WO2008044377A1 - Engine exhaust cleaner - Google Patents
Engine exhaust cleaner Download PDFInfo
- Publication number
- WO2008044377A1 WO2008044377A1 PCT/JP2007/063211 JP2007063211W WO2008044377A1 WO 2008044377 A1 WO2008044377 A1 WO 2008044377A1 JP 2007063211 W JP2007063211 W JP 2007063211W WO 2008044377 A1 WO2008044377 A1 WO 2008044377A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- discrimination
- predetermined
- reducing agent
- water level
- heterogeneous
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/106—Auxiliary oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2067—Urea
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/208—Hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/05—Systems for adding substances into exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/10—Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/04—Methods of control or diagnosing
- F01N2900/0421—Methods of control or diagnosing using an increment counter when a predetermined event occurs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/18—Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
- F01N2900/1806—Properties of reducing agent or dosing system
- F01N2900/1811—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/18—Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
- F01N2900/1806—Properties of reducing agent or dosing system
- F01N2900/1814—Tank level
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to an engine exhaust gas purification device that reduces and purifies nitrogen oxides (NOx) in exhaust gas.
- NOx nitrogen oxides
- the present invention relates to a technique for accurately determining whether or not the liquid stored in the reducing agent tank is a different aqueous solution that does not function as a reducing agent.
- a liquid reducing agent or its precursor is injected and supplied upstream of the exhaust of a NOx reduction catalyst installed in the engine exhaust system, causing NOx and the reducing agent in the exhaust to undergo a catalytic reduction reaction, harming NOx.
- An exhaust purification device that reduces and purifies components has been proposed.
- the concentration of the liquid reducing agent or its precursor changes due to any force factor, the NOx purification efficiency of the NOx reduction catalyst may decrease, and the required NOx purification performance may not be obtained.
- the mixing ratio of the solute and the solvent in the liquid reducing agent or its precursor is inappropriate, or when a different aqueous solution or water is mixed, this problem appears remarkably. For this reason, as described in Japanese Patent No.
- Patent Document 1 the present applicant uses a concentration sensor that measures the concentration of the liquid reducing agent or its precursor from the temperature rise characteristics of the heat generator. In addition, even if convection has occurred in the liquid stored in the reducing agent tank, we proposed a technology that can accurately identify the type of liquid.
- Patent Document 1 Japanese Patent No. 3687915
- the type of liquid can be determined with high accuracy as long as the moving vehicle performs normal traveling.
- the liquid in the reductant tank generates stronger convection than expected, there was a risk of misidentifying the liquid type.
- An object of the present invention is to provide an exhaust emission control device capable of accurately determining whether or not this is a different aqueous solution.
- the exhaust emission control device includes a reducing agent tank that stores a liquid reducing agent or a precursor thereof, and nitrogen in the exhaust gas using the liquid reducing agent or the precursor thereof in the reducing agent tank.
- a reduction catalyst for reducing and purifying oxides a water level measuring device for measuring the level of a liquid reducing agent in the reducing agent tank or a precursor thereof, and a heating element disposed in the reducing agent tank for a predetermined time, It comprises a concentration measuring device for measuring the concentration of the liquid reducing agent or its precursor from the temperature rise characteristic of the heating element, and a control unit incorporating a computer.
- the control unit determines that the liquid reducing agent or its precursor is a different aqueous solution that does not function as a reducing agent when the concentration measured by the concentration measuring device is less than a predetermined threshold value.
- the temperature and the rate of temperature change of the heating element and the concentration measured by the concentration measuring device are determined.
- a validity determination process for determining whether or not the heterogeneous discrimination is valid, and a heterogeneous discrimination count based on a predetermined count value when the validity determination process determines that the heterogeneous discrimination is valid.
- the first heterogeneous discrimination is determined and the first heterogeneous discrimination is determined when the heterogeneous discrimination count counted by the first counting process is equal to or greater than a first predetermined number of times.
- a first setting process for dynamically setting at least one of the predetermined count value and the first predetermined number of times based on the water level measured by the water level measuring device.
- the liquid reducing agent or its precursor when the concentration measured by the temperature increase characteristic force using the liquid reducing agent or its precursor as a heat transfer medium is less than a predetermined threshold, the liquid reducing agent or its precursor is used.
- the body is determined to be a different aqueous solution that does not function as a reducing agent.
- a different type determination is made that the liquid reducing agent or its precursor is a different aqueous solution, it is determined whether or not the different type determination is valid.
- the number of different types of discrimination is counted based on. And the number of different types of discrimination is more than the first predetermined number Then, the heterogeneous discrimination is confirmed.
- FIG. 1 is an overall configuration diagram showing an example of an exhaust purification device according to the present invention.
- FIG. 2 is an explanatory diagram of a sensor that measures the water level and concentration of an aqueous urea solution.
- FIG. 3 is an explanatory view of the principle of measurement of urea aqueous solution concentration.
- FIG. 4 is a block diagram of various functions for performing liquid discrimination.
- FIG. 5 is a flowchart showing processing contents of a liquid type determination unit.
- FIG. 6 is a flowchart showing the processing contents of the heterogeneous discrimination validity determination unit.
- FIG. 7 is a flowchart showing the processing contents of a threshold / count value setting unit.
- FIG. 8 is a flowchart showing the processing contents of a heterogeneous discrimination number counting unit.
- FIG. 9 is a flowchart showing processing contents of a heterogeneous discrimination determination unit.
- FIG. 10 is a characteristic diagram showing measured values of urea concentration during vehicle travel.
- FIG. 11 is a flowchart showing a count subtraction process.
- FIG. 1 shows the overall configuration of an exhaust purification system that uses urea aqueous solution as a precursor of a liquid reducing agent to reduce and purify NO X in engine exhaust.
- An exhaust pipe 14 connected to the exhaust manifold 12 of the engine 10 has a nitrogen oxidation catalyst 16 that oxidizes nitric oxide (NO) to nitrogen dioxide (NO) along the exhaust flow direction.
- a nitrogen oxidation catalyst 16 that oxidizes nitric oxide (NO) to nitrogen dioxide (NO) along the exhaust flow direction.
- an injection nozzle 18 for supplying urea aqueous solution, NOx reduction catalyst 20 for reducing and purifying NOx using ammonia obtained by hydrolyzing the urea aqueous solution, and NOx reduction catalyst 20 And an ammonia oxidation catalyst 22 for oxidizing the ammonia that has been produced.
- the urea aqueous solution stored in the reducing agent tank 24 is supplied to the injection nozzle 18 via the pump module 26 that sucks and pressure-feeds the urea aqueous solution and the addition module 28 that controls the injection flow rate.
- the urea aqueous solution injected and supplied from the injection nozzle 18 is hydrolyzed using the exhaust heat and the water vapor in the exhaust gas, and converted into ammonia. It is known that the converted ammonia undergoes a reduction reaction with NOx in the exhaust gas in the NOx reduction catalyst 20 and is converted to water (O) and nitrogen (N). At this time, N ⁇ x returns
- N ⁇ is oxidized into NO by the nitrogen oxidation catalyst 16 that improves the NOx purification efficiency of the original catalyst 20, and the ratio of NO and NO in the exhaust gas is improved to be suitable for the reduction reaction.
- ammonia that has passed through the NOx reduction catalyst 20 is oxidized by the ammonia oxidation catalyst 22 disposed downstream of the exhaust gas, so that ammonia is prevented from being released into the atmosphere as it is.
- a sensor 30 that functions as a water level measuring device and a concentration measuring device is attached to the reducing agent tank 24 in order to measure the water level and concentration (urea concentration) of the urea aqueous solution.
- the sensor 30 has a circular cross section from the top wall to the bottom wall of the reducing agent tank 24.
- the inner electrode 30A and the outer electrode 30B having a ring shape are concentrically suspended, and the water level is indirectly measured from the change in electrostatic capacity between the electrodes.
- the sensor 30 has a ceramic heater 30C (heating element) that also serves as a temperature sensor fixed to the tip of the sensor 30, and as shown in FIG. 3, the temperature rise characteristic when the ceramic heater 30C is operated for a predetermined time At ( T-T), i.e. urine
- the concentration is indirectly measured from the heat dissipation characteristics using the aqueous solution as a heat transfer medium.
- the temperature of the urea aqueous solution can also be indirectly measured by the resistance change of the ceramic heater 30C.
- Reference numeral 30D in the figure is a holder for fixing the ceramic heater 30C and maintaining a substantially constant distance between the inner electrode 30A and the outer electrode 30B.
