WO2005102745A1 - Procede pour regler la stabilite de conduite d'un vehicule - Google Patents

Procede pour regler la stabilite de conduite d'un vehicule Download PDF

Info

Publication number
WO2005102745A1
WO2005102745A1 PCT/EP2005/003841 EP2005003841W WO2005102745A1 WO 2005102745 A1 WO2005102745 A1 WO 2005102745A1 EP 2005003841 W EP2005003841 W EP 2005003841W WO 2005102745 A1 WO2005102745 A1 WO 2005102745A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
driving state
driving
quasi
vehicle
Prior art date
Application number
PCT/EP2005/003841
Other languages
German (de)
English (en)
Inventor
Martin Münster
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Publication of WO2005102745A1 publication Critical patent/WO2005102745A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • B60G2800/0122Roll rigidity ratio; Warping

Definitions

  • the invention relates to a method for driving stability control of a vehicle according to the preamble of patent claim 1.
  • active actuators are used in motor vehicles to influence the roll support.
  • the roll moments about the roll axis that occur when transverse forces occur on the vehicle body are supported by vertical forces on the wheels on the outside of the curve of each axis.
  • the total support torque is distributed over the individual rolling moments on each axis.
  • a larger part of the rolling moment is supported on the front axle so that the vehicle does not develop oversteer behavior in the limit area.
  • the ratio of the support on the front axle to the support on the rear axle is referred to as the distribution factor, is selected during system design and generally does not change.
  • There are also roll support systems whose distribution factor changes linearly from a certain limit speed to another constant value. However, it is usually specified in the design that the support portion of the front axle is always greater than or equal to the portion of the rear axle.
  • the equal distribution of the anti-roll moment MVA, MHA is described by the factor 0.5 if the sign of the exerted torque on the respective axles is correctly taken into account, when exercising on only the front axle by the factor 1.0 and the pure rear axle intervention accordingly by the factor zero ,
  • the distribution factor it is first determined according to the invention whether there is a quasi-static driving state, such as that which occurs during smooth or relatively slowly changing maneuvers, or whether there is a dynamic driving state, which occurs, for example, with frequent changes of direction, evasive maneuvers or a double lane change.
  • a purely quasi-static maneuver is determined, one can fall back on the determination of the distribution factor, which is often implemented in current systems and is often based on characteristic curves.
  • the center of intervention can be balanced at low speeds or lie slightly on the rear axle, and can be continuously shifted to the front when a threshold value is exceeded.
  • a dynamic maneuver is determined, one of several control methods is selected according to the invention, or several control methods are selected and combined with one another. Depending on the deviation of the actual driving state from a target driving state to be determined, the intervention is distributed to the two axis actuators. The oversteer or understeer tendency of the vehicle is functionally determined and counteracted accordingly.
  • FIG. 1 is a block diagram of the method according to the invention
  • FIG. 2 shows an embodiment of the first two method steps from FIG. 1
  • FIG. 3 shows another diagram corresponding to FIG. 2 with an embodiment with several alternative regulation methods and controls
  • FIG. 4 the dynamic rolling moment distribution in a stationary Fig. 5 circular drive.
  • the respective driving situation is classified in a first step S1 from successive substeps S1a, S1b, in a subsequent step S2 from alternative substeps S2a, S2b and a subsequent substep S2c, a distribution factor f WM v (or engagement ratio) EGV), and in a subsequent third block S3, the weighting of the actuating torques of the front axle VA and rear axle HA is determined from the determined distribution factor fwiw.
  • the driving state in the first sub-step 1a is determined from the driving state variables vxy, ay, psip, beta and possibly further driving states.
  • REPLACEMENT ATT Stand sizes determined. It is subsequently decided in step S1b whether there is a quasi-static or dynamic driving state. If a quasi-static driving state is present, the ratio factor is determined via z. B. a characteristic curve as a function of the web speed vxy, for example. If there is a dynamic driving state, a deviation from the target driving state is determined in step S2b and a control method for setting the distribution factor fwiw is selected from a quantity described below. In step S2c, the distribution factor fwwiv is output.
  • steps S2a and S2b are described by way of example in FIG. 3 and can include, for example:
  • a transverse acceleration-dependent characteristic curve can be used.
  • the change in the distribution on the two vehicle axles is determined by a direct linear or non-linear relationship between the lateral acceleration ay and the distribution factor.
  • the center of intervention is more on the rear axle, since a neutral, directly responsive driving behavior increases driving pleasure.
  • the front axle In an upper area up to the adhesion limit, the front axle increasingly takes over the majority and generates controllable understeer for maximum driving safety.
  • a transverse acceleration characteristic curve which is suitably distorted by the current driving speed, is selected in block 1.
  • a float angle control can also be selected in accordance with block 2.
  • the float angle beta is used as a measure of the transverse vehicle position and the control tendency. This float angle indicates whether the vehicle bow is pointing to the outside or inside of the curve and represents the current angle between the vehicle longitudinal axis and the vehicle speed vector. The current float angle is compensated or adjusted to a setpoint by means of regulation or control.
