WO2008047062A2 - Piece de frottement en milieu lubrifie travaillant a des pressions de contact superieures a 200 mpa - Google Patents

Piece de frottement en milieu lubrifie travaillant a des pressions de contact superieures a 200 mpa Download PDF

Info

Publication number
WO2008047062A2
WO2008047062A2 PCT/FR2007/052204 FR2007052204W WO2008047062A2 WO 2008047062 A2 WO2008047062 A2 WO 2008047062A2 FR 2007052204 W FR2007052204 W FR 2007052204W WO 2008047062 A2 WO2008047062 A2 WO 2008047062A2
Authority
WO
WIPO (PCT)
Prior art keywords
cavities
part according
depth
contact
friction
Prior art date
Application number
PCT/FR2007/052204
Other languages
English (en)
Other versions
WO2008047062A3 (fr
Inventor
Philippe Maurin-Perrier
Florent Ledrappier
Louis Mourier
Christophe Donnet
Eric Audouard
Denis Mazuyer
Original Assignee
H.E.F.
Universite Jean Monnet
Centre National De La Recherche Scientifique
Ecole Centrale De Lyon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H.E.F., Universite Jean Monnet, Centre National De La Recherche Scientifique, Ecole Centrale De Lyon filed Critical H.E.F.
Priority to JP2009532877A priority Critical patent/JP5956104B2/ja
Priority to EP07858627A priority patent/EP2097208B1/fr
Priority to KR1020097008456A priority patent/KR101403743B1/ko
Priority to CN2007800390246A priority patent/CN101573206B/zh
Priority to CA2668288A priority patent/CA2668288C/fr
Priority to US12/444,167 priority patent/US8859078B2/en
Priority to PL07858627T priority patent/PL2097208T3/pl
Priority to MX2009003947A priority patent/MX2009003947A/es
Priority to ES07858627T priority patent/ES2393559T3/es
Priority to BRPI0717129-3A priority patent/BRPI0717129B1/pt
Priority to SI200731106T priority patent/SI2097208T1/sl
Publication of WO2008047062A2 publication Critical patent/WO2008047062A2/fr
Publication of WO2008047062A3 publication Critical patent/WO2008047062A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • F01L1/16Silencing impact; Reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/01Absolute values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/10Hardening, e.g. carburizing, carbo-nitriding
    • F16C2223/16Hardening, e.g. carburizing, carbo-nitriding with carbo-nitriding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/60Coating surfaces by vapour deposition, e.g. PVD, CVD
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/44Hole or pocket sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H53/00Cams ; Non-rotary cams; or cam-followers, e.g. rollers for gearing mechanisms
    • F16H53/06Cam-followers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2101Cams
    • Y10T74/2107Follower