- the output signal of the sensor 30, specifically, the water level signal, the concentration signal, and the temperature signal are input to the control unit 32 having a built-in computer.
- the control unit 32 receives an engine speed signal, a vehicle speed signal, an idle switch signal, etc. from the engine control unit 34 that performs various controls of the engine 10 via a CAN (Controller Area Network). Is done. Then, the control unit 32 executes a control program stored in the ROM (Rad Only Memory) or the like, and as shown in FIG. 4, the liquid type discriminating unit 32A, the heterogeneous discriminating validity judging unit 32B, the threshold value * Counter value setting unit 32 C, heterogeneous discrimination number counting unit 32D, and heterogeneous discrimination determining unit 32E are realized.
- the engine control unit 34 functions as a rotational speed detection device and a vehicle speed detection device.
- the engine rotational speed and the vehicle speed may be detected by known sensors.
- the control program may be executed not only by the control unit 32 but also by an existing control unit such as the engine control unit 34.
- the liquid type determination unit 32A provides a different type determination process, and based on the concentration signal, whether the liquid stored in the reducing agent tank 24 is a urea aqueous solution or a different type aqueous solution every predetermined time after the engine is started.
- the normal discrimination signal or the heterogeneous discrimination signal is output according to the discrimination result.
- the heterogeneous discrimination validity determination unit 32B provides a validity determination process, and determines whether or not the heterogeneous discrimination is valid when the heterogeneous discrimination signal is output based on the temperature signal and the concentration signal.
- a count signal indicating that the number of different types of discrimination should be counted is output according to the judgment result.
- Threshold * count value setting unit 32C provides the first and second setting processes. And a decision threshold and a backup threshold (details will be described later) for confirming the heterogeneous discrimination, and a count value for counting the number of different discriminations are dynamically set based on the water level signal
- the heterogeneous discrimination count counting unit 32D provides the first and second counting processes, the vehicle state determination process, and the reset process, and appropriately counts the heterogeneous discrimination count and the backup count when the count signal is output.
- the heterogeneous discrimination determination unit 32E provides first and second heterogeneous discrimination determination processing, and when the number of different types of discrimination exceeds the determination threshold (first predetermined number) or the number of backups is greater than the determination threshold. When the backup threshold value (second predetermined number of times) is reached, the heterogeneous discrimination is confirmed and a heterogeneous discrimination confirmation signal is output.
- step 1 (abbreviated as “S1” in the figure, the same applies hereinafter), the concentration of urea stored in the reducing agent tank 24 is determined from the sensor 30 as the concentration of urea. Read the signal.
- step 2 it is determined whether the urea concentration is less than a predetermined threshold.
- the predetermined threshold is for defining a urea aqueous solution and a heterogeneous aqueous solution.
- the predetermined threshold is set to a lower limit value that cannot be measured even if some convection occurs. . If the urea concentration is less than the predetermined threshold value, the process proceeds to step 3 (Yes), and a heterogeneous discrimination signal is output. On the other hand, if the urea concentration is equal to or higher than the predetermined threshold, the process proceeds to step 4 (No), and a normality determination signal is output.
- the urea concentration of the liquid stored in the reducing agent tank 24 is read every predetermined time after the engine is started. If the urea concentration is less than the predetermined threshold, it is determined that the liquid is a different type aqueous solution, and a different type determination signal representing the determination result is output. On the other hand, if the urea concentration is equal to or higher than the predetermined threshold, it is determined that the liquid is an aqueous urea solution, and a normal determination signal indicating the determination result is output.
- step 11 it is determined whether or not a heterogeneous discrimination signal is output. If the heterogeneous discrimination signal is output, the process proceeds to step 12 (Yes). If the heterogeneous discrimination signal is not output, the process is terminated (No). In step 12, based on the temperature signal of the sensor 30 force, the liquid temperature immediately before the operation of the ceramic heater 30C, that is, the force whether the temperature of the ceramic heater 30C is equal to or higher than a predetermined temperature is determined.
- the predetermined temperature is used to determine whether or not the concentration measurement accuracy is reduced due to freezing of at least a part of the liquid, and is set to a temperature slightly higher than the freezing point of the urea aqueous solution. If the liquid temperature is equal to or higher than the predetermined temperature, the process proceeds to step 13 (Yes). If the liquid temperature is lower than the predetermined temperature, the process ends (No).
- step 13 based on the temperature signal from the sensor 30, it is determined whether the temperature change rate associated with the operation of the ceramic heater 30C, that is, whether the temperature change per unit time is equal to or less than a predetermined change rate.
- the predetermined rate of change is used to determine whether or not strong convection occurs due to temperature changes, and is set to a rate that cannot be taken in a relatively weak state of convection. If the temperature change rate is equal to or less than the predetermined change rate, the process proceeds to step 14 (Yes). On the other hand, if the temperature change rate is greater than the predetermined change rate, the process is terminated (No).
- step 14 it is determined whether the urea concentration is equal to or higher than a predetermined concentration based on the concentration signal from the sensor 30.
- the predetermined concentration is used to determine whether or not strong convection has occurred in the liquid through the fact that the urea concentration measured by the sensor 30 is significantly low, and some convection has occurred. However, it is set to a low concentration that cannot be measured. If the urea concentration is equal to or higher than the predetermined concentration, the process proceeds to step 15 (Yes), while if the urea concentration is lower than the predetermined concentration, the process is terminated (No).
- step 15 based on the concentration signal from sensor 30, whether or not the deviation between the urea concentration measured last time and the urea concentration measured this time (hereinafter referred to as "concentration deviation") is equal to or less than a predetermined deviation.
- concentration deviation the deviation between the urea concentration measured last time and the urea concentration measured this time.
- the predetermined deviation is used to determine whether or not strong convection is generated in the liquid based on a significant change in the urea concentration, and does not change even if some convection occurs. Set to range deviation. If the concentration deviation is less than or equal to the predetermined deviation, the process proceeds to step 16 (Yes), and a count signal is output. On the other hand, if the concentration deviation is larger than the predetermined deviation, this process is terminated (No).
- the liquid temperature is equal to or higher than the predetermined temperature
- the liquid temperature change rate is equal to or lower than the predetermined change rate
- the liquid concentration is equal to or higher than the predetermined concentration
- the density deviation is less than or equal to the predetermined deviation
- step 21 a water level signal is read from the sensor 30 as the water level of the liquid stored in the reducing agent tank 24.
- step 22 it is determined whether the water level is greater than the high water level threshold.
- the high water level threshold value is used to determine whether or not the remaining amount of liquid is sufficient, and is set to, for example, 1/2 of the full water level of the reducing agent tank 24. If the water level is greater than the high water level threshold value, the process proceeds to step 23 (Yes), whereas if the water level is less than the high water level threshold value, the process proceeds to step 26 (N o) 0
- step 23 20 is set as the final threshold.
- step 24 200 is set as the backup threshold.
- step 25 3 is set as the count value.
- step 26 it is determined whether or not the water level is greater than a low water level threshold (predetermined water level).
- the low water level threshold value is used to determine whether or not the remaining amount of liquid is low.
- the low water level threshold value is set to a water level when the reducing agent tank 24 becomes substantially empty. If the water level is greater than the low water level threshold value, the process proceeds to step 27 (Yes), while if the water level is equal to or lower than the low water level threshold value, the process proceeds to step 30 (No).
- step 27 is set as the final threshold.
- step 28 200 is set as the backup threshold.
- step 29 2 is set as the count value.
- step 30 40 is set as the final threshold.
- step 31 the backup threshold is set to invalid, for example, infinity.
- step 32 1 is set as the count value.
- the final threshold value, the backup threshold value, and the numerical value are dynamically set according to the liquid water level.
- the liquid water level By appropriately setting the confirmation threshold value, knock-up threshold value, and count value corresponding to each, it is possible to improve the heterogeneous discrimination confirmation accuracy at each water level.
- the backup threshold is set to infinity when the water level is lower than the low water level threshold, heterogeneous discrimination determination in a state where strong convection is occurring is prohibited in the processing of the heterogeneous determination determination unit 32E described later. That power S.
- the specific values of the final threshold, the backup threshold, and the count value shown in FIG. 7 are examples, and should be optimally set through a test or the like. However, it is desirable that the deterministic threshold is set to gradually increase as the liquid water level decreases, while the count value is set to gradually decrease as the liquid water level decreases. Les.
- step 41 it is determined whether or not the count signal is output. If the count signal is output, the process proceeds to step 42 (Yes), and if the count signal is not output, the process proceeds to step 47 (No).
- step 42 it is determined whether or not the engine speed is equal to or lower than a first predetermined value.