  • this approach is not completely sufficient for all driving maneuvers, since the swimming angle beta can often only be limited, but cannot always be eliminated.
  • the Ackermann swimming angle which is determined by the center of gravity and the radius of the vehicle, is initially available in stationary circular travel with low lateral acceleration.
  • the vehicle bow points to the outside of the curve.
  • acceleration With increasing lateral: acceleration, the float angle changes sign and rises steadily.
  • the reason for this is the rear axle slip, which increases from zero to absorb the lateral forces required in addition to the front axle.
  • the vehicle's bow shows inward corners, even when understeering.
  • a constantly negative or neutral float angle beta can also be set according to the invention.
  • an adjustment of calculated slip angles can also be selected from the driving state variables deltaRad, vxy, psip and beta.
  • the principle of this process lies on the basis that the control characteristic of the vehicle can be recognized from the difference between the axis slip angle alphaVA, alphaHA.
  • the skew of a wheel is the angle between the longitudinal plane and the wheel speed vector.
  • the axle slip angle alphaVA, alphaHA expresses the sum of both wheels of an axle and is a measure of the transverse position of the axle to the direction of vehicle movement. In the event of a positive difference in the axle slip angle, i.e. understeering behavior, the center of gravity is shifted to the rear axle HA if the driving state still allows it.
  • the current lateral acceleration ay on the vehicle body is preferably also included here.
  • the intervention is advantageously shifted to the front axle VA according to the invention.
  • the skew can be estimated in a manner known to the person skilled in the art with sufficient accuracy on the basis of driving speed or web speed vxy, slip angle beta and yaw rate psip and wheel turning angle deltaRad. Future vehicles may be equipped with appropriate sensors that enable direct measurement of the slip angle (block 5).
  • a yaw rate control or yaw rate regulation can be selected in a dynamic driving state according to block 4.
  • a setpoint psip_soll_EGV of the yaw rate psip is calculated on the basis of a single-track model operated in real time while driving, and the difference to the current actual value is corrected. If the yaw rate psip is too low, the intervention is shifted to the rear axle and the vehicle is moved to turn in more. In to High yaw rate psip, the intervention via the front axle VA weakens the turning.
  • This method uses information about the lateral acceleration of the vehicle body, the tire lateral force, the slip angle stiffness or a characteristic speed, which depend on the current values of the wheel load, the coefficient of friction and the wheel position and are non-linear and are advantageously represented by characteristic curves. A high control quality is achieved with this control.
  • the setpoints of a yaw stabilization system already present in the vehicle can be used with an electronic stability program.
  • the steering dynamics according to block 6 can be taken into account in addition to the controls described above.
  • the amplitude and frequency of the steering wheel angle delta_M and the driving speed vjnatures are used. In this way, an advantageous and rapid adjustment of the rolling moment can be ensured both in the case of low-frequency and highly dynamic maneuvers. This optimizes the transition behavior, which increases the response time or agility as well as the overshoot range and thus the controllability.
  • Blocks 1 to 6 are selected by a control device or selector switch 9, which controls a switching device 10 with a plurality of inputs, wherein constant values 7 can also be taken into account.
  • a combination of the regulations and / or controls described above can also be carried out. This can be a distribution of the anti-roll moment or the anti-roll moment to the actuators depending on the Float angle and additionally cause the yaw movement, so that at the same time a high driving pleasure and a high level of driving safety is guaranteed.
  • FIG. 4 and 5 show the driving behavior that can be achieved according to the invention as simulation results during stationary circular driving.
  • the resulting self-steering behavior is plotted in FIG. 4, and the courses of the distribution factor determined using the different methods are plotted in FIG. 5.
  • Corresponding reference numerals of the blocks from FIG. 3 are given, "0" describing the conventional driving behavior of the device for roll reduction.
  • Curves 1 in FIGS. 4 and 5 show the results for the selected method according to block 1 according to FIG. 3, while curves 2 show corresponding results which were achieved using the method according to block 2.
  • Curves 3 and 4 in FIGS. 4 and 5 show the courses that were achieved when using the method according to blocks 5 and 3.
  • Curves 5 represent the result for the yaw rate control according to block 4. For reasons of clarity, the results for a method according to block 6 are not shown, but similar courses can be depicted.
  • the distribution factor is in the interval between 0.2 and 0.8, so that both axes are always controlled.
  • the only intervention on the rear axle leads to oversteer and is not sufficient for the desired roll compensation, while a single intervention on the The front axle behaves accordingly, but causes a pronounced understeer (both courses are not shown).
  • the rear axle stabilizer can advantageously be provided with increased rigidity compared to conventional solutions.
  • MVA anti roll torque front axle psip yaw rate of the vehicle (yaw angular velocity psip_Soll_EGV yaw rate target torque

