WO2006054457A1 - 液体還元剤の状態判別装置及び濃度検出装置 - Google Patents

液体還元剤の状態判別装置及び濃度検出装置 Download PDF

Info

Publication number
WO2006054457A1
WO2006054457A1 PCT/JP2005/020423 JP2005020423W WO2006054457A1 WO 2006054457 A1 WO2006054457 A1 WO 2006054457A1 JP 2005020423 W JP2005020423 W JP 2005020423W WO 2006054457 A1 WO2006054457 A1 WO 2006054457A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
liquid reducing
concentration
tank
state determination
Prior art date
Application number
PCT/JP2005/020423
Other languages
English (en)
French (fr)
Inventor
Kiminobu Hirata
Tomoyasu Harada
Original Assignee
Nissan Diesel Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Diesel Motor Co., Ltd. filed Critical Nissan Diesel Motor Co., Ltd.
Publication of WO2006054457A1 publication Critical patent/WO2006054457A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • Liquid reducing agent state discrimination device and concentration detection device Liquid reducing agent state discrimination device and concentration detection device
  • the present invention relates to a state determination device and a concentration detection device for a liquid reducing agent, and more particularly, to a liquid used in an exhaust purification device for an in-vehicle engine that employs selective catalytic reduction.
  • the present invention relates to a technique for determining whether a reducing agent is appropriate or not with high reliability under use of a vehicle.
  • the following exhaust gas purification device that employs SCR is known to reduce nitrogen oxides (hereinafter referred to as “NOx”) discharged from an engine by post-processing.
  • NOx nitrogen oxides
  • the liquid reducing agent is stored in a tank in a liquid state at room temperature, and a required amount corresponding to the operating state of the engine is injected from the injection nozzle.
  • reaction component ammonia having a good reactivity with NOx is used, and as the liquid reducing agent, urea water, ammonia water, or hydrocarbon that can easily generate ammonia by hydrolysis using water vapor in the exhaust gas.
  • liquid reducing agents such as a system are used (Patent Document 1).
  • Patent Document 1 Japanese Application Publication No. 2000-027627
  • the amount of applied force of the liquid reducing agent is controlled according to the operating state of the engine, such as the amount of NOx discharged or the exhaust temperature.
  • the concentration of the liquid reducing agent is different from the specified value, the following will be a problem.
  • the concentration of the liquid reducing agent is lower than the specified value, the reduction reaction on the catalyst does not proceed well, and NOx emission increases due to insufficient purification of NOx.
  • this concentration is higher than the specified value, unreacted ammonia is released into the atmosphere due to excessive supply of ammonia.
  • a liquid reducing agent concentration sensor is installed in the tank. The amount of liquid reducing agent added is controlled based on the concentration of the liquid reducing agent detected by the concentration sensor. If a concentration different from the specified value is detected, a warning to the driver and system It is possible to take measures such as stopping.
  • the present applicant is considering the adoption of a liquid reducing agent concentration sensor that detects the concentration of the liquid reducing agent based on the thermal characteristics of the liquid reducing agent.
  • thermal concentration sensor on a vehicle has the following problems due to its measurement principle.
  • the liquid reducing agent in the tank is shaken by vibration due to running, the liquid reducing agent is agitated, causing variations in its thermal characteristics and increasing measurement errors. Therefore, in order to obtain an accurate concentration, it is desirable to determine whether the liquid reducing agent is in a stable state without shaking, and to detect the concentration under a stable state. If the concentration detection is performed only under such a stable state, the detection opportunities are not always secured with sufficient frequency.
  • the present invention determines the state of the liquid reducing agent regardless of the shaking of the liquid reducing agent in the tank, and sufficiently determines whether or not the liquid reducing agent being used is appropriate.
  • An object of the present invention is to provide a liquid reductant state discriminating apparatus which can discriminate at an appropriate frequency.
  • Another object of the present invention is to provide a concentration detection device capable of detecting the concentration of the liquid reducing agent stored in the tank regardless of the shaking of the liquid reducing agent in the tank.
  • an apparatus for determining a state of a liquid reducing agent transported from a tank is provided.
  • This device is installed in the transport path of the liquid reducing agent that extends from the tank, generates a detection signal corresponding to the thermal characteristics of the liquid reducing agent that flows through this transport path, and the liquid flowing through this transport path.
  • the flow rate of the reducing agent is detected, and based on the generated detection signal and the detected flow rate, it is determined whether or not the concentration of the liquid reducing agent is outside the predetermined normal range.
  • a corresponding liquid reducing agent state determination signal is generated.
  • an apparatus for detecting the concentration of a liquid reducing agent transported from a tank is provided.
  • This device is installed in the transport path of the liquid reducing agent that extends from the tank.
  • the detection signal is generated according to the thermal characteristics of the liquid reducing agent flowing through this transport path, and the flow rate of the liquid reducing agent flowing through this transport path is detected, and the generated detection signal and the detected flow rate are Based on this, the concentration of the liquid reducing agent stored in the tank is estimated and calculated. Based on the concentration of the liquid reducing agent detected by this apparatus, it can be determined whether or not the liquid reducing agent used is appropriate.
  • liquid reducing agent state determination device and the concentration detection device according to the present invention can be suitably applied to an exhaust gas purification device for an in-vehicle engine.
  • the concentration of the liquid reducing agent is out of the normal range based on the thermal characteristics of the liquid reducing agent flowing through the transport path and the flow rate of the liquid reducing agent flowing through the transport path. It was decided to calculate or estimate the concentration of the liquid reducing agent stored in the tank. In the transport route, the variation in the thermal characteristics of the liquid reducing agent with respect to external vibration input such as running vibration is smaller than in the tank. For this reason, regardless of whether or not the liquid reducing agent is shaken in the tank, the concentration of the liquid reducing agent is evaluated or detected to determine whether the liquid reducing agent being used is appropriate. It can be determined with reliability.
  • FIG. 1 shows the configuration of an exhaust emission control device for an engine according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a state determination routine according to the embodiment.
  • FIG. 4 is a flowchart of an addition control routine according to the embodiment.
  • E ... Engine, 1 ... Oxidation catalyst, 2 to Nx purification catalyst, 3 ... Ammonia purification catalyst, 4 ... Injection nozzle, 5 ... Addition device, 6, 7 ... Exhaust temperature sensor, 8 ... Engine electronics Controller unit, 9 ... Electronic control unit of addition device, 10 ... tank, 11 ... urea water supply pipe, 12 ... concentration sensor.
  • FIG. 1 shows a configuration of an exhaust emission control device for an engine according to an embodiment of the present invention.
  • Engine E is a diesel engine, which is mounted on a carryover type truck.
  • the following exhaust purification system is installed in the exhaust system of engine E.
  • This exhaust purification device includes an oxidation catalyst 1, a NOx purification catalyst 2, and an ammonia purification catalyst 3 which are installed in this order from the upstream side in the exhaust passage.
  • the NOx purification catalyst 2 is a reduction catalyst, and more upstream than this, the injection nozzle 4 is installed between the oxidation catalyst 1 and the NOx purification catalyst 2 in this embodiment. Liquid reducing agent is injected by the injection nozzle 4 and added to the exhaust gas.
  • An addition device 5 having a built-in control valve for supplying a required amount of liquid reducing agent according to the operating state of the engine E to the injection nozzle 9 is provided, and an electronic control unit for controlling the addition device 5 ( (Hereinafter referred to as “ECU”)) 9 is provided.
  • ECU electronice control unit for controlling the addition device 5
  • exhaust temperature sensors 6 and 7 are installed upstream of the NOx purification catalyst 2 and downstream of the ammonia purification catalyst 3
  • an electronic control unit 8 of the engine E is provided to detect the NOx detected by the exhaust temperature sensors 6 and 7.
  • the exhaust temperature before and after purification, the engine speed (calculated by the electronic control unit 8 of the engine E based on the signal from the crank angle sensor, etc.) and the like are input to the ECU 9.
  • the ECU 9 controls the adding device 5 based on various types of input information.
  • urea water is adopted as the liquid reducing agent in consideration of ease of storage on the vehicle.
  • This urea water is a solid or powdered aqueous solution of urea and is stored in the tank 10 in a liquid state at room temperature.
  • urea water is injected into exhaust gas, it is hydrolyzed by water vapor in the exhaust gas to generate ammonia.
  • NOx in the exhaust gas undergoes a reduction reaction with this ammonia at the NOx purification catalyst 2, and is decomposed into water and a harmless gas (here, nitrogen).
  • other liquid reducing agents such as aqueous ammonia or hydrocarbons are used as liquid reducing agents.
  • a thermal concentration sensor 12 is installed in a urea water supply pipe 11 for transporting urea water from the tank 10 to the adding device 5.
  • FIG. 2 shows the inside of the urea water supply pipe 11 in a cross section by a plane perpendicular to the central axis of the pipe 11.
  • the concentration sensor 12 has a sensor element 121 and a heater element 122 built into the main body, and this body is fixed to the pipe wall of the urea water supply pipe 11.
  • a first fin 123 that contacts the sensor element 121 and a second fin 124 that contacts the heater element 122 pass through the main body (and the tube wall) and protrude into the space in the urea water supply pipe 11.
  • the concentration sensor 12 supplies a driving current to the heater element 122 to detect the electric resistance of the sensor element 121 when the heater element 122 generates heat, and this is detected signal (urea) according to the heat transfer characteristics of urea water.
  • the concentration of water is output to ECU9 as).
  • the sensor element 121 has a characteristic that the physical property (in this case, the electric resistance) changes according to the temperature.
  • the concentration sensor 12 energizes the heater element 122 with a drive current for a predetermined time and stops energization.
  • the electrical resistance of the sensor element 121 at the time is detected and a detection signal is generated.
  • the case where the heat transfer characteristic between two different points in the urea water supply pipe 11 is adopted as the thermal characteristic of the urea water will be described as an example.
  • the sensor element and the heater element By contacting the same fin with each other, it is possible to generate a detection signal corresponding to the heat dissipation characteristics from one fin.
  • the ECU 9 has a function as a urea water state determination device (or concentration detection device).
  • a concentration sensor 12 is installed in the middle of a urea water supply pipe 11 for transporting urea water stored in the tank 10, and the concentration sensor 12 makes two different points in the urea water supply pipe 11. A detection signal corresponding to the heat transfer characteristics between the two is generated. This detection signal correlates with the concentration of urea water serving as a heat transfer medium, and based on this, the concentration of urea water can be detected, but it flows into the urea water in the urea water supply pipe 11. For this reason, if the detection signal of the density sensor 12 is directly converted into a density, an error occurs in the density as a detection result.
  • the concentration sensor 12 Based on this detection signal and the flow rate of urea water, the concentration of urea water is calculated, and it is determined whether or not this concentration is within a specified normal range. Alternatively, it may be determined whether or not the measured value (that is, the magnitude of the electrical resistance) indicated by the detection signal of the concentration sensor 12 is in a normal range corresponding to the flow rate of the urea water.
  • a map in which data is collected in advance through experiments or the like, the correction concentration for each flow velocity is set for the detection signal of the concentration sensor 12, and the detection signal is associated with the correction concentration for each flow velocity.