- the first predetermined value is one of threshold values for determining whether or not the vehicle is stopped, and is set, for example, near the idling rotation speed of the engine 10. If the engine speed is equal to or lower than the first predetermined value, the process proceeds to step 43 (Yes), whereas if the engine speed is higher than the first predetermined value, the process proceeds to step 45 (No). .
- step 43 it is determined whether or not the vehicle speed is equal to or lower than a second predetermined value.
- the second predetermined value is another one of the threshold values for determining whether or not the vehicle is stopped, and is set to the minimum value of the vehicle speed detectable range, for example. If the vehicle speed is less than or equal to the second predetermined value, the process proceeds to step 44 (Yes), while if the vehicle speed is greater than the second predetermined value, the process proceeds to step 45 (No).
- step 44 it is determined that the vehicle is stopped, and a value obtained by multiplying the count value set by the threshold-numerical value setting unit 32C by a natural number of 2 or more is added to the number of different types of discrimination. Then, the number of different types of discrimination is counted.
- step 45 it is determined that the vehicle is traveling and the count value is added to the number of different types of discrimination. Thus, the number of different types of discrimination is counted.
- step 46 1 is added to the backup counter that counts the number of times that the heterogeneous discrimination has been made continuously.
- step 47 it is determined whether or not a normal determination signal is output. If the normal determination signal is output, the process proceeds to step 48 (Yes), and if the normal determination signal is not output, the process is terminated (No).
- step 48 the number of different types of discrimination is reset. According to this processing content, each time a count signal is output, the number of different types of discrimination is counted based on the predetermined count value set by the threshold value'count value setting unit 32C. At this time, the number of different types of discrimination is counted by a count value corresponding to the liquid water level in the reducing agent tank 24. Therefore, the count can be performed in consideration of the convection occurrence state of the liquid. Further, when the vehicle is stopped, the number of different types of discrimination is counted based on a value obtained by multiplying the count value by a natural number of 2 or more.
- step 51 it is determined whether or not the number of different types of discrimination is greater than or equal to a determination threshold. If the number of different types of discrimination is equal to or greater than the determination threshold, the process proceeds to step 53 (Yes), while if the number of different types of determination is less than the determination threshold, the process proceeds to step 52 (No).
- step 52 it is determined whether or not the backup counter is greater than or equal to a backup threshold. If the backup counter is equal to or greater than the backup threshold, go to step 53. While proceeding (Yes), if the backup counter is less than the backup threshold, this process is terminated (No).
- step 53 a heterogeneous discrimination determination signal is output.
- the different type determination is determined and the different type determination determination signal indicating that the different type determination is determined. Is output.
- the heterogeneous discrimination can be performed with high accuracy regardless of the vehicle state. At this time, the validity of the heterogeneous discrimination is judged and the number of times of the heterogeneous discrimination is counted only when the discrimination is valid. Therefore, it is possible to improve the heterogeneous discrimination accuracy.
- the count value and determination threshold value for the number of different types of discrimination are dynamically set according to the liquid water level in the reducing agent tank 24, it is possible to tune the different type discrimination process at each water level by setting them appropriately. Thus, the accuracy of different type discrimination can be further improved. Furthermore, when the backup counter exceeds the backup threshold, the heterogeneous discrimination is determined regardless of the number of different types of discrimination, so that it is possible to prevent the heterogeneous discrimination from being determined indefinitely.
- the differentiating accuracy can be further improved by further executing the following count subtraction process.
- the count subtraction process is the same as the process shown in Fig. 6 and the process related to validity determination.
- FIG. 11 showing the count subtraction process as the third count process, in step 61, it is determined whether or not a different type discrimination signal is output. Then, if the heterogeneous discrimination signal is output, the process proceeds to step 62 (Yes), while if the heterogeneous discrimination signal is not output, the present process is terminated (No).
- step 62 0 is set as the count value.
- step 63 based on the temperature signal from the sensor 30, it is determined whether or not the liquid temperature immediately before the operation of the ceramic heater 30C is equal to or higher than a predetermined temperature. If the liquid temperature is equal to or higher than the predetermined temperature, the process proceeds to step 65 (Yes). On the other hand, if the liquid temperature is lower than the predetermined temperature, the process proceeds to step 64 (No), and the predetermined value m is subtracted from the count value.
- step 65 based on the temperature signal from the sensor 30, it is determined whether or not the temperature change rate accompanying the operation of the ceramic heater 30C is equal to or less than a predetermined change rate. If the temperature change rate is equal to or less than the predetermined change rate, the process proceeds to step 67 (Yes). On the other hand, if the temperature change rate is larger than the predetermined change rate, the process proceeds to step 66 (No), and the predetermined value m is subtracted from the count value.
- step 67 based on the concentration signal from the sensor 30, it is determined whether or not the urea concentration is equal to or higher than a predetermined concentration. If the urea concentration is equal to or higher than the predetermined concentration, the routine proceeds to step 69 (Yes). On the other hand, if the urea concentration is less than the predetermined concentration, the routine proceeds to step 68 (No), and the predetermined value m is subtracted from the count value.
- step 69 based on the density signal from the sensor 30, it is determined whether or not the density deviation is equal to or less than a predetermined deviation. If the density deviation is less than or equal to the predetermined deviation, the process proceeds to step 71 (Yes). On the other hand, if the concentration deviation is larger than the predetermined deviation, the routine proceeds to step 70 (No), and the predetermined value m is subtracted from the count value.
- step 71 it is determined whether or not the count value is not 0, that is, whether or not the heterogeneous discrimination is invalid. If the count value is not 0, the process proceeds to step 72 (Yes), while if the count value is 0, the process is terminated (No).
- step 72 a count signal is output.
- the heterogeneous discrimination count force outputs a count signal for subtracting the predetermined number of times, making liquid discrimination difficult. In this state, the counting is canceled and the discrimination accuracy can be improved.
- an alarm device such as a buzzer or a warning light is provided to notify the vehicle driver of that fact. You may make it operate.
- the process of operating the alarm corresponds to the first and second alarm processes, respectively.
- the vehicle driver can quickly grasp that the reducing agent tank 24 contains a liquid that is not a urea aqueous solution.
- the vehicle driver can function as an exhaust purification device. Can be demonstrated.
- the number of different types of discrimination is written to a nonvolatile memory such as an EEPROM (Electrically Erasable Programmable Read Only Memory), while the engine 10 is started from the nonvolatile memory.
- EEPROM Electrically Erasable Programmable Read Only Memory
- the process of writing and reading out the number of different types of discrimination in the nonvolatile memory corresponds to the number of times writing process and the number of times reading process, respectively.
- the sensor 30 in which the water level measuring device, the concentration measuring device and the temperature measuring device are integrated is used.
- the water level, urea concentration and liquid temperature may be measured using a known water level meter, concentration meter and thermometer, respectively.
- at least one of the final threshold and the backup threshold may be set according to the liquid water level, or may be set continuously according to the liquid water level.
- the present invention is not limited to using an aqueous urea solution as a liquid reducing agent precursor, and is a light oil mainly composed of ammonia or hydrocarbons depending on the Nx purification reaction in the Nx reduction catalyst. It is also applicable to those using gasoline, kerosene, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Materials Engineering (AREA)
- Exhaust Gas After Treatment (AREA)
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
明 細 書
エンジンの排気浄化装置
技術分野
[0001] 本発明は、排気中の窒素酸化物(NOx)を還元浄化するエンジンの排気浄化装置
(以下「排気浄化装置」という)において、還元剤タンクに貯蔵される液体が還元剤と して機能しない異種水溶液であるか否かを高精度に判別する技術に関する。
背景技術
[0002] エンジン排気系に配設された NOx還元触媒の排気上流に、液体還元剤又はその 前駆体を噴射供給し、排気中の NOxと還元剤とを触媒還元反応させて、 NOxを無 害成分に還元浄化する排気浄化装置が提案されている。排気浄化装置では、何ら 力の要因により液体還元剤又はその前駆体の濃度が変化すると、 NOx還元触媒に おける NOx浄化効率が低下し、所要の NOx浄化性能を得られなくなるおそれがある 。特に、液体還元剤又はその前駆体における溶質と溶媒との混合比率が不適正であ つたり、異種水溶液や水の混入がなされると、この不具合が顕著に現われてしまう。こ のため、本出願人は、特許第 3687915号公報(特許文献 1)に記載されるように、発 熱体の温度上昇特性から液体還元剤又はその前駆体の濃度を測定する濃度センサ を利用し、還元剤タンクに貯蔵される液体に対流が発生していても、その液体種別を 高精度に判別する技術を提案した。
特許文献 1 :特許第 3687915号公報
発明の開示
発明が解決しょうとする課題
[0003] し力 ながら、従来提案技術においては、移動車両が通常走行を行なっている限り 液体種別を高精度に判別可能であるものの、例えば、悪路などの走行が多レ、ダンプ トラックなどでは、還元剤タンク内の液体に想定以上の強い対流が発生するため、液 体種別を誤判別するおそれがあった。
そこで、本発明は以上のような従来の問題点に鑑み、還元剤タンクの液体水位に 応じて対流の強さが変化する現象に着目し、その液体に強い対流が発生していても
、これが異種水溶液であるか否かを高精度に判別可能な排気浄化装置を提供する ことを目的とする。
課題を解決するための手段
[0004] このため、本発明に係る排気浄化装置は、液体還元剤又はその前駆体を貯蔵する 還元剤タンクと、前記還元剤タンクの液体還元剤又はその前駆体を使用して排気中 の窒素酸化物を還元浄化する還元触媒と、前記還元剤タンクの液体還元剤又はそ の前駆体の水位を測定する水位測定装置と、前記還元剤タンクに配設された発熱体 を所定時間作動させ、該発熱体の温度上昇特性から液体還元剤又はその前駆体の 濃度を測定する濃度測定装置と、コンピュータを内蔵したコントロールユニットと、を 含んで構成される。そして、前記コントロールユニットが、前記濃度測定装置により測 定された濃度が所定閾値未満であるときに、前記液体還元剤又はその前駆体は還 元剤として機能しない異種水溶液であると判別する異種判別処理と、前記異種判別 処理により液体還元剤又はその前駆体が異種水溶液であると判別したときに、前記 発熱体の温度及び温度変化率、並びに、前記濃度測定装置により測定された濃度 に基づいて、前記異種判別が妥当であるか否かを判定する妥当性判定処理と、前記 妥当性判定処理により異種判別が妥当であると判定したときに、所定計数値に基づ いて異種判別回数を計数する第 1の計数処理と、前記第 1の計数処理により計数し た異種判別回数が第 1の所定回数以上になったときに、前記異種判別を確定する第 1の異種判別確定処理と、前記水位測定装置により測定された水位に基づいて、前 記所定計数値及び第 1の所定回数の少なくとも一方を動的に設定する第 1の設定処 理と、を実行する。
発明の効果
[0005] 本発明に係る排気浄化装置によれば、液体還元剤又はその前駆体を熱伝達媒体 とした温度上昇特性力 測定した濃度が所定閾値未満であるときに、液体還元剤又 はその前駆体は還元剤として機能しなレ、異種水溶液であると判別される。また、液体 還元剤又はその前駆体は異種水溶液であるとの異種判別がなされると、その異種判 別は妥当であるか否かが判定され、異種判別が妥当であるときのみ、所定計数値に 基づいて異種判別回数が計数される。そして、異種判別回数が第 1の所定回数以上
になると、異種判別が確定される。このとき、還元剤タンクの液体還元剤又はその前 駆体の水位に基づいて所定計数値及び第 1の所定回数の少なくとも一方が動的に 設定されるため、水位変化に応じて変化する対流を考慮した計数又は/及び異種 判別確定が行われる。このため、車両状態の如何にかかわらず、液体還元剤又はそ の前駆体が異種水溶液であるか否かを高精度に判別することができる。
図面の簡単な説明
[0006] [図 1]図 1は、本発明に係る排気浄化装置の一例を示す全体構成図である。
[図 2]図 2は、尿素水溶液の水位及び濃度を測定するセンサの説明図である。
[図 3]図 3は、尿素水溶液濃度の測定原理説明図である。
[図 4]図 4は、液体判別を行うための各種機能のブロック図である。
[図 5]図 5は、液体種別判別部の処理内容を示すフローチャートである。
[図 6]図 6は、異種判別妥当性判定部の処理内容を示すフローチャートである。
[図 7]図 7は、閾値 ·計数値設定部の処理内容を示すフローチャートである。
[図 8]図 8は、異種判別回数計数部の処理内容を示すフローチャートである。
[図 9]図 9は、異種判別確定部の処理内容を示すフローチャートである。
[図 10]図 10は、車両走行中における尿素濃度の測定値を示す特性図である。
[図 11]図 11は、計数減算処理を示すフローチャートである。
符号の説明
[0007] 10 エンジン
20 N〇x還元触媒
24 還元剤タンク
30 センサ
30A 内側電極
30B 外側電極
30C セラミックスヒータ
32 ECU
32A 液体種別判別部
32B 異種判別妥当性判定部
32C 閾値 *計数値設定部
32D 異種判別回数計数部
32E 液体種別確定部
34 エンジン ECU
発明を実施するための最良の形態
[0008] 以下、添付された図面を参照して本発明を詳述する。
図 1は、液体還元剤の前駆体としての尿素水溶液を使用し、エンジン排気中の NO Xを還元浄化する排気浄化装置の全体構成を示す。
エンジン 10の排気マニフォ一ルド 12に接続される排気管 14には、排気流通方向 に沿って、一酸化窒素(NO)を二酸化窒素(NO )へと酸化させる窒素酸化触媒 16
2
と、尿素水溶液を噴射供給する噴射ノズル 18と、尿素水溶液を加水分解して得られ るアンモニアを使用して N〇xを還元浄化する NOx還元触媒 20と、 N〇x還元触媒 2 0を通過したアンモニアを酸化させるアンモニア酸化触媒 22と、が夫々配設される。 一方、還元剤タンク 24に貯蔵される尿素水溶液は、尿素水溶液を吸い込んで圧送 するポンプモジュール 26及びその噴射流量を制御する添加モジュール 28を経由し て、噴射ノズル 18に供給される。
[0009] 力、かる排気浄化装置において、噴射ノズル 18から噴射供給された尿素水溶液は、 排気熱及び排気中の水蒸気を利用して加水分解され、アンモニアへと転化される。 転化されたアンモニアは、 NOx還元触媒 20において排気中の NOxと還元反応し、 水 〇)及び窒素(N )へと転化されることは知られたことである。このとき、 N〇x還
2 2
元触媒 20における N〇x浄化効率を向上させるベぐ窒素酸化触媒 16により N〇が N Oへと酸化され、排気中の N〇と NOとの比率が還元反応に適したものに改善される
2 2
。一方、 NOx還元触媒 20を通過したアンモニアは、その排気下流に配設されたアン モニァ酸化触媒 22により酸化されるので、アンモニアがそのまま大気中に放出される ことが防止される。
[0010] また、還元剤タンク 24には、尿素水溶液の水位及び濃度(尿素濃度)を測定すべく 、水位測定装置及び濃度測定装置として機能するセンサ 30が取り付けられる。セン サ 30は、図 2に示すように、還元剤タンク 24の天壁から底壁に向けて、横断面が円
環形状をなす内側電極 30A及び外側電極 30Bが同心に垂下され、両電極間の静 電容量変化から水位を間接的に測定する。さらに、センサ 30は、その先端部に温度 センサを兼ねたセラミックスヒータ 30C (発熱体)が固定され、図 3に示すように、セラミ ックスヒータ 30Cを所定時間 A t作動させたときの温度上昇特性 (T -T )、即ち、尿
1 0
素水溶液を熱伝達媒体とした放熱特性から濃度を間接的に測定する。このとき、セラ ミックスヒータ 30Cの抵抗変化により、尿素水溶液の温度も間接的に測定できる。な お、図中の符号 30Dは、セラミックスヒータ 30Cを固定しつつ、内側電極 30A及び外 側電極 30Bの間隔を略一定に保持するためのホルダである。
[0011] センサ 30の出力信号、具体的には、水位信号,濃度信号及び温度信号は、コンビ ユータを内蔵したコントロールユニット 32に入力される。また、コントローノレユニット 32 には、エンジン 10の各種制御を行うエンジンコントロールユニット 34から、 CAN (Con troller Area Network)などを介して、エンジン回転速度信号,車速信号,イダ二ッショ ンスィッチ信号などが入力される。そして、コントロールユニット 32では、その ROM (R ead Only Memory)などに記憶された制御プログラムを実行することで、図 4に示すよ うに、液体種別判別部 32A,異種判別妥当性判定部 32B,閾値 *計数値設定部 32 C,異種判別回数計数部 32D及び異種判別確定部 32Eが夫々実現される。
[0012] なお、本実施形態では、エンジンコントロールユニット 34が、回転速度検出装置及 び車速検出装置として機能するが、エンジン回転速度及び車速を公知のセンサで検 出するようにしてもよレ、。また、制御プログラムは、コントロールユニット 32に限らず、 エンジンコントロールユニット 34などの既設のコントロールユニットで実行するようにし てもよい。
[0013] 液体種別判別部 32Aは、異種判別処理を提供し、エンジン始動後所定時間ごとに 、還元剤タンク 24に貯蔵される液体が尿素水溶液又は異種水溶液であるか否かを 濃度信号に基づいて判別し、その判別結果に応じて正常判別信号又は異種判別信 号を出力する。異種判別妥当性判定部 32Bは、妥当性判定処理を提供し、異種判 別信号が出力されたときに、異種判別が妥当であるか否かを温度信号及び濃度信 号に基づいて判定し、その判定結果に応じて異種判別回数を計数すべきことを表わ す計数信号を出力する。閾値 *計数値設定部 32Cは、第 1及び第 2の設定処理を提
供し、異種判別を確定するための確定閾値及びバックアップ閾値 (詳細は後述する) 、並びに、異種判別回数を計数する計数値を水位信号に基づいて動的に設定する
。異種判別回数計数部 32Dは、第 1及び第 2の計数処理,車両状態判定処理並び にリセット処理を提供し、計数信号が出力されたときに、異種判別回数及びバックアツ プ回数を適宜計数する。異種判別確定部 32Eは、第 1及び第 2の異種判別確定処 理を提供し、異種判別回数が確定閾値 (第 1の所定回数)以上になったとき、又は、 バックアップ回数が確定閾値より大きなバックアップ閾値(第 2の所定回数)以上にな つたときに、異種判別を確定して異種判別確定信号を出力する。
[0014] 次に、液体判別に係る各種機能について、図 5〜図 9のフローチャートを参照しつ つ説明する。
液体種別判別部 32Aの処理内容を示す図 5において、ステップ 1 (図では「S1」と 略記する。以下同様)では、還元剤タンク 24に貯蔵される液体の尿素濃度として、セ ンサ 30から濃度信号を読み込む。
[0015] ステップ 2では、尿素濃度が所定閾値未満であるか否かを判定する。ここで、所定 閾値は、尿素水溶液と異種水溶液を画定するためのもので、例えば、正常な尿素水 溶液であれば、多少の対流が発生していても測定され得ない下限値に設定される。 そして、尿素濃度が所定閾値未満であればステップ 3へと進み (Yes)、異種判別信 号を出力する。一方、尿素濃度が所定閾値以上であればステップ 4へと進み(No)、 正常判別信号を出力する。
[0016] かかる処理内容によれば、エンジン始動後所定時間ごとに、還元剤タンク 24に貯 蔵される液体の尿素濃度が読み込まれる。そして、尿素濃度が所定閾値未満であれ ば、液体は異種水溶液であると判別し、その判別結果を表わす異種判別信号が出 力される。一方、尿素濃度が所定閾値以上であれば、液体は尿素水溶液であると判 別し、その判別結果を表わす正常判別信号が出力される。
[0017] 異種判別妥当性判定部 32Bの処理内容を示す図 6において、ステップ 11では、異 種判別信号が出力されているか否力、を判定する。そして、異種判別信号が出力され ていればステップ 12へと進む一方 (Yes)、異種判別信号が出力されていなければ 本処理を終了する(No)。
ステップ 12では、センサ 30力 の温度信号に基づいて、セラミックスヒータ 30Cの 作動直前における液体温度、即ち、セラミックスヒータ 30Cの温度が所定温度以上で あるか否力を判定する。ここで、所定温度は、液体の少なくとも一部が凍結して濃度 測定精度が低下しているか否力、を判定するためのもので、尿素水溶液の凝固点より 若干高めの温度に設定される。そして、液体温度が所定温度以上であればステップ 13へと進む一方 (Yes)、液体温度が所定温度未満であれば本処理を終了する(No
[0018] ステップ 13では、センサ 30からの温度信号に基づいて、セラミックスヒータ 30Cの 作動に伴う温度変化率、即ち、単位時間当たりの温度変化が所定変化率以下である か否かを判定する。ここで、所定変化率は、温度変化を介して強い対流が発生して レ、るか否力 ^判定するためのもので、対流が比較的弱い状態では採り得ない変化率 に設定される。そして、温度変化率が所定変化率以下であればステップ 14へと進む 一方 (Yes)、温度変化率が所定変化率より大であれば本処理を終了する(No)。
[0019] ステップ 14では、センサ 30からの濃度信号に基づレ、て、尿素濃度が所定濃度以上 であるか否かを判定する。ここで、所定濃度は、センサ 30により測定された尿素濃度 が大幅に低いことを介して、液体に強い対流が発生しているか否かを判定するため のもので、多少の対流が発生していても測定され得ない低い濃度に設定される。そし て、尿素濃度が所定濃度以上であればステップ 15へと進む一方 (Yes)、尿素濃度 が所定濃度未満であれば本処理を終了する(No)。
[0020] ステップ 15では、センサ 30からの濃度信号に基づいて、前回測定された尿素濃度 と今回測定された尿素濃度との偏差 (以下「濃度偏差」という)が所定偏差以下である か否かを判定する。ここで、所定偏差は、尿素濃度が大幅に変化したことを介して、 液体に強い対流が発生しているか否力、を判定するためのもので、多少の対流が発生 していても変化しない範囲の偏差に設定される。そして、濃度偏差が所定偏差以下 であればステップ 16へと進み (Yes)、計数信号を出力する。一方、濃度偏差が所定 偏差より大であれば本処理を終了する(No)。
[0021] かかる処理内容によれば、異種判別信号が出力されたときに、液体温度が所定温 度以上、液体の温度変化率が所定変化率以下、液体濃度が所定濃度以上、かつ、
濃度偏差が所定偏差以下であれば、異種判別は妥当であると判定される。このため 、液体の温度が低くその少なくとも一部が凍結している状態、液体に強い対流が発 生して放熱特性が変化している状態においては、異種判別が妥当であるとの判定が なされることがなぐ信頼性が高い異種判別回数の計数を行うことができる。
[0022] 閾値 '計数値設定部 32Cの処理内容を示す図 7において、ステップ 21では、還元 剤タンク 24に貯蔵される液体の水位として、センサ 30から水位信号を読み込む。 ステップ 22では、水位が高水位閾値より大きいか否かを判定する。ここで、高水位 閾値は、液体残量が十分あるか否かを判定するためのもので、例えば、還元剤タンク 24の満水位の 1/2に設定される。そして、水位が高水位閾値より大きければステツ プ 23へと進む一方 (Yes)、水位が高水位閾値以下であればステップ 26へと進む(N o) 0
[0023] ステップ 23では、確定閾値として 20を設定する。
ステップ 24では、バックアップ閾値として 200を設定する。
ステップ 25では、計数値として 3を設定する。
ステップ 26では、水位が低水位閾値 (所定水位)より大きいか否かを判定する。ここ で、低水位閾値は、液体残量が少なくなつたか否力を判定するためのもので、例えば 、還元剤タンク 24が略空になったときの水位に設定される。そして、水位が低水位閾 値より大きければステップ 27へと進む一方 (Yes)、水位が低水位閾値以下であれば ステップ 30へと進む(No)。
[0024] ステップ 27では、確定閾値として 30を設定する。
ステップ 28では、バックアップ閾値として 200を設定する。
ステップ 29では、計数値として 2を設定する。
ステップ 30では、確定閾値として 40を設定する。
ステップ 31では、バックアップ閾値を無効、例えば、無限大に設定する。
[0025] ステップ 32では、計数値として 1を設定する。
かかる処理内容によれば、液体水位に応じて確定閾値,バックアップ閾値及び計 数値が動的に設定される。即ち、還元剤タンク 24に貯蔵される液体の水位が低下す るにつれて、同一振動に対してより強い対流が発生し易くなる。このため、液体水位
に対応した確定閾値,ノ ックアップ閾値及び計数値を適宜設定することで、各水位 における異種判別確定精度を向上させることができる。また、水位が低水位閾値以 下のときにはバックアップ閾値が無限大に設定されるため、後述する異種判別確定 部 32Eの処理において、強い対流が発生している状態での異種判別確定を禁止す ること力 Sできる。
[0026] なお、図 7に示す確定閾値,バックアップ閾値及び計数値の具体的数値は一例で あって、テストなどを介して最適に設定すべきものである。但し、確定閾値については 、液体水位が低下するにつれて、徐々に大きくなるように設定する一方、計数値につ いては、液体水位が低下するにつれて、徐々に小さくなるように設定することが望まし レ、。
異種判別回数計数部 32Dの処理内容を示す図 8において、ステップ 41では、計数 信号が出力されているか否力、を判定する。そして、計数信号が出力されていればス テツプ 42へと進む一方 (Yes)、計数信号が出力されていなければステップ 47へと進 む(No)。
[0027] ステップ 42では、エンジン回転速度が第 1の所定値以下であるか否かを判定する。
ここで、第 1の所定値は、車両が停車しているか否かを判定するための閾値の 1つで あって、例えば、エンジン 10のアイドリング回転速度付近に設定される。そして、ェン ジン回転速度が第 1の所定値以下であればステップ 43へと進む一方 (Yes)、ェンジ ン回転速度が第 1の所定値より大であればステップ 45へと進む(No)。
[0028] ステップ 43では、車速が第 2の所定値以下であるか否かを判定する。ここで、第 2の 所定値は、車両が停車しているか否かを判定するための閾値の他の一つであって、 例えば、車速検出可能範囲の最小値に設定される。そして、車速が第 2の所定値以 下であればステップ 44へと進む一方 (Yes)、車速が第 2の所定値より大であればス テツプ 45へと進む(No)。
[0029] ステップ 44では、車両が停車中であると判定し、異種判別回数に対して、閾値-計 数値設定部 32Cにより設定された計数値に 2以上の自然数を乗算した値を加算する ことで、異種判別回数を計数する。
ステップ 45では、車両が走行中であると判定し、異種判別回数に計数値を加算す
ることで、異種判別回数を計数する。
[0030] ステップ 46では、異種判別が連続してなされた回数を計数するバックアップカウン タに 1を加算する。
ステップ 47では、正常判別信号が出力されたか否かを判定する。そして、正常判別 信号が出力されていればステップ 48へと進む一方 (Yes)、正常判別信号が出力さ れていなければ本処理を終了する(No)。
[0031] ステップ 48では、異種判別回数をリセットする。 かかる処理内容によれば、計数信号が出力されるたびに、閾値'計数値設定部 32 Cにより設定された所定計数値に基づいて異種判別回数が計数される。このとき、異 種判別回数は、還元剤タンク 24の液体水位に応じた計数値で計数されるため、液体 の対流発生状態を考慮して計数を行なうことができる。また、車両が停車中であるとき には、計数値に対して 2以上の自然数を乗算した値に基づいて異種判別回数が計 数される。このため、還元剤タンク 24の液体に発生している対流は微弱であるか又は 対流が発生してしない状態では、計数値にいわゆる重み付けを行うことで、異種判別 精度を担保しつつ異種判別を短時間で確定することができる。さらに、計数信号が出 力されるたびに、異種判別の妥当性にかかわらず、バックアップカウンタに 1が加算さ れる。
[0032] 一方、正常判別信号が出力されたときには、液体は尿素水溶液である蓋然性が高 いので、異種判別回数の計数を初めからやり直すベぐ異種判別回数及びバックァ ップカウンタが夫々リセットされる。このため、異種水溶液でない蓋然性が高い状態で の異種判別回数の計数が進行せず、異種判別確定精度を向上させることができる。 異種判別確定部 32Eの処理内容を示す図 9において、ステップ 51では、異種判別 回数が確定閾値以上であるか否力 ^判定する。そして、異種判別回数が確定閾値 以上であればステップ 53へと進む一方 (Yes)、異種判別回数が確定閾値未満であ ればステップ 52へと進む(No)。
[0033] ステップ 52では、バックアップカウンタがバックアップ閾値以上であるか否かを判定 する。そして、バックアップカウンタがバックアップ閾値以上であればステップ 53へと
進む一方(Yes)、バックアップカウンタがバックアップ閾値未満であれば本処理を終 了する(No)。
ステップ 53では、異種判別確定信号を出力する。
[0034] かかる処理内容によれば、異種判別回数が確定閾値以上、又は、バックアップカウ ンタがバックアップ閾値以上になると、異種判別が確定され、異種判別が確定された ことを表わす異種判別確定信号が出力される。
即ち、還元剤タンク 24に貯蔵される液体に対流が発生していると、センサ 30のセラ ミックスヒータ 30Cで発生した熱が対流に乗って運ばれてしまうので、放熱特性と関 連する温度上昇特性が変化し、濃度測定精度が低下してしまう。しかし、センサ 30で 測定した尿素濃度を実測したところ、図 10に示すように、液体が正規な尿素水溶液 であれば、対流が発生していても尿素濃度が多数回連続して所定閾値を下回ること は極めて稀である事実を見出すことができた。
[0035] そこで、尿素濃度が所定閾値未満となったときに、液体は異種水溶液である蓋然性 が高いと判断し、異種判別回数を計数する一方、異種判別回数が確定閾値以上に なったときに異種判別を確定することで、車両状態の如何にかかわらず、異種判別を 高精度に行うことができる。このとき、異種判別の妥当性を判定し、その判別が妥当 であるときのみ異種判別回数を計数することで、液体に強レ、対流が発生してレ、る状 態での計数を禁止し、異種判別精度を向上させることができる。また、異種判別回数 の計数値及び確定閾値は、還元剤タンク 24の液体水位に応じて動的に設定される ため、これらを適切に設定することで、各水位における異種判別処理のチューニング が可能となり、異種判別精度を一層向上させることができる。さらに、バックアップカウ ンタがバックアップ閾値以上になると、異種判別回数の如何にかかわらず異種判別 が確定されるため、いつまでたっても異種判別が確定されないことを防止できる。
[0036] ところで、異種判別が妥当でないと判定されたときには、それ以前の異種判別回数 の計数処理において、液体判別が困難である状態での計数が行われたおそれがあ る。このため、次に示す計数減算処理をさらに実行することで、異種判別精度を一層 向上させることができる。なお、計数減算処理は、図 6に示す処理内容と妥当性判定 に係る処理が同一なので、これに組み込むようにしてもょレ、。
[0037] 第 3の計数処理としての計数減算処理を示す図 11において、ステップ 61では、異 種判別信号が出力されているか否力を判定する。そして、異種判別信号が出力され ていればステップ 62へと進む一方 (Yes)、異種判別信号が出力されていなければ 本処理を終了する(No)。
ステップ 62では、計数値として 0を設定する。
[0038] ステップ 63では、センサ 30からの温度信号に基づいて、セラミックスヒータ 30Cの 作動直前における液体温度が所定温度以上であるか否かを判定する。そして、液体 温度が所定温度以上であればステップ 65へと進む (Yes)。一方、液体温度が所定 温度未満であればステップ 64へと進み(No)、計数値から所定値 mを減算する。
1
ステップ 65では、センサ 30からの温度信号に基づいて、セラミックスヒータ 30Cの 作動に伴う温度変化率が所定変化率以下であるか否かを判定する。そして、温度変 化率が所定変化率以下であればステップ 67へと進む (Yes)。一方、温度変化率が 所定変化率より大であればステップ 66へと進み(No)、計数値から所定値 mを減算
2 する。
[0039] ステップ 67では、センサ 30からの濃度信号に基づいて、尿素濃度が所定濃度以上 であるか否かを判定する。そして、尿素濃度が所定濃度以上であればステップ 69へ と進む (Yes)。一方、尿素濃度が所定濃度未満であればステップ 68へと進み(No) 、計数値から所定値 mを減算する。
3
ステップ 69では、センサ 30からの濃度信号に基づいて、濃度偏差が所定偏差以下 であるか否かを判定する。そして、濃度偏差が所定偏差以下であればステップ 71へ と進む (Yes)。一方、濃度偏差が所定偏差より大であればステップ 70へと進み(No) 、計数値から所定値 mを減算する。
4
[0040] ステップ 71では、計数値が 0でないか否か、要するに、異種判別が妥当でないか否 かを判定する。そして、計数値が 0でなければステップ 72へと進む一方 (Yes)、計数 値が 0であれば本処理を終了する(No)。
ステップ 72では、計数信号を出力する。
力、かる計数減算処理によれば、異種判別が妥当でないと判定されると、異種判別 回数力 所定回数を減算するための計数信号が出力されるので、液体判別が困難
である状態での計数がキャンセルされ、判別精度を向上させることができる。
[0041] なお、図 9に示す異種判別確定部 32Eの処理において、異種判別確定信号が出 力されたときに、その旨を車両運転者に報知すベぐブザー,警告灯などの警報器を 作動させるようにしてもよい。ここで、警報器を作動させる処理が、第 1及び第 2の警 報処理に夫々該当する。このようにすれば、車両運転者は、還元剤タンク 24に尿素 水溶液でない液体が入っていることを早期に把握でき、例えば、交換などの適切な 処理をとることで、排気浄化装置としての機能を発揮させることができる。
[0042] また、エンジン 10を停止したときに、異種判別回数を EEPROM (Electrically Erasa ble Programmable Read Only Memory)などの不揮発性メモリに書き込む一方、ェン ジン 10を始動したときに、不揮発性メモリから異種判別回数を読み出すようにしても よレ、。このようにすれば、エンジン 10の始動前の異種判別回数が引き継がれるので、 エンジン 10を始動するだびに計数処理を初め力も行う必要がなぐ短時間で異種判 別を確定することができる。ここで、不揮発性メモリに対して異種判別回数を書き込む 処理及び読み出す処理が、回数書込処理及び回数読出処理に夫々該当する。
[0043] 従って、移動車両に対して、放熱特性から尿素濃度を間接的に測定するセンサを 搭載しても、液体が異種水溶液であるか否かを高精度に判別することができる。 なお、本実施形態においては、還元剤タンク 24に貯蔵される液体の水位,濃度及 び温度を測定するために、水位測定装置,濃度測定装置及び温度測定装置が一体 化されたセンサ 30を使用したが、公知の水位計,濃度計及び温度計などを使用して 水位,尿素濃度及び液体温度を夫々測定するようにしてもよい。また、本実施形態に おいては、液体水位に応じて確定閾値及びバックアップ閾値の少なくとも一方を設定 したり、液体水位に応じてこれらを連続的に設定するようにしてもよい。
[0044] さらに、本発明は、液体還元剤前駆体として尿素水溶液を使用するものに限らず、 N〇x還元触媒における N〇x浄化反応に応じて、アンモニアや炭化水素を主成分と する軽油,ガソリン,灯油などを使用するものにも適用可能である。
Claims
[1] 液体還元剤又はその前駆体を貯蔵する還元剤タンクと、
前記還元剤タンクの液体還元剤又はその前駆体を使用して排気中の窒素酸化物 を還元浄化する還元触媒と、
前記還元剤タンクの液体還元剤又はその前駆体の水位を測定する水位測定装置 と、
前記還元剤タンクに配設された発熱体を所定時間作動させ、該発熱体の温度上昇 特性から液体還元剤又はその前駆体の濃度を測定する濃度測定装置と、
コンピュータを内蔵したコントロールユニットと、
を含んで構成され、
前記コントロールユニットが、
前記濃度測定装置により測定された濃度が所定閾値未満であるときに、前記液体 還元剤又はその前駆体は還元剤として機能しない異種水溶液であると判別する異種 判別処理と、