Abstract

La présente invention concerne un procédé pour régler la stabilité de conduite d'un véhicule comprenant au moins deux essieux, le procédé comprenant les étapes suivantes: lecture de plusieurs grandeurs d'état de conduite (vxy, ay, psip, beta, alphaHA, alphaVA, delta M, deltaRad); détermination de l'état de conduite à partir de ces grandeurs d'état, et décision de s'il s'agit d'un état de conduite quasi-statique ou dynamique; lorsqu'il s'agit d'un état de conduite quasi-statique, détermination d'un facteur de répartition (fmwv) des moments antiroulis (MHA, MVA) à exercer sur l'essieu arrière (HA) et sur l'essieu avant (VA), sur la base d'une méthode de commande ou de réglage quasi-statique; lorsqu'il s'agit d'un état de conduite dynamique, détermination d'un procédé de réglage approprié pour régler le facteur de répartition par sélection et/ou combinaison d'une ou de plusieurs méthodes de réglage parmi une certaine quantité de méthodes de réglage; réglage du comportement de conduite par la méthode sélectionnée, par émission de signaux de réglage vers un ou plusieurs dispositifs de réglage au niveau de l'essieu arrière (HA) et/ou de l'essieu avant (VA) du véhicule.
PCT/EP2005/003841 2004-04-21 2005-04-12 Procede pour regler la stabilite de conduite d'un vehicule WO2005102745A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004019281.2 2004-04-21
DE200410019281 DE102004019281A1 (de) 2004-04-21 2004-04-21 Verfahren zur Fahrstabilitätsregelung eines Fahrzeugs

Publications (1)

Publication Number Publication Date
WO2005102745A1 true WO2005102745A1 (fr) 2005-11-03

Family

ID=34963374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/003841 WO2005102745A1 (fr) 2004-04-21 2005-04-12 Procede pour regler la stabilite de conduite d'un vehicule

Country Status (2)

Country Link
DE (1) DE102004019281A1 (fr)
WO (1) WO2005102745A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009043070B4 (de) 2009-09-25 2022-06-15 Volkswagen Ag Vorrichtung zur Einstellung des Wankverhaltens eines Kraftfahrzeugs
DE102012223240A1 (de) * 2012-12-14 2014-06-18 Continental Teves Ag & Co. Ohg Verfahren zur Erkennung einer hochdynamischen Fahrt eines Fahrzeuges zur Fahrwerksregelung
DE102022128163A1 (de) 2022-10-25 2024-04-25 Zf Active Safety Gmbh Gierkompensationssystem, Verfahren zur Wiederherstellung eines sicheren Fahrzustands, Fahrzeugbremssystem und Kraftfahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3821609A1 (de) * 1988-06-27 1989-12-28 Bayerische Motoren Werke Ag Regelungseinrichtung zur wankstabilisierung eines fahrzeuges
DE19515053A1 (de) * 1994-11-25 1996-05-30 Teves Gmbh Alfred Verfahren zur Regelung der Fahrstabilität mit der Schräglaufdifferenz als Regelungsgröße
EP0765787A2 (fr) * 1995-09-30 1997-04-02 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Procédé pour améliorer la stabilité transversale chez les véhicules
DE10140604C1 (de) * 2001-08-18 2003-04-17 Daimler Chrysler Ag Verfahren zur Beeinflussung des Wankverhaltens von Kraftfahrzeugen
DE10215465A1 (de) * 2002-03-28 2003-10-23 Volkswagen Ag Verfahren und Vorrichtung zur Regelung der Fahrdynamik