Definitions

  • the invention relates to the technical field of tribology in a lubricated medium.
  • the invention relates to coatings and surface treatments intended to reduce wear and minimize transmission of tangential forces.
  • transition metal nitride deposits TiN, CrN, TiAIN, ...), amorphous carbon coatings (DLC) ...
  • DLC amorphous carbon coatings
  • US Pat. No. 6,886,521 teaches a maximum value of the surface roughness parameter (Rz) as a function of the hardness of the DLC deposit and of the thickness thereof.
  • the originality of the present invention thus consists in the successful optimization, in terms of friction and wear, of surface texturing for the contacts operating at least partially in the elastohydrodynamic regime.
  • the surface in contact is subjected to operations capable of producing a periodic network of micrometric cavities of determined shapes and dimensions and whose period is adapted to the width surface contact to promote the transition to elastohydrodynamic lubrication.
  • the micrometric cavities are constituted, advantageously but not exclusively, by holes and / or grooves.
  • the depth of the cavities is less than or equal to 10 ⁇ m, and advantageously less than 3 ⁇ m and less than 1 ⁇ m.
  • the long length of these cavities is between 5 and 500 microns.
  • the periodic cavity network is obtained in particular by a femtosecond laser pulse machining method or by ion beam, or by micro-wave machining, or by plastic deformation, or by chemical etching, or by electroerosion.
  • the friction part whose surface is textured is subjected, before or after texturing, to a surface hardening treatment tribological function.
  • This treatment is advantageously obtained by depositing a thin layer of amorphous carbon (DLC), in order to limit the damage of the surfaces and to lower the coefficient of friction before the transition to elastohydrodynamic lubrication of the heavily loaded friction parts.
  • DLC amorphous carbon
  • the friction surface texturing can be achieved by different methods. Femtosecond laser pulses allow removal of material by sublimation without significant modification of the microstructure. Note, however, that micro-machining techniques
  • the periodic patterns made on the textured surfaces constitute cavities that can be defined according to the following four essential parameters: the shape in the plane of the surface (circular, elliptical, square, triangular, groove, etc.); the profile in the thickness of the material (cylinder, half-sphere, cone, etc.); the dimensions (diameter, width, depth, etc ...); - the period considered in all directions, and with respect to the direction of surface friction.
  • the depth of the cavities is advantageously less than 3 .mu.m in order to limit the damage of the thin layers and to maximize their influence on the lubrication regime, with an optimum result found by patterns around 500 nm, more or less 250 nm deep.
  • the textured parts according to the invention can be treated before or after texturing by conventional thermochemical treatments (carburizing, carbonitriding, and other diffusion or conversion treatments) or vacuum deposition obtained by the PVD (Physical Vapor Deposition) processes. or PACVD (Plasma Assisted Chemical Vapor Deposition), such as nitrides or carbides of transition metals or amorphous carbon deposits (DLC).
  • the various dimensions and orientations of the patterns are adapted to the parts to be treated, according to the dimensions of the contact surfaces, the direction and the sliding speed, the contact pressures and the curvature of the treated parts. For example, on mechanical parts subjected to pressure from Very high contact, such as tumbler parts in the automotive field, it is necessary to achieve low pattern depths of about 500 nm.
  • FIG. 1 is a graph showing the evolution of the gain provided by the patterns of the textured surface
  • Fig. 2 shows an example of a textured surface by a network of holes
  • Figure 3 shows the friction measurements obtained when the maximum contact pressure is kept constant at 2.4 GPa
  • FIG. 4 represents three friction curves showing the influence of a micro-texturing on the level of friction.
  • the treated parts are spherical rollers of 50 mm diameter, made of X85WCrMoV6-5-4-2 tribofinis steel. These parts were coated with a DLC deposit of 2 ⁇ m in thickness, in which holes (circular micro-cavities) were performed by femtosecond laser pulses. The surfaces are textured by a network of holes 79 ⁇ m in diameter and 400 nm deep, spaced 125 ⁇ m, as shown in Figure No. 2. The network consists of a succession of rows of 7 and 8 staggered holes, on a strip of width 1 mm arranged in the center of the friction track of the roller.
  • rollers are used for friction tests on a so-called “Amsler” machine (tribological reference test for those skilled in the art), under high contact pressures (from 1 to 3.2 GPa maximum contact pressure). ), sliding speeds ranging from 0.2 to 2 m / s, and low lubricant drive speeds in the contact (10% of the slip speed).
  • Amsler tribological reference test for those skilled in the art
  • sliding speeds ranging from 0.2 to 2 m / s
  • low lubricant drive speeds in the contact (10% of the slip speed).
  • Each textured part was tested against an uncoated and non-textured pebble, to observe the influence of texturing on the coefficient of friction in lubricated mode (engine oil 10W40), and to study the service life of the coatings under different contact pressures.
  • a non-textured DLC-coated roller was also tested against an uncoated, uncoated pebble for reference, and accurately isolating the effect of the tested textures on contact performance.
  • n ° 1 in appendix shows the evolution of the gain brought by this particular reason on the coefficient of friction (in comparison with the same test carried out without texturing), according to the sliding speed of the antagonists in a bath of d 'oil. Note that under this contact pressure of 2 GPa, the coefficient of friction can be reduced by 30% by this pattern compared to a non-textured coated surface. As a remark, the realization of a deposit of non-textured DLC already makes it possible to reduce the coefficient of friction by 15% with respect to an untreated polished steel surface.
  • the application of a texture deposit leads to a reduction of the power dissipated by the friction of 30 W and also makes it possible to reduce the heating of the surfaces and the oil, which is favorable to the durability of the components .
  • a first spherical roller was coated with DLC, then texture following the network of circular micro-cavities as described in the treatment example No. 1.
  • the depth of the micro-cavities was increased to 5 microns, this value being an example representing what is commonly used by those skilled in the art.
  • FIG. 3 thus clearly shows that the choice of the depth of the cavities set at 450 nm allows a systematic reduction of the energy dissipated by friction, ranging from 15% to 35%, compared to the same surface without a microphone. -texturation.
  • this test is then reproduced three times using this textured roller at 450 nm depth, and further increasing the contact pressure kept constant at 2.8 GPa the first time, 3.0 GPa the second time, and 3 , 2 GPa the third time.
  • the invention thus makes it possible to confer on the surface a better resistance to the load, and thus substantially increases its service life.
  • the treated parts are rectangular and flat plates of dimensions 30 mm x 18 mm, 8 mm thick, in steel X85WCrMoV6- 5-4-2. These parts are coated with a DLC deposit of 2 microns thick, in which holes (circular micro-cavities) were made by femtosecond laser pulses.
  • the surfaces are textured by a network of holes 79 ⁇ m in diameter, spaced 125 ⁇ m, as shown in Figure No. 2.
  • the network consists of a succession of rows of staggered holes, covering the entire rubbing surface.
  • Two wafers are textured according to this description, one with microcavities of 1200 nm depth, the other with micro-cavities 600 nm deep.
  • a third reference plate is coated with the same DLC deposit strictly, but is not textured. The influence of the two surface textures achieved on the performance of the contact can thus be isolated by comparison with the coated wafer and smooth.
  • This device makes it possible to bring into contact an X85WCrMoV6-5-4-2 steel cylinder having an outer friction track with a diameter of 35 mm and a width of 8 mm with a plate such as as defined in the preceding paragraph.
  • the cylinder is rotated about its own axis.
  • the plate is held on a mounting that reciprocates horizontally in the direction of its largest dimension.
  • the contact line established between the outer surface of the cylinder and the surface of the wafer thus travels back and forth on the treated flat surface.
  • a pneumatic cylinder makes it possible to apply a normal force to the assembly supporting the wafer, and thus to generate a high contact pressure between the wafer and the moving cylinder.
  • the two solids in contact are enclosed in a tank filled with engine oil 10W40, heated, and temperature controlled.
  • the tests described are carried out successively for different constant forces applied to the contact, ie 40 daN, 80 daN, 120 daN, then 160 daN, by successively lowering the rotational speed of the cylinder from 1000 rpm to 100 rpm (giving a slip speed of between 2 m / s and 0.2 m / s, respectively).
  • This reduction in speed thus makes it possible to reduce the thickness of the oil film separating the opposing surfaces, and to cause the transition between the elastohydrodynamic lubrication regime and the mixed regime.
  • the invention finds a particularly advantageous application in the context of an elastohydrodynamic lubrication of parts heavily loaded rubbers (contact pressures greater than 0.2 MPa, greater than 0.5 MPa, greater than 0.8 MPa), particularly in the automotive field and more particularly for the production of engine components, particularly tumblers such as latches or pushers in the field of recreational vehicles or competition.
  • the invention also finds an advantageous application in the context of the lubrication under the elastohydrodynamic regime of friction parts with a high power transmission load, in particular for the treatment of gear teeth, which interferes in particular with gearboxes for recreational vehicles or vehicles. competition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)
  • Sliding-Contact Bearings (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Gears, Cams (AREA)
  • Physical Vapour Deposition (AREA)
  • Braking Arrangements (AREA)
  • Rolling Contact Bearings (AREA)
  • ing And Chemical Polishing (AREA)
  • Laser Beam Processing (AREA)

Abstract

La présente demande concerne une pièce de frottement en milieu lubrifié, pouvant travailler à des pressions de contact supérieures à 200 MPa, où ladite surface est soumise à des opérations aptes à réaliser un réseau périodique de cavités micrométriques de formes et dimensions déterminées et dont la période est adaptée à la largeur de surface en contact afin de favoriser le passage en régime de lubrification élastohydrodynamique.