  • Data is created and stored in the memory provided in ECU9.
  • the map data is referred to by the actually obtained detection signal, the correction density corresponding to the flow velocity is read, and the power of this density within the specified normal range is determined.
  • a normal range related to the concentration of urea water is set in advance for each flow rate by collecting data. For example, by setting the upper and lower limit values that define the normal range and storing them in the memory provided in the ECU 9, the capacity of this memory can be saved. All values that can be included in the normal range may be stored.
  • the present invention is applied to the urea water state determination device.
  • the present invention is not limited to this, and it is possible to apply the present invention to a concentration detection device.
  • FIG. 3 is a flowchart of the state determination routine. This routine is started by the ECU 9 when the power switch is turned on by the ignition key, and is repeated every predetermined time.
  • the injection amount of the liquid reducing agent at the time of actual measurement is read.
  • the injection command value of the ECU 9 for the addition device 5 for example, this injection amount (for example, In this case, the target injection amount) is adopted.
  • the flow rate Y of urea water in the urea water supply pipe 11 is calculated.
  • the flow velocity Y can be calculated by dividing the injection amount of the liquid reducing agent by [m 3 / s] by the cross-sectional area [m 2 ] of the urea water supply pipe 11.
  • the concentration of urea water corresponding to the measured value X is read under the flow velocity Y.
  • This data D is obtained by flowing urea water of different concentrations through the urea water supply pipe 11 under several known flow rates, and storing the measured values obtained for each concentration as map data. is there. Therefore, the actual concentration can be read by searching the data D with the measured value X and the flow velocity Y.
  • the concentration of the urea water is within a normal range indicating that the urea water is appropriate, and the determination result is output.
  • the upper and lower limit values that define the normal range are stored in advance, and the read density is determined by comparing with the upper and lower limit values.
  • a normal determination flag is set to indicate the determination result, and when it is not in the normal range, an abnormality determination flag is set.
  • the deviation of the concentration from the normal range is when the aqueous urea solution is diluted with water or stored in the tank 10 and the aqueous solution is a different aqueous solution other than the aqueous urea solution. Arise. Further, it occurs when the remaining amount of urea water is less than a predetermined amount (including the case where the tank 10 is empty) due to the detection principle of the concentration sensor 11 adopting thermal characteristics.
  • the determination result is stored in a memory such as a RAM.
  • Data D may be a value that defines a normal range related to concentration (for example, upper and lower limit values, or all values that can be included in the normal range) for each flow rate.
  • data D is created by evaluating the range of measurement values obtained when an appropriate liquid reducing agent is passed through the urea water supply pipe 11 for each flow velocity. For example, from the measurement value data collected for each flow rate, the measurement value obtained for the appropriate urea solution can be extracted and included in the upper and lower limits of the normal range where this measurement value falls, or included in this normal range Determine all values and store for each flow velocity.
  • the detection error of the density sensor 12 it is preferable to consider the detection error of the density sensor 12. The processing flow in this case is the same as the flowchart shown in FIG.
  • the normal determination flag is set when it is within the normal range, and the abnormality determination flag is set when it is not within the normal range, as described above.
  • FIG. 4 is a flowchart showing an example of the supplementary calorie control routine.
  • the ECU 9 sets the injection amount of urea water from the injection nozzle 4 based on the fuel injection amount of the engine E (S22, 23).
  • the concentration of urea water is detected by the state determination routine (Fig. 3)
  • the detected concentration of urea water is reflected in the injection amount setting.
  • the concentration of urea water is high, the amount of ammonia generated per unit injection amount is large, so a decrease correction is applied to the basic injection amount calculated based on the fuel injection amount.
  • the ECU 9 causes the adding device 5 to inject an amount of urea water corresponding to the fuel injection amount of engine E, etc., when the normal determination flag is set. (S24).
  • the addition device 5 is prohibited from adding urea water (S25) and the cab A warning device (not shown) provided on the control panel is activated (S26).
  • a signal may be transmitted to the electronic control unit 8 of the engine E so that the operation of the engine E is limited (for example, limited to a low speed and low load range).
  • the concentration of urea water is calculated based on the thermal characteristics of urea water flowing through the urea water supply pipe 11 and the flow rate of urea water, and this is normal. It was decided to judge whether it was out of range.
  • the urea water supply pipe 11 since the flow rate is controlled by the ECU 9, the heat of urea water with respect to the excitation input from outside the tank 10 such as traveling vibration or vibration of the engine E itself is compared with that in the tank 10. There is little variation in the mechanical characteristics. Therefore, it is possible to obtain an opportunity to evaluate or detect the concentration of urea water with a sufficient frequency regardless of whether it is running or stopped, and whether or not the urea water used is appropriate. It can be determined with high reliability.
  • the present invention is not limited to a diesel engine, but a liquid provided in a gasoline engine.
  • the present invention can also be applied to a reducing agent state determination device or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 使用されている液体還元剤が適正であるか否かを充分な頻度で判別する。  本発明は、タンクから輸送される液体還元剤の状態を判別する装置に関する。この装置は、タンクから延伸する輸送路を流れる液体還元剤の熱的特性に応じた検出信号を発生させるとともに、この輸送路を流れる液体還元剤の流速を検出し、発生させた検出信号及び検出した流速に基づいて、液体還元剤の濃度が所定の正常範囲外にあるか否かを判定し、この判定結果に応じた液体還元剤の状態判別信号を発生させる。                                                                                 

Description

明 細 書
液体還元剤の状態判別装置及び濃度検出装置
技術分野
[0001] 本発明は、液体還元剤の状態判別装置及び濃度検出装置に関し、詳細には、選 択触媒還元(Selective Catalytic Reduction)を採用した車載エンジンの排気浄化装 置において、使用されている液体還元剤が適正であるか否かを、車両使用下で高い 信頼性をもって判別するための技術に関する。
背景技術
[0002] エンジンから排出される窒素酸化物(以下「NOx」とレ、う。 )を後処理により低減する ものとして、 SCRを採用した次の排気浄化装置が知られている。このものは、排気系 に還元触媒を設置し、この還元触媒の上流で液体還元剤を噴射することで、排気中 の NOxとこの液体還元剤とを触媒上で還元反応させて、 NOxを無害成分に浄化す るものである。液体還元剤は、常温下で液体の状態でタンクに貯蔵され、エンジンの 運転状態に応じた必要量が噴射ノズルから噴射される。反応成分には、 NOxとの反 応性が良好なアンモニアが用いられ、液体還元剤には、排気中の水蒸気を利用した 加水分解によりアンモニアを容易に発生させ得る尿素水、アンモニア水、又は炭化 水素系等の他の液体還元剤が用いられる(特許文献 1)。
特許文献 1:日本国出願公開第 2000— 027627号公報
発明の開示
発明が解決しょうとする課題
[0003] このような液体還元剤を採用する排気浄化装置では、 NOxの排出量、又は排気温 度等のエンジンの運転状態に応じて液体還元剤の添力卩量を制御してレ、るが、液体還 元剤の濃度が規定値と異なると、次のことが問題となる。すなわち、液体還元剤の濃 度が規定値よりも低い場合は、触媒上での還元反応が良好に進行せず、 NOxの浄 化不充分により N〇xの排出量が増加することである。他方、この濃度が規定値よりも 高い場合は、アンモニアの過剰供給により未反応のアンモニアが大気中に放出され ることである。このような問題に対し、タンクに液体還元剤の濃度センサを設置し、この 濃度センサにより検出された液体還元剤の濃度に基づレ、て液体還元剤の添加量を 制御するとともに、規定値とは異なる濃度が検出された場合は、運転者への警告、及 びシステム停止等の対応をとることが考えられる。
[0004] ここで、本出願人は、液体還元剤の濃度センサとして、液体還元剤の熱的特性に 基づいてその濃度を検出するタイプのものの採用を検討している。
し力 ながら、このような熱式濃度センサを車上で使用することには、その測定原理 に起因した次のような問題がある。すなわち、走行による振動でタンク内の液体還元 剤に揺れが生じると、液体還元剤が攪拌されてその熱的特性にバラツキが生じ、測 定誤差が大きくなることである。このことから、正確な濃度を得るためには、液体還元 剤が揺れのない、安定した状態にあるかを判別し、安定した状態のもとで濃度の検出 を実施することが望まれるが、このような安定状態のもとでのみ濃度の検出を実施す ることとした場合は、検出の機会が充分な頻度で確保されるとは限らない。
[0005] このような実情に鑑み、本発明は、タンク内における液体還元剤の揺れに拘わらず 液体還元剤の状態を判別し、使用されている液体還元剤が適正であるか否かを充分 な頻度で判別することのできる液体還元剤の状態判別装置を提供することを目的と する。
また、本発明は、タンク内における液体還元剤の揺れに拘わらず、タンクに貯蔵さ れている液体還元剤の濃度を検出することのできる濃度検出装置を提供することを 目的とする。
課題を解決するための手段
[0006] 本発明の 1つの側面によれば、タンクから輸送される液体還元剤の状態を判別する 装置が提供される。この装置は、タンクから延伸する液体還元剤の輸送路に設置さ れ、この輸送路を流れる液体還元剤の熱的特性に応じた検出信号を発生させるとと もに、この輸送路を流れる液体還元剤の流速を検出し、発生させた検出信号及び検 出した流速に基づレ、て、液体還元剤の濃度が所定の正常範囲外にあるか否力を判 定し、この判定結果に応じた液体還元剤の状態判別信号を発生させるものである。
[0007] また、本発明の他の側面によれば、タンクから輸送される液体還元剤の濃度を検出 する装置が提供される。この装置は、タンクから延伸する液体還元剤の輸送路に設 置され、この輸送路を流れる液体還元剤の熱的特性に応じた検出信号を発生させる とともに、この輸送路を流れる液体還元剤の流速を検出し、発生させた検出信号及 び検出した流速に基づレ、て、タンクに貯蔵されてレ、る液体還元剤の濃度を推定演算 するものである。この装置により検出された液体還元剤の濃度に基づいて、使用され ている液体還元剤が適正であるか否かを判定することができる。
[0008] 本発明に係る液体還元剤の状態判別装置及び濃度検出装置は、車載エンジンの 排気浄化装置において、好適に適用することができる。
発明の効果
[0009] 本発明によれば、輸送路を流れる液体還元剤の熱的特性と、この輸送路を流れる 液体還元剤の流速とに基づいて、液体還元剤の濃度が正常範囲外にあるか否かを 判定し、又はタンクに貯蔵されている液体還元剤の濃度を推定演算することとした。 輸送路では、タンク内におけるのと比較して、走行振動等の外部からの加振入力に 対する液体還元剤の熱的特性のバラツキが小さい。このため、タンク内で液体還元 剤に揺れが生じているか否かに拘わらず、液体還元剤の濃度を評価又は検出して、 使用されている液体還元剤が適正であるか否かを、高い信頼性をもって判別すること ができる。
[0010] 本発明に関する他の目的及び特徴は、添付の図面を参照した以下の説明により理 角军すること力 Sできる。
優先権主張の基礎となる日本国特許出願第 2004— 335446号の内容は、本願の 一部として組み込まれ、参照される。
図面の簡単な説明
[0011] [図 1]本発明の一実施形態に係るエンジンの排気浄化装置の構成
[図 2]同上実施形態に係る濃度センサの構成
[図 3]同上実施形態に係る状態判別ルーチンのフローチャート
[図 4]同上実施形態に係る添加制御ルーチンのフローチャート
符号の説明
[0012] E…エンジン、 1…酸化触媒、 2〜N〇x浄化触媒、 3…アンモニア浄化触媒、 4…噴 射ノズル、 5…添加装置、 6, 7…排気温度センサ、 8…エンジンの電子制御ユニット、 9…添加装置の電子制御ユニット、 10…タンク、 11…尿素水供給管、 12…濃度セン サ。
発明を実施するための最良の形態
[0013] 以下に図面を参照して、本発明の実施の形態について説明する。
図 1は、本発明の一実施形態に係るエンジンの排気浄化装置の構成を示している エンジン Eは、ディーゼルエンジンであり、キヤブオーバ型のトラックに搭載されるも のである。エンジン Eの排気系には、次の排気浄化装置が設置されている。この排気 浄化装置は、排気通路に上流側から順に設置された酸化触媒 1、 NOx浄化触媒 2 及びアンモニア浄化触媒 3を含んで構成される。 NOx浄化触媒 2は、還元触媒であ り、これよりも排気の流れに関して上流、本実施形態では、酸化触媒 1とこの NOx浄 化触媒 2との間に噴射ノズル 4が設置されており、この噴射ノズル 4により液体還元剤 が噴射され、排気に添加される。噴射ノズル 9に対してエンジン Eの運転状態に応じ た必要量の液体還元剤を供給する、制御弁を内蔵した添加装置 5が設けられるととも に、この添加装置 5を制御する電子制御ユニット(以下「ECU」という。) 9が設けられ ている。また、 NOx浄化触媒 2の上流及びアンモニア浄化触媒 3の下流に排気温度 センサ 6, 7が設置されるとともに、エンジン Eの電子制御ユニット 8が設けられ、排気 温度センサ 6, 7により検出された NOxの浄化前後の排気温度、及びエンジン回転 数(クランク角センサからの信号等に基づいてエンジン Eの電子制御ユニット 8により 算出される。)等が ECU9に入力される。 ECU9は、入力した各種の情報に基づいて 、添加装置 5を制御する。
[0014] 排気に添加される液体還元剤は、タンク 10に貯蔵されている。本実施形態では、こ の液体還元剤として、車上での貯蔵容易性を考慮して尿素水を採用している。この 尿素水は、固体又は粉体の尿素の水溶液であり、常温下で、液体の状態でタンク 10 に貯蔵される。尿素水は、排気中に噴射された場合に、排気中の水蒸気により加水 分解され、アンモニアを発生させる。排気中の NOxは、 NOx浄化触媒 2でこのアン モニァと還元反応し、水と無害なガス(ここでは、窒素)とに分解される。なお、液体還 元剤には、尿素水以外に、アンモニア水、又は炭化水素系等の他の液体還元剤を 採用することができる。本実施形態では、タンク 10から添加装置 5に尿素水を輸送す るための尿素水供給管 11に、熱式濃度センサ 12が設置されている。
[0015] 図 2は、尿素水供給管 11の内部を、この管 11の中心軸に垂直な平面による断面で 示している。
濃度センサ 12は、本体にセンサ素子 121及びヒータ素子 122が内蔵され、この本 体は、尿素水供給管 11の管壁に固定されている。センサ素子 121に接触する第 1の フィン 123と、ヒータ素子 122に接触する第 2のフィン 124とが、本体 (及び管壁)を貫 通して尿素水供給管 11内の空間に突出している。濃度センサ 12は、ヒータ素子 122 に駆動電流を通電して、ヒータ素子 122を発熱させたときのセンサ素子 121の電気 抵抗を検出し、これを尿素水の伝熱特性に応じた検出信号 (尿素水の濃度を示す。 ) として ECU9に出力する。センサ素子 121は、温度に応じて物性(ここでは、電気抵 抗)が変化する特性を有しており、濃度センサ 12は、ヒータ素子 122に所定の時間に 亘り駆動電流を通電し、通電停止時におけるセンサ素子 121の電気抵抗を検出し、 検出信号を発生させる。なお、本実施形態では、尿素水の熱的特性として、尿素水 供給管 11内の異なる 2点の間における伝熱特性を採用した場合を例に説明するが、 たとえば、センサ素子とヒータ素子とを同じフィンに接触させることで、 1つのフィンか らの放熱特性に応じた検出信号を発生させることもできる。
[0016] 以下、本実施形態に係る尿素水の状態判別及び濃度検出について説明する。本 実施形態では、尿素水の状態判別装置 (又は濃度検出装置)としての機能を、 ECU 9に持たせている。
本実施形態では、タンク 10に貯蔵されている尿素水を輸送する尿素水供給管 11 の途中に濃度センサ 12を設置し、この濃度センサ 12により、この尿素水供給管 11内 の異なる 2点の間における伝熱特性に応じた検出信号を発生させる。この検出信号 は、伝熱の媒体となる尿素水の濃度に相関するものであり、これに基づいて尿素水 の濃度を検出することができるが、尿素水供給管 11内の尿素水には流れがあること から、濃度センサ 12の検出信号をそのまま濃度に換算したのでは、検出結果として の濃度に誤差が生じる。このため、尿素水供給管 11内を流れる尿素水の流速を検 出し、この流速を尿素水の状態判別に反映させる。本実施形態では、濃度センサ 12 の検出信号、及び尿素水の流速に基づいて尿素水の濃度を算出し、この濃度が規 定の正常範囲にあるか否かを判定する。あるいは、濃度センサ 12の検出信号が示す 計測値 (すなわち、電気抵抗の大きさ)が、尿素水の流速に応じた正常範囲にあるか 否力、を判定してもよい。
[0017] 具体的には、予め実験等によるデータの収集を行い、濃度センサ 12の検出信号に 対する流速毎の補正濃度を設定して、検出信号と流速毎の補正濃度とを対応させた マップデータを作成し、 ECU9に備えられたメモリーに記憶しておく。実測に際しては 、実際に得られた検出信号によりこのマップデータを参照して、流速に対応する補正 濃度を読み出し、この濃度が規定の正常範囲にあるか否力、を判定する。あるいは、 尿素水の濃度に関する正常範囲を、データの収集により予め流速毎に設定しておく 。たとえば、この正常範囲を定める上限及び下限の値を設定し、 ECU9に備えられた メモリーに記憶させておくことで、このメモリーの容量を節約することができる。正常範 囲に含ませ得る全ての値を記憶させてもよい。実測に際しては、濃度センサ 12の検 出信号が示す計測値が、その実測時における流速に対応した正常範囲にあるか否 かを、記憶値との比較により判定する。なお、本実施形態では、本発明を尿素水の状 態判別装置に適用しているが、本発明は、これに限らず、濃度検出装置に適用し得 ること力 S理角军される。
