚合物改性水泥混 凝土相比, 配合比设计理论不同: 本发明申请的聚合物改性水泥孔隙混凝 土配合比设计时, 采用断级配或者单一级配, 以使聚合物改性水泥混凝土 内部富含孔隙, 其中聚合物的掺量大幅减少; 同时本发明申请的聚合物改 性水泥孔隙混凝土必须保证足够干硬, 能够采用摊铺机或者人工摊平、 振 实施工。 而现行的聚合物改性水泥混凝土必须具有一定的流动性, 聚合物 用量大, 结构为密实结构。
( 2)本发明申请的聚合物改性水泥孔隙混凝土的强度形成机理不同于 现行聚合物改性水泥混凝土强度形成机理: 本发明申请的聚合物改性水泥 孔隙混凝土的强度由聚合物改性水泥浆体的粘结力和集料之间的摩阻力组 成;
而现行的聚合物改性水泥混凝土的强度主要来自于聚合物水泥浆的粘 结力, 集料之间的摩阻力十分微弱 (密实结构所致)。
( 3)施工工艺明显不同。 本发明申请的聚合物改性水泥混凝土主要采 用摊铺机自摊平、 自振实工艺施工, 摊铺后无需采用压路机碾压, 也不需 要振动器振动使结构密实。 而现行的聚合物改性水泥混凝土在施工时常采 用振捣工艺施工; 当采用涂刷工艺时, 一次施工厚度小, 难以适应道路路 面的大规模施工。
本发明采用的聚合物改性水泥孔隙混凝土路面结构, 与现行的普通水 泥混凝土路面结构、 碾压水泥混凝土路面结构、 聚合物改性水泥混凝土铺 面和沥青路面结构有着本质的差别, 具体表现为:
( 1 ) 与现行普通水泥混凝土路面结构的不同
强度理论不同: 普通水泥混凝土路面结构主要靠水泥浆凝固后的水泥 石粘结集料形成强度; 而本发明申请的聚合物改性水泥孔隙混凝土路面结 构靠凝固后的聚合物水泥浆的粘结和集料之间的摩阻力形成强度。
材料性质不同: 普通水泥混凝土路面结构的粘结料为无机材料; 而本 发明申请的聚合物改性水泥孔隙混凝土路面结构则含有一定数量的聚合 物, 使混凝土有机化。
施工工艺不同: 普通水泥混凝土路面结构采用振捣工艺使混凝土密实; 而本发明申请的聚合物改性水泥孔隙混凝土路面结构利用摊铺机或人工使 混凝土密实。
设计理论不同: 普通水泥混凝土路面结构设计时采用板底弯拉应力为 指标控制设计; 而聚合物改性水泥孔隙混凝土路面结构由于加入聚合物后 变形能力增强, 同时粘结层的采用, 使得结构的受力发生了根本性的改变, 因此采用变形指标控制设计, 不再以强度指标控制设计。
( 2) 与现行碾压水泥混凝土结构的不同
材料性质不同: 现行的碾压水泥混凝土路面结构的胶结料为无机材料; 而本发明申请的聚合物改性水泥孔隙混凝土路面结构的材料实现了有机 化。
材料内部结构不同: 现行的碾压水泥混凝土内部结构仍为密实结构, 而本发明申请的聚合物改性水泥孔隙混凝土由于粗集料采用了间断级配或 者单一级配, 因而内部富含孔隙, 具有透水、 降噪功能。
力学性质不同: 现行的碾压水泥混凝土路面结构属于刚性路面结构, 变形能力小、 变形适应性差, 抗裂性差; 而本发明申请的聚合物改性水泥 孔隙混凝土路面结构的变形能力大、 变形适应性强, 抗裂性好。
设计理论不同: 现行的水泥混凝土路面结构设计时仍采用普通水泥混 凝土路面的设计理论; 而本发明申请的聚合物改性水泥孔隙混凝土路面结 构则采用变形指标进行设计。
( 3) 与现行聚合物改性水泥混凝土铺面的不同
施工工艺不同: 现行聚合物改性水泥混凝土铺面一般采用振捣工艺和 涂刷工艺施工, 一次成形厚度小, 当采用振捣工艺时必须预设收缩缝, 铺 面不连续; 当采用涂刷工艺时, 需要涂刷多次才能达到较大的厚度; 而本 发明申请的聚合物改性水泥孔隙混凝土路面结构则采用摊铺机或人工整 平、 振实, 无需碾压, 便于大规模施工, 施工速度快。
力学性质不同: 现行聚合物改性水泥混凝土铺面的收缩量大, 易开裂; 聚合物改性水泥孔隙混凝土路面结构含有一定数量的聚合物, 且富含孔隙, 整平、 振实后收缩量大幅下降, 路面抗裂性好。
