WO2008046586A2 - Procédé de régulation de la vitesse de lacet d'un véhicule à moteur - Google Patents

Procédé de régulation de la vitesse de lacet d'un véhicule à moteur Download PDF

Info

Publication number
WO2008046586A2
WO2008046586A2 PCT/EP2007/008967 EP2007008967W WO2008046586A2 WO 2008046586 A2 WO2008046586 A2 WO 2008046586A2 EP 2007008967 W EP2007008967 W EP 2007008967W WO 2008046586 A2 WO2008046586 A2 WO 2008046586A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
controller
yaw rate
yaw
vehicle
Prior art date
Application number
PCT/EP2007/008967
Other languages
German (de)
English (en)
Other versions
WO2008046586A3 (fr
Inventor
Ulrich Angeringer
Marlene Kreutz
Martin Horn
Original Assignee
Magna Steyr Fahrzeugtechnik Ag & Co Kg
Technische Universität Graz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magna Steyr Fahrzeugtechnik Ag & Co Kg, Technische Universität Graz filed Critical Magna Steyr Fahrzeugtechnik Ag & Co Kg
Priority to DE112007002457T priority Critical patent/DE112007002457A5/de
Publication of WO2008046586A2 publication Critical patent/WO2008046586A2/fr
Publication of WO2008046586A3 publication Critical patent/WO2008046586A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1005Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/25Dynamic damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0523Yaw rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/053Angular acceleration
    • B60G2400/0533Yaw acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/016Yawing condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/96ASC - Assisted or power Steering control
    • B60G2800/962Four-wheel steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/02Active Steering, Steer-by-Wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/86Optimizing braking by using ESP vehicle or tire model
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance

Definitions

  • the invention relates to a method for controlling the yaw rate of a motor vehicle by activating active suspension components with the aim of building up a yaw moment counteracting an instability of the driving state, and also a system for accomplishing this task.
  • a control intervention makes a motor vehicle more easily manageable in situations that are critical in driving dynamics (for example, skidding in the event of an abrupt evasive maneuver).
  • the stationary solution of the linear single-track model (Ackermann yaw rate) is generally used for the command value or command value specification: ⁇ ⁇ soll - m V 1 /
  • equation (1) the calculation of the desired yaw rate can be limited by the maximum achievable lateral acceleration a y max .
  • an accurate target value of the yaw rate can not be specified for all driving situations and road conditions. Since the relationship of equation (1) is a linear one, there is no target yaw rate just in the (non-linear) range in which the control should intervene.
  • a further disadvantage is that the parameters in equation (1) are heavily dependent on the constantly changing driving and road conditions. From DE 100 09 921 Al a method for increasing the driving stability by engaging in the steering is known, is assumed in the vehicle lateral acceleration and the driving speed. These data are intended to replace the use of a desired yaw rate with its above-mentioned disadvantages.
  • the present invention is therefore based on the object to find a new approach to the control of the dynamic stability of a vehicle by means of active suspension components, which avoids the disadvantages mentioned above.
  • the control should be simple and reliable, manage without specifying a target value of the yaw rate and be easily adjustable with obvious parameters. It is intended to increase the driving dynamics stability for a motor vehicle with the available sensor information in all driving dynamics areas and under all environmental conditions.
  • one of the angular acceleration of the vehicle about its vertical axis (based on the vehicle longitudinal axis, the angular acceleration relative to the instantaneous direction, it is at constant lateral acceleration, the yaw acceleration) corresponding signal to a mass-spring-damper controller (hereinafter MFD - controller ) supplied as input and the output signal of the instability of the driving condition counteracting active suspension component.
  • MFD - controller mass-spring-damper controller
  • This special controller concept is based on the idea of impressing an active suspension component, in particular a steering system, on the behavior of a mass-spring-damper system (MFD system), with only one damping constant and one spring constant being selected for the design of the regulator. It is a great advantage that the parameters of the controller are physically interpretable and thus allow an intuitive and easy setting of the controller.
  • MFD system mass-spring-damper system
  • the yaw acceleration is used as the angular acceleration of the vehicle about its vertical axis by differentiating the yaw rate signal of a yaw rate sensor (claim 2).
  • a yaw rate sensor Such a sensor is already present in motor vehicles and provides a fairly accurate signal. Since differentiation amplifies fluctuations of the signal, it is advantageous to even smooth the differentiated yaw rate signal in a low-pass filter (claim 3).
  • the vehicle dynamic stabilization of the vehicle achieved with the invention can cause its driving behavior is perceived by a sporty driver as sluggish.
  • the desired behavior can be achieved by an extension of the MFD system, whereby in principle several variants are conceivable.
  • a precontrol signal is superimposed on the output signal of the (first) MFD controller, deriving from the time derivative of the steering angle of the steered (front) wheels and the driving speed and / or the steering angular velocity of the steered front wheels corresponding signal (claim 4).
  • a particularly suitable pre-control signal is formed by the derivative of the steering angle of the steered (front) corresponding wheels signal to another MFD member as an input signal whose output is corrected with a weighting factor and superimposed with negative sign to the output signal of the first MFD controller (Claim 5), wherein the damping constant of the other MFD member is smaller than that of the (first) MFD controller is selected (claim 6).
  • Such a pre-control signal can also optionally be switched on, so that the driver can choose between two behavioral patterns.
  • Suitable parameter sets for the MFD systems can be determined experimentally (by means of test drives). Due to the physical controllability of the controller parameters (standardized spring and damper constants), the adjustment can be made intuitively, completely without any background control knowledge. Starting from a "factory" basic setting of the controller parameters, the driving behavior can be adjusted in a predetermined, restricted frame.
  • the invention further relates to a system for controlling the yaw rate of a motor vehicle by activating active suspension components with the aim of building up a yawing moment counteracting an instability of the driving state.
  • FIG. 1 shows an example of a vehicle steered according to the invention, schematically,
  • FIG. 2 shows a scheme of a control according to the prior art
  • FIG. 3 shows a rough diagram of a regulation according to the invention
  • FIG. 4 An analog mass-spring-damper system
  • FIG. 5 a refinement of the scheme of FIG. 3, FIG.
  • FIG. 6 a structural diagram of a regulator according to the invention
  • FIG. 7 shows a detail 7 of FIG. 6,
  • FIG. 8 shows a further development of the regulator of FIG. 5, FIG.
  • FIG. 9 is a diagram of the regulation developed according to FIG. 8, FIG.
  • yaw rate is the angular velocity of the vehicle about the vertical axis to understand.
  • the control loop according to the prior art in Fig. 2 consists of a controller 6, which acts with a manipulated variable u on the vehicle - the control system 7 -.
  • the controlled variable of the controlled system - for example the yaw rate - is fed back to a summation point 8 and compared there with a setpoint or reference variable calculated in block 9. The result of this comparison is the control deviation e supplied to the controller.
  • the control loop structure according to the invention is shown roughly in FIG.
  • the specifications of the driver 6 (steering angle, brakes, accelerator pedal position) trigger a yaw reaction of the vehicle, which is the controlled system 7 here.
  • the controller is an MFD controller that can be modeled by a mass-spring-damper system (see Fig. 4).
  • the quantity ⁇ ⁇ denotes the mass, the quantity ⁇ , the spring constant and the quantity .9, the damper constant.
  • the controller is excited by means of the input parameter p x (steering activity of the driver or yaw reaction of the vehicle). The deflection of the mass ⁇ ⁇ from its rest position A 1 corresponds to the manipulated variable, which stabilizes the motor vehicle.
  • the dynamics of the controller can, assuming a spring characteristic and a velocity-proportional damping, using a differential equation of second order
  • the aim of the regulation is that the behavior under steady-state conditions compared to a vehicle that is not equipped with an active rear axle control, remains unchanged.
  • the controller should be designed such that in dynamic driving maneuvers, such as a steering angle jump (in a lane change), the overshoot of the yaw rate is reduced by driving the rear axle in the same direction. This should make the vehicle more manageable, especially in critical driving situations. To meet this requirement, the controller must be properly excited with the yaw acceleration.
  • FIG. 5 again shows the controller 10, which is denoted overall by 10 as a dashed frame. It contains the MFD controller 11 with the transfer function R (s) and the block 12, a DTj member with the transfer function D (s) for calculating the yaw acceleration from the measured yaw rate ⁇ , such as
  • the output signal ⁇ i is the manipulated variable for the rear axle steering.
  • the transfer function of the DTi element can be written as follows, whereby the positive, real constant ⁇ 0 must be chosen to be sufficiently large:
  • the resulting control loop is shown in FIG. 5.
  • FIG. 6 shows the structural diagram of the mass-spring damper regulator 10, including the DTi member 12, which calculates the yaw acceleration.
  • the quantities ⁇ ], K] and ⁇ i are entered in the fields 101, 102 and 103. set and normalized in the divisors 104,105 according to the equation (3).
  • the fields 106 to 111 represent the resolution of the differential equation (2), wherein in the field 111, the signal representing the yaw acceleration is introduced. This is obtained from a signal supplied by the yaw rate sensor 112 and differentiated and filtered in the DT1-member. From field 110, the actuating signal ⁇ ⁇ is output for the actuator 3.
  • the fields 104-11 lsind referred to in the usual in "Simulink" ® manner.
  • the structure image for the DTl member is shown in FIG.
  • the differentiation of the yaw rate signal (d ⁇ / dt) provided by the yaw rate sensor 112 takes place approximately by linear approximation of the derivative.
  • the yaw rate signal in field 120 is subtracted from the yaw rate signal by a value T delayed in field 121, divided by the value T in field 122 and multiplied by the constant (X> o) in field 123.
  • the following is the approximation of the approximated derivative denote loop 124.
  • the operating time measured yaw rate signal, the differentiated yaw rate ⁇ signal, and ⁇ gef the filtered differentiated yaw rate signal or the yaw acceleration.
  • the output signal Pi is the filtered yaw acceleration.
  • the actuating signal ⁇ j for the actuator 3 causes the same direction steering angle.
  • a consequence of the same directional steering angle at the front and rear axle is that the rise time of the yaw rate at a steering angle jump - in comparison to the vehicle without active rear axle - is increased. Remedy can be created by short-term counter-directional steering on the rear axle, which can be achieved by a development according to FIG.
  • FIG. 8 In view of its practical applicability (filtering of the noisy yaw rate signal), the structure shown in FIG. 8 has proven itself. She he- extends the existing one by a further DTL element 20 with the transfer function D (s), another MFD element (21) with the transfer function M (s), a weighting element (22) with the weighting factor k and an adder 23. It is assumed by the front steering angle ⁇ v of a steering angle sensor, not shown, and analogous to the branch 12,11 (in Fig. 5) proceed. The rear steering angle to be set now represents the difference between the output A 1 of the original MFD element and the weighted output A 2 of an additional MFD system. The additional MFD element has a smaller damping constant S 2 than the first MFD element. Element. The spring constant and mass of the additional MFD element are taken from the original system. Its transfer function is thus:
  • the weighting factor k is introduced.
  • FIG. 9 illustrates the effect of the embodiment of FIG. 8. Time is scaled on the ordinate.
  • the curves for ⁇ i and X 2 are plotted in dashed lines, with the partial manipulated variable% 2 counteracting the main manipulated variable ⁇ i.
  • the resulting difference between these two manipulated variables is shown in thick line. It can be seen that the rear wheel steering at the beginning of the steering angle of the front wheel steering in opposite directions. This results a significant improvement in the agility of the vehicle, for example, the transition from straight-ahead to cornering is accelerated.
  • FIG. 10 shows a comparison of a vehicle controlled according to the invention with an uncontrolled vehicle in 4 diagrams, the time being plotted on the abscissa, as a result of a simulation calculation at a speed of 100 km / h.
  • Fig. 10a takes place at the front wheels, a steering angle jump of 100 degrees (the driver turns the steering wheel suddenly by 100 degrees), curve 31, which corresponds to a sudden, sharp turn. It is the input of the system, which is assumed in the following comparison.
  • Fig. 10c shows the yaw rates 34 with the inventive control and 35 without, in degrees per second.
  • both curves 34, 35 rise steeply at first; but the curve 34 is less strong than the curve 35 and it is monotonically in the new equilibrium state 36 on.
  • the curve 34 clearly shows that the vehicle follows the prescription of the driver (FIG. 10a) much more stably due to the regulation according to the invention.
  • the curve 35 illustrates the tendency to oscillate without rear axle steering, it overshoots considerably and then oscillates a few times back and forth before they
  • the invention also relates to a system for controlling the yaw rate of a motor vehicle by activating active suspension components with the aim of building up a yawing moment counteracting an instability of the driving state, comprising an yaw rate sensor, a controller and an actuator of the active suspension component building up the counteracting yawing moment consists.
  • the controller receives as an input a signal representing the yaw acceleration, and behaves like a mass-spring-damper system, wherein the controller is excited by the yaw acceleration and its output variable is the manipulated variable, which stabilizes the motor vehicle. Thanks to the invention no setpoint with the disadvantages described above is needed. Further advantages emerge from the further subclaims.
  • the exemplary embodiment described was limited to an intervention in a rear-wheel steering. In the same way, however, other systems for stabilizing a motor vehicle can work. In all these, the method and apparatus of the invention is applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Vehicle Body Suspensions (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