[0018] 次に、 ECU9が尿素水の状態判別及び濃度検出に関して行う制御の内容につい て、フローチャートを参照して説明する。
図 3は、状態判別ルーチンのフローチャートであり、このルーチンは、 ECU9により、 イグニッションキーによる電源スィッチのオン等に伴い開始され、所定の時間毎に繰 り返される。
[0019] S11では、イグニッションキーの位置等に基づいて、エンジン Eが運転状態にあり、 添加装置 5が作動しているか否かを判定する。作動しているときは、 S12へ進み、作 動していないときは、このルーチンを終了する。
S 12では、濃度センサ 12による計測値 Xを読み込む。
S13では、実測時における液体還元剤の噴射量を読み込む。本実施形態では、制 御上の便宜から、この噴射量として添加装置 5に対する ECU9の噴射指令値 (たとえ ば、 目標噴射量)を採用する。
[0020] S14では、尿素水供給管 11における尿素水の流速 Yを算出する。流速 Yは、液体 還元剤の噴射量を [m3/s]を尿素水供給管 11の断面積 [m2]で除算することにより 算出することができる。
S 15では、 ROM等の不揮発性メモリーに予め記憶されているデータ Dを参照して 、流速 Yのもとで計測値 Xに対応する尿素水の濃度を読み出す。このデータ Dは、既 知の幾つかの流速のもとで異なる濃度の尿素水を尿素水供給管 11に流し、各濃度 に対して得られた計測値を、マップデータとして記憶させたものである。このため、計 測値 Xと流速 Yとによりデータ Dを検索することで、実際の濃度を読み出すことができ る。
[0021] S16では、尿素水の濃度が、尿素水が適正であることを示す正常範囲にあるか否 かを判定し、この判定結果を出力する。本実施形態では、この正常範囲を定める上 限及び下限の値を予め記憶させており、読み出された濃度をこの上限及び下限の値 と比較することにより判定する。濃度が正常範囲にあるときは、判別結果を示すものと して正常判別フラグが設定され、正常範囲にないときは、異常判別フラグが設定され る。なお、本実施形態において、正常範囲からの濃度の逸脱は、尿素水が水等によ り希釈され、又はタンク 10に貯蔵されてレ、る水溶液が尿素水以外の異種水溶液であ る場合に生じる。また、熱的特性を採用した濃度センサ 11の検出原理により、尿素水 の残量が所定の量に満たない場合 (タンク 10が空である場合を含む。)に生じる。
[0022] S17では、判定結果を RAM等のメモリーに記憶する。
なお、データ Dは、濃度に関する正常範囲を定める値 (たとえば、上限及び下限の 値、又は正常範囲に含ませ得る全ての値)を、流速毎に記憶させたものであってもよ レ、。この場合において、データ Dは、尿素水供給管 11に適正な液体還元剤を流した 場合に得られる計測値の範囲を流速毎に評価して作成する。たとえば、流速毎に収 集された計測値のデータから、適正な尿素水に関して得られる計測値を抽出し、この 計測値が収まる正常範囲の上限及び下限の値、又はこの正常範囲に含ませ得る全 ての値を定め、流速毎に記憶させる。正常範囲の設定では、濃度センサ 12の検出誤 差を考慮するのが好ましい。この場合の処理の流れは、図 3に示すフローチャートと 概ね同じである力 S15に相当する処理として、濃度センサ 12による計測値 X力 対 応する流速 Yのもとで正常範囲にあるか否かを、データ Dを参照して判定する。続く S 16において、正常範囲にあるときに正常判別フラグを設定し、正常範囲にないときに 異常判別フラグを設定することは、前述同様である。
[0023] ECU9は、判別した尿素水の状態に基づいて添加装置 5を制御する。図 4は、添カロ 制御ルーチンの一例を示すフローチャートである。 ECU9は、エンジン Eの燃料噴射 量に基づいて噴射ノズル 4による尿素水の噴射量を設定する(S22, 23)。本実施形 態では、状態判別ルーチン(図 3)で尿素水の濃度を検出しているので、噴射量の設 定に検出した尿素水の濃度を反映させる。尿素水の濃度が高いときは、単位噴射量 当たりのアンモニアの発生量が多いので、燃料噴射量に基づいて算出した基本的な 噴射量に対して減少補正を施し、逆に濃度が低いときは、単位噴射量当たりのアン モユアの発生量が少ないので、これに増量補正を施す。また、 ECU9は、状態判別 の結果に応じ (S21)、正常判別フラグが設定されているときは、添加装置 5に、ェン ジン Eの燃料噴射量等に応じた量の尿素水を噴射させる(S24)。他方、異常判別フ ラグが設定されているとき (尿素水の濃度が規定の正常範囲にないとき)は、添加装 置 5に対して尿素水の添加を禁止させるとともに(S25)、運転室のコントロールパネ ルに設けられた警告装置(図示せず。)を作動させる(S26)。これに併せ、エンジン E の電子制御ユニット 8に信号を送信し、エンジン Eの運転が制限 (たとえば、低回転、 かつ低負荷域に制限)されるようにするとよい。
[0024] 以上に説明したように、本実施形態によれば、尿素水供給管 11を流れる尿素水の 熱的特性と、尿素水の流速とに基づいて尿素水の濃度を算出し、これが正常範囲外 にあるか否力 ^判定することとした。尿素水供給管 11では、 ECU9により流量が制御 されていることから、タンク 10内におけるのと比較して走行振動又はエンジン E自体 の振動等のタンク 10外からの加振入力に対する尿素水の熱的特性のバラツキが小 さい。このため、走行時又は停車時の別を問わず、充分な頻度で尿素水の濃度を評 価又は検出する機会を得ることができ、使用されている尿素水が適正であるか否かを 、高い信頼性をもって判別することができる。
[0025] なお、本発明は、ディーゼルエンジンに限らず、ガソリンエンジンに設けられる液体 還元剤の状態判別装置等に適用することもできる。
以上では、本発明について好ましい実施の形態により説明したが、本発明の範囲 は、この説明に何ら制限されるものではなぐ特許請求の範囲の記載をもとに、適用 条文に従い判断される。