(4) 与现行的沥青路面结构的不同
材料种类不同: 现行沥青路面以沥青为粘结材料; 而本发明申请的聚 合物改性水泥孔隙混凝土路面结构则以人工合成的聚合物材料改性水泥为 粘结材料。
力学性质不同: 聚合物改性水泥孔隙混凝土路面结构中, 混合后的聚 合物与水泥形成的浆体具有更高的强度, 更好的粘结性、 热稳定性、 水稳 定性、 抗老化性、 耐久性好的优点。 聚合物改性水泥浆的变形能力可以通 过聚合物的品种和剂量进行调整, 从而使修筑出的聚合物改性水泥混凝土 呈现刚性性质或者柔性性质。
综上所述, 本发明聚合物改性水泥孔隙混凝土路面结构是一种全新的 不同于现有各种路面结构的新型路面结构。 路面既具有水泥混凝土路面的 高强度, 又具有沥青路面的高柔性, 既具有无机材料的稳定性, 又具有有 机材料的粘结能力, 路面同时具有水泥混凝土路面与沥青路面的优点而各 去其短。
本发明聚合物改性水泥混凝土路面结构可以在保证优良的路用前提下 大幅降低路面面层的厚度, 带来显著的经济性; 聚合物改性水泥混凝土路 面取材方便, 施工简单、 快捷。 附图说明
结合附图进一步说明本发明。
图 1是本发明断面结构示意图。
图中: 1为表面处理层; 2为聚合物改性水泥孔隙混凝土层; 3为粘结 层; 4为底层 具体实施方式
图示为本发明的一个实施例的结构示意图。
其结构为, 底层 4、 粘结层 3、 聚合物改性水泥孔隙混凝土层 2、 表面 处理层 1, 底层 4表面设有粘结层 3, 在粘结层 3上铺筑有聚合物改性水泥 孔隙混凝土层 2, 聚合物改性水泥孔隙混凝土层 2上有表面处理层 1。
现列举本发明的一个实施例如下:
首先将先期形成的水泥混凝土路面层 4清扫干净, 然后在其上人工铺 刷起粘结作用的聚合物水泥砂浆, 形成粘结层 3, 粘结层 3的重量配比为, 聚合物为丁苯橡胶乳液: 水: 普通硅酸盐水泥 P0 42. 5: 砂 = 1 : 3: 4: 0; 1小时后,用水泥混凝土搅拌机配制具有一定干稠度、适合于沥青摊铺机自 整平、 自振实工艺的聚合物改性水泥孔隙混凝土, 其重量配比为, 普通硅 酸盐水泥 P0 42. 5: 碎石 (单级配, 粒径 5— 10mm): 砂: 丙烯酸乳液聚合 物: 水 = 300: 1650: 50: 100: 20, 将搅拌均匀的混合料用自卸汽车运至 施工现场, 用沥青摊铺机摊铺, 采用摊铺机的自整平、 自振实工艺实现聚 合物改性水泥孔隙混凝土的整平、 压实, 形成其中孔隙均匀分布的聚合物 改性水泥孔隙混凝土层 2, 无需碾压, 也不需要振捣; 薄膜覆盖养护 3天, 然后在聚合物改性水泥孔隙混凝土层 2 的表面喷涂聚合物改性水泥砂浆, 形成表面层 1, 该表面层的聚合物改性水泥砂浆, 其重量配比为, 苯丙乳液 聚合物: 水: 普通硅酸盐水泥 P0 42. 5: 砂 = 1 : 2: 4. 5: 0. 2。 由此, 形成 了本发明的一种聚合物改性水泥孔隙混凝土路面结构。 所形成的路面结构 的孔隙率约为 18 %。
以下是聚合物改性水泥孔隙混凝土路面板的部分力学实验。
发明人在实验室试槽中进行了聚合物改性水泥孔隙混凝土路面试验板 的实验。 试槽底部的土基厚度为一米, 基层为水泥稳定级配碎石, 基层和 土基均用压路机压实, 和实际道路的路基和基层完全一致。 聚合物改性水 泥孔隙混凝土路面试验板的尺寸为 800mmX 450mmX 40mm。
实验中用两块普通混凝土板作为对比; 聚合物改性水泥孔隙混凝土路 面试验板制作时采用了两种改性配方的路面试验板。 其中第一种试验板的 配方是, 水泥: 碎石: 聚合物: 水为 200: 1200: 30: 30, 其中第二种试 验板的配方是水泥: 碎石: 聚合物为 200: 1200: 60。 由于板尺寸较小, 因此两种试验板的碎石粒径均小于 5mm。每种配方制作两块板,共制作聚合 物改性水泥孔隙混凝土路面试验板 4块。 普通混凝土板浇注、 振捣密实、 抹平表面后, 按照养护标准进行养护; 而聚合物改性水泥孔隙混凝土路面 板采用表面振动板振动整平, 采用覆盖薄膜的养护方法进行养护。 养护 7 天后, 对各板进行加载。 加载采用底面尺寸为 450mmX 100mm的刚性梁在板 的中部加载。
加载过程中用电阻应变片观察板底拉应变。 对两块普通混凝土板分别 进行加载, 当荷载达到 3吨时 (即两块试验板的平均载荷), 路面板开裂, 而对于聚合物改性孔隙水泥混凝土路面试验板, 当荷载达到 30吨时, 路面 板没有开裂现象。 应变监测的结果与实验观察的现象一致。
实验中观察到, 聚合物掺量达到 30 %时, 即聚合物为水泥的 30 % (重 量百分比)时, 也即聚灰比为 30 %时 (重量百分比), 加载点下缘混凝土有 类似橡胶受压状态下的轻微凸出现象, 说明随着聚合物掺量的增加, 聚合 物改性水泥孔隙混凝土路面试验板的变形能力大幅度提高。
本次路面小板的实验结果见下表一。 表一: 路面试验板加载实验结果
Figure imgf000013_0001
从以上实验可以看出: 本发明申请的聚合物改性水泥孔隙混凝土路面 试验板性质稳定、 承载力提高显著, 是一种力学性能优良的路面结构。

Claims

权利要求书
1、 一种聚合物改性水泥孔隙混凝土路面结构, 其特征在于, 该路面结 构包括有底层 (4)、 粘结层 (3)、 聚合物改性水泥孔隙混凝土层 (2)、 表 面处理层 (1 ), 其中, 在底层 (4) 表面设有粘结层 (3), 在粘结层 (3 ) 上铺筑有聚合物改性水泥孔隙混凝土层 (2), 所述的聚合物改性水泥孔隙 混凝土层 (2) 中的孔隙呈大致均匀的分布, 聚合物改性水泥孔隙混凝土层
(2) 上有表面处理层 (1 )。
2、 根据权利要求 1所述的聚合物改性水泥孔隙混凝土路面结构, 其特 征在于,聚合物改性水泥孔隙混凝土层(2)由间断级配或者单一级配碎石、 砂、 水泥、 聚合物、 水组成, 经拌合后互相粘结, 按重量配比为——水泥: 碎石: 砂: 聚合物: 水 = 150〜400: 1200〜2200: 0〜500: 30〜200: 0〜 120, 以此形成含有孔隙的聚合物改性水泥孔隙混凝土层 (2)。
3、 根据权利要求 2所述的聚合物改性水泥孔隙混凝土路面结构, 其特 征在于, 其中的碎石粒径大于等于 2. 5mm。
4、 根据权利要求 1所述的聚合物改性水泥孔隙混凝土路面结构, 其特 征在于, 其中聚合物改性水泥孔隙混凝土层 (2) 具有孔隙率为 3— 30%。
5、 根据权利要求 4所述的聚合物改性水泥孔隙混凝土路面结构, 其特 征在于, 其中聚合物改性水泥孔隙混凝土层 (2) 的孔隙率为 10-30%。
6、 根据权利要求 1所述的聚合物改性水泥孔隙混凝土路面结构, 其特 征在于, 粘结层 (3) 为聚合物改性水泥砂浆或聚合物改性水泥浆, 其按重 量配比为——聚合物: 水: 水泥: 砂 = 1 : 0〜5: 1〜15: 0〜5。
7、 根据权利要求 1所述的聚合物改性水泥孔隙混凝土路面结构, 其特 征是: 表面处理层 (1 ) 为聚合物改性水泥砂浆或聚合物改性水泥浆, 按重 量配比为——聚合物: 水: 水泥: 砂 = 1 : 0〜4: 0〜12: 0〜10。
8、 根据权利要求 2或 6或 7之一所述的聚合物改性水泥孔隙混凝土路 面结构, 其特征在于, 所述的聚合物为树脂类聚合物或者橡胶类聚合物中 的一种或多种。
9、 根据权利要求 2或 6或 7之一所述的聚合物改性水泥孔隙混凝土路 面结构, 其特征是: 所述的聚合物为聚合物乳液, 如丁苯橡胶乳液、 氯丁 橡胶乳液、 丙烯酸乳液、 丙烯酸脂乳液、 苯丙乳液、 VAE乳液等的一种或多 种。
10、 根据权利要求 1 所述的聚合物改性水泥孔隙混凝土路面结构, 其 特征在于, 底层 (4) 为水泥稳定类基层、 已形成的水泥混凝土路面或沥青 混凝土路面。
11、 一种聚合物改性水泥孔隙混凝土路面结构施工方法, 其特征在于, 在干净的底层 (4) 的表面, 采用机械或者人工的方法均匀拌和、 喷洒或者 涂刷聚合物改性水泥砂浆或聚合物改性水泥浆, 形成粘结层 (3), 粘结层
( 3)应在铺筑聚合物改性水泥孔隙混凝土层 (2)前 72个小时内完成; 采 用搅拌设备均匀搅拌聚合物改性水泥孔隙混凝土, 采用摊铺机或人工摊铺 聚合物改性水泥孔隙混凝土, 利用摊铺机或者人工实现对聚合物改性水泥 孔隙混凝土的整平、 压实, 形成带有孔隙的且孔隙为大致均匀分布的聚合 物改性水泥孔隙混凝土层 (2 ); 聚合物改性水泥孔隙混凝土层 (2 )采用薄 膜覆盖养护, 养护期 1一 7天; 养护结束后, 在聚合物改性水泥孔隙混凝土 层 (2) 的表面上, 采用人工或者机械的方法均匀拌和、 喷洒或者涂刷聚合 物改性水泥砂浆或聚合物改性水泥浆, 形成表面处理层 (1 )。
12、根据权利要求 11所述的聚合物改性水泥孔隙混凝土路面结构施工 方法, 其特征在于, 其中,
聚合物改性水泥孔隙混凝土层(2)由间断级配或者单一级配碎石、砂、 水泥、 聚合物、 水组成, 经拌合后互相粘结, 其按重量配比为一一水泥: 碎石: 砂: 聚合物: 水 = 150〜400: 1200〜2200: 0〜500: 30〜200: 0〜 120, 形成含有孔隙的聚合物改性水泥孔隙混凝土层 (2)。
13、根据权利要求 12所述的聚合物改性水泥孔隙混凝土路面结构施工 方法, 其特征在于,
其中,所述的粘结层(3)为聚合物改性水泥砂浆或聚合物改性水泥浆, 其按重量配比为——聚合物: 水: 水泥: 砂 = 1 : 0〜5: 1〜15: 0〜5, 且 表面处理层 (1 ) 为聚合物改性水泥砂浆或聚合物改性水泥浆, 其按重 量配比为——聚合物: 水: 水泥: 砂 = 1 : 0〜4: 0〜12: 0〜10。
14、根据权利要求 11所述的聚合物改性水泥孔隙混凝土路面结构施工 方法, 其特征在于, 所选碎石的粒径大于等于 2. 5mm。
15、根据权利要求 11所述的聚合物改性水泥孔隙混凝土路面结构施工 方法, 其特征在于, 将所述的其中聚合物改性水泥孔隙混凝土层 (2) 的孔 隙率控制在 3— 30%。
PCT/CN2007/070996 2006-10-31 2007-10-31 Structure de surface de route en béton poreux réalisée à partir de ciment polymériquement modifié et son procédé de fabrication WO2008052482A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07817187.3A EP2083121B1 (en) 2006-10-31 2007-10-31 A porous concrete road surface structure made from polymer modified cement and a construction method thereof
US12/430,714 US8470437B2 (en) 2006-10-31 2009-04-27 Porous cement road surface made from polymer modified cement and a construction method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610054555XA CN1948622B (zh) 2006-10-31 2006-10-31 聚合物改性水泥孔隙混凝土路面结构及施工方法