Description

Pièce de frottement en milieu lubrifié travaillant à des pressions de contact supérieures à 200 MPa
L'invention concerne le domaine technique de la tribologie en milieu lubrifié.
Plus particulièrement, l'invention concerne les revêtements et les traitements de surface destinés à réduire l'usure et à minimiser la transmission des efforts tangentiels.
De nombreuses solutions techniques ont été proposées pour améliorer les performances tribologiques des pièces mécaniques. On distingue essentiellement les traitements traditionnels de durcissement superficiel et les dépôts de couches minces et dures obtenues par différents procédés tels que le procédé PVD (Physical Vapour Déposition) ou le procédé PACVD (Plasma Assisted Chemical Vapour Déposition).
Parmi les dépôts de couches minces et dures, on peut citer les dépôts de nitrures de métaux de transition (TiN, CrN, TiAIN, ...), les revêtements de carbone amorphe (DLC)... Pour des raisons techniques, mais aussi mécaniques, il ressort que ces dépôts de revêtement de surface n'excèdent généralement pas 5 μm. Au-delà de cette épaisseur, peuvent apparaître des risques de fragilisation du dépôt et d'écaillage. Il est également important d'obtenir une parfaite adhérence et une tenue dans le temps de la couche mince. Ainsi, l'homme du métier revendique des états de surface très peu accidentées avec une rugosité (Ra) de l'ordre de 0,04 μm II ressort donc de l'état de la technique que les performances tribologiques des traitements de surfaces et des dépôts sous vide, ne sont assurées qu'à condition d'avoir des surfaces de faible rugosité.
On peut citer par exemple l'enseignement du brevet US 6,886,521 qui pose une valeur maximale du paramètre de rugosité de surface (Rz) en fonction de la dureté du dépôt de DLC et de l'épaisseur de celui-ci.
Dans le domaine de la tribologie, de nombreuses études ont été effectuées sur l'influence de la topographie des surfaces en contact sur l'établissement d'un régime de lubrification hydrodynamique. C'est ainsi que l'on a proposé de réaliser une texturation de paliers ou de butées afin de favoriser la séparation de surfaces par une portance du lubrifiant améliorée. On peut citer, par exemple, l'enseignement des documents US 5,952,080 et WO2004/063533.
Toutefois, le dimensionnement de la topographie des surfaces n'est pas évidente, de sorte que cette solution n'est pas compatible avec des conditions de contact sévères, ainsi que dans le cas de pièces frottantes fortement chargées, c'est-à-dire dont les pressions de contact amènent au fonctionnement en régime dit élastohydrodynamique. En effet, cette texturation, qui revient à effectuer une gravure de motifs sur la surface en contact, entraîne une diminution significative de la surface portante, de sorte qu'une texturation non appropriée conduit immanquablement à une chute de pression du film d'huile et à un endommagement des surfaces, ce qui va à l'encontre du but recherché.
Il en résulte que le principe de la texturation de surface n'est appliqué par l'homme du métier que dans le cas de pièces frottantes faiblement chargées en milieu lubrifié. A partir de l'analyse de cet état de la technique, l'un des problèmes que se propose de résoudre l'invention est de pouvoir appliquer le principe de la texturation d'une surface frottante afin de prolonger l'existence d'un régime de lubrification élastohydrodynamique entre pièces frottantes en milieu lubrifié et fortement chargées, c'est-à-dire travaillant sous des pressions de contact, par exemple, supérieures à 200 MPa.
En effet, au-delà d'un certain seuil de pression de contact, l'augmentation exponentielle de la viscosité du lubrifiant (plusieurs ordres de grandeur) change radicalement son comportement physique. Le lubrifiant change alors d'état, pour se comporter de façon plus proche de celle d'un solide que d'un fluide. La séparation complète des surfaces de contact est alors permise par la déformation élastique des surfaces antagonistes, sous l'action du lubrifiant devenu extrêmement visqueux. On se situe alors dans le régime dit élastohydrodynamique. Le comportement physique du lubrifiant et des surfaces antagonistes étant fondamentalement différent en régime élastohydrodynamique, on comprendra ainsi que l'optimisation d'une texturation de surface pour le contact s'effectue très différemment que pour le cas des autres interfaces lubrifiées.
L'originalité de la présente invention consiste ainsi en l'optimisation réussie, en terme de frottement et d'usure, d'une texturation de surface pour les contacts fonctionnant au moins partiellement en régime élastohydrodynamique.
Pour résoudre ce problème, la surface en contact est soumise à des opérations aptes à réaliser un réseau périodique de cavités micrométriques de formes et dimensions déterminées et dont la période est adaptée à la largeur de surface en contact afin de favoriser le passage en régime de lubrification élastohydrodynamique.
Selon d'autres caractéristiques, les cavités micrométriques sont constituées, avantageusement mais non limitativement, par des trous et/ou des rainures. La profondeur des cavités est inférieure ou égale à 10 μm, et avantageusement inférieure à 3 μm et inférieure à 1 μm. La grande longueur de ces cavités est comprise entre 5 et 500 μm.
Pour résoudre le problème posé d'obtenir une surface texturée selon les caractéristiques de l'invention, le réseau périodique des cavités est obtenu notamment par un procédé d'usinage par impulsions laser femtoseconde ou bien par faisceau d'ions, ou bien par micro-usinage, ou bien par déformation plastique, ou bien par attaque chimique, ou bien par électroérosion.
Avantageusement, la pièce de frottement dont la surface est texturée, est soumise, avant ou après texturation, à un traitement de durcissement superficiel à fonction tribologique. Ce traitement est avantageusement obtenu par dépôt d'une couche mince de carbone amorphe (DLC), afin de limiter l'endommagement des surfaces et abaisser le coefficient de frottement avant le passage en lubrification élastohydrodynamique des pièces frottantes fortement chargées.
Comme indiqué, la texturation de surface frottante peut être obtenue selon différents procédés. Les impulsions par laser femtoseconde permettent un enlèvement de matière par sublimation sans modification significative de la microstructure. A noter cependant que les techniques de micro-usinage
(lithographie, microérosion) ou de déformation plastique de surface (moletage, micropercussion) ou électrochimiques (attaques chimiques, électroérosion) permettent d'obtenir des résultats similaires. Les motifs périodiques réalisés sur les surfaces texturées constituent des cavités qui peuvent être définies selon les quatre paramètres essentiels suivants : - la forme dans le plan de la surface (circulaire, elliptique, carré, triangulaire, rainure, etc...) ; le profil dans l'épaisseur de la matière (cylindre, demi-sphère, cône, etc .) ; les dimensions (diamètre, largeur, profondeur, etc...) ; - la période considérée dans toutes les directions, et par rapport à la direction de frottement de surface.
La profondeur des cavités est avantageusement inférieure à 3 μm afin de limiter l'endommagement des couches minces et de maximiser leur influence sur le régime de lubrification, avec un résultat optimum constaté par des motifs autour de 500 nm plus ou moins 250 nm de profondeur. On rappelle que les pièces texturées selon l'invention peuvent être traitées avant ou après texturation par des traitements thermochimiques traditionnels (cémentation, carbonitruration, et autres traitements de diffusion ou de conversion) ou des dépôts sous vide obtenus par les procédés PVD (Physical Vapour Déposition) ou PACVD (Plasma Assisted Chemical Vapour Déposition), tels que des nitrures ou des carbures de métaux de transition ou des dépôts de carbone amorphe (DLC).
Les différentes dimensions et orientations des motifs sont adaptées aux pièces à traiter, selon les dimensions des surfaces de contact, le sens et la vitesse de glissement, les pressions de contact et la courbure des pièces traitées. Par exemple, sur des pièces mécaniques soumises à des pressions de contact très élevées, telles que des pièces de culbuterie dans le domaine de l'automobile, il est nécessaire de réaliser des profondeurs de motifs faibles d'environ 500 nm.
A noter que l'apport d'une couche dure, comme indiqué précédemment, par rapport à une surface texturée non revêtue, permet entre autre de réduire, d'une manière significative, l'endommagement des motifs au cours du temps et, par conséquent, de maintenir les performances tribologiques des surfaces texturées. On observe également qu'outre une influence sur le régime de lubrification, la texturation permet également de bloquer, de manière surprenante, la propagation de fissures issues d'un décollement localisé du dépôt.
L'invention est exposée ci-après plus en détail à l'aide des figures annexées dans lesquels : - la figure 1 est un graphique montrant l'évolution du gain apporté par les motifs de la surface texturée ; la figure 2 montre un exemple d'une surface texturée par un réseau de trous ; la figure 3 montre les mesures de frottement obtenues lorsque la pression maximale de contact est maintenue constante à 2,4 GPa ; la figure 4 représente trois courbes de frottement montrant l'influence d'une micro-texturation sur le niveau de frottement.
On renvoie à l'exemple n° 1 de traitement ci-après :
Les pièces traitées sont des galets à portée sphérique de 50 mm de diamètre, en acier X85WCrMoV6-5-4-2 tribofinis. Ces pièces ont été revêtues d'un dépôt de DLC de 2 μm d'épaisseur, dans lequel des trous (micro-cavités de forme circulaire) ont été effectués par des impulsions laser femtoseconde. Les surfaces sont texturées par un réseau de trous de 79 μm de diamètre et de 400 nm de profondeur, espacés de 125 μm, tel que représenté en figure n°2. Le réseau est constitué d'une succession de rangées de 7 et de 8 trous décalées, sur une bande de largeur 1 mm disposée au centre de la piste de frottement du galet.
Ces galets sont utilisés pour des essais de frottement sur une machine dite « Amsler » (essai tribologique de référence pour l'homme de l'art), sous des pressions de contact élevées (de 1 à 3,2 GPa de pression maximale de contact), des vitesses de glissement allant de 0,2 à 2 m/s, et de faibles vitesses d'entraînement du lubrifiant dans le contact (10 % de la vitesse de glissement). Chaque pièce texturée a été testée face à un galet non revêtu et non texture, afin d'observer l'influence de la texturation sur le coefficient de frottement en régime lubrifié (huile moteur 10W40), et pour étudier la tenue en service des revêtements sous différentes pressions de contact. Un galet revêtu de DLC mais non texture a également été testé face à un galet non revêtu et non texture, pour servir de référence, et isoler précisément l'effet des texturations testées sur les performances du contact.
Afin de quantifier le gain apporté par la microtexturation, des essais de frottement ont été réalisés en diminuant progressivement la vitesse de glissement de manière à rompre le film d'huile, à charge appliquée constante.
La réalisation d'essais sur des surfaces lisses revêtues, conduisant déjà à un gain sur le coefficient de frottement par rapport aux mêmes surfaces mais sans dépôt de DLC, les surfaces revêtues de DLC avec ce motif sous une pression de contact de 2 GPa ont révélé un gain significatif sur le coefficient de frottement.
Le graphique en figure n° 1 en annexe présente l'évolution du gain apporté par ce motif particulier sur le coefficient de frottement (en comparaison avec le même essai réalisé sans texturation), en fonction de la vitesse de glissement des antagonistes dans un bain d'huile. On remarque que sous cette pression de contact de 2 GPa, le coefficient de frottement peut être réduit de 30 % par ce motif par rapport à une surface revêtue non texturée. A titre de remarque, la réalisation d'un dépôt de DLC non texture permet déjà de réduire le coefficient de frottement de 15 % par rapport à une surface en acier poli non traité.
Dans cette configuration précise, l'application d'un dépôt texture conduit à une réduction de la puissance dissipée par le frottement de 30 W et permet également de réduire réchauffement des surfaces et de l'huile, ce qui est favorable à la durabilité des composants.
Exemple de traitement n° 2 :
En suivant strictement la même procédure que pour l'exemple de traitement n°l, que ce soit pour le revêtement et la texturation de la piste de frottement des galets de test, comme pour la réalisation des essais sur machine Amsler, une seconde série d'essais de frottement a été réalisée à différentes pressions de contact. La figure n°3 présente les mesures de frottement obtenues, lorsque la pression maximale de contact est maintenue constante à 2,4 GPa, et pour différentes vitesses de glissement imposées.
Un premier galet à portée sphérique à été revêtu de DLC, puis texture en suivant le réseau de micro-cavités circulaires tel que décrit dans l'exemple de traitement n° 1. La profondeur des micro-cavités a été portée à 5 μm, cette valeur étant un exemple représentant ce qui est couramment utilisé par l'homme de l'art. Après démarrage de l'essai avec application de l'effort normal imposé au contact, la destruction des surfaces antagonistes par délamination du dépôt de DLC et grippage des surfaces est intervenue après seulement 25 secondes. La texturation de surface comme elle est pratiquée usuellement n'est donc pas adaptée à ce contact élastohydrodynamique.
Les trois autres essais réalisés ensuite à cette pression de contact de
2,4 GPa sont présentés en figure n°3. Les courbes de frottement obtenues montrent ainsi clairement que l'optimisation des dimensions, et en particulier de la profondeur « d » des micro-cavités pour des valeurs fixées avantageusement à 800 nm, et encore plus avantageusement à 450 nm, permet d'obtenir une importante réduction du frottement généré au sein du contact.