La présente invention concerne un procédé de régulation de la vitesse de lacet d'un véhicule à moteur, par commande d'éléments actifs du mécanisme de roulement dans le but d'établir un couple de lacet agissant contre l'instabilité de l'état du véhicule. Pour pouvoir se passer de la prévision d'une valeur théorique et permettre un réglage aisé avec des paramètres évidents, un signal (ρi) qui correspond à l'accélération angulaire (ψ ) du véhicule autour de son axe vertical, alimente en tant que grandeur d'entrée un régulateur masse-ressort-amortisseur (11), et son signal de sortie (λi) alimente un élément actif (3) du mécanisme de roulement, qui agit contre l'instabilité de l'état du véhicule. Le régulateur (11) est activé par l'accélération de lacet (ψ ) et se comporte comme un système masse-ressort-amortisseur. Sa grandeur de sortie (λi) est la grandeur de réglage qui sert à stabiliser le véhicule.
PCT/EP2007/008967 2006-10-16 2007-10-16 Procédé de régulation de la vitesse de lacet d'un véhicule à moteur WO2008046586A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112007002457T DE112007002457A5 (de) 2006-10-16 2007-10-16 Verfahren zur Regelung der Gierrate eines Kraftfahrzeuges

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006048835.0 2006-10-16
DE200610048835 DE102006048835A1 (de) 2006-10-16 2006-10-16 Verfahren zur Regelung der Gierrate eines Kraftfahrzeugs

Publications (2)

Publication Number Publication Date
WO2008046586A2 true WO2008046586A2 (fr) 2008-04-24
WO2008046586A3 WO2008046586A3 (fr) 2008-06-19

Family

ID=39184999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/008967 WO2008046586A2 (fr) 2006-10-16 2007-10-16 Procédé de régulation de la vitesse de lacet d'un véhicule à moteur

Country Status (2)

Country Link
DE (2) DE102006048835A1 (fr)
WO (1) WO2008046586A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104443021A (zh) * 2013-09-16 2015-03-25 F·波尔希名誉工学博士公司 控制机动车辆中的转向系统
CN111204332A (zh) * 2020-02-10 2020-05-29 哈尔滨工业大学 一种全工况下优化车辆横摆动态性能的滑模控制方法
CN114312749A (zh) * 2021-11-24 2022-04-12 中国煤炭科工集团太原研究院有限公司 多点独立轮边驱动矿用车辆防滑横摆转矩控制方法及设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009056674B4 (de) * 2009-12-02 2023-11-30 Volkswagen Ag Vorrichtung und Verfahren zur Beeinflussung der Querdynamik eines Kraftfahrzeugs
US8886410B2 (en) * 2013-02-13 2014-11-11 Honda Motor Co., Ltd. Methods of controlling four-wheel steered vehicles
DE102014008199A1 (de) 2013-09-10 2015-03-12 Daimler Ag Verfahren zum Verbessern des Gierverhaltens eines Kraftfahrzeugs
DE102016005966A1 (de) 2016-05-13 2017-11-16 Daimler Ag Verfahren zum Verbessern des Gierverhaltens eines Kraftfahrzeugs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193775A (ja) * 1984-03-15 1985-10-02 Honda Motor Co Ltd 車両の後輪転舵装置
US4878557A (en) * 1984-01-31 1989-11-07 Nissan Motor Co., Ltd. Auxiliary steering system for wheeled vehicle
US5402341A (en) * 1992-04-06 1995-03-28 Ford Motor Company Method and apparatus for four wheel steering control utilizing tire characteristics
DE4340932A1 (de) * 1993-12-01 1995-06-08 Bosch Gmbh Robert Verfahren zur Regelung der Fahrstabilität eines Kraftfahrzeugs
DE19907792A1 (de) * 1999-02-24 2000-09-14 Daimler Chrysler Ag Regelungssystem
EP1285833A2 (fr) * 2001-08-22 2003-02-26 Delphi Technologies, Inc. Procédé et dispositif avec une commande à action directe pour contrôle intégré de frein et de virage d'un véhicule automobile

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998593A (en) * 1989-03-31 1991-03-12 Aisin Seiki Kabushiki Kaisha Steering and brake controlling system
DE4206654C2 (de) * 1990-09-06 1993-12-16 Deutsche Forsch Luft Raumfahrt Verfahren zum Lenken eines Straßenfahrzeugs mit Vorder- und Hinterradlenkung
DE10009921A1 (de) * 2000-03-01 2001-07-19 Bayerische Motoren Werke Ag Verfahren zur Erhöhung der Fahrstabilität bei einem Fahrzeug
DE10216247A1 (de) * 2002-04-12 2003-11-06 Deutsch Zentr Luft & Raumfahrt Regelung von Systemen mit kinästhetischer Kopplung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4878557A (en) * 1984-01-31 1989-11-07 Nissan Motor Co., Ltd. Auxiliary steering system for wheeled vehicle
JPS60193775A (ja) * 1984-03-15 1985-10-02 Honda Motor Co Ltd 車両の後輪転舵装置
US5402341A (en) * 1992-04-06 1995-03-28 Ford Motor Company Method and apparatus for four wheel steering control utilizing tire characteristics
DE4340932A1 (de) * 1993-12-01 1995-06-08 Bosch Gmbh Robert Verfahren zur Regelung der Fahrstabilität eines Kraftfahrzeugs
DE19907792A1 (de) * 1999-02-24 2000-09-14 Daimler Chrysler Ag Regelungssystem
EP1285833A2 (fr) * 2001-08-22 2003-02-26 Delphi Technologies, Inc. Procédé et dispositif avec une commande à action directe pour contrôle intégré de frein et de virage d'un véhicule automobile

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104443021A (zh) * 2013-09-16 2015-03-25 F·波尔希名誉工学博士公司 控制机动车辆中的转向系统
CN111204332A (zh) * 2020-02-10 2020-05-29 哈尔滨工业大学 一种全工况下优化车辆横摆动态性能的滑模控制方法
CN111204332B (zh) * 2020-02-10 2022-07-15 哈尔滨工业大学 一种全工况下优化车辆横摆动态性能的滑模控制方法
CN114312749A (zh) * 2021-11-24 2022-04-12 中国煤炭科工集团太原研究院有限公司 多点独立轮边驱动矿用车辆防滑横摆转矩控制方法及设备
CN114312749B (zh) * 2021-11-24 2024-05-07 中国煤炭科工集团太原研究院有限公司 多点独立轮边驱动矿用车辆防滑横摆转矩控制方法及设备

Also Published As

Publication number Publication date
DE112007002457A5 (de) 2009-10-15
DE102006048835A1 (de) 2008-04-17
WO2008046586A3 (fr) 2008-06-19

Similar Documents

Publication Publication Date Title
DE4404098C2 (de) Fahrzeugregeleinrichtung
DE112004002252B4 (de) Verfahren zum Unterstützen eines Fahrzeugbedieners beim Stabilisieren eines Fahrzeugs
EP1890920B1 (fr) Regulation de dynamique de vehicule adaptee a l'etat de mouvement et fondee sur des interventions sur l'angle de braquage
EP2013069B1 (fr) Procédé et dispositif de détermination d'un angle de braquage optimal lors de situations de sous-virage d'un véhicule
DE102007008342B4 (de) Verfahren zur Stabilisierung eines Fahrzeugverbundes
EP0943515B1 (fr) Procédé pour le règlement de l'attitude de lacet de véhicules
DE102005037479B4 (de) Fahrdynamik-Steuerungssystem für ein zweispuriges Kraftfahrzeug
DE102004035004A1 (de) Verfahren zur Erhöhung der Fahrstabilität eines Kraftfahrzeugs
WO2008046586A2 (fr) Procédé de régulation de la vitesse de lacet d'un véhicule à moteur
EP2604485A2 (fr) Procédé destiné à stabiliser un véhicule automobile face à un vent latéral
EP1536957B1 (fr) Procede pour commander et regler des amortisseurs a reglage numerique ou analogique
DE102006033635B4 (de) Verfahren zur Stabilisierung eines Fahrzeugs unter Berücksichtigung der Fahrzeugquerdynamik
EP3172103B1 (fr) Procédé et dispositif de détermination d'un couple d'embardée résultant et procédé de régulation de la dynamique de conduite
EP1129916B1 (fr) Procédé permettant d'augmenter la stabilité de conduite d'un véhicule automobile
EP1215103B1 (fr) Commande du déplacement dynamique d'un véhicule par rapport à un axe défini
DE60213215T2 (de) Fahrzeuglenksystem mit Übersteuerkorrektur Assistent
DE102021131739B3 (de) Verfahren und Steuerschaltung zum Steuern einer aktiven Hinterachslenkung eines Kraftfahrzeugs während eines Anlenkens aus einer Geradeausfahrt heraus sowie Kraftfahrzeug mit der Steuerschaltung
DE102012223984A1 (de) Verfahren und Vorrichtung zur Beeinflussung der Fahrdynamik eines Kraftfahrzeuges mit einem mittels aktiven Stellgliedern veränderbaren Fahrwerk
DE3624457A1 (de) Hinterradsteuerung von kraftfahrzeugen
DE10141273A1 (de) Verfahren zur Erhöhung der Fahrstabilität bei einem Fahrzeug
WO2005102745A1 (fr) Procede pour regler la stabilite de conduite d'un vehicule
EP1687193A1 (fr) Procede et dispositif de reglage de la dynamique d'un vehicule
DE102019220356B4 (de) Fahrstabilitätsregelung für ein Kraftfahrzeug mit vor- und nachspurfreier Vorder- und/oder Hinterachse
EP0571726A2 (fr) Véhicule non-guidé par une voie de roulement avec direction additionelle à fonctionnement autonome
WO2009037025A1 (fr) Procédé de commande d'un système d'assistance au conducteur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07856168

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1120070024577

Country of ref document: DE

REF Corresponds to

Ref document number: 112007002457

Country of ref document: DE

Date of ref document: 20091015

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07856168

Country of ref document: EP

Kind code of ref document: A2