CN200610054555.X 2006-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/430,714 Continuation US8470437B2 (en) 2006-10-31 2009-04-27 Porous cement road surface made from polymer modified cement and a construction method thereof

Publications (1)

Publication Number Publication Date
WO2008052482A1 true WO2008052482A1 (fr) 2008-05-08

Family

ID=38018237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070996 WO2008052482A1 (fr) 2006-10-31 2007-10-31 Structure de surface de route en béton poreux réalisée à partir de ciment polymériquement modifié et son procédé de fabrication

Country Status (4)

Country Link
US (1) US8470437B2 (zh)
EP (1) EP2083121B1 (zh)
CN (1) CN1948622B (zh)
WO (1) WO2008052482A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008044395A1 (de) 2008-12-05 2010-06-10 Wacker Chemie Ag Dränbeton-Zusammensetzung

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948622B (zh) 2006-10-31 2012-04-18 易志坚 聚合物改性水泥孔隙混凝土路面结构及施工方法
WO2008098475A1 (fr) * 2007-02-14 2008-08-21 Zhijian Yi Chaussée en béton de ciment poreux et son procédé de réalisation
CL2010000073A1 (es) 2009-01-29 2011-01-07 Midwest Ind Supply Inc Composicion para mejora quimica del suelo que comprende un fluido sintetico y un reductor del punto de fluidez; composicion que comprende fluido sintetico, material biodegradable y fibras sinteticas; composicion que comprende un aceite base y poliisobutileno; composicion que comprende fluido sintetico y un ligante; metodo de aplicacion.