Il s'agit en effet de dimensionner la profondeur des micro-cavités en fonction de l'épaisseur du film d'huile séparant les surfaces de contact, calculée par les formules analytiques classiques de la théorie de la lubrification élastohydrodynamique. Cette profondeur est avantageusement comprise entre 0,1 et 10 fois l'épaisseur de film de lubrifiant calculée théoriquement. De manière inattendue, la figure n°3 montre ainsi clairement que le choix de la profondeur des cavités fixée à 450 nm permet une réduction systématique de l'énergie dissipée par frottement, allant 15 % à 35 %, comparativement à la même surface sans micro-texturation.
Les essais comparatifs entre le galet à surface revêtue de DLC non texturée, et le galet à surface revêtue de DLC présentant la texturation de profondeur 450 nm sont ensuite poursuivis, en fixant la pression maximale de contact à des valeurs plus élevées, soit 2,6 GPa, 2,8 GPa, 3 GPa, et 3,2 GPa.
Lors du premier essai à pression maintenue constante à 2,6 GPa, la surface revêtue et non texturée du galet de référence est détruite immédiatement, par délamination du dépôt de DLC puis grippage des surfaces antagonistes. La valeur de 2,6 GPa est ainsi retenue comme la limite de pression de contact maximale supportée par la surface de référence sans texturation.
Comparativement, l'essai réalisé dans les mêmes conditions strictement est mené à son terme sans endommagement, avec la surface revêtue et présentant la texturation de profondeur 450 nm.
De même, cet essai est ensuite reproduit trois fois en utilisant ce galet texture à 450 nm de profondeur, et en augmentant encore la pression de contact maintenue constante à 2,8 GPa la première fois, 3,0 GPa la seconde fois, et 3,2 GPa la troisième fois.
De manière inattendue, la surface frottante de ce galet présentant la texturation la plus avantageuse n'est pas endommagée à la fin de cette série d'essais, et on conclue ainsi que la texturation optimisée en suivant notre invention permet d'augmenter considérablement la capacité d'une surface à supporter la pression de contact qui lui est appliquée.
Etonnamment, en plus de réduire l'énergie dissipée par frottement, l'invention permet ainsi de conférer à la surface une meilleure résistance à la charge, et augmente ainsi sensiblement sa durée de vie.
Exemple de traitement n° 3 :
Les pièces traitées sont des plaquettes rectangulaires et planes de dimensions 30 mm x 18 mm, de 8 mm d'épaisseur, en acier X85WCrMoV6- 5-4-2. Ces pièces sont revêtues d'un dépôt de DLC de 2 μm d'épaisseur, dans lequel des trous (micro-cavités de forme circulaire) ont été effectués par des impulsions laser femtoseconde. Les surfaces sont texturées par un réseau de trous de 79 μm de diamètre, espacés de 125 μm, tel que représenté en figure n°2. Le réseau est constitué d'une succession de rangées trous décalées, couvrant la totalité de la surface frottante. Deux plaquettes sont texturées selon cette description, l'une avec des micro-cavités de profondeur 1200 nm, l'autre avec des micro-cavités de profondeur 600 nm. Une troisième plaquette de référence est revêtue du même dépôt de DLC strictement, mais n'est pas texturée. L'influence des deux texturations de surface réalisées sur les performances du contact peut ainsi être isolée par comparaison avec la plaquette revêtue et lisse.
Ces plaquettes sont ensuite utilisées pour des essais de frottement sur une machine dite « cylindre/plan ». Ce dispositif permet de mettre en contact un cylindre en acier X85WCrMoV6-5-4-2 présentant une piste extérieure de frottement de diamètre 35 mm, et de largeur 8 mm, avec une plaquette telle que définie au paragraphe précédent. Le cylindre est entraîné en rotation autour de son axe propre. La plaquette est maintenue sur un montage lui imprimant un mouvement de va-et-vient horizontal, selon la direction de sa plus grande dimension. La ligne du contact établit entre la surface extérieure du cylindre et la surface de la plaquette effectue ainsi des allers-retours sur la surface plane traitée. Un vérin pneumatique permet d'appliquer un effort normal sur le montage supportant la plaquette, et ainsi de générer une importante pression de contact entre la plaquette et le cylindre en mouvement. Les deux solides en contact sont enfermés dans un bac rempli d'huile moteur 10W40, chauffée, et régulée en température.
Les essais décrits sont réalisés successivement pour différents efforts constants appliqués au contact, soit 40 daN, 80 daN, 120 daN, puis 160 daN, en faisant descendre par paliers successifs la vitesse de rotation du cylindre de 1000 tr/min à 100 tr/min (donnant une vitesse de glissement comprise respectivement entre 2 m/s et 0,2 m/s). Cette descente en vitesse permet ainsi de réduire l'épaisseur du film d'huile séparant les surfaces antagonistes, et de provoquer la transition entre le régime de lubrification élastohydrodynamique, et le régime mixte.
Pour la charge normale testée et maintenue constante à 160 daN (induisant une pression maximale au contact de 700 MPa), les mesures de frottement obtenues sont reportées en figure n°4.
De façon inattendue, par comparaison des trois courbes de frottement de la figure n°4, on constate que la texturation optimisée selon notre invention, et avantageusement de profondeur « d » égale à 600 nm permet ici de réduire systématiquement le coefficient de frottement mesuré. Cette réduction de l'énergie dissipée par frottement atteint ici jusqu'à 30 %, lorsque les conditions de lubrification sont les plus sévères.
L'application de la texturation de surface dans le cadre de l'invention présentée ici permet de décaler la transition entre régime élastohydrodynamique et régime mixte vers des conditions de fonctionnement plus sévères.
Cette diminution du frottement est de nouveau obtenue en adaptant les dimensions, et en particulier la profondeur des micro-cavités « d », qui doit être avantageusement comprise entre 0,1 et 10 fois l'épaisseur du film lubrifiant.
Les avantages de l'invention illustrée par ces trois exemples ressortent bien de la description faite, et en particulier, on souligne et on rappelle :
réduire significativement le coefficient de frottement dans des conditions de fonctionnement bien définies en favorisant le passage en régime de lubrification élastohydrodynamique ; - augmenter la pression de contact maximale admissible par la surface traitée, avant sa destruction ; limiter l'endommagement du dépôt par un confinement des écailles entre deux périodes du motif réalisé, et par une évacuation des particules d'usure dans les cavités ; - augmenter la durabilité des pièces mécaniques, en limitant leur usure.
L'invention trouve une application particulièrement avantageuse dans le cadre d'une lubrification en régime élastohydrodynamique de pièces frottantes fortement chargées (pressions de contact supérieures à 0,2 MPa, supérieures à 0,5 MPa, supérieures à 0,8 MPa), notamment dans le domaine de l'automobile et plus particulièrement pour la réalisation de composants de moteurs, notamment de culbuterie tels que linguets ou poussoirs dans le domaine des véhicules de loisirs ou de compétition.
L'invention trouve également une application avantageuse dans le cadre de la lubrification en régime élastohydrodynamique de pièces frottantes fortement chargées de transmission de puissance, notamment pour le traitement de dentures d'engrenages, intervenant notamment dans les boites de vitesses pour véhicules de loisirs ou de compétition.

Claims

R E V E N D I C A T I O N S
-1- Pièce de frottement en milieu lubrifié travaillant à des pressions de contact supérieures à 200 MPa et dont la surface est texturée et soumise, avant ou après texturation, à un traitement de durcissement superficiel à fonction tribologique, caractérisée en ce que ladite surface est soumise à des opérations aptes à réaliser un réseau périodique de cavités micrométriques de formes et dimensions déterminées et dont la période est adaptée à la largeur de surface en contact afin de favoriser le passage en régime de lubrification élastohydrodynamique .
-2- Pièce selon la revendication 1, caractérisée en ce que les cavités micrométriques sont constituées par des trous et/ou des rainures.
-3- Pièce selon l'une quelconque des revendications 1 et 2, caractérisée en ce que la grande longueur des cavités est comprise entre 5 et 500 μm.
-4- Pièce selon la revendication 3, caractérisée en ce que la profondeur des cavités est inférieure ou égale à 10 μm.
-5- Pièce selon la revendication 4, caractérisé en ce que la profondeur des cavités est inférieure ou égale à 3 μm.
-6- Pièce selon la revendication 4, caractérisé en ce que la profondeur des cavités est inférieure ou égale à 1 μm. -7- Pièce selon la revendication 1, caractérisée en ce que le réseau périodique des cavités est obtenu par un procédé d'usinage par impulsions laser femtoseconde.
-8- Pièce selon la revendication 1, caractérisée en ce que le réseau périodique des cavités est obtenu par micro-usinage.
-9- Pièce selon la revendication 1, caractérisée en ce que le réseau périodique des cavités est obtenu par déformation plastique des surfaces.
-10- Pièce selon la revendication 1, caractérisée en ce que le réseau périodique de cavités est obtenu par attaque chimique ou électroérosion.
-11- Pièce selon la revendication 1, caractérisée en ce que le réseau périodique de cavités est obtenu par procédé d'usinage par faisceau d'ions.
-12- Pièce selon la revendication 1, caractérisée en ce que le traitement de durcissement superficiel est obtenu par dépôt d'une couche mince de carbone amorphe (DLC).
-13- Pièce selon les revendications 1 à 12, caractérisée en ce que la période des cavités est inférieure à la moitié de la largeur de contact, et la profondeur est avantageusement comprise entre 0,1 et 10 fois l'épaisseur du film lubrifiant séparant les surface de contact.
-14- Utilisation des pièces selon l'une quelconque des revendications 1 à 13 dans le domaine de l'automobile et notamment des moteurs et des boites de vitesse. -15- Utilisation selon la revendication 14 pour la réalisation de traitements sur composants de culbuterie notamment de type linguets ou de type poussoirs.
-16- Utilisation selon la revendication 14 pour la réalisation de traitement sur composants de transmission de puissance, notamment de type dentures d'engrenages.
-17- Utilisation selon les revendications 1 à 16, sur pièces soumises durant tout ou partie de leur fonctionnement à des pressions maximales de contact supérieures à 0,5 GPa, en utilisant avantageusement des micro-cavités à la profondeur inférieure à 1 μm.
-18- Utilisation selon les revendications 1 à 16, sur pièces soumises durant tout ou partie de leur fonctionnement à des pressions maximales de contact supérieures à 0,8 GPa, en utilisant avantageusement des micro-cavités à la profondeur inférieure à 1 μm.
-19- Utilisation selon les revendications 1 à 18, en fixant la profondeur des micro-cavités entre 0,1 et 10 fois l'épaisseur du film de lubrifiant séparant les surfaces de contact.
PCT/FR2007/052204 2006-10-20 2007-10-19 Piece de frottement en milieu lubrifie travaillant a des pressions de contact superieures a 200 mpa WO2008047062A2 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2009532877A JP5956104B2 (ja) 2006-10-20 2007-10-19 潤滑媒体中で200MPaを超える接触圧力において動作する摩擦片
EP07858627A EP2097208B1 (fr) 2006-10-20 2007-10-19 Piece de frottement en milieu lubrifie travaillant a des pressions de contact superieures a 200 mpa
KR1020097008456A KR101403743B1 (ko) 2006-10-20 2007-10-19 윤활매체내에서 200 mpa 보다 높은 접촉 압력에서 동작하는 마찰 부품
CN2007800390246A CN101573206B (zh) 2006-10-20 2007-10-19 在大于200MPa接触压力下工作的在加工润滑介质中的摩擦件及其在汽车领域中的用途
CA2668288A CA2668288C (fr) 2006-10-20 2007-10-19 Piece de frottement en milieu lubrifie travaillant a des pressions de contact superieures a 200 mpa
US12/444,167 US8859078B2 (en) 2006-10-20 2007-10-19 Friction piece in a lubricated medium, working at contact pressures higher than 200 MPa
PL07858627T PL2097208T3 (pl) 2006-10-20 2007-10-19 Część cierna w środowisku smarowanym, pracująca przy siłach nacisku większych od 200 MPA
MX2009003947A MX2009003947A (es) 2006-10-20 2007-10-19 Articulo de friccion en medio lubricado que trabaja a presiones de contacto superiores a 200 mpa.
ES07858627T ES2393559T3 (es) 2006-10-20 2007-10-19 Pieza de rozamiento en medio lubrificado que trabaja a presiones de contacto superiores a 200 MPa
BRPI0717129-3A BRPI0717129B1 (pt) 2006-10-20 2007-10-19 Peça de atrito em meio lubrificado e utilização desta
SI200731106T SI2097208T1 (sl) 2006-10-20 2007-10-19 Torni del v mazalnem mediju, ki dela pri stičnih tlakih, višjih od 200 MPa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0654414 2006-10-20
FR0654414A FR2907356B1 (fr) 2006-10-20 2006-10-20 Piece de frottement en milieu lubrifie et dont la surface est texturee.

Publications (2)

Publication Number Publication Date
WO2008047062A2 true WO2008047062A2 (fr) 2008-04-24
WO2008047062A3 WO2008047062A3 (fr) 2008-06-05

Family

ID=38122509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/052204 WO2008047062A2 (fr) 2006-10-20 2007-10-19 Piece de frottement en milieu lubrifie travaillant a des pressions de contact superieures a 200 mpa

Country Status (16)

Country Link
US (1) US8859078B2 (fr)
EP (1) EP2097208B1 (fr)
JP (2) JP5956104B2 (fr)
KR (1) KR101403743B1 (fr)
CN (1) CN101573206B (fr)
BR (1) BRPI0717129B1 (fr)
CA (1) CA2668288C (fr)
ES (1) ES2393559T3 (fr)
FR (1) FR2907356B1 (fr)
MX (1) MX2009003947A (fr)
MY (1) MY149379A (fr)
PL (1) PL2097208T3 (fr)
RU (1) RU2466307C2 (fr)
SI (1) SI2097208T1 (fr)
TW (1) TWI461301B (fr)
WO (1) WO2008047062A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100968859B1 (ko) * 2008-09-11 2010-07-09 계명대학교 산학협력단 펨토초레이저를 이용한 미세 패턴이 형성된 직선 또는 회전베어링 및 이것의 특성을 측정하는 방법
WO2012035397A1 (fr) * 2010-09-13 2012-03-22 Toyota Jidosha Kabushiki Kaisha Élément de curseur et son procédé de production
WO2013167318A1 (fr) * 2012-05-07 2013-11-14 Schaeffler Technologies AG & Co. KG Galet suiveur de came en forme de levier
EP2682230A3 (fr) * 2012-07-06 2015-12-09 MAHLE International GmbH Procédé de fabrication / d'usinage d'une came
WO2015193584A1 (fr) 2014-06-18 2015-12-23 H.E.F. Procédé de revêtement en carbone dlc du nez des cames d'un arbre à came, arbre à cames ainsi obtenu et installation pour la mise en oeuvre de ce procédé
ES2556541A1 (es) * 2014-07-18 2016-01-18 Wartsila Ibérica, S.A. Método de tratamiento de superficies metálicas, cerámicas o pétreas y superficie obtenible con dicho método

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010032012A1 (de) 2010-07-23 2012-01-26 Sms Siemag Aktiengesellschaft Lagerung von Walzenzapfen mittels Wälzlagern
CN102226459B (zh) * 2011-06-03 2013-03-13 江苏大学 一种轴承的激光微造型自润滑处理方法
DE102012218142A1 (de) * 2011-10-24 2013-04-25 Schaeffler Technologies AG & Co. KG Verfahren zum Bearbeiten einer metallischen Reibfläche
US20130301963A1 (en) * 2012-05-11 2013-11-14 GM Global Technology Operations LLC Automotive powertrain component and bearing with micropores, and method thereof
RU2014149142A (ru) 2012-06-04 2016-07-27 МАГ ИАС ГмбХ Структурирование участков поверхности скольжения
DE102012104817B4 (de) * 2012-06-04 2014-01-16 Mag Ias Gmbh Verfahren und Maschine zum Bearbeiten rotationssymmetrischer Gleitlagerstellen mittels PECM
CN103252584A (zh) * 2013-05-10 2013-08-21 常州大学 大型液压油缸激光表面微造型抗腐蚀磨损的方法
DE102013009369B4 (de) * 2013-06-04 2015-05-07 Federal-Mogul Burscheid Gmbh Verfahren zur Herstellung eines Kolbenrings
RU2536257C1 (ru) * 2013-06-17 2014-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Мордовский государственный университет им. Н.П. Огарёва" Способ получения бактериальной целлюлозы
FR3009124A1 (fr) * 2013-07-24 2015-01-30 Areva Np Glace pour garniture d'etancheite pour systeme d'etancheite d'arbre
JP6125412B2 (ja) * 2013-11-22 2017-05-10 三菱重工業株式会社 軸シール装置、回転機械、及び軸シール装置の製造方法
EP3196430B1 (fr) * 2014-09-02 2020-04-08 Kabushiki Kaisha Riken Culbuteur du type à galets
JP6358976B2 (ja) * 2015-02-20 2018-07-18 三菱日立パワーシステムズ株式会社 タービン用シール装置及びタービン、並びにシール装置用の薄板
JP6675262B2 (ja) * 2016-05-09 2020-04-01 三菱日立パワーシステムズ株式会社 シールセグメント及び回転機械
JP6631837B2 (ja) * 2016-05-09 2020-01-15 三菱日立パワーシステムズ株式会社 シールセグメント及び回転機械
DE102016223058A1 (de) * 2016-11-22 2018-05-24 Bayerische Motoren Werke Aktiengesellschaft Zahnradpaar mit Zahnrad mit Oberflächenstruktur, Getriebe mit Zahnradpaar und Verfahren zum Herstellen von Zahnrad
US10478311B2 (en) 2017-08-14 2019-11-19 Globus Medical, Inc. Medical devices including titanium surface treatment
FR3074997B1 (fr) * 2017-12-15 2019-11-08 Universite Jean Monnet Dispositif medical sous forme de cassette pour la conservation et/ou le controle qualite et/ou le traitement d'un prelevement corneen
CN109161857A (zh) * 2018-11-02 2019-01-08 苏州工业职业技术学院 改善材料表面高温摩擦学行为的图案薄膜及其制备方法
JP7452319B2 (ja) * 2020-08-07 2024-03-19 新東工業株式会社 金属加工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4573690A (en) * 1984-12-13 1986-03-04 General Motors Corporation Sealing surface and method
US4620803A (en) * 1985-07-26 1986-11-04 Edward Vezirian Friction bearing couple
JP2001165167A (ja) * 1999-12-10 2001-06-19 Taiho Kogyo Co Ltd すべり軸受
US20020104506A1 (en) * 2001-02-07 2002-08-08 Miba Gleitlager Aktiengesellschaft, Dr. Mitterbauer Slide bearing for an internal combustion engine
JP2004360011A (ja) * 2003-06-04 2004-12-24 Laser Gijutsu Sogo Kenkyusho 金属摺動面表面処理方法及びその装置
US6886521B2 (en) * 2002-10-16 2005-05-03 Nissan Motor Co., Ltd. Sliding structure for automotive engine
US20050175837A1 (en) * 2002-04-25 2005-08-11 Orlaw Massler Structured coating system
US20050217415A1 (en) * 2002-10-25 2005-10-06 Georg Hofmann Cam follower of a valve gear for a motor vehicle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129386A (ja) * 1988-11-09 1990-05-17 Mitsubishi Electric Corp イオンビームエッチング加工方法
CN1088989A (zh) * 1992-12-29 1994-07-06 辛计山 一种激光处理的内燃机缸体缸套
US5834094A (en) * 1996-09-30 1998-11-10 Surface Technologies Ltd. Bearing having micropores and design method thereof
RU2168087C2 (ru) * 1998-12-10 2001-05-27 Открытое акционерное общество "Научно-производственное объединение энергетического машиностроения имени академика В.П.Глушко" Гидродинамическое торцовое уплотнение
JP4332977B2 (ja) * 2000-03-13 2009-09-16 日産自動車株式会社 バルブリフタ用シムおよびその製造方法
US6732606B1 (en) * 2000-06-30 2004-05-11 Eaton Corporation Polished gear surfaces
JP3593081B2 (ja) * 2001-10-02 2004-11-24 三菱電機株式会社 燃料供給装置
RU2222739C2 (ru) * 2001-12-26 2004-01-27 Васильев Валентин Сергеевич Опорное уплотнение (варианты)
CN1171700C (zh) * 2002-08-06 2004-10-20 江苏大学 摩擦副表面的激光复合处理方法
JP2004285929A (ja) * 2003-03-24 2004-10-14 Nippon Piston Ring Co Ltd 内燃機関の動弁装置
NL1023342C2 (nl) * 2003-05-05 2004-11-09 Skf Ab Werkwijze voor het behandelen van het oppervlak van een machineelement.
JP2005270992A (ja) * 2004-03-23 2005-10-06 Toppan Printing Co Ltd パルスレーザーによる材料の表面加工方法、複製版の製造方法、表面加工データの処理方法、情報担体、光学素子及び画像
JP2006022894A (ja) * 2004-07-08 2006-01-26 Nissan Motor Co Ltd 高強度歯車及びその製造方法
JP4442349B2 (ja) * 2004-07-22 2010-03-31 ブラザー工業株式会社 転がり軸受け及び主軸装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4573690A (en) * 1984-12-13 1986-03-04 General Motors Corporation Sealing surface and method
US4620803A (en) * 1985-07-26 1986-11-04 Edward Vezirian Friction bearing couple
JP2001165167A (ja) * 1999-12-10 2001-06-19 Taiho Kogyo Co Ltd すべり軸受
US20020104506A1 (en) * 2001-02-07 2002-08-08 Miba Gleitlager Aktiengesellschaft, Dr. Mitterbauer Slide bearing for an internal combustion engine
US20050175837A1 (en) * 2002-04-25 2005-08-11 Orlaw Massler Structured coating system
US6886521B2 (en) * 2002-10-16 2005-05-03 Nissan Motor Co., Ltd. Sliding structure for automotive engine
US20050217415A1 (en) * 2002-10-25 2005-10-06 Georg Hofmann Cam follower of a valve gear for a motor vehicle
JP2004360011A (ja) * 2003-06-04 2004-12-24 Laser Gijutsu Sogo Kenkyusho 金属摺動面表面処理方法及びその装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100968859B1 (ko) * 2008-09-11 2010-07-09 계명대학교 산학협력단 펨토초레이저를 이용한 미세 패턴이 형성된 직선 또는 회전베어링 및 이것의 특성을 측정하는 방법
WO2012035397A1 (fr) * 2010-09-13 2012-03-22 Toyota Jidosha Kabushiki Kaisha Élément de curseur et son procédé de production
US8685264B2 (en) 2010-09-13 2014-04-01 Toyota Jidosha Kabushiki Kaisha Slide member and method for the production thereof
WO2013167318A1 (fr) * 2012-05-07 2013-11-14 Schaeffler Technologies AG & Co. KG Galet suiveur de came en forme de levier
EP2682230A3 (fr) * 2012-07-06 2015-12-09 MAHLE International GmbH Procédé de fabrication / d'usinage d'une came
WO2015193584A1 (fr) 2014-06-18 2015-12-23 H.E.F. Procédé de revêtement en carbone dlc du nez des cames d'un arbre à came, arbre à cames ainsi obtenu et installation pour la mise en oeuvre de ce procédé
US10683777B2 (en) 2014-06-18 2020-06-16 H.E.F. Method for coating the nose of the cams of a camshaft with DLC, camshaft obtained in this way and facility for implementing said method
ES2556541A1 (es) * 2014-07-18 2016-01-18 Wartsila Ibérica, S.A. Método de tratamiento de superficies metálicas, cerámicas o pétreas y superficie obtenible con dicho método