Claims

請求の範囲
[1] タンクから輸送される液体還元剤の状態を判別する装置であって、
前記タンクから延伸する前記液体還元剤の輸送路に設置され、この輸送路を流れ る前記液体還元剤の熱的特性に応じた検出信号を発生させる第 1の検出器と、 前記輸送路を流れる前記液体還元剤の流速を検出する第 2の検出器と、 前記第 1の検出器により発せられた検出信号、及び前記第 2の検出器により検出さ れた流速に基づいて、前記液体還元剤の濃度が所定の正常範囲外にあるか否かを 判定し、この判定結果に応じた前記液体還元剤の状態判別信号を発生させる演算 ユニットと、を含んで構成される液体還元剤の状態判別装置。
[2] 前記演算ユニットは、
前記発せられた検出信号の示す値が、前記検出された流速に応じた正常範囲外 にあるか否力を判定する状態判定部と、
前記状態判定部による判定結果に応じた前記液体還元剤の状態判別信号を発生 させる信号発生部と、を含んで構成される請求項 1に記載の液体還元剤の状態判別 装置。
[3] 前記状態判定部は、
前記第 1の検出器により発せられる検出信号に関し、前記正常範囲を定める複数 の値が前記液体還元剤の流速毎に予め記憶された記憶部を含んで構成され、 前記検出された流速に対応する前記記憶部の値を読み出すとともに、この読み出 した値と、前記第 1の検出器により実際に発せられた検出信号とに基づいて、この発 せられた検出信号の示す値が前記正常範囲外にあるか否かを判定する請求項 2に 記載の液体還元剤の状態判別装置。
[4] 前記演算ユニットは、前記液体還元剤の濃度が前記正常範囲外にある場合に、前 記状態判別信号として、前記液体還元剤の異常をオペレータに認識させるための信 号を発生させる請求項 1に記載の液体還元剤の状態判別装置。
[5] 車載エンジンの排気に液体還元剤を添加して、排気中の N〇xを還元させる装置で あってヽ
請求項 1に記載の液体還元剤の状態判別装置と、 前記輸送路を介して前記タンクに接続され、前記タンクに貯蔵されている前記液体 還元剤をエンジンの排気に添加する添加装置と、を含んで構成され、
前記添加装置は、前記液体還元剤の濃度が前記正常範囲外にある異常時と、この 異常時以外の正常時とで前記液体還元剤を添加し、前記異常時において、前記演 算ユニットにより発せられた状態判別信号に対応して、前記液体還元剤の添加量を 前記通常時のものとは異ならせるエンジンの排気浄化装置。
[6] 前記液体還元剤が尿素水である請求項 5に記載のエンジンの排気浄化装置。
[7] 前記第 2の検出器は、前記輸送路の流路断面積が予め記憶され、前記添加装置 による前記液体還元剤の添加量と、記憶されている前記流路断面積とに基づいて、 前記液体還元剤の流速を検出する請求項 5に記載のエンジンの排気浄化装置。
[8] タンクから輸送される液体還元剤の濃度を検出する装置であって、
前記タンクから延伸する前記液体還元剤の輸送路に設置され、この輸送路を流れ る前記液体還元剤の熱的特性に応じた検出信号を発生させる第 1の検出器と、 前記輸送路を流れる前記液体還元剤の流速を検出する第 2の検出器と、 前記第 1の検出器により発せられた検出信号、及び前記第 2の検出器により検出さ れた 流速に基づいて、前記タンクに貯蔵されている前記液体還元剤の濃度を推定 演算する第 1の演算ユニットと、を含んで構成される濃度検出装置。
[9] 前記第 1の演算ユニットは、
前記第 1の検出器により検出される検出信号の示す値と、前記液体還元剤の濃度 との関係を表す保存データが、前記液体還元剤の流速毎に予め記憶された記憶部 と、
前記検出された流速に対応する前記記憶部の保存データから、前記第 1の検出器 により実際に発せられた検出信号に基づいて前記液体還元剤の濃度を読み出す読 出部と、を含んで構成される請求項 8に記載の濃度検出装置。
[10] 車載エンジンの排気に液体還元剤を添加して、排気中の N〇xを還元させる装置で あって、
請求項 8に記載の濃度検出装置と、
前記輸送路を介して前記タンクに接続され、前記タンクに貯蔵されている前記液体 還元剤をエンジンの排気に添加する添加装置と、を含んで構成され、 前記添加装置は、前記濃度検出装置により検出された前記液体還元剤の濃度に 基づいて、前記排気に添加される液体還元剤の量を制御するエンジンの排気浄化 装置。
[11] 請求項 8に記載の濃度検出装置と、
前記濃度検出装置により検出された前記液体還元剤の濃度に基づいて前記液体 還元剤の状態を判別する第 2の演算ユニットと、を含んで構成され、
前記第 2の演算ユニットは、
前記検出された濃度が所定の正常領域外にあるか否かを判定する状態判定部と、 前記状態判定部による判定結果に応じた前記液体還元剤の状態判別信号を発生 させる信号発生部と、を含んで構成される液体還元剤の状態判別装置。
[12] 前記第 2の演算ユニットは、前記検出された濃度が前記正常領域外にある場合に、 前記状態判別信号として、前記液体還元剤の異常をオペレータに認識させるための 信号を発生させる請求項 11に記載の液体還元剤の状態判別装置。
[13] 車載エンジンの排気に液体還元剤を添加して、排気中の N〇xを還元させる装置で あってヽ
請求項 11に記載の液体還元剤の状態判別装置と、
前記輸送路を介して前記タンクに接続され、前記タンクに貯蔵されている前記液体 還元剤をエンジンの排気に添加する添加装置と、を含んで構成され、
前記添加装置は、前記検出された濃度が前記正常範囲外にある異常時と、この異 常時以外の正常時とで前記液体還元剤を添加し、前記異常時において、前記第 2の 演算ユニットにより発せられた状態判別信号に対応して、前記液体還元剤の添加量 を前記通常時のものとは異ならせるエンジンの排気浄化装置。
[14] 前記液体還元剤が尿素水である請求項 13に記載のエンジンの排気浄化装置。
[15] 前記第 2の検出器は、前記輸送路の流路断面積が予め記憶され、前記添加装置 による前記液体還元剤の添加量と、記憶されている前記流路断面積とに基づいて、 前記液体還元剤の流速を検出する請求項 13に記載のエンジンの排気浄化装置。
[16] タンクから輸送される液体還元剤の状態を判別する装置であって、 前記タンクから延伸する前記液体還元剤の輸送路に設けられ、この輸送路を流れ る前記液体還元剤の、熱的特性に応じた第 1の濃度を検出する第 1の検出手段と、 前記輸送路を流れる前記液体還元剤の流速を検出する第 2の検出手段と、 前記第 1の検出手段により検出された第 1の濃度、及び前記第 2の検出手段により 検出された流速に基づレ、て、前記タンクに貯蔵されてレ、る前記液体還元剤の第 2の 濃度が所定の正常範囲外にあるか否かを判定する状態判定手段と、を含んで構成さ れる液体還元剤の状態判別装置。
タンクから輸送される液体還元剤の濃度を検出する装置であって、
前記タンクから延伸する前記液体還元剤の輸送路に設けられ、この輸送路を流れ る前記液体還元剤の、熱的特性に応じた第 1の濃度を検出する第 1の検出手段と、 前記輸送路を流れる前記液体還元剤の流速を検出する第 2の検出手段と、 前記第 1の検出手段により検出された第 1の濃度、及び前記第 2の検出手段により 検出された流速に基づレ、て、前記タンクに貯蔵されてレ、る前記液体還元剤の第 2の 濃度を推定演算する濃度算出手段と、を含んで構成される濃度検出装置。
PCT/JP2005/020423 2004-11-19 2005-11-08 液体還元剤の状態判別装置及び濃度検出装置 WO2006054457A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004335446A JP4327072B2 (ja) 2004-11-19 2004-11-19 排気浄化装置の液体還元剤判別システム
JP2004-335446 2004-11-19

Publications (1)

Publication Number Publication Date
WO2006054457A1 true WO2006054457A1 (ja) 2006-05-26

Family

ID=36407002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020423 WO2006054457A1 (ja) 2004-11-19 2005-11-08 液体還元剤の状態判別装置及び濃度検出装置

Country Status (2)

Country Link
JP (1) JP4327072B2 (ja)
WO (1) WO2006054457A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110735695A (zh) * 2018-07-18 2020-01-31 罗伯特·博世有限公司 Scr系统及其控制器、控制方法及具有其的可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799358B2 (ja) 2006-10-12 2011-10-26 Udトラックス株式会社 エンジンの排気浄化装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282433A (ja) * 1991-03-11 1992-10-07 Snow Brand Milk Prod Co Ltd 液体の濃度測定方法及び装置
JP2001020724A (ja) * 1999-07-07 2001-01-23 Isuzu Motors Ltd ディーゼルエンジンのNOx浄化装置
JP2002508466A (ja) * 1997-12-17 2002-03-19 シーメンス アクチエンゲゼルシヤフト 燃焼設備の排ガス中の窒素酸化物を低減する方法及び装置
JP2002513109A (ja) * 1998-04-24 2002-05-08 シーメンス アクチエンゲゼルシヤフト 燃焼設備の排ガス中の窒素酸化物を触媒により還元する方法及び装置
JP2002527660A (ja) * 1998-10-13 2002-08-27 クリーン ディーゼル テクノロジーズ インコーポレーテッド 選択的触媒作用による軽減のための温度制御尿素注入によるエンジンからのNOx放出物の軽減
JP2004509274A (ja) * 2000-09-22 2004-03-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 排ガスから窒素酸化物を除去するための還元剤を調量する方法及び装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282433A (ja) * 1991-03-11 1992-10-07 Snow Brand Milk Prod Co Ltd 液体の濃度測定方法及び装置
JP2002508466A (ja) * 1997-12-17 2002-03-19 シーメンス アクチエンゲゼルシヤフト 燃焼設備の排ガス中の窒素酸化物を低減する方法及び装置
JP2002513109A (ja) * 1998-04-24 2002-05-08 シーメンス アクチエンゲゼルシヤフト 燃焼設備の排ガス中の窒素酸化物を触媒により還元する方法及び装置
JP2002527660A (ja) * 1998-10-13 2002-08-27 クリーン ディーゼル テクノロジーズ インコーポレーテッド 選択的触媒作用による軽減のための温度制御尿素注入によるエンジンからのNOx放出物の軽減
JP2001020724A (ja) * 1999-07-07 2001-01-23 Isuzu Motors Ltd ディーゼルエンジンのNOx浄化装置
JP2004509274A (ja) * 2000-09-22 2004-03-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 排ガスから窒素酸化物を除去するための還元剤を調量する方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110735695A (zh) * 2018-07-18 2020-01-31 罗伯特·博世有限公司 Scr系统及其控制器、控制方法及具有其的可读存储介质

Also Published As

Publication number Publication date
JP4327072B2 (ja) 2009-09-09
JP2006144657A (ja) 2006-06-08

Similar Documents

Publication Publication Date Title
JP3687917B2 (ja) 液体還元剤の濃度及び残量検出装置
US7587288B2 (en) Condition discriminating apparatus for liquid reducing agent
JP4444165B2 (ja) エンジンの排気浄化装置
JP3686672B1 (ja) エンジンの排気浄化装置
JP3687916B2 (ja) エンジンの排気浄化装置
JP4799358B2 (ja) エンジンの排気浄化装置
JP4498983B2 (ja) 液体還元剤判別装置
KR102230828B1 (ko) 배기가스 처리 시스템의 저장 탱크의 탱크 내용물을 모니터링하는 방법 및 장치
WO2006098051A1 (ja) 排気浄化システムの還元剤噴射状況判定装置
US9188042B2 (en) Urea quality diagnosis system
JP3687915B2 (ja) 液体判別装置
CN103703221A (zh) 选择还原型nox催化剂的劣化检测装置
WO2006054457A1 (ja) 液体還元剤の状態判別装置及び濃度検出装置
JP4884270B2 (ja) エンジンの排気浄化装置
WO2006051770A1 (ja) 濃度検出装置及びこれを備えるエンジンの排気浄化装置
Jayashree et al. On-Board Diagnosis of Improper Reductant Detection in BS6 SCR System Using Virtual Sensor Modelling
JP4832326B2 (ja) エンジンの排気浄化装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05806149

Country of ref document: EP

Kind code of ref document: A1