US8177997B2 (en) 2009-01-29 2012-05-15 Midwest Industrial Supply, Inc. Chemical method and composition for soil improvement
US8033750B2 (en) 2009-03-31 2011-10-11 Midwest Industrial Supply, Inc. Method and composition for modifying soil and dust control
US8210769B2 (en) 2009-03-31 2012-07-03 Midwest Industrial Supply, Inc. Method and composition for modifying soil and dust control
US8066448B2 (en) 2009-03-31 2011-11-29 Midwest Industrial Supply, Inc. Dust suppression agent
IT1394991B1 (it) * 2009-07-30 2012-08-07 C I C Compagnia Italiana Costruzioni S P A Misto cementato con fibre ad elevate prestazioni meccaniche
EP2516345B1 (en) * 2009-12-21 2020-08-12 Soiltec GmbH Composite pavement structure
EP2536893A2 (en) 2010-02-15 2012-12-26 Construction Research & Technology GmbH Exterior finish system
WO2011109033A1 (en) * 2010-03-05 2011-09-09 Prs Mediterranean Ltd. Geotechnical structures and processes for forming the same
NZ603770A (en) 2010-05-07 2015-06-26 Midwest Ind Supply Inc Method and composition for road construction and surfacing
CN102619153A (zh) * 2011-01-28 2012-08-01 方贵富 一种绿建筑环保透水、排气人工运动场施工方法及其结构
US8312690B1 (en) * 2012-02-29 2012-11-20 T.B. Penick & Sons, Inc. Pervious concrete system and method of forming pervious concrete
CN102643058B (zh) * 2012-04-19 2013-07-10 招商局重庆交通科研设计院有限公司 新旧水泥混凝土界面粘结剂及使用该粘结剂进行界面粘结的施工方法
JP6036262B2 (ja) * 2012-12-19 2016-11-30 住友大阪セメント株式会社 道路床板の防水工用下地ポリマーセメント組成物及び該組成物を用いた道路床板の補修・補強工法
US8702343B1 (en) 2012-12-21 2014-04-22 Midwest Industrial Supply, Inc. Method and composition for road construction and surfacing
US10584247B2 (en) 2012-12-28 2020-03-10 Honeywell International Inc. Methods for reducing asphalt pavement thickness
CN103628380A (zh) * 2013-11-29 2014-03-12 长沙理工大学 低剂量水泥改性级配碎石基层路面
CN105544337A (zh) * 2015-12-21 2016-05-04 邱杨清 一种道路施工方法
PL3222780T3 (pl) 2016-03-23 2019-06-28 Holcim Technology Ltd Konstrukcja betonowej nawierzchni zawierająca betonową warstwę podbudowy oraz betonową warstwę ścieralną, modyfikowaną elastomerem
CN106116419B (zh) * 2016-07-02 2018-05-22 河北北方公路工程建设集团有限公司 一种耐海水腐蚀的沥青路面材料及其制备方法
CN106223153B (zh) * 2016-08-02 2018-11-30 中冶武汉冶金建筑研究院有限公司 一种低温环境下焦油改性环氧路面结构及施工工艺
CN107473645B (zh) * 2017-09-15 2020-07-07 长安大学 一种基于内部结构设计的高阻尼混凝土及其制备方法
CN107558339A (zh) * 2017-09-21 2018-01-09 南昌工程学院 一种公路路面施工方法
CN108003821B (zh) * 2017-12-02 2019-10-25 江苏惠淳建设有限公司 一种深厚淤泥质软土路基的加固施工工艺
JP6997628B2 (ja) * 2018-01-09 2022-01-17 太平洋セメント株式会社 保水性舗装の施工方法
CN109133728B (zh) * 2018-11-06 2019-08-13 北京路凯泰公路养护工程有限公司 一种路面复合封层及其制备方法和应用
CN110128070B (zh) * 2019-05-08 2021-09-17 河海大学 级配碎石灌入式半柔性复合路面混合料及路面施工方法
CN110093829A (zh) * 2019-05-14 2019-08-06 江苏阜光工程新技术有限公司 一种环保型水性弹性面层及其施工工艺