Also Published As

Publication number Publication date
RU2466307C2 (ru) 2012-11-10
US8859078B2 (en) 2014-10-14
JP2015148344A (ja) 2015-08-20
TWI461301B (zh) 2014-11-21
CA2668288A1 (fr) 2008-04-24
US20100024592A1 (en) 2010-02-04
SI2097208T1 (sl) 2013-02-28
CA2668288C (fr) 2014-11-25
BRPI0717129A2 (pt) 2013-10-08
JP5956104B2 (ja) 2016-07-20
BRPI0717129B1 (pt) 2018-06-26
KR101403743B1 (ko) 2014-06-30
JP2010507056A (ja) 2010-03-04
RU2009118947A (ru) 2010-11-27
FR2907356B1 (fr) 2009-05-22
FR2907356A1 (fr) 2008-04-25
CN101573206A (zh) 2009-11-04
WO2008047062A3 (fr) 2008-06-05
EP2097208A2 (fr) 2009-09-09
KR20090086522A (ko) 2009-08-13
EP2097208B1 (fr) 2012-09-26
TW200838693A (en) 2008-10-01
CN101573206B (zh) 2013-11-20
ES2393559T3 (es) 2012-12-26
PL2097208T3 (pl) 2013-02-28
MX2009003947A (es) 2009-07-16
MY149379A (en) 2013-08-30

Similar Documents

Publication Publication Date Title
EP2097208B1 (fr) Piece de frottement en milieu lubrifie travaillant a des pressions de contact superieures a 200 mpa
EP3158105B1 (fr) Procédé de revêtement en carbone dlc du nez des cames d'un arbre à came, arbre à cames ainsi obtenu et installation pour la mise en oeuvre de ce procédé
FR2934608A1 (fr) Revetement a couche mince supraglissante, son procede d'obtention et un dispositif comprenant un tel revetement.
EP2454395B1 (fr) Procédé pour la texturation de revêtements type dlc, et revêtements type dlc ainsi texturés
WO2008047044A2 (fr) Piece en contact glissant, en regime lubrifie, revetue d'une couche mince
EP3622188B1 (fr) Système mécanique comprenant un axe couplé a un palier, et procédé de fabrication d'un tel système
EP2844859B1 (fr) Chemise de moteur à combustion interne
EP3141522A1 (fr) Pièce micromécanique horlogère comprenant une surface lubrifiée et procédé de réalisation d'une telle pièce micromécanique horlogère
FR3068407B1 (fr) Systeme mecanique comprenant un axe couple a un palier, et procede de fabrication d'un tel systeme
FR2963025A1 (fr) Procede de depot d'un systeme de couches protectrices a durete progressive et systeme de couches ainsi obtenu
FR3097562A1 (fr) Procédé de fabrication d’une pièce abradable de turbomachine et pièce abradable
EP3710716A1 (fr) Bague autolubrifiante pour palier fluide et procede de fabrication d'une telle bague
CH711500A2 (fr) Pièce micromécanique horlogère comprenant une surface lubrifiée et procédé de réalisation d'une telle pièce micromécanique horlogère.
FR3045736A1 (fr) Dispositif hydraulique comportant un revetement ceramique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039024.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07858627

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007858627

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2193/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/003947

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2009532877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097008456

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2668288

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2009118947

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12444167

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0717129

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090330