前記異種判別処理により液体還元剤又はその前駆体が異種水溶液であると判別し たときに、前記発熱体の温度及び温度変化率、並びに、前記濃度測定装置により測 定された濃度に基づいて、前記異種判別が妥当であるか否力、を判定する妥当性判 定処理と、
前記妥当性判定処理により異種判別が妥当であると判定したときに、所定計数値 に基づいて異種判別回数を計数する第 1の計数処理と、
前記第 1の計数処理により計数した異種判別回数が第 1の所定回数以上になった ときに、前記異種判別を確定する第 1の異種判別確定処理と、
前記水位測定装置により測定された水位に基づいて、前記所定計数値及び第 1の 所定回数の少なくとも一方を動的に設定する第 1の設定処理と、
を実行することを特徴とするエンジンの排気浄化装置。
[2] 前記第 1の設定処理は、前記水位が低くなるにつれて、前記所定計数値を徐々に 小さく設定することを特徴とする請求項 1記載のエンジンの排気浄化装置。
[3] 前記第 1の設定処理は、前記水位が低くなるにつれて、前記第 1の所定回数を徐
々に大きく設定することを特徴とする請求項 1記載のエンジンの排気浄化装置。
[4] 前記コントロールユニットが、前記異種判別処理により液体還元剤又はその前駆体 が異種水溶液でないと判別したときに、前記異種判別回数をリセットするリセット処理 をさらに実行することを特徴とする請求項 1記載のエンジンの排気浄化装置。
[5] 前記妥当性判定処理は、前記発熱体の作動直前における温度が所定温度以上、 前記発熱体の作動に伴う温度変化率が所定変化率以下、前記濃度が前記所定閾 値よりも小さい所定濃度以上、かつ、前回測定した濃度と今回測定した濃度との偏差 が所定偏差以下であるときに、前記異種判別は妥当であると判定することを特徴とす る請求項 1記載のエンジンの排気浄化装置。
[6] 前記コントロールユニットが、前記第 1の異種判別確定処理により異種判別を確定 したときに、警報器を作動させる第 1の警報処理をさらに実行することを特徴する請 求項 1記載のエンジンの排気浄化装置。
[7] 前記コントロールユニットが、
前記異種判別処理により液体還元剤又はその前駆体が異種水溶液であると連続し て判別された回数を計数する第 2の計数処理と、
前記第 2の計数処理により計数した回数が前記第 1の所定回数より大きな第 2の所 定回数以上になったときに、前記異種判別を確定する第 2の異種判別確定処理と、 をさらに実行することを特徴とする請求項 1記載のエンジンの排気浄化装置。
[8] 前記コントロールユニットが、前記水位測定装置により測定された水位に基づいて、 前記第 2の所定回数を動的に設定する第 2の設定処理をさらに実行することを特徴と する請求項 7記載のエンジンの排気浄化装置。
[9] 前記第 2の設定処理は、前記水位が所定水位より低くなつたときに、前記第 2の所 定回数を無限大に設定することを特徴とする請求項 8記載のエンジンの排気浄化装 置。
[10] 前記コントロールユニットが、前記第 2の異種判別確定処理により異種判別を確定 したときに、警報器を作動させる第 2の警報処理をさらに実行することを特徴とする請 求項 7記載のエンジンの排気浄化装置。
[11] 前記コントロールユニットが、車両が走行中であるか停車中であるかを判定する車
両状態判定処理をさらに実行し、
前記第 1の計数処理は、前記車両状態判定処理により車両が停車中であると判定 したときに、前記所定計数値に 2以上の自然数を乗算した値に基づいて異種判別回 数を計数することを特徴とする請求項 1記載のエンジンの排気浄化装置。
[12] エンジンの回転速度を検出する回転速度検出装置と、
車速を検出する車速検出装置と、
を備え、
前記車両状態判定処理は、前記回転速度検出装置により検出された回転速度が 第 1の所定値以下、かつ、前記車速検出装置により検出された車速が第 2の所定値 以下であるときに、前記車両が停車中であると判定する一方、その他のときに、前記 車両が走行中であると判定することを特徴とする請求項 11記載のエンジンの排気浄 化装置。
[13] 前記コントロールユニットが、前記妥当性判定処理により異種判別が妥当でないと 判定したときに、前記異種判別回数から所定回数を減算する第 3の計数処理をさら に実行することを特徴とする請求項 1記載のエンジンの排気浄化装置。
[14] 前記コントロールユニットが、
エンジン停止時に、前記異種判別回数を不揮発性メモリに書き込む回数書込処理 と、
エンジン始動時に、前記不揮発性メモリから異種判別回数を読み出す回数読出処 理と、
をさらに実行することを特徴とする請求項 1記載のエンジンの排気浄化装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07767986.8A EP2072772B1 (en) | 2006-10-12 | 2007-07-02 | Engine exhaust cleaner |
CN2007800378526A CN101535608B (zh) | 2006-10-12 | 2007-07-02 | 发动机的排气净化装置 |
US12/422,139 US8069649B2 (en) | 2006-10-12 | 2009-04-10 | Exhaust emission purifying apparatus for engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-278242 | 2006-10-12 | ||
JP2006278242A JP4799358B2 (ja) | 2006-10-12 | 2006-10-12 | エンジンの排気浄化装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/422,139 Continuation US8069649B2 (en) | 2006-10-12 | 2009-04-10 | Exhaust emission purifying apparatus for engine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008044377A1 true WO2008044377A1 (en) | 2008-04-17 |
Family
ID=39282587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/063211 WO2008044377A1 (en) | 2006-10-12 | 2007-07-02 | Engine exhaust cleaner |
Country Status (5)
Country | Link |
---|---|
US (1) | US8069649B2 (ja) |
EP (1) | EP2072772B1 (ja) |
JP (1) | JP4799358B2 (ja) |
CN (1) | CN101535608B (ja) |
WO (1) | WO2008044377A1 (ja) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4498983B2 (ja) * | 2005-06-10 | 2010-07-07 | Udトラックス株式会社 | 液体還元剤判別装置 |
JP4925890B2 (ja) * | 2007-03-29 | 2012-05-09 | Udトラックス株式会社 | 液体還元剤判別装置及びエンジンの排気浄化装置 |
JP5197345B2 (ja) | 2008-12-22 | 2013-05-15 | ボルボ パワートレイン アーベー | 排気浄化装置及び水位測定装置 |
DE102009001736A1 (de) * | 2009-03-23 | 2010-09-30 | Robert Bosch Gmbh | Verfahren zum Betrieb eines SCR-Katalysators |
JP5585125B2 (ja) * | 2010-02-26 | 2014-09-10 | いすゞ自動車株式会社 | 尿素品質診断システム |
JP2011220232A (ja) * | 2010-04-09 | 2011-11-04 | Ud Trucks Corp | エンジンの排気浄化装置 |
JP5671839B2 (ja) * | 2010-05-17 | 2015-02-18 | いすゞ自動車株式会社 | 尿素品質診断システム |
WO2011159752A2 (en) | 2010-06-15 | 2011-12-22 | Shaw Development, Llc | Tank module interface for fluid reservoirs |
US8822887B2 (en) | 2010-10-27 | 2014-09-02 | Shaw Arrow Development, LLC | Multi-mode heater for a diesel emission fluid tank |
US9212582B2 (en) * | 2010-12-27 | 2015-12-15 | Bosch Corporation | Exhaust gas purification system and method for controlling the same |
FR2972490B1 (fr) * | 2011-03-10 | 2013-04-12 | Peugeot Citroen Automobiles Sa | Procede d'alerte de la defaillance d'un systeme de reduction catalytique selective pour la reduction d'oxydes d'azote et systeme scr |
SE537849C2 (sv) * | 2011-09-22 | 2015-11-03 | Scania Cv Ab | Förfarande och system för att bestämma behov av översyn av en doseringsenhet i ett SCR-system |
DE112013002497T5 (de) * | 2012-06-07 | 2015-01-29 | Cummins, Inc. | Verfahren zur Veranlassung einer Wartung eines SCR-Nachbehandlungssystems |
US9488368B2 (en) * | 2013-08-01 | 2016-11-08 | Ssi Technologies, Inc. | Defrosting a sensor in a vehicle system |
FR3013073B1 (fr) * | 2013-11-08 | 2016-01-15 | Continental Automotive France | Procede permettant de determiner si un injecteur est dans un etat bloque |
USD729722S1 (en) | 2014-05-28 | 2015-05-19 | Shaw Development LLC | Diesel emissions fluid tank floor |
USD729141S1 (en) | 2014-05-28 | 2015-05-12 | Shaw Development LLC | Diesel emissions fluid tank |
US9845717B2 (en) * | 2014-10-28 | 2017-12-19 | Ford Global Technologies, Llc | Systems and methods for managing diesel exhaust fluid stratification |
KR101807038B1 (ko) | 2016-07-25 | 2017-12-08 | 현대자동차 주식회사 | 요소수 레벨 측정값 보정, 표시 및 히터 작동 방법 및 장치 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002527660A (ja) * | 1998-10-13 | 2002-08-27 | クリーン ディーゼル テクノロジーズ インコーポレーテッド | 選択的触媒作用による軽減のための温度制御尿素注入によるエンジンからのNOx放出物の軽減 |
JP2002371831A (ja) * | 2001-06-13 | 2002-12-26 | Nissan Diesel Motor Co Ltd | 自動車の排ガス浄化装置 |
JP2003529011A (ja) * | 1999-06-09 | 2003-09-30 | クリーン ディーゼル テクノロジーズ インコーポレーテッド | 選択的接触還元による、エンジンからのNOx排気の減少を保証するための方法及び組成物 |
JP2005127262A (ja) * | 2003-10-27 | 2005-05-19 | Nissan Diesel Motor Co Ltd | 液体判別装置 |
JP2006125322A (ja) * | 2004-10-29 | 2006-05-18 | Nissan Diesel Motor Co Ltd | 液体還元剤判別装置 |
JP2006144657A (ja) * | 2004-11-19 | 2006-06-08 | Nissan Diesel Motor Co Ltd | 排気浄化装置の液体還元剤判別システム |
JP2006177317A (ja) * | 2004-12-24 | 2006-07-06 | Nissan Diesel Motor Co Ltd | エンジンの排気浄化装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3687917B2 (ja) * | 2003-10-31 | 2005-08-24 | 日産ディーゼル工業株式会社 | 液体還元剤の濃度及び残量検出装置 |
-
2006
- 2006-10-12 JP JP2006278242A patent/JP4799358B2/ja active Active
-
2007
- 2007-07-02 CN CN2007800378526A patent/CN101535608B/zh not_active Expired - Fee Related
- 2007-07-02 WO PCT/JP2007/063211 patent/WO2008044377A1/ja active Application Filing
- 2007-07-02 EP EP07767986.8A patent/EP2072772B1/en not_active Not-in-force
-
2009
- 2009-04-10 US US12/422,139 patent/US8069649B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002527660A (ja) * | 1998-10-13 | 2002-08-27 | クリーン ディーゼル テクノロジーズ インコーポレーテッド | 選択的触媒作用による軽減のための温度制御尿素注入によるエンジンからのNOx放出物の軽減 |
JP2003529011A (ja) * | 1999-06-09 | 2003-09-30 | クリーン ディーゼル テクノロジーズ インコーポレーテッド | 選択的接触還元による、エンジンからのNOx排気の減少を保証するための方法及び組成物 |
JP2002371831A (ja) * | 2001-06-13 | 2002-12-26 | Nissan Diesel Motor Co Ltd | 自動車の排ガス浄化装置 |
JP2005127262A (ja) * | 2003-10-27 | 2005-05-19 | Nissan Diesel Motor Co Ltd | 液体判別装置 |
JP3687915B2 (ja) | 2003-10-27 | 2005-08-24 | 日産ディーゼル工業株式会社 | 液体判別装置 |
JP2006125322A (ja) * | 2004-10-29 | 2006-05-18 | Nissan Diesel Motor Co Ltd | 液体還元剤判別装置 |
JP2006144657A (ja) * | 2004-11-19 | 2006-06-08 | Nissan Diesel Motor Co Ltd | 排気浄化装置の液体還元剤判別システム |
JP2006177317A (ja) * | 2004-12-24 | 2006-07-06 | Nissan Diesel Motor Co Ltd | エンジンの排気浄化装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2072772A4 |
Also Published As
Publication number | Publication date |
---|---|
JP4799358B2 (ja) | 2011-10-26 |
EP2072772A1 (en) | 2009-06-24 |
CN101535608A (zh) | 2009-09-16 |
CN101535608B (zh) | 2011-11-23 |
EP2072772B1 (en) | 2014-08-20 |
US8069649B2 (en) | 2011-12-06 |
US20090193793A1 (en) | 2009-08-06 |
JP2008095601A (ja) | 2008-04-24 |
EP2072772A4 (en) | 2013-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008044377A1 (en) | Engine exhaust cleaner | |
EP1900915B1 (en) | Device for judging liquid reducing agent | |
EP1811144B1 (en) | Exhaust gas purification apparatus | |
US7587288B2 (en) | Condition discriminating apparatus for liquid reducing agent | |
US9188042B2 (en) | Urea quality diagnosis system | |
JP2005133541A (ja) | エンジンの排気浄化装置 | |
WO2005040567A1 (ja) | 液体判別装置及び液体判別方法 | |
CN110637148B (zh) | 用于控制后处理系统中的流量分布的系统和方法 | |
JP4925890B2 (ja) | 液体還元剤判別装置及びエンジンの排気浄化装置 | |
JP6044867B2 (ja) | 内燃機関の排ガス浄化装置 | |
KR100992816B1 (ko) | 디젤차량에서 후처리 시스템의 암모니아 저장량 보정장치 및 방법 | |
EP2031202B1 (en) | Exhaust emission purifying apparatus for engine | |
JP5671839B2 (ja) | 尿素品質診断システム | |
JPWO2013042189A1 (ja) | 内燃機関の排気浄化装置 | |
JP4884270B2 (ja) | エンジンの排気浄化装置 | |
JP4832326B2 (ja) | エンジンの排気浄化装置 | |
WO2006054457A1 (ja) | 液体還元剤の状態判別装置及び濃度検出装置 | |
JP4725743B2 (ja) | エンジンの排気浄化装置 | |
JP2009281952A (ja) | NOxセンサの異常判定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780037852.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07767986 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007767986 Country of ref document: EP |