CN110080058A (zh) * 2019-05-16 2019-08-02 北京智华通科技有限公司 一种公交车道的面层结构及铺筑方法
US11624162B2 (en) * 2019-08-22 2023-04-11 Steelike, Inc. Use of spike roller on an exposed concrete surface
CN111302716B (zh) * 2020-03-31 2021-10-01 陈洪涛 一种彩色混凝土设计方法
RU201315U1 (ru) * 2020-07-14 2020-12-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" Дорожная плита
CN112030665A (zh) * 2020-08-10 2020-12-04 滁州职业技术学院 一种振动密实大孔隙透水混凝土路面施工的方法
CN112521173A (zh) * 2020-12-08 2021-03-19 中建西部建设湖南有限公司 一种用于船坞坞室底板排水垫层的石灰石粉多孔水泥混凝土材料及其制备方法
CN113123292B (zh) * 2021-05-06 2023-05-23 宁波交通工程建设集团有限公司 一种临江防渗水耐久性道路结构及施工方法
CN113621379B (zh) * 2021-08-12 2022-04-15 天津建设发展集团有限公司 一种路基危害的处理方法
CN116217128B (zh) * 2023-05-10 2023-07-25 中南大学 一种聚合物路面材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283724A (zh) * 2000-09-06 2001-02-14 易志坚 设置隔离层和结合层的水泥混凝土路面结构及施工方法
CN1310265A (zh) * 2001-02-14 2001-08-29 易志坚 设置透水滤浆隔离层和结合层的水泥砼路面结构及施工方法
JP2002317403A (ja) 2001-04-23 2002-10-31 Sumitomo Osaka Cement Co Ltd 排水性コンクリート舗装およびその施工方法
CN1598151A (zh) * 2004-07-21 2005-03-23 易志坚 碾压聚合物改性水泥混凝土路面结构及施工方法
WO2005075741A1 (de) * 2004-02-07 2005-08-18 Terraelast Ag Wasserdurchlässiger bodenbelag und verfahren zur herstellung eines bodenbelags
CN1851132A (zh) * 2006-04-28 2006-10-25 易志坚 碾压聚合物改性水泥混凝土上喷刷彩色路面结构及施工方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1372309A (en) * 1972-09-15 1974-10-30 Welty L G Self-draining pavement structures
US4614755A (en) * 1985-02-04 1986-09-30 Rodgers Jack L Protective coating composition comprising a blend of polyvinyl acetate, hydraulic cement, EVA, and limestone
JPH02271953A (ja) * 1989-04-13 1990-11-06 Mitsui Cyanamid Co モルタル・コンクリート組成物
US5788407A (en) * 1995-05-01 1998-08-04 Hwang; Ik Hyun Paving method of water-permeable concrete
JP3428381B2 (ja) * 1996-08-16 2003-07-22 三菱マテリアル株式会社 NOx浄化舗装構造物
US5897266A (en) 1996-11-27 1999-04-27 The Gillette Company Vent system for writing instrument
DE19944307C2 (de) * 1999-09-15 2003-04-10 Sp Beton Gmbh & Co Kg Mehrschichtverbundmaterial aus zementgebundenem Beton und polymergebundenem Beton, Verfahren zu seiner Herstellung und Verwendung des Mehrschichtverbundmaterials
AU2002249896A1 (en) * 2001-01-05 2002-08-19 Tri-Global/Monoflex Ventures Llc High performance elastomer-containing concrete material
GB2410282B (en) * 2004-01-20 2009-10-28 Tarmac Ltd Water management system
EP1609910A1 (en) * 2004-06-24 2005-12-28 Global Engineering and Trade S.r.L. A pavement with photocatalytic effect
CN1948622B (zh) 2006-10-31 2012-04-18 易志坚 聚合物改性水泥孔隙混凝土路面结构及施工方法
CN200961228Y (zh) * 2006-10-31 2007-10-17 易志坚 聚合物改性水泥孔隙混凝土路面结构
CN100554584C (zh) 2007-02-14 2009-10-28 易志坚 多孔聚合物混凝土面层上喷刷形成的彩色路面及施工方法
CN100552136C (zh) 2007-02-14 2009-10-21 易志坚 多孔水泥混凝土面层上喷刷形成的彩色路面及施工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283724A (zh) * 2000-09-06 2001-02-14 易志坚 设置隔离层和结合层的水泥混凝土路面结构及施工方法
CN1310265A (zh) * 2001-02-14 2001-08-29 易志坚 设置透水滤浆隔离层和结合层的水泥砼路面结构及施工方法
JP2002317403A (ja) 2001-04-23 2002-10-31 Sumitomo Osaka Cement Co Ltd 排水性コンクリート舗装およびその施工方法
WO2005075741A1 (de) * 2004-02-07 2005-08-18 Terraelast Ag Wasserdurchlässiger bodenbelag und verfahren zur herstellung eines bodenbelags
CN1598151A (zh) * 2004-07-21 2005-03-23 易志坚 碾压聚合物改性水泥混凝土路面结构及施工方法
CN1851132A (zh) * 2006-04-28 2006-10-25 易志坚 碾压聚合物改性水泥混凝土上喷刷彩色路面结构及施工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2083121A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008044395A1 (de) 2008-12-05 2010-06-10 Wacker Chemie Ag Dränbeton-Zusammensetzung
US9670094B2 (en) 2008-12-05 2017-06-06 Wacker Chemie Ag Pervious concrete composition

Also Published As

Publication number Publication date
US20100112329A1 (en) 2010-05-06
US8470437B2 (en) 2013-06-25
CN1948622B (zh) 2012-04-18
EP2083121A4 (en) 2010-11-24
EP2083121A1 (en) 2009-07-29
EP2083121B1 (en) 2014-07-02
CN1948622A (zh) 2007-04-18

Similar Documents

Publication Publication Date Title
WO2008052482A1 (fr) Structure de surface de route en béton poreux réalisée à partir de ciment polymériquement modifié et son procédé de fabrication
JP3280847B2 (ja) 透水性コンクリート舗装方法
CN100552140C (zh) 钢桥面上有聚合物多孔混凝土面层的结构及施工方法
ITMI20082335A1 (it) Pavimentazione multistrato semiflessibile
CN101016716B (zh) 沥青面层上的流入式聚合物水泥混凝土路面结构及施工方法
US20060127572A1 (en) Method for producing a bituminous mix, in particular by cold process, and bituminous mix obtained by said method
CN111705583A (zh) 一种水泥混凝土复合路面结构及其适用性判定方法
CN100552141C (zh) 桥面上有聚合物多孔混凝土面层的结构及施工方法
WO2008098475A1 (fr) Chaussée en béton de ciment poreux et son procédé de réalisation
CN1598151A (zh) 碾压聚合物改性水泥混凝土路面结构及施工方法
CN110172909A (zh) 水泥混凝土桥面双层ac沥青混合料铺装结构及铺装方法
CN104878672A (zh) 一种植石水泥混凝土桥面铺装结构及铺装方法
JP6875033B2 (ja) 浸透式アスファルトコンクリート及びその製造方法と適用
CN111304994B (zh) 应用于沥青路面维修的半柔性功能组合结构恢复层
CN213448074U (zh) 一种适用于钢桥面排水铺装的复合结构
KR101023038B1 (ko) 도로포장용 표층 아스콘의 혼합물 및 그 시공방법
JP5440832B2 (ja) 土系舗装材
CN111764220A (zh) 拼装式多孔橡胶颗粒路面结构的施工方法及修筑的路面结构
JPH0223603Y2 (zh)
CN101016718B (zh) 水泥混凝土上的流入式聚合物水泥混凝土路面结构及施工方法
CN106758653B (zh) 拼装式抗剪沥青路面结构层模块、工厂化预制方法及现场铺设方法
CN100552137C (zh) 沥青面层上设有粘结层的多孔水泥混凝土罩面及施工方法
CN219992526U (zh) 一种抗开裂的混凝土底板结构
CN200961228Y (zh) 聚合物改性水泥孔隙混凝土路面结构
JPH0684601B2 (ja) 透水性タイル、ブロック舗装体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07817187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007817187

Country of ref document: EP