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10061075A1 (de) * 2000-12-08 2002-07-18 Audi Ag Verfahren und Vorrichtung zur Stabilitätsbeeinflussung von Kraftfahrzeugen
DE10141273A1 (de) * 2001-08-23 2003-03-20 Bayerische Motoren Werke Ag Verfahren zur Erhöhung der Fahrstabilität bei einem Fahrzeug
DE10316253B4 (de) * 2002-04-09 2015-10-22 Continental Teves Ag & Co. Ohg Verfahren zum Modifizieren einer Fahrstabilitätsregelung eines Fahrzeugs
US6622074B1 (en) * 2002-05-29 2003-09-16 Ford Global Technologies, Llc Vehicle motion control subsystem and method
DE10226683A1 (de) * 2002-06-15 2003-12-24 Bosch Gmbh Robert Fahrstabilitätsmanagement durch einen Fahrzeugreglerverbund

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3821609A1 (de) * 1988-06-27 1989-12-28 Bayerische Motoren Werke Ag Regelungseinrichtung zur wankstabilisierung eines fahrzeuges
DE19515053A1 (de) * 1994-11-25 1996-05-30 Teves Gmbh Alfred Verfahren zur Regelung der Fahrstabilität mit der Schräglaufdifferenz als Regelungsgröße
EP0765787A2 (fr) * 1995-09-30 1997-04-02 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Procédé pour améliorer la stabilité transversale chez les véhicules
DE10140604C1 (de) * 2001-08-18 2003-04-17 Daimler Chrysler Ag Verfahren zur Beeinflussung des Wankverhaltens von Kraftfahrzeugen
DE10215465A1 (de) * 2002-03-28 2003-10-23 Volkswagen Ag Verfahren und Vorrichtung zur Regelung der Fahrdynamik

Also Published As

Publication number Publication date
DE102004019281A1 (de) 2005-11-17

Similar Documents

Publication Publication Date Title
DE4404098C2 (de) Fahrzeugregeleinrichtung
DE10348738B4 (de) Steuerungssystem für ein Kraftfahrzeug und Verfahren zum Steuern eines Kraftfahrzeugs
EP0348817B1 (fr) Dispositif de contrôle antiroulis pour un véhicule
EP1722991A1 (fr) Procede de regulation de la dynamique de roulement d'un vehicule a moteur, dispositif permettant la mise en oeuvre dudit procede et son utilisation
DE112009005462B4 (de) Lenkungsssteuervorrichtung
EP1417108B1 (fr) Procede pour influer sur la tenue au roulis d'automobiles
DE102008053008A1 (de) Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
EP1362720B1 (fr) Véhicule automobile, notamment une voiture, avec un dispositif de stabilisation antiroulis
WO2007054500A1 (fr) Procede et dispositif pour stabiliser un vehicule automobile
WO2007118587A2 (fr) Système destiné à influencer le comportement routier d'un véhicule automobile
EP0989049B1 (fr) Attelage comportant une remorque et procédé pour sa stabilisation
EP1536957B1 (fr) Procede pour commander et regler des amortisseurs a reglage numerique ou analogique
DE102016001592A1 (de) Verfahren zur Beeinflussung der Fahrtrichtung von Kraftfahrzeugen
DE10348736B4 (de) Steuerungssystem für ein Fahrzeug und Verfahren zum Steuern eines Fahrzeugs
WO2008046586A2 (fr) Procédé de régulation de la vitesse de lacet d'un véhicule à moteur
EP2052884B1 (fr) Procédé et système destinés à influencer le mouvement d'une caisse d'un véhicule automobile ou d'un véhicule, pouvant être commandée ou réglée dans ses déroulements de mouvements
DE10330895A1 (de) Ausregelung von Geradeauslaufstörungen eines Kraftfahrzeugs
WO2005102745A1 (fr) Procede pour regler la stabilite de conduite d'un vehicule
DE102008052991A1 (de) Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
EP2393678B1 (fr) Procédé pour commander un mécanisme de roulement actif d'un véhicule à moteur à deux essieux et deux voies
DE102004004870A1 (de) Verfahren und Anordnung zur Steuerung einer Kraftfahrzeug-Drehmomentübertragungskupplung
WO2005000650A1 (fr) Dispositif de stabilisation, vehicule equipe d'un tel dispositif et procede de stabilisation
EP1727726B1 (fr) Procede et ensemble chassis servant a reguler la stabilite de conduite d'un vehicule automobile
DE102020101333B4 (de) Aktives Dämpfungssystem
DE102012223984A1 (de) Verfahren und Vorrichtung zur Beeinflussung der Fahrdynamik eines Kraftfahrzeuges mit einem mittels aktiven Stellgliedern veränderbaren Fahrwerk

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase